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Abstract

For decades, viruses have been isolated primarily from humans and other or-
ganisms. Interestingly, one of the most complex sides of the virosphere was
discovered using free-living amoebae as hosts. The discovery of giant viruses
in the early twenty-first century opened a new chapter in the field of virol-
ogy. Giant viruses are included in the phylum Nucleocytoviricota and harbor
large and complex DNA genomes (up to 2.7 Mb) encoding genes never be-
fore seen in the virosphere and presenting gigantic particles (up to 1.5 um).
Different amoebae have been used to isolate and characterize a plethora of
new viruses with exciting details about novel viral biology. Through distinct
isolation techniques and metagenomics, the diversity and complexity of gi-
ant viruses have astonished the scientific community. Here, we discuss the
latest findings on amoeba viruses and how using these single-celled organ-
isms as hosts has revealed entities that have remained hidden in plain sight
for ages.
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INTRODUCTION
Importance

Viruses are the most abundant biological entities on Earth (1). As intracellular parasites of organ-
isms from the three domains of life, they exert important top-down selective pressures. They are
agents of evolution and play fundamental roles in ecosystems (1-3). Viral studies are important for
medicine, economics, and biotechnology (4). Therefore, it is not surprising that the known viro-
sphere is extremely anthropocentric (5). Nonetheless, most viruses are not associated with humans,
and their study can unravel an unprecedented part of the world. The discovery of Acanthamoeba
polyphaga mimivirus (APMYV) is a notable example (6).

The description of a virus with genome and particles of such complexity opened the door
to an innovative area of study. Virologists revisited the concepts that defined viruses and even
led to the discovery of satellite-like associated viruses, i.e., virophages (7). Therefore, it is not
surprising that the search for other viruses that infect amoebae has recently intensified. With
advances in molecular techniques, studies of metagenomics have detected these ubiquitous and
abundant viruses in different parts of the world (8, 9). These prospective studies and viral isolation
have made it possible to make an in-depth characterization of some of these viruses to help shed
light on viral diversity, evolution, structure, genomics, replication cycle, interactions with hosts,
and what role these complex organisms play in nature.

Discovery of Giant Viruses of Amoebae

A pneumonia outbreak in 1992 in Bradford, England, led researchers to seek to identify the
causative agent of the disease. Water samples were collected from cooling towers, and different
microorganisms were isolated in association with amoebae including an apparent Gram-positive
bacteria described at the time as the Bradford coccus (6). Several molecular attempts to iden-
tify the new microorganism failed. The mystery began to be solved when transmission electron
microscopy analysis was performed at Aix-Marseille University, France. This revealed gigantic
icosahedral virus-like particles surrounded by extensive fibril structures (6). The new species was
then named Acanthamoeba polyphaga mimivirus in reference to its host organism and for mimick-
ing another microorganism. The newly discovered mimivirus had a particle size of approximately
700 nm in diameter that could not be filtered in standard 0.2-pm membranes. The viral parti-
cle was nonenveloped and had an ~1.2-Mb genome that was larger than some cellular organ-
isms (6, 10). The mimivirus was associated with a group of nucleocytoplasmic large DNA viruses
(NCLDVs), thus establishing the new family Mimiviridae.

The search for new giant viruses intensified after the discovery of APMV. New mimivirus
isolates, as well as metagenomic analyses, revealed the ubiquity and diversity of these viruses on
the planet (11-14). In 2009, six years after the discovery of mimiviruses, a new Acanthamoeba-
infecting virus was discovered from water samples collected from cooling towers in Paris and was
named marseillevirus (15). The novel virus was an icosahedral particle with an approximate size
of 250 nm and a circular genome of 370 kb characterized by genomic mosaicism (15). This was
the first representative of the new family Marseilleviridae, which expanded over the years to in-
clude different marseillevirus lineages (16-19). Since then, several groups of giant amoeba viruses
have been discovered, pushing the limits once imagined for viral particle size and genomic com-
plexity as evidenced by pandoraviruses, pithoviruses, and tupanviruses, thus expanding the diver-
sity of putative members of the phylum Nucleocytoviricora (20-23).
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Advances in Virus Isolation Techniques

Rowbotham (24, 25) pioneered the use of Acanthamoeba coculture techniques. At that time, Pon-
tiac fever was a recently solved mystery, and he proposed an enrichment step for the isolation of
Legionella spp. directly from patient samples. This technique involved culturing Acanthamoeba spp.
in xenic culture with UV-irradiated Klebsiella aerogenes. This technique allowed the characteriza-
tion of many intracellular bacteria (26, 27).

