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Abstract: In the present study, we propose a high-throughput sequencing protocol using aNextera
XT Library DNA kit on an Illumina MiSeq instrument. We made major modifications to this library
preparation in order to multiplex 384 samples in a single Illumina flow cell. To validate our protocol,
we compared the sequences obtained with the modified Illumina protocol to those obtained with
the GridION Nanopore protocol. For the modified Illumina protocol, our results showed that 94.9%
(357/376) of the sequences were interpretable, with a viral genome coverage between 50.5% and
99.9% and an average depth of 421×. For the GridION Nanopore protocol, 94.6% (356/376) of the
sequences were interpretable, with a viral genome coverage between 7.0% and 98.6% and an average
depth of 2123×. The modified Illumina protocol allows for gaining EUR 4744 and returning results
of 384 samples in 53.5 h versus four times 55.5 h with the standard Illumina protocol. Our modified
MiSeq protocol yields similar genome sequence data as the GridION Nanopore protocol and has
the advantage of being able to handle four times more samples simultaneously and hence is much
less expensive.

Keywords: Illumina MiSeq; SARS-CoV-2; next-generation sequencing; genomics; sequence analysis

1. Introduction

SARS-CoV-2, the pathogenic agent that causes Coronavirus disease 2019 (COVID-19),
has spread very rapidly around the world, affecting millions of people, and is still cir-
culating with a substantial global incidence [1]. The emergence of this new virus called
for the urgent establishment of a global system of reliable diagnosis and close surveil-
lance, including the determination of the genetic epidemiology of SARS-CoV-2. In this
context, rapid and efficient methods to simultaneously analyze large numbers of samples
are needed for virus whole genome sequencing (WGS). The next generation of sequencing
(NGS) technologies, such as those of Oxford Nanopore Technologies (Oxford Nanopore
Technologies, Oxford, UK) and Illumina (Illumina, Evry, France), are currently used in
most laboratories worldwide [2]. In addition, the ARTIC network developed a primer set
(named ARTIC) for performing amplification by PCR that raises the yield of subsequent
sequencing of the whole SARS-CoV-2 genome [3]. Due to the rapid emergence of viral
variants harbouring multiple new mutations, the design of new ARTIC primers is con-
stantly required; the version currently (in May 2022) in use is ARTIC V4.1, consisting of
Pool A, which contains 50 primers, and Pool B, which contains 49 primers [4]. The Minion
or GridION Nanopore and MiSeq Illumina platform techniques are often used with ARTIC
primers [5,6] to sequence up to 96 samples in a single flow cell.
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Recently, a new protocol for the next-generation sequencing of SARS-CoV-2 RNA using
the Illumina MiSeq instrument was described [7]. Minor modifications were introduced
to the Illumina COVIDSeq protocol to sequence 94 SARS-CoV-2-positive samples on a
MiSeq instrument. The COVIDSeq protocol is most often used to sequence a much larger
number of samples (i.e., from 384 to 3072 samples) on a NovaSeq instrument. However, this
instrument is very expensive (up to one million euros per run, equivalent to the price of a
NovaSeq 6000 sequencing platform), especially for developing countries. It is in this context
that we propose a simple, rapid, and less expensive method to sequence 384 SARS-CoV-2
amplicons in a single run on a MiSeq instrument. To validate our protocol, we compared the
results obtained using this method with the Illumina MiSeq instrument to those obtained
with the GridION Nanopore instrument using four flow cells and the ARTIC Nanopore
protocol Eco PCR tilling of SARS-CoV-2 with Native Barcoding.

2. Materials and Methods
2.1. Samples

The study was conducted using RNA extracts obtained from nasopharyngeal swabs
collected from patients for the purpose of SARS-CoV-2 clinical routine diagnosis by real-
time reverse transcription-PCR (qPCR) and found SARS-CoV-2 RNA-positive. These
RNA extracts were then used for SARS-CoV-2 genome sequencing for the purpose of
genomic surveillance following recommendations of the French public health authori-
ties (https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/consortium-
emergen#block-356295, accessed on 13 September 2022). This study received approval
of the Ethical Committee of the Mediterranee Infection Institute under reference (No.
2022-017). Confidentiality and anonymity were maintained by using a code number on
individual clinical records. Only samples from patients who gave their written informed
consent were used in the study.

