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ABSTRACT: Apratoxin A is a potent anticancer natural product whose key polyketide fragment constitutes a considerable
challenge for organic synthesis, with five prior syntheses requiring 12 to 20 steps for its preparation. By combining di!erent redox-
economical catalytic stereoselective transformations, the key polyketide fragment could be rapidly prepared. Followed by a site-
selective protection of the diol, this strategy enables the preparation of the apratoxin A fragment in only six steps, representing the
shortest route to this polyketide.

Polyketides are among the most prominent natural
products and given their variety of bioactivity profiles,

represent an invaluable inspiration for drug discovery.1 As a
consequence, chemists have for a long time considered
polyketide synthesis as a motivation to devise more e"cient
synthetic routes. However, most syntheses still too often
involve lengthy stepwise sequences and activation by multiple
stoichiometric reagents. The di"culty at synthesizing poly-
ketides stems from the challenge associated with the control of
multiple remote acyclic stereogenic centers required for each
distinct chiral reactant or catalyst. Therefore, most solutions
consist of the stepwise elaboration of the di!erent function-
alities through iterative sequences involving, aside from the
molecular skeleton formation, costly changes in the redox
states of the carbon chain and protecting group manipulation.
Fulfilling the principles of redox economies,2 di!erent

cascade transformations have been developed where the initial
activation step consists of an alcohol dehydrogenation by a
metal complex.3 In situ generating reactive aldehydes, the
catalytic cascades can trigger complex enantioselective
couplings between initially unreactive alcohols, considerably
limiting waste and steps. Meeting these requirements, the
Krische group developed a broad array of coupling reactions
involving alcohols and pro-nucleophilic carbon donors.4 In a
typical example, enantioselective crotylation of alcohols can be
performed directly through the iridium catalyzed condensation
of α-methyl allyl acetate and alcohols (Scheme 1a).5,6 Such
strategies can considerably short-cut the construction of key

natural product fragments which was notably applied in the
context of polyketides synthesis.7
Complementary to these couplings, our group developed the

concept of enantioselective multicatalytic borrowing hydrogens
(Scheme 1b).8 Based on a combination between an iron
borrowing hydrogen catalyst and a chiral pyrrolidine organo-
catalyst, such an approach enables the enantioselective
condensation of di!erent nucleophiles to allylic alcohols.
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Scheme 1. Examples of Redox-Economic Transformations
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Apratoxins are natural macrolides first isolated in 2001 from
Lyngbya types cyanobacteria.9 They feature strong cytotoxic
activity at the nM level against various cancer lines. Among the
di!erent natural apratoxins and unnatural analogues, apratoxin
A (Scheme 2) is the most potent one. The excellent bioactivity
profile has pushed organic chemists to develop a wide array of
synthetic routes toward its preparation.

While the preparation of the peptidic part of the natural
product is more classical and straightforward, the biggest
challenge arises from the stereoselective construction of the
complex C33−C39 advanced polyketide fragment. While
Nature has engineered powerful enzymes for its construction,
for now, chemists have relied on lengthy synthetic sequences
for its preparation (Scheme 2a). All these e!orts have been
summarized in two reviews by Coltart.10 Illustrating the
di"culty at finding a convenient route to assemble this
polyketide sca!old and control the di!erent stereocenters, the
first synthesis of this fragment by Forsyth required 13 steps and
the use of two chiral auxiliaries for the construction of the
carbon−carbon bonds.11 Since then, the groups of Ma and Liu,
Takahashi and Doi or Kazmaier have developed alternative
strategies all still requiring between 12 and 20 steps and
multiple chiral auxiliaries.12 Synthesis of apratoxin analogues
and other doubly protected diol fragments also required 13−
14 steps such as in works by Cavelier, Xu, Gilles and Ye.13 As a
result, despite decades of e!orts, the shortest sequence to date
remains based on a minimum of 12 steps and multiple
stoichiometric activating reagents.