During the first decade after the description of APMYV, the coculture strategy for amoebae was
mainly based on the use of Acanthamoeba polyphaga (Linc-AP1) and Acanthamoeba castellanii. A total
of 7,000 samples were inoculated to discover the A, B, and C lineages of Mimiviridae and Mar-
seilleviridae using different cocktails of antimicrobials and using Page’s amoebal saline medium to
avoid microbial proliferation (28). Some viruses remained unexplored because they were consid-
ered endosymbionts (29). This high-throughput procedure paved the way for new viral isolates
even though many modifications and adaptations were subsequently made (30). The ingenuity and
creativity deployed allowed one to explore and revealed new viruses notably by adapting amoe-
bae as for the isolation of pandoravirus (20) or by a pre-enrichment step using rice grains and
incubation of samples in the dark for almost a month, thus resulting in the isolation of megavirus
chilensis and samba virus with its virophage (11, 31). Finally, a high-throughput strategy was de-
veloped for amoebae by coupling coculture with flow cytometry and electron microscopy (32).
In parallel, new cell types such as Vermuamoeba vermiformis have been explored in an appropriate
medium called TS (starvation buffer) (33, 34).

This past decade has shown a rapid expansion of viral isolates on different platforms including
nonamoebal hosts (35-38). Ultimately, a high-throughput system was developed to detect non-
lytic viruses. This system could be coupled with different image techniques including optic and
electron microscopy as well as fluorescence staining for the rapid detection of giant viruses di-
rectly from culture (39). Moreover, the use of a new support is always a challenge, such as the use
of the xenic amoeba Stenamoeba sp. to isolate virus with a virophage named “Sissivirus” (under
characterization) (35). Another strategy is based on the separation of amoebae by capturing the
infected amoeba via double viral infections as for faustovirus and clandestinovirus via a single mi-
croaspiration technique (40). More recently, myriad new viruses have been identified, causing our
perception of the virosphere to change regularly.

Unexpected Diversity of Amoebae Viruses

The family Mimiviridae is the most diverse among the groups of giant viruses known to date.
Mimiviruses ushered in a new era of virology and expanded the limits of the virosphere in terms
of both structure and genomic complexity (41). These viruses have pseudoicosahedral particles
approximately 700 nm in diameter with long fibrils immersed in a layer of peptidoglycan-like
component, thus justifying the erroneous identification as Gram-positive cocci in the early 1990s
(42) (Figure 1). This family contains one of the most complex amoebae viruses isolated to date:
the tupanviruses (22).

Tupanviruses have a capsid similar to mimiviruses but have a long cylindrical tail attached, thus
leading to an average size of 1.2 um of viral particles (Figure 1). In 2017, metagenomic analysis
from samples collected at a wastewater treatment plant in Klosterneuburg, Austria, revealed the
existence of klosneuviruses (43). These viruses have a unique genomic complexity with several
genes related to protein synthesis in an amount and diversity never seen before (second only to
tupanviruses) (22, 43). Recently, other members of the possible subfamily “Klosneuvirinae” were
identified by metagenomics of soil samples, thus increasing the diversity of this group (44).
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Figure 1

Diversity of amoebae-infecting viruses. Electron microscopy images evidence the structural diversity and
complexity of viruses isolated from different amoebae hosts: (#) mimivirus, (b) cedratvirus, (c) tupanvirus,
(d) pithovirus, (¢) orpheovirus, (f) marseillevirus, (g) pandoravirus, and (b) kaumoebavirus.

Opver the past 15 years, diverse groups of amoeba viruses have been isolated and character-
ized. Viruses with widely varied structures and genomes were uncovered using Acanthamoeba
as an isolation platform. Marseilleviruses have icosahedral particles of approximately 250 nm
(Figure 1) and circular genomes, thus constituting a diverse family of viruses with at least five
recognized lineages (A-E) (15-19). Pithoviruses and cedratviruses have ovoid particles that can
reach 1.5 pm in length and present one and two cork structures, respectively, in apical positions of
the viral particles, i.e., regions where their circular genomes are released during the replication cy-
cle 21,45) (Figure 1). There are currently only a few isolated pithoviruses, but several others have
been identified by metagenomics, thus forming the putative family “Pithoviridae” (46, 47). Pan-
doraviruses are 1.0-pm ovoid particles (Figure 1), and linear genomes reach up to 2.7 Mb. These
are the largest viral genomes known to date (20, 48). These viruses have already been isolated on
different continents, thus revealing distinct lineages and an enormous genetic diversity (48-50).
Pandoraviruses are phylogenetically close to molliviruses—another group of Acanthamoeba-
infecting viruses with only two known isolates (51, 52). Pacmanvirus and medusavirus are other
viruses isolated in A. castellanii, with two and one known isolates to date, respectively (53-55).

