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With its unique structure and large numbers of immune cells, 
the skin is one of the body’s first lines of defense against 
attacks from the environment. It is also innervated by a dense 
meshwork of primary sensory neurons, including nociceptive 
fibers specializing in the detection and transduction of harmful 
stimuli that can elicit pain. This tissue is, therefore, a key organ 
for studies of neuroimmune interactions and their impact on the 
host response to environmental challenges. Neuroimmune 
crosstalk in the skin is crucial for the regulation of inflammation, 
tissue repair, and host defense against pathogens. A better 
understanding of this regulation would facilitate the 
identification of new molecular targets for the treatment of skin 
diseases.

Introduction
The skin is a barrier organ with three main layers: the 
epidermis, dermis, and hypodermis. The structural and 
biophysical properties of the skin help to maintain home-
ostasis and provide a first l ine of defense against microbial 
invasion [1]. Diverse immune cells within the skin perform 
immunosurveillance. The epidermis, the outermost layer of 
the skin, is in direct contact with the external environment 
and consists of stratified layers of keratinocytes forming an 
impermeable barrier. Langerhans cells (LC) and T-cell

subsets are the principal immune-cell populations in the
epidermis (Figure 1a). The dermis, which is rich in collagen
produced by fibroblasts, lies just below the epidermis. It
forms an elastic mechanical barrier containing blood and
lymphatic vessels, hair follicles, and the sweat and sebac-
eous glands. The dermis contains many immune cells, in-
cluding macrophages, mast cells, and dendritic cells (DC),
together with T and B cells involved in adaptive immune
responses [2,3] (Figure 1a). These cells act as sentinels,
reacting rapidly to pathogen invasion or tissue injury. Their
activation leads to the recruitment of additional immune
cells, such as monocytes and neutrophils from the blood,
inducing an inflammatory response. The hypodermis lies
beneath the dermis and is a richly vascularized connective
tissue that may, depending on its location, contain adipose
tissue [4] (Figure 1a).

The skin is innervated by a rich network of hetero-
geneous primary sensory nerve endings involved in di-
verse physiological functions (Figure 1b). These neurons
detect myriads of external stimuli through the selective
expression of dedicated cell-surface molecules. These
stimuli range in intensity from harmless to noxious, and
may be mechanical, thermal, or chemical in nature [5].
All skin-innervating primary sensory neurons are ex-
citatory; they have their cell bodies in the dorsal root
ganglia (DRG) or trigeminal ganglia (TG), and they
project centrally in the dorsal horn of the spinal cord.
They include nociceptors, which specialize in the de-
tection and transduction of high-threshold noxious sti-
muli, leading to the sensation of pain and eliciting
defensive behaviors [6–9]. Most nociceptors are un-
myelinated C- or lightly myelinated Aδ-fibers that ex-
press the sodium channel Nav1.8. Historically, they have
been classified into two subclasses on the basis of de-
velopmental cues and neuropeptide production: pepti-
dergic and nonpeptidergic, although this classification
was recently revisited using single-cell RNA-sequencing
methods [10]. Peptidergic nociceptors are classically
defined as expressing tropomyosin receptor kinase A
(TrkA) and transient receptor-potential cation-channel
subfamily-V member 1 (TRPV1) and they produce
neuropeptides, such as substance P (SP) and calcitonin
gene-related peptide (CGRP), whereas nonpeptidergic
C-fibers express the glial cell-derived neurotrophic
factor receptor Ret and the Gαi-interacting protein
(GINIP) [8] (Figure 1c). This classification is now

]]]]]]]]]]
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considered to be an oversimplification, as TRPV1 ex-pression is not restricted to Nav1.8-
expressing pepti-dergic nociceptors, and lower levels of CGRP, SP, and TrkA-encoding 
transcripts have also been detected within nonpeptidergic nociceptors [10]. Recent ana-
tomic, molecular, and transcriptomic studies have re-vealed tremendous heterogeneity 
among nociceptors and nonnociceptive neurons [10–13].