2.2. RNA Extraction

Viral RNA had been extracted from nasopharyngeal swab samples using an automated
nucleic acid purification system (Thermo Scientific KingFisher Flex Purification System,
Waltham, MA, USA) following the MVP_2Wash_200_Flex protocol as recommended by the
manufacturer. After extraction, eluted RNA is stored at −20 ◦C until further processing.

2.3. Modified Illumina MiSeq Protocol
2.3.1. cDNA Synthesis

The first strand of cDNA was synthesized using a LunaScript RT SuperMix kit (New
England Biolabs, Ipswich, MA, USA). Two µL of LunaScript were mixed with 8 µL of eluted
RNA, and the mixture was incubated in the thermal cycler using the following program:
25 ◦C for 2 min, 55 ◦C for 10 min, 95 ◦C for 1 min and hold at 4 ◦C.

2.3.2. Amplification of cDNA

The synthesized cDNA was amplified in two separate PCR reactions: PCR Pool A and
PCR Pool B (Integrated DNA Technologies, Leuven, Belgium). Two separate mixes were
prepared for each sample, one for Pool A (for primer set A) and the other for Pool B (for
primer set B) [4], consisting of 0.37 µL of each primer (100 µM), 9.63 µL of nuclease-free
water, and 12.5 µL of master mix (Q5 hot start high-fidelity 2× master mix; New England
Biolabs), into which we added 2.5 µL of the cDNA to each pool mix well. PCR amplification
was carried out using the following program: initial denaturation for 30 s at 98 ◦C, followed
by 35 cycles of denaturation for 30 s at 98 ◦C, and 5 min of annealing and extension at 65 ◦C.
The PCR products of each sample (25 µL of Pool A and 25 µL of Pool B) were mixed (Pool
A/PoolB) and diluted 1:10 in water as recommended in the protocol for Eco PCR tiling of
SARS-CoV-2 virus with native barcoding [8].

https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/consortium-emergen#block-356295
https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/consortium-emergen#block-356295
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2.3.3. Tagmentation of Genomic DNA

This step used the Nextera XT DNA Library kit (Illumina, catalogue number: FC-131-
1096). Five µL of each sample were mixed with 10 µL of Tagment DNA buffer and 5 µL of
Amplicon Tagment Mix and incubated at 55 ◦C for 5 min with a hold at 10 ◦C. At 10 ◦C,
5 µL of NT were immediately added to stop tagmentation prior to incubation for 5 min at
room temperature.

2.3.4. Amplification, Clean up and Pooling of Libraries

This step amplified the tagmented DNA using 10 µL of index adapters (Integrated
DNA Technologies(IDT), Coralville, IA, USA)for Illumina PCR index sets 1–4 (Illumina,
catalogue number: 20043137)mixed with 15 µL of Nextera PCR Master Mix (Illumina). PCR
was carried out using the following conditions: initialization for 3 min at 72 ◦C, initial
denaturation for 3 min at 98 ◦C, followed by 12 cycles of denaturation for 20 s at 98 ◦C,
annealing for 5 min at 65 ◦C, extension for 2 min at 72 ◦C, and a final extension step for
5 min at 72 ◦C. Five µL of each sample were pooled to obtain 440 µL of pooled libraries
(for 96 samples), and a total of 4 pools of samples (4 × 96 = 384) were constituted. Each
library pool was purified with 396 µL of Illumina tune beads (0.9 beads ratio) and washed
twice with 1000 µL of 80% ethanol freshly prepared. Elution was performed using 55 µL of
resuspension buffer of the Illumina kit. Twenty-five µL of each pool were transferred to a
tube to form a mega pool and were diluted to 8 nM with Resuspension Buffer.

2.3.5. Sequencing of the Libraries

During this step, DNA samples were denatured by adding 10 µL of 0.2 N NaOH
mixed with 10 µL of mega pool (8 nM) and incubated for 5 min. A total of 980 µL of
neutralizing buffer (HT1) was added to obtain the final volume of 1000 µL in the library.
A total of 180 µL of the final library was mixed with 420 µL of HT1, and 6 µL of this
mixture was removed and replaced with 6 µL of 20 pMphix. The library was loaded
into the MiSeqsequencing cartridge with a concentration of 24 pM to obtain a density
of 1000 K/mm2 without overclustering the flow cell (MiSeq Reagent Kit V2, catalogue
number: MS-102-2003). Sequencing was initiated as per the MiSeq sequencing guide
by Illumina.