Other groups also infect Vermamoeba sp.: Faustoviruses were the first to be isolated in this
system with circular genomes and 250-nm icosahedral particles (34). These viruses are phylo-
genetically close to the kaumoebaviruses—a newly discovered group of viruses with only two
isolates to date (56-58) (Figure 1). Clandestinovirus was identified in a mixed coculture with
a faustovirus and has similar characteristics to medusavirus, possibly constituting a new family
called “Medusaviridae” (59). Finally, viruses with very large genomes and particles were also iden-
tified and infect Vermamoeba. Yasminevirus was the first amoeba virus of “Klosneuvirinae” to be
isolated. It has a large set of translation-related genes (60). Orpheovirus is currently the largest
virus isolated using Vermamoeba and is part of the putative family “Pithoviridae” (61). This virus
has ovoid particles nearly 1.1 pm in diameter (Figure 1) and a circular genome of 1.4 Mb, in
contrast to pithoviruses and cedratviruses with genomes up to 610 kb.
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Finally, a recent analysis by global metagenomics highlighted the enormous diversity of
giant viruses. There are more than 2,000 new viral genomes, thus increasing the phylogenetic
diversity of NCLDVs by eleven-fold in relation to what was previously known (8). This reveals
the importance of this type of analysis and expands our knowledge about viral diversity. It is also
an important limitation because it highlights fundamental questions about the biology of these
viruses including the difficulty of identifying rare viruses in the environment. This was evidenced
with the discovery of yaravirus—a small amoeba virus with 90% of the gene content unknown
and undetectable in a set of more than 8,500 available metagenomes (62).

BASIC VIROLOGY
The Complex Genomes of Amoebae Viruses

One of the most striking features of viruses is the presence of short genomes encoding only a
few genes due to their intracellular parasitic nature. However, some viruses break this pattern and
encode hundreds of genes such as large DNA viruses such as poxviruses, chloroviruses, and jum-
bophages (63-65). The discovery of mimiviruses crossed this limit—these viruses have genomes
over 1.0 Mb that encode more than 1,000 genes, thus exhibiting a genomic complexity never con-
ceived of before in the virosphere (66) (Figure 24). Mimiviruses have dozens of genes related
to metabolic processes with an emphasis on elements related to protein translation—something
hitherto exclusive to the cellular world (10, 66). Proteins such as IF4A, eF-TU, and eRF1 are
involved in initiation, elongation, and release of the polypeptide chain, respectively. These are
found in mimivirus genomes and a diverse set of aminoacyl-transfer RNA (tRINA) synthetases
(aaRSs)—this is unprecedented in the virosphere (10). The discovery of klosneuviruses and later
tupanviruses dramatically increased the genomic complexity of Mimiviridae. These viruses have
20 aaRSs covering all amino acids and up to 70 tRINAs covering all cognate amino acids found
in the tupanvirus genome (22, 43) (Figure 24,b). Other giant viruses such as pandoraviruses and
orpheovirus also have genes related to protein synthesis, but in much less abundance and diversity
than Mimiviridae (20, 61) (Figure 2b).

In addition to the translational machinery, other features stand out in the genome of several
groups of giant viruses. Marseilleviruses, medusavirus, and clandestinovirus have genes that en-
code histones. These proteins are homologous to those found in eukaryotes and are involved in
the formation of nucleosomes and DNA organization (54, 59, 67, 68). Mimiviruses have genes
related to post-translational modification processes and are involved in different sugar pathways
such as UDP-D-viosamine and UDP-L-rhamnose, thus having elements that form their own gly-
cosylation machinery (69, 70). Pandoraviruses have a set of enzymes involved in the tricarboxylic
acid cycle for energy production. These genes are expressed during the viral replication cycle, and
at least one of the encoded proteins was verified to have biological activity based on isocitrate
dehydrogenase—a key enzyme in the process (71). Furthermore, some giant viruses have their
own set of mobile genetic elements (named as mobiloma) such as mimiviruses, marseilleviruses,
and faustoviruses that have genes containing introns [e.g., RNA polymerase and major capsid
protein (MCP)] and the presence of linear transposable elements, or transpovirons, detected in all
three mimivirus lineages (72-75). Furthermore, mimiviruses have satellite-like viruses that depend
on their enzymatic machinery for replication, called virophages, which can also integrate into the
genomes of their hosts, thus forming provirophages (7, 75).

