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Transcriptional reprogramming from innate
immune functions to a pro-thrombotic
signature by monocytes in COVID-19

Allison K. Maher 1, Katie L. Burnham2, Emma M. Jones1, Michelle M. H. Tan3,
Rocel C. Saputil3, Laury Baillon1, Claudia Selck1, Nicolas Giang 1,
Rafael Argüello 4, Clio Pillay3, Emma Thorley3, Charlotte-Eve Short1,
Rachael Quinlan 1, Wendy S. Barclay 1, Nichola Cooper3, Graham P. Taylor 1,
Emma E. Davenport2 & Margarita Dominguez-Villar 1

Although alterations in myeloid cells have been observed in COVID-19, the
specific underlying mechanisms are not completely understood. Here, we
examine the function of classical CD14+ monocytes in patients with mild and
moderate COVID-19 during the acute phase of infection and in healthy indi-
viduals. Monocytes from COVID-19 patients display altered expression of cell
surface receptors and a dysfunctional metabolic profile that distinguish them
fromhealthymonocytes. Secondary pathogen sensing ex vivo leads to defects
in pro-inflammatory cytokine and type-I IFNproduction inmoderate COVID-19
cases, together with defects in glycolysis. COVID-19 monocytes switch their
gene expression profile from canonical innate immune to pro-thrombotic
signatures and are functionally pro-thrombotic, both at baseline and following
ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes
are characterized by enrichment of pathways involved in hemostasis, immu-
nothrombosis, platelet aggregation and other accessory pathways to platelet
activation and clot formation. These results identify a potential mechanism by
which monocyte dysfunction may contribute to COVID-19 pathology.

COVID-19 is a respiratory tract infection caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the
majority of infections in unvaccinated individuals are mild or asymp-
tomatic, 15% of patients develop moderate to severe disease requiring
hospitalisation, and 5% develop critical disease with life-threatening
pneumonia, acute respiratory distress syndrome and septic shock1.
During the acute phase of infection, myeloid cells, including mono-
cytes and macrophages, are the predominant immune cell type in the
lungs of COVID-19 patients and play a major role in the pathogenicity
of the disease2,3. However, contrasting observations have been repor-
ted regarding the involvement of myeloid cells in the development of
cytokine storms vs. immunosuppression4,5 and the overactive or

deficient type I IFN response generated by myeloid cells in the lungs
and in peripheral blood6–11. Despite these inconsistent reports, most
studies have observed dysregulated innate immune responses and
reduced expression of human leukocyte antigen DR (HLA-DR) by cir-
culating myeloid cells, which is considered a marker of immune
suppression10,12–16.

Monocytes are blood-circulating, phagocytic, innate immune
leukocytes with important functions in pathogen sensing, and innate
and adaptive immune response activation during viral infection17.
Despite their heterogeneity18, humanmonocytes are broadly classified
into three subsets based on the expression of CD14 and CD16, i.e.,
classical (CD14+CD16-), intermediate (CD14+CD16+), and nonclassical
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(CD14lowCD16+) monocytes17. During viral infection, circulating mono-
cytes infiltrate affected tissues and differentiate into inflammatory
macrophages and dendritic cells (DCs)19, contributing to pathogen
clearance and tissue regeneration.

Here, we examine the phenotype and functionality of the main
monocyte population in humans, i.e., classical CD14+ monocytes, in
patients with COVID-19 during the acute phase of disease and compare
them to those of healthy individuals. We find that ex vivo isolated CD14+

monocytes from mild and moderate COVID-19 patients are phenotypi-
cally different from monocytes from healthy individuals, displaying
differential expression of costimulatory and inhibitory receptors, MHC
molecules and a dysfunctional metabolic profile that is accompanied by
decreased ex vivo NF-κB activation, while maintaining an intact type I
IFN antiviral response. Subsequent pathogen sensing ex vivo led to a
state of functional unresponsiveness of COVID-19 monocytes that was
associated transcriptionally with that of an endotoxin-induced tolerance
signature, characterized by the decrease in canonical innate immune
functions, including the expression of activation markers and pro-
inflammatory cytokine production. In addition, their gene expression
signature and function switched from canonical innate immune func-
tions to a pro-thrombotic phenotype characterized by increased

expression of pathways involved in immunothrombosis and increased
capacity to form cell aggregates with platelets. These results provide a
potential mechanism by which innate immune dysfunction in COVID-19
contributes to disease progression.

Results
Phenotypic alterations in COVID-19 monocytes
Global alterations in innate immune cell phenotypes have been iden-
tified in severe COVID-1911,20–22. As the main human monocyte popu-
lation, we focused on deeply characterizing the ex vivo phenotype of
classical CD14+ monocytes in uninfected healthy individuals and
patients with COVID-19 presenting with mild or moderate symptoms
(1-2 or 3-4 WHO ordinal scale for COVID-19 severity, respectively)
during the acute phase of disease (Dataset 1). The battery of markers
examined by high dimensional flow cytometry included MHC mole-
cules and costimulatory and coinhibitory receptors (Fig. 1). Dimen-
sionality reduction tools demonstrated that while some overlap in the
global phenotypes was observed among the three study groups,
monocytes from healthy individuals were clearly distinct from both
mild and moderate COVID-19 on a tSNE plot (Fig. 1a, n = 15 individuals
per group). In addition, COVID-19 monocytes could be distinguished
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Fig. 1 | Unique phenotype of COVID-19 monocytes. a tSNE plots obtained from a
concatenated sample consisting of CD14+ classical monocytes from n = 15 healthy
individuals, n = 15 mild and n = 15 moderate COVID-19 patients. b Box-and-whisker
plots summarizing themediangMFIof the receptors analyzed (n = 25healthy,n = 15
mild and n = 17 moderate COVID-19 individuals). c tSNE plots depicting the cell
clusters identified by Phenograph from the concatenated sample in a. d Pie charts