2.4. Nanopore Protocol

We used the same amplicons prepared and diluted to 1:10, as described above in
Section 2.3.2, to sequence them with the GridION system (Oxford Nanopore Technologies),
following the protocol “Eco PCR tiling of SARS-CoV-2 virus with native barcoding (EXP-
NBD104, EXP-NBD114, and EXP-NBD196) Version: PTCE_9122_v109_revC_10Feb2021” [8].
cDNA was treated with the NEBNext Ultra II End repair/dA-tailing Module (New England
Biolabs). It was ligated with barcodes from a native barcoding kit (Oxford Nanopore
Technologies) using Blunt/TA Ligase Master Mix (New England Biolabs). The adapters
from the ligation sequencing kit (Oxford Nanopore Technologies) were then ligated with
the NEBNext Quick Ligation Module (New England Biolabs). Finally, sequencing was
performed using the GridION sequencer with four flow cells (R9.4.1) for 48 h.

2.5. Genome Assembly, Variant Calling, and Phylogenetic Analysis

These steps describe the basic bioinformatics pipeline for SARS-CoV-2 genome as-
sembly and identification of variants. The raw sequencing data generated by Illumina
sequencing platforms were in the form of FASTQ format before further processing. The raw
data generated by Nanopore sequencing platforms were in the form of FASTQPASS format.

2.6. Illumina Sequencing Data Analysis

Quality control and adaptor trimming of raw reads were performed using trimmo-
matic(v. 0.39) [9]. The trimmed reads were aligned against the SARS-CoV-2 reference
genome using minimap2 (v2.17-r941) [10]. With samtools(v. 1.13), primers have been
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removed, and the sam files from the mapping were sorted and converted to bam [11].
Using sam2consensus [12], a consensus sequence of the genomes in fasta file format was
generated. To assess the quality of the assembled genomes, sample parameters and metrics
are shown in Supplementary Table S1.

2.7. Nanopore Sequencing Data Analysis

Reads were collected and filtered using the artic-ncov2019 bioinformatics pipeline [13].
The reads were filtered with a minimum length of 400 base pairs (bp) and a maximum
length of 700 bp using guppyplex. The consensus sequence in the fasta file was generated
using the ARTIC pipeline with the Medaka model [14].

2.8. Consensus Sequences Analysis

The consensus sequences in fasta format were analyzed using Nextclade (https:
//clades.nextstrain.org/, accessed on 13 September 2022) [15] to determine the Nextstrain
clades and identify mutations (https://nextstrain.org/, accessed on 13 September 2022 [15].
To assign lineages to the assembled genome fasta sequences, we use the Phylogenetic
Assignment of Named Global Outbreak Lineages (PANGOLIN) software [16]. The compar-
ison of data output, coverage, and time taken for analysis between MiSeq and Nanopore
procedures is presented in Supplementary Table S3.

3. Results

Of the 376 samples processed for sequencing with the modified Illumina MiSeq
protocol, 357 (94.9%) yielded interpretable sequences, as defined by nexclade. Of these, 325
had high quality sequences with at least 90% coverage of the SARS-CoV-2 genome and a
mean depth (±standard deviation) of 407 ± 248.92 × (range, 158.50–656.35). Thirty-two
samples had coverage between 50.6% and 89.9% and a mean (±standard deviation) depth
of 561 ± 305.93×(255.46–867.3) (Supplementary Table S1). Sequencing of 19 samples failed,
and of these, 13 had medium or low viral loads, with real-time cycle threshold (CT)values
ranging from 23.0 to 33.7 (Figure 1). Six of 19 samples produced no reads for unknown
reasons. The MiSeq genome sequences with a high quality (n = 351) were submitted to
GenBank (accession numbers ON365966–ON366316). In all samples sequenced with the
modified MiSeq protocol, an average of 59.3 mutations was found. In total, 19 different
SARS-CoV-2 lineages were detected in the 357 samples that produced sequences with the
modified MiSeq workflow (Figure 2B).