Finally, a surprising amount of ORFans in all known amoeba viruses reached approximately
90% in pandoraviruses (20) (Figure 24). This reflects the enormous diversity and genetic novelty
in these viruses and highlights the importance of isolating and characterizing new amoeba viruses.
Furthermore, pan-genome studies performed with different groups of amoeba viruses such as
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mimivirus, marseillevirus, faustovirus, and pandoravirus revealed an open pan-genome, showing
that the genomic diversity and complexity of amoeba viruses is far for reach stability (18, 50, 56,
76).

Evolution and Taxonomy of Giant Viruses

After the discovery of mimiviruses and other amoeba viruses, they were grouped together with
NCLDVs [now officially the phylum Nucleocytoviricota, kingdom Bamfordvirae (23)]. Some genes
are conserved in most known viruses in this group, e.g., DNA polymerase B family, which allows
for reconstruction of the evolutionary history of the group, thus evidencing the phylogenetic re-
lationship between the different amoeba viruses (Figure 34). Mimiviruses are phylogenetically
close to phycodnaviruses including some viruses formerly included in the family Phycodnaviridae
that should be reclassified and will be part of the Mimiviridae family. It is now clear that both
families group together viruses that infect microalgae found either in freshwater or in the marine
environment (77, 78). These families are currently included in the orders Algavirales and Imiter-
virales, respectively. Both are included in the class Megaviricetes (Figure 3b). Pandoraviruses and
molliviruses are not yet officially classified into any group, but they have a close relationship to
viruses of the Phycodnaviridae family—especially the coccolithoviruses (Figure 24), thus suggesting
their inclusion in the order Algavirales. Marseilleviruses and pithoviruses, as well as related viruses
(cedratviruses and orpheovirus), are phylogenetically close to iridoviruses and ascoviruses; they are
classified in the order Pimascovirales (Figure 3). Other large amoeba viruses such as faustoviruses,
pacmanviruses, and kaumoebaviruses are phylogenetically related to the African swine fever virus,
family Asfarviridae, thus suggesting that they belong to the order Asfuvirales, class Pokkesviricetes
(Figure 3b). Other evidence points to a common origin among these viruses as regulatory ele-
ments of gene transcription (79), although new and more robust analyses must be conducted to
better elucidate the relationship between these amoeba viruses and the asfarviruses.

Other evidence suggests a common origin of these giant viruses where they would have shared
a common ancestor with smaller viruses—possibly belonging to the group of bacteriophages of the
family Tectiviridae (80, 81) (Figure 3b). Molecular and morphological aspects support this hypoth-
esis (82). Phylogenetic analyses based on different genes conserved within Nucleocytoviricota point
to a common origin of these viruses that would have occurred before the emergence of modern
eukaryotes from smaller viruses, thus emphasizing how ancient giant viruses are (83). Further-
more, analyses based on genes associated with the protein translation process point to a similar
pathway in which the giant amoeba viruses would have acquired several genes through horizontal
gene transfer events, thus substantially increasing the size and genomic complexity of these viruses
(43, 81). However, analyses based on different proteins of these viruses point to an opposite path-
way in which giant viruses coexist with cellular ancestors as they were a separate group of complex
organisms that evolved mostly due to a loss of genes and adaptation to a parasitic lifestyle (84, 85).
Given this scenario, further studies must be carried out to settle this important question about
giant amoeba viruses leading to important information about the origin and evolution of one of
the most complex groups in the virosphere.

Structure of Giant Viruses

Giant viruses of amoeba have complex particles that come in a wide variety of shapes and sizes (15,
21,22,51,59-62,86-91). Isolates with smaller dimensions have particles of icosahedral symmetry
(15, 34, 53, 54, 57, 59, 60, 62, 87). Some (faustoviruses, kaumoebaviruses, and yaraviruses) seem
to present two-capsid protein shells (62, 86). Different shapes start to appear in particles with
400 nm or more. Molliviruses have spherical particles ranging from 500 to 600 nm (51, 52).
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Figure 3 (Figure appears on preceding page)

Evolution and classification of giant amoeba viruses. (#) Maximum likelihood phylogenetic tree of Nucleocytoviricota based on the DNA
polymerase B family gene. Sequences in amino acid were aligned using MUItiple Sequence Comparison by Log-Expectation
(MUSCLE) software. The tree was built using FastTree with the Jones-Taylor-Thornton (JTT) model and 1,000 bootstrap replicates
and then visualized in Interactive Tree Of Life (i'ToL). The Mimiviridae clade is shown in the light gray box. ()) Schematic
representation of the classification and evolution of giant viruses based on the International Committee on Taxonomy of Viruses—
approved megataxonomy. A putative evolutionary relationship between Nucleocytoviricota and Tectiviridae is represented by dotted lines.