Many factors, such as pathogen-associated molecular pat-terns, damage-associated molecular patterns, 
and immune-cell-derived cytokines, including tumor necrosis factor alpha
(TNF-α), interleukin-1β (IL-1β), and IL-6, are released during skin infection or injury. These mediators are 
re-cognized by diverse receptors present on the peripheral nerve terminals of sensory neurons [14]. 
Depending on their nature, they trigger or facilitate the generation of action potentials, which are then 
integrated in the spinal cord and transduced to the brain for pain perception [15] (Figure 1b). The activated 
nociceptors release neuropeptides and neu-rotransmitters locally in the skin, inducing vasodilation and 
capillary permeability, and contributing to neurogenic in-flammation [16]. Nociceptors can also modulate 
skin im-mune responses [17,18] (Figure 1b). Early studies, mostly in vitro, showed that the neuropeptide 
CGRP can regulate LC functions [19–21]. More recently, in vivo studies have identified a major role for 
neuroimmune interactions in host defense against infections and in tissue-repair processes [22]. However, 
these regulatory functions are complex and highly dependent on pathological or inflammatory context. A 
dis-section of the precise molecular mechanisms governing this neuroimmune crosstalk will be required, to 
shed light on the pathophysiological processes involved. This review does not provide an exhaustive 
description of all the neuroimmune interactions occurring in the skin. Instead, it focuses on the role of 
Nav1.8

+ lineage somatosensory neurons in regulating cutaneous immune responses. It covers three main 
themes: neuroimmune interactions in response to pathogens, in al-lergic and inflammatory skin diseases, 
and during home-ostasis and tissue-repair processes.

Neuroimmune interactions and the host response to pathogens
Pathogen invasion induces an acute inflammatory re-sponse mediated by immune-cell 
activation. This re-sponse is essential for pathogen elimination, but must be tightly controlled to 
prevent excessive tissue damage and immunopathological conditions. Recent studies have 
revealed nervous-system involvement in regulating the delicate balance governing inflammatory 
processes. This has consequences for host defense against patho-gens, but also for the induction 
of tolerance mechanisms for restoring tissue homeostasis (Figure 1d).

Skin infections are often associated with severe pain, generally reflecting the degree of tissue 
damage. The pathways regulating infection-induced pain are thought to be secondary to immune-cell-
mediated inflammatory responses. 

Figure 1 (suite)

molecular characteristics: peptidergic fibers, expressing TrkA and TRPV1 and producing neuropeptides, such as SP and CGRP, and 
nonpeptidergic C-fibers expressing Ret and GINIP. GINIP+ neurons include TAFA4+ TH+ C-LTMR and MRGPRD+ neurons. This 
representation provides a simplified view of these subpopulations of neurons, which are much more heterogeneous molecularly 
[10,11•]. (d) Signals from the sensory nervous-system control the inflammatory immune response governing the fine balance 
between resistance mechanisms ensuring microbial clearance and tolerance mechanisms preventing excessive tissue damage. This 
regulation promotes host resistance to disease, allowing not only pathogen elimination, but also tissue repair and the restoration of 
homeostasis. This figure was created with BioRender.com.



Nociceptive sensory fiber activation can also drive cu-
taneous antifungal immunity. Kashem et al. revealed
that TRPV1+ sensory neurons detect Candida albicans (C.
albicans) and release CGRP, driving IL-23 production by
dermal CD301b+ DCs, which promotes protective IL-17
production by γδ T cells [27]. This group also found that
the optogenetic activation of cutaneous TRPV1+ neu-
rons was sufficient to induce immune-cell recruitment
and to elicit inflammatory cytokine (TNF-α, IL-6, IL-
23, IL-17, and IL-22) production, thereby increasing
local host defenses against pathogens such as C. albicans
and S. aureus [28]. CGRP release is required for this
TRPV1+ neuron-induced type-17 inflammation. Another
recent study suggested that, following skin injury in
mice, TRPV1+ neurons may enhance the antiviral host
response by inducing the production of proteins with
antiviral properties, such as Oas2, Oasl2, and Isg15 [29].
These studies show that the contribution of skin sensory
neurons to host defense is highly context-dependent.

Neuroimmune interactions in skin allergic and
inflammatory diseases
Some skin disorders, such as atopic dermatitis (AD), al-
lergic contact dermatitis (ACD), and psoriasis, are asso-
ciated with immune dysregulation and inflammation.
Cutaneous denervation experiments have highlighted
the importance of neuroimmune interactions in a model
of psoriasis [30]. Skin exposure to imiquimod induces
IL-23-dependent psoriasis-like inflammation in mice.
Riol-Blanco et al. showed in this model that TRPV1+

Nav1.8
+ neurons are essential drivers of this inflammatory

response, through promotion of an IL-23/IL-17 pathway
initiated by dermal DC activation [31] (Figure 3). Thus,
this pathway is beneficial in fungal-infection contexts
[27,28], but detrimental in the context of psoriasis. The
TRPC4 cation channel expressed by CGRP+ sensory
neurons is also involved in the development of skin in-
flammation and chronic itch in a model of psoriasis-like
inflammation [32] (Figure 3). Immune-cell infiltration,
particularly with mast cells and T cells, is reduced in
imiquimod-treated skin from Trpv1-KO mice, sug-
gesting a role for the receptor itself [33]. However,
TRPV1 is expressed by immune-cell subsets in addition
to neurons [34], rendering the underlying mechanisms
more difficult to understand.