https://clades.nextstrain.org/
https://clades.nextstrain.org/
https://nextstrain.org/
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Figure 2. Phylogenetic distribution of SARS-CoV-2 genomes. (A) The 357 sequences obtained with
the Illumina MiSeq protocol reported in this study are highlighted. The genomes analyzed in this
study fall into one of 10 clades, with 21L being the dominant clade. (B) The 356 sequences obtained
with the Nanopore GridION protocol reported in this study are highlighted. Lineage 21L is still
the dominant one. Some PANGOLIN lineages, such as BA.1.1, BA.1.1.1.14, BA.1.1.16, BA.1.17, and
BA.1.177, have not been generated.

For the same samples processed by Nanopore GridION sequencing, 356 (94.6%)
yielded interpretable sequences. All 356 samples with interpretable data were also se-
quenced successfully with the modified MiSeq protocol. Among 356 Nanopore genome
sequences, 332 were of very good quality, with a coverage of more than 90% and a mean
depth of 2238 ± 892.41 × (1345.70–3130.54) (Supplementary Table S2). Twenty-three sam-
ples had a genome coverage between 50.78 and 89.21% and a mean depth of 530.25 ± 238.30
× (291.94–768.55). All 19 samples that failed to yield interpretable genome sequences with
the modified MiSeq protocol also failed to yield interpretable sequences with Nanopore.
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Two samples (IHUCOVID-071236 and IHUCOVID-071258) yielded interpretable se-
quences with the modified Illumina MiSeq protocol although they could not be sequenced
by the Nanopore system. Genome coverages for these samples were 7.0% and 99.6%, and
sequencing depths were 931× and 273×, respectively. Conversely, one sample (IHUCOVID-
071471) yielded an interpretable sequence with the Nanopore protocol but not with the mod-
ified MiSeq protocol. Genome coverage was 58.6%, and sequencing depth was 2965×. The
reason for these discrepancies is unresolved but might be handling errors. The Nanopore
genome sequences with a high quality (n = 327) were submitted to GenBank (accession num-
bers ON313815–ON314140). On average, the number of mutations found with Nanopore
system was 58.2.

For samples from which SARS-CoV-2 genomes were sequenced with both methods,
Pangolin assigned the same lineage in 355 of 356 (99.7%) cases (Supplementary Table S3). For
one sample, the MiSeq consensus genome was assigned to the B.1.177 variant, while the
Nanopore consensus genome was assigned to the B.1.177.31 lineage of this variant (Figure 2A).
Genome depth was greater with the Nanopore protocol (mean, 2023.8 ± 1047.96) compared
to the modified protocol (422.8 ± 266.50), and the difference was significant (p = 0.0001)
using the t-test to compare these two means. The coverage was similar between the
two techniques (96.57 ± 7.2% on average for the Nanopore protocol versus 95.6 ± 5.62%
on average for the modified protocol), but there was a significant difference (p = 0.04).
However, there were more mutations detected (59.3 versus 58.2 on average) with the
modified MiSeq protocol but no significant difference (p = 0.9591)were detected using
the t-test.

Furthermore, to sequence 384 samples, the total cost was estimated to be EUR 15,629
using the modified Illumina protocol, versus EUR 20,374 for the standard Illumina protocol
(Figure 3). The cost saving was estimated to be EUR4745 using the modified Illumina
protocol on a single MiSeq sequencer compared to the standard Illumina protocol that
has to be performed on four MiSeq sequencers. Therefore, the modified protocol saves
money and gives results of 384 samples in 53.5 h while sparing the availability of three
MiSeq instruments.
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Figure 3. Workflow for each of the described methods, and cost and preparation time for each step.
a During this PCR, the IDT indexes were used, which are less expensive (EUR 1267) and easy to use,
contrary to the Nextera XT indexes (Nextera XT Index Kit v2 Set A, Set B, Set C, Set D; catalog number:
FC-131-2001) of the standard Illumina protocol, which cost EUR 3517. b This library normalization
step takes approximately 1 h 20 min and is done using the following reagents: Library Normalization
Additives 1, Library Normalization Beads 1, Library Normalization Wash 1, Library Normalization
Storage Buffer 1 and NaOH (see Nextra XT DNA Library Prep protocol, Document #15031942 v05).
However, this normalization step is eliminated using the modified Illumina MiSeq protocol. Only
Hybridization Buffer was used for simple normalization as specified in the methodology of this paper.