Pandoraviruses, orpheovirus, pithoviruses, and cedratviruses have ovoidal shaped particles
that frequently present over 1,000 nm in length (20, 21, 45, 61). Different formats of parti-
cles can be observed among representatives of the family Mimiviridae. Their capsids have a
pseudo/quasi-icosahedral symmetry and are often covered by fibrils, ranging from 450 to 527 nm
in representatives of the genus Mimivirus, making the total particle size range between 700 and
834 nm in diameter (88). Although tupanviruses’ capsids are similar to mimiviruses’, these viruses’
particles have a complex symmetry in which the capsid is followed by a cylindrical tail that varies
in size in the viral progeny (22).

Furthermore, it is possible to observe the delivery portal in those larger particles—a differenti-
ated area of the capsid through which the internal content of the particle is released. The delivery
portal in molliviruses is a circular depression 160-200 nm in diameter (51). For pandoraviruses
and orpheovirus, the internal content is released through an ostiole-like structure located on the
apex of the particle (49, 92). In pithoviruses and cedratviruses, the delivery portal is sealed by a
structure named cork. While pithoviruses present a single cork on the apex of the particle (21),
cedratviruses present two corks—one at each end of the particle—but the internal content is de-
livered just from one (91). Capsids within family Mimiviridae members present a fivefold vertex
called stargate that is sealed by a proteinaceous complex, the starfish, which collectively prevents
the capsid from opening (93). The processes that trigger the opening of the capsids are described in
the section titled Replication Cycle. The delivery portal is usually not covered by fibrils, whether
they are short (molliviruses and orpheovirus) or long (family Mimiviridae) (51, 92, 94).

Proteomic analysis of the purified viral particles showed that the majority of amoebal viruses’
particles are composed of a large number of proteins ranging from 26 to over 200 proteins, thus
forming a mature particle of different groups (62, 95). Studies have shown that a smaller number
of proteins are detected in the mature viral particle when compared to the diversity of proteins
present in the viral factory. Moreover, the number of proteins is not associated with the particle
or genome size (21, 22, 95). In contrast to icosahedral viruses, the MCP of marseilleviruses is
not the most abundant protein in the mature viral particle (95). Even so, proteomic analyses
reveal that most of the proteins that form amoebal viruses’ particles still have no known function
or orthologs (54, 62, 95, 96). Nevertheless, other methodologies have helped to elucidate some
components of viral particles. A recent study demonstrated that the Pandoravirus massiliensis
capsid is composed of a peripheral layer of polysaccharide nature that resembles cellulose (97).
Interestingly, P. massiliensis particles also present membrane potential (proton gradient). This
result, in association with bioinformatics data, suggests that the P. massiliensis genome has distant
homolog genes predicted to encode tricarboxylic acid elements. This raises questions about
energy generation associated with pandoravirus particles during replication (71).

Replication Cycle

Many viruses within the family Mimiviridae present fibrils on the surface of the capsid (11,22, 94,
98).In APMV, fibrils play a role in particle attachment on the amoeba’s surfaces (99). But the fibrils
do not seem to be essential for viral replication, since the virus loses many fibrils when passaged
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multiple times in cell culture (100). Other giant viruses also have fibrils and, although shorter, they
can also play a similar role in viral particle adhesion: the ~12-nm fibrils of marseilleviruses, the
50- to 100-nm fibrils of molliviruses, the ~50-nm fibrils of orpheovirus, and amoeba klosneuvirus
fibrils (15, 51, 60, 87, 92). Aside from fibrils, medusavirus presents flexible spherical-headed spikes
of ~14 nm that also might be involved with viral attachment and entry (54).