Skin exposure to allergens, such as house dust mites, can
directly activate TRPV1+ peptidergic nociceptors,
leading to SP release in the skin [35•]. This neuropep-
tide acts on MRGPRB2, a receptor specifically expressed
by mast cells, leading to mast-cell degranulation and
promoting an allergic reaction [35•,36••]. The role of SP
in skin inflammation has also been described in a model
of allergy induced by the cysteine protease papain [37•].
This study involving the genetic ablation of TRPV1+

nociceptors and mice deficient for the SP gene revealed

However, Toll-like receptors (TLR)3, TLR4, TLR7, 
and TLR9, are functionally expressed by sensory 
neurons [16], suggesting that these neurons may be able 
to detect pathogens directly. Chiu et al. showed that 
Staphylococcus aureus (S. aureus)-derived N-formylated
peptides and α-hemolysin directly activate nociceptive 
sensory neurons, i nducing pain sensation [23••]. In this
model, the specific a blation o f N av1.8-lineage neurons, 
including nociceptors, suppresses pain, but simulta-
neously increases local immune infiltration a nd lym-
phadenopathy, implying nociceptor involvement in 
downregulating inflammatory processes (Figure 2).

A downregulation of innate immune responses by noci-
ceptors was also described in a model of Streptococcus 
pyogenes (S. pyogenes) infection. This bacterium directly 
activates TRPV1-expressing (TRPV1+) nociceptors by 
producing streptolysin S, which causes pain [24]. 
Streptolysin S induces CGRP release by cultured noci-
ceptor neurons in vitro, and TRPV1+ neurons also 
re-lease this neuropeptide into infected tissues. In 
vitro experiments revealed that CGRP inhibits S. 
pyogenes killing by murine neutrophils. In this 
infectious model, the chemical ablation of nociceptors 
increases neutrophil influx into skin and decreases 
bacterial load. Nociceptor stimulation by bacteria, thus, 
suppresses host defenses against S. pyogenes infection 
(Figure 2).

A role for nociceptive sensory neurons in regulating 
immune responses during cutaneous viral infection has 
also been described. A study in a mouse model of herpes 
simplex virus type-1 (HSV-1) infection revealed that 
Nav1.8

+ sensory neurons regulate both innate and adap-
tive antiviral responses [25•]. They control the ampli-
tude of the inflammatory r esponse b y decreasing 
neutrophil infiltration a nd i nflammatory cy tokine pro-
duction by monocytes, limiting tissue damage. This 
modulation of neutrophil influx d oes n ot compromise 
virus elimination, but is necessary to promote CD8 T-
cell priming by D C in the skin-draining lymph 
nodes (dLNs) (Figure 2).

In these models, Nav1.8+ neurons limit inflammatory pro-
cesses, by attenuating neutrophil responses and in-
flammatory c ytokine p roduction, i n p articular. These 
regulatory processes can help prevent skin lesions caused 
by excessive inflammation, b ut m ay h ave deleterious 
consequences for the efficacy o f a ntimicrobial immune 
responses in some situations. Conversely, nociceptors may 
have pro-inflammatory f unctions i n o ther pathological 
conditions. For example, the genetic ablation of Nav1.8+ 

sensory neurons or chemical ablation of the TRPV1+ 

subpopulation protects mice from severe tissue swelling 
and edema following skin infection with Bacillus anthracis, 
by reducing neutrophil infiltration [26] (Figure 2).
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that allergen-activated neurons promote DC migration
into LNs, thereby initiating type-2 immune responses to
allergens. In this model, SP acts through the MRGPRA1
on CD301b+ DCs, promoting the migration of these cells
[37•] (Figure 3).