4. Discussion

The SARS-CoV-2 genome is rapidly evolving. Close monitoring of their evolution
is therefore necessary for a better assessment and understanding of potential change in
transmissibility, pathogenicity, and immune evasion. Several NGS methods are used for
whole SARS-CoV-2 genome sequencing. However, existing techniques may be improved in
terms of rapidity and cost in the face of the pandemic. Moreover, currently used reagents
are expensive and this can notably hamper genomic surveillance in developing countries.
Therefore, it is important to tune in simple, rapid, high-throughput, and less expensive
methods implementable in all countries affected by the pandemic.

The Illumina platform is known for its capacity to handle a large number of samples
simultaneously by multiplexing samples and for its high yield of sequences [17]. The
MiSeq sequencing technique is usually used to sequence 96 samples in a single flow cell,
depending on the different libraries used [7,18]. In the present study, we optimized the
protocol to sequence 384 samples in a single flow cell. The results obtained with the
modified Illumina protocol showed high quality sequences despite the increase in the
number of samples to be sequenced. However, using the Nanopore protocol, a greater
sequencing depth was obtained compared to the modified Illumina protocol (Figure 1). This
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difference is probably due to the large number of samples used with the modified Illumina
protocol, compared to the Nanopore protocol. Indeed, the sequencing depth depends on
the amount of reads generated, which varies according to the NGS protocol. As the number
of samples increases, the sequencing depth decreases. Nonetheless, the sequence data
derived from both protocols were identical, with the exception of a single sample.

Among the samples analyzed in this study, 19 lineages were characterized (Figure 2B),
including the variants 21K, 21L, and 21M (B.1.1.529 for two samples) that circulated re-
cently in Europe and required monitoring, as recommended by the World Health Orga-
nization [19]. In this study, sequencing failed in 19 samples. Thus, genome coverage was
low (<50%), and no lineage could be identified after analysis. In order to optimize the NGS
protocols assessed in our study, the number of PCR cycles could be increased to 40 for
all samples with CT values > 21. In addition, a dilution for samples with CT values > 21
should be avoided. Prior NGS, increasing the amount of respiratory sample used for RNA
extraction and reducing the eluted volume may also help optimize the output [20].

One of the main advantages of the modified Illumina protocol is that one laboratory
technician can generate all the libraries with minimal handling time, unlike for the ARTIC
Nanopore protocol and the standard Illumina protocol. The working time and reagent
cost of library preparation are estimated to be 4 h and EUR 12,767, respectively, for the
modified Illumina protocol with a single person handling all the samples. By contrast, the
same workload would require about 6 h and EUR 15,261 for the standard Illumina protocol,
with four laboratory technicians to handle each plate with 96 samples. The difference in
price can allow significant cost savings, especially in developing countries. For example, a
single MiSeq flow cell costs about EUR 1023 when used for the modified Illumina protocol,
compared to 4 flow cells that cost EUR 4092 in total for sequencing 384 samples using the
standard Illumina protocol (Figure 3). The cost factor should also take into consideration
technical worker requirements as the modified Illumina protocol can potentially reduce the
workforce by four-fold for the same quantity of samples processed. Accordingly, the cost of
technical staff will decrease by EUR 800. In addition, NGS sequencing procedures require
high-level training and skills, which can become an obstacle in laboratories in developed
and developing countries. In our experience, 44 h (run sequencer time) was required to
obtain the sequences of 384 samples using the modified Illumina protocol, compared to
24–48h with the Nanopore GridION protocol, depending on the CT values of the samples.

5. Conclusions

The modified Illumina MiSeq ARTIC protocol allowed us for the first time to sequence
a high number (i.e., 384) of SARS-CoV-2-positive samples in a single Illumina MiSeq flow
cell. We obtained high quality sequences that gave the same lineage results as the GridION
Nanopore platform, at a lower cost.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13091648/s1, Table S1: Data generated from the modified
Illumina MiSeq procedure; Table S2: Data generated from the Nanopore GridION procedure; Table S3:
Data generated for comparison between data from the Illumina MiSeq procedure and from the
Nanopore ARTIC procedure.
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