The size of the particle is a determinant element for the initial steps of the replication cycle.
It was experimentally demonstrated that latex beads over 500 nm trigger phagocytosis in Acan-
thamoeba cells (101). Many giant viruses have dimensions greater than 500 nm, and it has been
frequently hypothesized that they are consequently phagocyted (61, 92, 102) (Figure 44). In fact,
being able to explore the phagocytic pathway as an entry route seems so advantageous that strate-
gies to bypass the minimum size requirement were selected in the smaller giant viruses. This is the
case of 250-nm viruses within the Marseilleviridae family. By the end of their replication cycle, the
viral progeny can be grouped together, thus forming viral aggregates inside or outside vesicles that
can reach more than 1,000 nm and are successfully phagocyted. In addition to the phagocytic path-
ways, individual particles can enter the host cell through endocytosis (103) (Figure 44). The endo-
cytic pathway might be a route for other amoebal viruses that do not fulfill the size requirement as
suggested for yaravirus (62). Another entry route for these viruses can be macropinocytosis (103).

Once inside the host cell, the particle uncoating generally occurs during the endosomal or
phagosomal escape. Some redox proteins have been described as components of amoebal virus
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virions and may interact with oxidative elements inside amoebal endosomes and phagosomes. An
inner membrane has been described inside most giant virus capsid/tegument shells. This mem-
brane is essential during virus uncoating because it fuses with the cell compartment membrane
(endosome/phagosome). Such fusion occurs through the delivery portal whose opening is trig-
gered by a drop in pH. This is likely due to fusion with lysosomes during the natural course of
infection (94). Low pH alone was insufficient to fully open samba virus and tupanvirus capsids in
in vitro studies, thus indicating that other interactions are required for the complete release of the
internal contents (93) (Figure 4b).

After the internal content/viral seed is released inside the host cell, an intense rearrangement
occurs until the formation of a mature viral factory. In most giant viruses, this formation occurs
near to the amoeba’s nucleus, but the nucleus is no longer observed after the formation of the
mature viral factory of pandoraviruses, molliviruses, yaraviruses, and clandestinovirus (51, 59, 62,
89). Some viral factories have specialized areas, which are important for particle morphogenesis.
The periphery of mimiviruses’ electron-dense viral factory is electron lucent and has an appar-
ent fibrillar nature. When the newly formed capsids pass through this region, they acquire long
polysaccharidal fibrils. Therefore, this part of the viral factory was named the fibril acquisition
area (94). Furthermore, the electron-lucent viral factory of yaravirus presents an electron-dense
periphery. When the newly formed empty capsids migrate to this part of the viral factory, they are
filled with their internal content (62) (Figure 4b.c).

For most amoebal viruses, DNA replication occurs inside the viral factory, except for
medusaviruses, whose DNA replicates in the periphery of the host nucleus, and the particle mor-
phogenesis occurs in the cytoplasmatic viral factory (54). Along with medusavirus and the viruses
that form their viral factories in the cell nucleus, other viruses, such as marseilleviruses, also de-
pend on host nuclear functions for their replication. Marseilleviruses replicate in the cytoplasm,
but they transiently recruit the nuclear transcription machinery to their cytoplasmic viral factory
to generate their earliest transcripts (95) (Figure 4c).

The particle morphogenesis and the internal content of marseilleviruses, molliviruses, pan-
doraviruses, and pithoviruses were described to occur simultaneously (15, 21, 51, 89), but these
can also occur separately. Most giant viruses begin particle morphogenesis with the formation of
semicircular structures, named crescents. These are usually filled by the internal content as they
expand (62, 91, 92, 94, 104). For mimiviruses, the capsid assembly starts with the formation of
the stargate, and genome acquisition then occurs through the opposite vertex concomitantly with
fibril acquisition (94) (Figure 4c).

Almost every infection culminates in cellular lysis at the end of the replication cycle, but yar-
avirus, pandoraviruses, orpheovirus, and cedratviruses start releasing their particles before the cell
lysis by exocytosis (62, 89, 91, 92). Only clandestinovirus and molliviruses seem to not cause sig-
nificant cell lysis (51, 59) (Figure 44).

VIRUS-HOST INTERACTION
Virus-Amoeba Interaction

To provide a good understanding of the relationships surrounding a virus and its host, studies gen-
erally focus on key elements regarding the contagium of that cell. During infection by giant viruses,
a series of structural and morphological changes occur in the amoebal cells as part of the natural
outcome of most viral infections (Figure 5). These changes, also called cytopathic effects (CPEs),
are generally the consequence of an efficient viral replication and have been extremely important
to help identify novel isolates of giant viruses (105). Each cell may develop different CPEs de-
pending on which virus is currently replicating. For most infections involving amoebae and giant
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Figure 5