AD is characterized by itching, granulocyte activation,
type-2 inflammatory cytokine production, and high
serum IgE levels [38]. Topical application of the vi-
tamin-D3 analog calcipotriol (or MC903) can induce AD-
like symptoms in mice. Transcriptomic analysis of the
TG revealed that calcipotriol modulates the expression
of genes involved in itch-neuron excitability [39]. Cal-
cipotriol also triggers immune-cell infiltration in skin,
leading to an onset of itch behaviors induced by neu-
trophil activation due to the production of CXCL10, a
CXCR3 ligand expressed by sensory neurons in these
conditions (Figure 3). In addition, the immune-cell in-
filtration in TG in this model and transcriptional changes
in the spinal cord suggest that itching may also be cen-
trally modulated. During MC903-induced AD, the
pharmacological inhibition or genetic depletion of
TRPV1+ sensory neurons reduces skin immune-cell in-
filtration and blood IgE levels [40]. In another model of
AD combining MC903 application and ovalbumin sen-
sitization, basophils close to sensory neurons have been
shown to release leukotriene C4, which directly activates
the sensory neurons, triggering itching [41]. Finally, the
itching observed in humans with AD may result not only
from the activation of sensory fibers, but also from an
increase in their axonal growth in the upper dermis [42].
These morphological changes may be due to brain-de-
rived neurotrophic factor (BDNF) production by eosi-
nophils, which is observed only in AD patients
(Figure 3).

In these models of skin inflammation, sensory neurons
have mostly proinflammatory functions. However, they
may also have anti-inflammatory properties in some cir-
cumstances. TRPV1 channels are required to trigger
spontaneous scratching in a mouse model of ACD in-
duced by the topical application of squaric acid dibutyl
ester. Ablation of the Trpv1 gene or pharmacological
ablation of TRPV1+ sensory neurons promotes cuta-
neous inflammation in this model, consistent with an
anti-inflammatory role [43].

Neuroimmune crosstalk in skin homeostasis
and repair
Mechanical injury or exposure to ultraviolet (UV) ra-
diation can also cause skin damage in the absence of
pathogens, inducing an inflammatory reaction. The
healing process depends on the amplitude of the in-
flammatory response, which must be tightly controlled,
to restore skin homeostasis and integrity. Skin-repair
processes are orchestrated by various immune cells,

mostly macrophages, and nonimmune cells, such as fi-
broblasts [44]. Tissue damage induces pain, and wound
healing is often associated with itching, which has led to
further studies of the role of the sensory nervous system
in regulating tissue repair.

The multifunctional cytokine transforming growth factor
β plays a key role in scar formation and skin repair [45].
It has been shown to be required for IL-31 production
by dermal DCs during healing after full-thickness inci-
sional wounds [46]. TRPV1+ nociceptors expressing IL-
31 receptors are also activated and sensitized, resulting
in the transmission of an itch signal and scratching be-
havior. In this model, IL-31-deficient mice display less
scratching during the repair process, with no significant
effect on wound healing.

Most studies on the neural regulation of skin immune
responses have focused on the role of Nav1.8

+ TRPV1+

neurons and their production of CGRP and SP [17].
Nav1.8

+ GINIP+ nonpeptidergic sensory neurons have
also recently been shown to have a regulatory role
[47••]. There are two main subsets of GINIP+ neurons:
MrgprD-expressing C-fibers, which innervate the inter-
follicular region of the epidermis as free nerve endings,
and nonnoxious C-low-threshold mechanoreceptors (C-
LTMRs) expressing tyrosine hydroxylase (TH),
TAFA4, and VGLUT3, which innervate hair follicles.
MrgprD+ neurons mediate noxious mechanical in-
formation, whereas C-LTMRs convey pleasant touch
sensations at steady state. C-LTMRs have also been
implicated in injury-induced mechanical pain modula-
tion, probably through TAFA4 production [48,49]. In a
model of sunburn induced by skin overexposure to UV
light, Hoeffel et al. revealed a major anti-inflammatory,
prorepair role of GINIP+ sensory neurons [47••]. In this
model, epidermis destruction and the resulting in-
flammation activate GINIP+ neurons, including C-
LTMR, triggering TAFA4 production by these neurons
in the skin. Mice lacking GINIP+ neurons or the Tafa4
gene present an unbalanced macrophage response and
higher cutaneous levels of inflammatory cytokines,
leading to repair defects and fibrosis. TAFA4 modulates
the inflammatory profile of dermal macrophages, indu-
cing expression of the anti-inflammatory cytokine IL-10.
This TAFA4/IL-10 pathway also promotes the devel-
opment and survival of Tim4+ prorepair macrophages,
which play a crucial role in restoring homeostasis, pro-
moting healing, and preventing fibrosis (Figure 4). In
addition to its anti-inflammatory role, TAFA4 has also
been reported to have strong analgesic effects [48,49].