Given the above-mentioned progress in the development of
redox-economical catalytic transformations, we envisaged that
a combination between a multicatalytic borrowing hydrogen
and a redox-neutral coupling could provide a fast and highly
enantioselective generation of this polyketide motif (Scheme
2b). This strategy would elaborate the desired C33−C39 chain
in only three steps directly from widely available products.
Development of a subsequent site-selective alcohol protection
could unlock the final access to the desired functionalized key
polyketide fragment. Herein, we present our success at
developing such a strategy, culminating in the concise six-
step synthesis of the key polyetide fragment, a!ording the most
e"cient to date formal synthesis of apratoxin A. This approach
considerably shortens the access to this class of products and
should find application in the preparation of other polyketide
motifs.
The synthesis started with the condensation of commercial

diketone 1 to crotyl alcohol 2 (Scheme 3).8 By combining iron

complex Fe-Cat and diphenyl prolinol silyl ether organocat,
the cascade enantioselective borrowing hydrogen/Claisen type
fragmentation14 directly a!orded the desired adduct 3 in 56%
yield. Following stereoselective CBS reduction of the ketone
and simultaneous deprotection of the alcohol, diol 4 could be
isolated in 70% yield. The excellent selectivity of the CBS
reduction15 enabled isolatation of diol 4 in >99:1 dr and
improved 99% ee after separation upon silica gel chromatog-
raphy of the minor diastereomer generated.
From this diol, key to the success for a short and e"cient

synthesis of apratoxin A was the implementation of a selective
crotylation of the primary alcohol in the presence of the
unprotected secondary alcohol. Even though allylation had
been described on other types of sca!olds containing

Scheme 2. (a) Apratoxin A and Known Syntheses of the Key
Polyketide Fragment; (b) Proposed Strategy

Scheme 3. Six-Step Synthesis of Apratoxin A Fragment
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secondary alcohols notably on 1,3-diols,16 crotylation proved
challenging in the context of unprotected 1,5-diol 4 (Table 1).
Among all the tested parameters (see Supporting Information
(SI) for additional experiments), we found that the nature of
the base, the temperature, the concentration, and the structure
of the catalyst were crucial to obtain the desired product. First
experiments applying standard conditions with Ir-1 and
Cs2CO3 as base a!orded the expected adduct 6 in a low
26% yield (entry 1). Under those conditions, formation of 6
was accompanied by a large amount of undesired dehydrogen-
ation of the secondary alcohol to the corresponding ketone.
Turning to K3PO4 improved the yield to 44% (entry 2). While
the presence of water is often associated with beneficial e!ects
in the crotylation, herein, using dry THF improved both yield
and selectivity, providing 6 in 53% yield and 4:1 dr (entry 3).

Similarly, crotylation is also mostly time conducted at high
concentration (>1 M), which proved detrimental to the
present reaction, a!ording 6 in only 26% yield (entry 4). Using
more diluted conditions (0.25 M) also did not prove
satisfactory, generating only 9% of the desired adduct with
lower diastereocontrol (2.8:1 dr) (entry 5). Finally, use of less
electron-e"cient Ir-2 totally shut down the reactivity in this
transformation (entry 6). Altogether, applying conditions of
entry 3 with Ir-1 as catalyst and K3PO4 enabled the synthesis
of diol 6 in 53% yield and 4:1 dr. It is important to highlight
that by applying this approach, all the four stereogenic centers
of the polyketide chain are constructed in only three steps.
From diol 6, the site-selective protection of the supposedly

less hindered C-35 homoallylic alcohol was then scrutinized
(Table 2, see Supporting Information for additional experi-

Table 1. Optimization of the Crotylation

Entry Base Solvent Cat. Concn Yield % (dr)a

1 Cs2CO3 THF (H2O, 5 equiv) Ir-1 0.5 M 26% (3.6:1 dr)
2 K3PO4 THF (H2O, 5 equiv) Ir-1 0.5 M 44% (3.1:1 dr)
3 K3PO4 THF Ir-1 0.5 M 53% (4:1dr)
4 K3PO4 THF Ir-1 1 M 26% (3.4:1 dr)
5 K3PO4 THF Ir-1 0.25 M 9% (2.8:1 dr)
6 K3PO4 THF Ir-2 0.5 M trace

adr of the isolated product.