Representative scheme of the CPEs. (#) Orpheovirus causes cells to shift to a stretched fusiform shape
during the early stages of infection. (b) Faustovirus mariensis—infected trophozoites release a soluble factor
that promotes the encystment of infected and uninfected cells. (¢) Tupanvirus’s infected cells form bunches
with uninfected cells. (d) APMV decreases the levels of serine-proteinase transcription and translation of
infected cells, thus preventing encystation. (¢) Medusavirus stimulates an encystment-like process.
Abbreviations: APMV, Acanthamoeba polyphaga mimivirus; CPE, cytopathic effect.
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viruses, the standard observed CPE involves progressive cell rounding and loss of the trophozoite
motility and lysis with subsequent release of the viral progeny from inside the cell (106). Amoe-
bal viruses found in the above-described CPEs are mimiviruses, marseilleviruses, pandoraviruses,
cedratviruses, faustoviruses, yasminevirus, and yaravirus (19, 34, 49, 60, 62, 91, 106, 107).

Different sets of CPEs may be observed in a different context of infection by other groups
of amoebal viruses (Figure 5). For example, in addition to promoting rounding of A. castellanii
cells, infection by medusaviruses was described as stimulating an encystment-like process of a
subpopulation of amoebal cells as early as 2 days post infection (54) (Figure Se). A similar ef-
fect was also observed for Vermamoeba vermiformis cells when infected by the giant Faustovirus
mariensis (104). A detailed description of the replication cycle of orpheovirus showed the occur-
rence of different steps of CPEs before amoebal cells lyse (92). During the Souza et al. study (92),
the authors found that I vermiformis amoebae shift to a stretched fusiform shape as early as 3 hpi.
The effect becomes more obvious as the time of infection progresses. At 12 hpi, the morphology
evolves to a branched fusiform shape. Later, around 24 hpi, amoebae start to emerge as rounded
cells until they are lysed by the virus (92) (Figure 5a).

In another study, an interesting biological feature that links the successful replicative cycle of
tupanvirus to the CPEs that are established during infection of A. castellanii cells was described
(108). When amoebae are infected by tupanviruses, they progressively develop some of the stan-
dard effects described above for most of the infections with giant viruses. First, the cell becomes
round. Then the massive viral production forces lead to amoebal lysis. However, when these amoe-
bal cells are just beginning to become round, several neighboring uninfected cells are induced to
aggregate to them and form bunches with other cells that were already infected (108). This be-
havior was very important during infection, thus establishing an advantage for viral dissemination.
Such behavior has also been linked to relevant changes in the expression of mannose-binding pro-
tein genes by tupanvirus (108) (Figure 5c¢). Interestingly, a similar CPE has also been described
for viruses belonging to a marseillevirus lineage (109).

As known hosts of giant viruses, amoebae of the Acanthamoeba and Vermamoeba genera may
also play important roles in many of the biological and evolutionary aspects of the giant viruses
mentioned above. Both amoebae are considered to be free-living organisms and are encountered
in a diversity of environments with a worldwide distribution (110, 111). Amoebae’s life cycle
proceeds through two stages: The first is called the trophozoite and is a form that is generally
observed under favorable growth conditions (abundant food supply, appropriate temperature,
neutral pH) (110, 111). During this stage, amoebae are motile and can perform most of their life
tasks including feeding and reproducing (110, 111). The second stage, best known as cysts, is a
natural form of resistance against adverse/stressful conditions. In contrast to trophozoites, the
cysts are static (110-112).

Since the discovery of the first amoebal giant viruses, only a few studies have investigated as-
pects of viral infection in a context that considers both cellular stages. One of the first studies
regarding this subject explored some specific kinds of interactions among the APMV and amoe-
bae of the Acanthamoeba spp. in the framework of the encystment stimulation commonly observed
in the natural environment. Acanthamoeba cysts are resistant to APMYV infection (113). Interest-
ingly, this resistance was maintained as long as the stimulus for cell encystment was triggered be-
fore the viral infection, even if the amoebae had not yet suffered massive turnover of the cellular
components necessary to become a cyst (113). However, the protection is severely nullified when
the mimivirus gets to the cell before the stimulus of encystation. The virus can then infect the
amoeba (113). Strategies for viral evasion of this antiviral mechanism were also uncovered. Prior
work found a serine proteinase thatis a crucial component in mediating A. castellanii cells to encyst
(114). Mimivirus decreases the levels of amoebal serine-proteinase transcription and translation,
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thus preventing Acanthamoeba encystations (113) (Figure 5d). Finally, a novel antiviral mechanism
involving F mariensis and its amoebal host, Vermamoeba vermiformis, was described (104).