An immunoregulatory role has recently been described
for another subset of nonpeptidergic GINIP+ nocicep-
tors expressing MrgprD. Zhang et al. found that gluta-
mate release from these neurons limits the expression of
genes, such as Mrgprb2, involved in mast-cell



responsiveness, reducing inflammatory responses [36••].
Glutamate release is increased by MrgprD agonism,
which also attenuates mast-cell degranulation and re-
duces inflammation in multiple skin-disease models.
The authors also revealed that epidermal MrgprD+

GFRα2 nonpeptidergic nerve endings are reduced by
long-term LC ablation (Figure 4). Neuroimmune inter-
actions are therefore essential for the maintenance and
restoration of skin homeostasis.

Conclusion
The neuroimmunology field has expanded considerably
over the last decade. However, our comprehension of the
molecular mechanisms governing interactions between
the nervous and immune systems remains limited. We
now need to understand the heterogeneity of sensory

neuron populations and their responses in different pa-
thological contexts. Transcriptomic analyses have revealed
considerable diversity in skin sensory neurons at steady
state [10–12]. Furthermore, the transcriptomic profiles of
these cells undergo a major reprogramming after axonal
injury [11•]. More detailed characterizations of activated
neurons and the mediators produced by nerve endings in
the skin in specific disease contexts are required. How-
ever, the detection and quantification of neuron-derived
molecules in tissues are technically challenging due to the
very small amounts produced and their action in the mi-
croenvironment of nerve endings. Moreover, different
combinations of neurons of different natures may be ac-
tivated simultaneously, in specific inflammatory contexts,
generating a series of different molecules that can act in an
additive, synergistic, or antagonistic manner. Moreover,

Figure 4
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Neuroimmune crosstalk promotes skin homeostasis and repair. In a model of sunburn based on skin overexposure to UV light, nonpeptidergic GINIP+

neurons promote skin repair and inhibit fibrosis. This regulation is mediated by the production of TAFA4 protein by C-LTMR, a subset of GINIP+

neurons innervating hair follicles. TAFA4 promotes the survival of Tim4+ skin-resident macrophages (Mø), and their production of anti-inflammatory
cytokines. This TAFA4/IL-10 pathway also controls the nature of the macrophages developing from monocytes recruited from the blood. TAFA4
promotes the development of prorepair Tim4+ macrophages at the expense of inflammatory TNF-α-producing macrophages, promoting tissue repair
and preventing fibrosis. Another subpopulation of MrgprD+ nonpeptidergic sensory neurons is crucial to maintain skin homeostasis. These glutamate-
producing neurons decrease Mrgprb2 expression in mast cells, suppressing mast-cell inflammatory responses in various contexts. Moreover, the
number of epidermal nerve endings of these MrgprD+ sensory neurons is decreased by the absence of LC, highlighting the important role of
neuroimmune interactions in homeostatic conditions too. This figure was created with BioRender.com



the depletion of some neuronal subpopulations may in-
duce compensatory mechanisms, leading to interpreta-
tion bias.

Receptors for neuron-derived molecules, including
CGRP, SP, TAFA4, galanin, somatostatin, and gluta-
mate, are expressed by immune-cell subsets. However,
depending on the inflammatory/infectious context, these
molecules may have proinflammatory or anti-in-
flammatory effects, with beneficial or deleterious con-
sequences for host defense. CGRP, for example, may
activate or inhibit different cell types, as a function of
the cutaneous pathological condition [50]. Its divergent
effects, depending on the context, could be explained by
the differential expression of CGRP receptors on dif-
ferent cell types or by the time window for CGRP pro-
duction. Indeed, CGRP receptors are expressed on
monocytes, macrophages, neutrophils, ILC2, and in
epidermal cells, such as keratinocytes, melanocytes, and
LCs [50]. Genetic studies targeting the receptors for
these neuron-derived mediators in specific cell types will
facilitate dissection of the precise mechanisms involved
and provide promising new therapeutic targets.

Finally, it will also be important to understand the
contribution of the pain perceived by the central nervous
system to immune-response regulation in the skin and in
other peripheral tissues, such as the lung and the
gut [51].
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