Table 2. Optimization of the Site-Selective Protection

Entry Conditions 6/7-di/7a

1 TBSCl or TESCl, base (excess), solvent, 0 to 80 °C (see SI for full conditions) Conv <5%
2 TBSOTf (1 equiv), imidazole (2 equiv), DMAP (0.5 equiv), DMF, 0 °C to rt 93/6/1
3 TrocCl (1.2 equiv), pyridine (3 equiv), DMAP (5 mol %), DCM, 0 °C to rt 3.3/4/1
4 TrocCl (1.05 equiv), pyridine (2 equiv), DCM, rt 2.2/0.7/1
5 TrocCl (1.05 equiv), DMAP (2 equiv), DCM, rt 0.9/0.2/1
6 TrocCl (1.05 equiv), pyridine (2 equiv), (2S,3R)-hyper-BTM (1 mol %), DCM, rt 1/0.9/1
7 TrocCl (1.05 equiv), pyridine (2 equiv), (2R,3S)-hyper-BTM (1 mol %), DCM, rt 1.3/0.8/1
8 TrocCl (1.05 equiv), DMAP (2 equiv), (2S,3R)-hyper-BTM (1 mol %), DCM, rt 0.3/0.2/1 (59%, 7 yield, 79% brsm)b

9 TrocCl (1.05 equiv), DMAP (2 equiv), DHPB (1 mol %), DCM, rt 2.4/0.1/1
aDetermined by 1H NMR on the crude reaction mixture. bbrsm = based on recovered starting material.
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ments). We focused on the protection by a silyl or a 2,2,2-
tricloroethoxycarbonyl (Troc) group, already applied in the
synthesis of apratoxin A.12 Initially, using TBSCl or TESCl did
not provide any reactivity (entry 1). Using the more reactive
TBSOTf, only the major protection of both alcohols 7-di was
observed with poor conversion, indicating a total lack of site
selectivity (entry 2). Turning to the use of TrocCl considerably
improved the reactivity (entries 3−8).17,18 Using pyridine as
the base, DMAP did catalyze the formation of the expected
monoprotected alcohol 7 together with still a large amount of
bis-protected diol 7-di (entry 3). Using pyridine alone
improved the selectivity in favor of the monoprotected alcohol
at the expense of the conversion (entry 4). Using an excess of
DMAP as base improved the selectivity a!ording around 25%
of the desired monoprotected alcohol together with a large
amount of unprotected diol and some bis-protected diol (entry
5). Given these results, we hypothesized that use of a bulkier
nucleophilic Lewis base catalyst could improve the site-
selective conversion to the monoprotected alcohol. Indeed,
using chiral nonracemic isothiourea Hyper-BTM catalysts19
resulted in a good compromise between conversion and
selective monoprotection (entries 6−8). Since both enan-
tiomers of the chiral catalyst provide closely related results
(compare entries 6 and 7), this indicates that the selectivity is
not arising from a chiral recognition by the enantiopure
catalyst but rather due to the nature of the catalyst, disfavoring
the acylation at the more hindered C-39 alcohol. This is
confirmed by using achiral DHPB,20 providing a closely related
selectivity but at the expense of the conversion (entry 9).
Altogether, by combining 1 mol % of (2S,3R)-hyper-BTM and
2 equiv of DMAP, the desired monoprotected alcohol 7 could
be isolated in 59% yield through this site-selective protection
(entry 8). Of interest, 20% of the unreacted starting diol could
be recovered and reused, providing a 79% yield for this process
based on recovered starting material.
With a convenient site-selective monoprotection giving

access to 7, subsequent functionalization of the secondary
alcohol with the protected proline derivative and oxidative
cleavage of the double bond provided in two subsequent steps
the key fragment 9, a known apratoxin A precursor (Scheme
3).12
In conclusion, by appropriately combining redox-economical

stereoselective construction of the functionalized carbon chain
with site-selective protection of the resulting diol 6, a short
formal synthesis of apratoxin A was developed. The key C33−
C39 polyketide fragment, common to all apratoxin A synthesis,
could be prepared in only 6 steps while the previous literature
syntheses required between 12 and 20 steps. Given the
e"ciency of this approach and the similarity between apratoxin
A and other natural sca!olds, this strategy should also be
applied in the future to the e"cient synthesis of other
polyketides such as tuelarin C or neopeltolide.
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