Giant viruses invade amoebal trophozoites and use their metabolic machinery to produce the
viral progeny and induce cell lysis to disseminate the progeny. However, upon F mariensis infec-
tion, V. vermiformis trophozoites release a soluble factor (likely containing Mg?*). This soluble
factor induces encystment of neighboring cells to enclose faustovirus progeny inside the newly
formed cysts. These cysts are no long viable and therefore reduce the viral progeny in the super-
natant (104) (Figure 5b).

Virophages

The discovery in 2008 of satellite-like viruses, named Sputnik virophages, was exciting in the biol-
ogy of giant amoeba virus. Virophages are large-viruses dependent or associated viruses classified
in the family Lavidaviridae. They have 50- to 70-nm icosahedral capsids and double-stranded
DNA genomes ranging from 17 to 30 kb, and they are dependent on giant viruses to complete
their replication in host cells. The fundamental basis of the virophage/giant virus relationship still
requires further study, but virophages might exploit the giant viruses’ transcriptional machinery
especially during the late phase of giant virus replication. Consequently, virophages might im-
pact, to different degrees, the production of giant viruses’ progeny. Virophages have a structural
module (MCP with a double—jelly roll structure), thus suggesting a common origin among those
viral entities (7, 115-118). Although virophages were first described in association with amoe-
bal mimiviruses, a few years later, a novel virophage named mavirus was described in association
with Cafeteria roenbergensis virus (CrOV) infecting the flagellate Cafeteria roenbergensis. Later
metagenomics studies revealed that virophages are widespread especially in aquatic environments
(116-119).

Comprehensive studies have demonstrated that the virophage-giant virus-protist tripartite re-
lationship is complex and ancient. Remarkably, virophages seem to integrate into either giant
viruses or protist genomes (provirophages). In one notable example, the virophage mavirus could
integrate into the chromosome of the flagellate C. roenbergensis (120). Virophage genes are ex-
pressed upon CrOV infection, thus resulting in production of mavirus virions. Such newly formed
virophage progeny promote the overall protection of the flagellate C. roenbergensis population. In
contrast, giant viruses also developed mechanisms to mitigate virophage impacts on their repli-
cation. A defense system against a specific group of virophages (group named Zamilon) has been
described in mimiviruses lineage A. The mechanisms of the so-called mimivirus virophage resis-
tance element system need further investigation, but it was hypothesized thatit acts analogously to
the CRISPR-Cas system and is guided by the R349 gene containing 15- or 28-nucleotide Zamilon-
like repeats (121). Therefore, the discovery of virophages has fueled debates regarding the nature
of nested parasitism and the definition of satellite viruses.

FINAL CONSIDERATIONS

Throughout history, the study of viruses has provided unique insights to understand complex
events of nature. This has helped to develop biology and anthropology (4). The discovery of giant
viruses broke the mold of classical virology and demonstrated that even the most accepted defi-
nitions within basic science are not immutable. These new findings open the field to even more
exciting discoveries in the future (6). New advances in viral prospection and isolation are needed
to explore this new field of study. In addition to changes in isolation techniques, the use of other
amoebae as prospecting platforms has contributed to the discovery of new viruses. This has led to
a broader view of the virosphere (34). Even with the diversity of amoeba viruses already isolated,
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some viral groups still have only one representative isolated (59, 61, 62). Metagenomic studies
have indicated that giant viruses are diverse and ubiquitous on Earth (8). Indeed, different rep-
resentatives of giant viruses have been isolated among the most diverse samples worldwide, but
some of these viruses have such singular genomes that isolation and characterization studies are
critical to identify these organisms. It could not be done solely by metagenomics (62). Therefore,
further prospecting and characterization studies are essential to understand the virosphere.

Although APMV was found in 1992, giant viruses that infect amoebae remained hidden in
plain sight for more than 10 years without being identified as viruses (6). One of the main reasons
why this organism was not considered to be a virus was its large size, which contradicted the
definition of viruses at the time (6). In fact, giant viruses’ particles are so unique and diverse that
some reported finding a noncultivable endocytobiont even after the description of APMV as a
virus (29, 122, 123).

A universe of viral diversity was revealed through prospective and characterization studies of
giant viruses. This work significantly contributed to our biological understanding of these unique
viruses and the virosphere. Nevertheless, much remains to be elucidated about giant viruses, and
studies regarding these viruses remain an important field of research to understand possible eco-
logical roles, the host spectrum and evolutionary aspects of this group, and the biological diversity
of viruses.
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