show the fraction of cells within each identified cell cluster in each patient group.
e Bar graphs show the distribution (percentage) of cells from each patient group in
each identified cell cluster. fHeatmapof the expressionof receptors per cell cluster
displayed as modified z-scores using median values. One-way ANOVA with Tukey’s
correction for multiple comparisons for b. *p <0.05, **p <0.005, ***p <0.001,
****p <0.0001. Source data are provided as a Source Data file.
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based on disease severity, with main cell clusters for both disease
severity groups mapping separately on the tSNE plots. Moderate
COVID-19 monocytes expressed decreased levels of HLA-DR, in
agreement with previous reports10,16, but in contrast, they displayed
increased expression of HLA-ABC compared to both mild disease and
uninfected individuals, suggesting a skewed trend towards class I
antigen presentation (Fig. 1b, n = 25 healthy, n = 15 mild and n = 17
moderate COVID-19 patients). In addition, moderate COVID-19
monocytes expressed increased levels of the c-type lectin CD301.
The decreased expression of the costimulatory receptor CD86 on
moderate COVID-19monocytes compared to healthy andmild COVID-
19 patients, the increased expression of the inhibitory receptors TIM-
323 compared to healthy individuals, and PD124 compared to mild
COVID-19 monocytes suggest an altered activation profile skewed
towards an inhibitory phenotype. In addition, significant differences in
the expression of certain markers were found between mild and
moderate COVID-19monocytes. For example, downregulation of HLA-
DR and CD86 and upregulation of TIM-3 and HLA-ABC compared to
healthy monocytes were only significant in moderate but not in mild
COVID-19 monocytes, and the increased expression of CD80 in mild
COVID-19 compared to healthy monocytes was not apparent in mod-
erate COVID-19 (Fig. 1b). These results suggest a more profound dys-
function inmoderate than inmild COVID-19monocytes, and theywere
further confirmed in a second cohort of healthy individuals, mild and
moderate COVID-19 patients (Supplementary Fig. 1). Moreover, in
agreement with the altered HLA and costimulatory receptor profile of
COVID-19 monocytes, we observed an impairment in their capacity to
activate SARS-CoV-2-specific CD4+ and CD8+ T cells (Supplementary
Fig. 2). Thus, CD14+ monocytes from both mild and moderate COVID-
19 patients were able to efficiently activate SARS-CoV-2-specific CD8+

T cells upon UV-inactivated SARS-CoV-2 stimulation. However, only
CD14+ monocytes from healthy individuals were able to trigger the
activation of SARS-CoV-2-specific CD4+ T cells.

To further define and quantify the phenotypic differences
observed between healthy individuals and COVID-19 patients, we
applied clustering algorithms using the 12 phenotypic markers pre-
viously examined. Cell clustering identified 16 different subpopula-
tions of monocytes that were distinctively distributed in healthy and
COVID-19 monocytes (Fig. 1c, d, Dataset 2), with 11 clusters containing
more than 88% of the total cells analyzed (Supplementary Fig. 3).
Interestingly, expansions of specific monocyte subpopulations were
different in mild and moderate COVID-19 monocytes. Thus, statisti-
cally significant differences in the size of clusters 1, 3, 4, 6, 8, 11, 12, and
15 were found among clinical groups (Supplementary Fig. 4). In parti-
cular, both mild and moderate COVID-19 patients had reduced fre-
quency of clusters 3 and 15 compared to that of healthy monocytes,
while moderate patients had a significant increased size of clusters 6
and 8 compared to both mild patients and healthy individuals. Finally,
differences in the size of specific clusters were observed betweenmild
andmoderate COVID-19 patients. Thus, mild patients had significantly
higher frequency of cells in clusters 1, 4, 11, and 12 as compared to both
moderate patients and healthy individuals (except for cluster 4, which
was only significantly elevated as compared to moderate COVID-19
patients, Fig. 1d and Supplementary Fig. 4). As a consequence, the
distribution of cells from healthy, mild and moderate COVID-19
monocytes was clearly different in each cluster, and while some cell
clusters were composed of cells from all disease groups, such as
clusters 10, 11 and 13, other clusters predominantly contained cells
fromone or twoparticular disease groups. For example, clusters 1, 3, 4,
12, and 16 were predominantly composed of cells from mild patients,
while clusters 6 and 8 predominantly contained moderate COVID-19
monocytes and were almost absent in monocytes from healthy indi-
viduals (Fig. 1e). Normalized expression levels of the markers defining
each cluster demonstrated that the phenotype of cluster 6 wasmostly
driven by downregulation of CD86 and HLA-DR, while that of cluster 8

was mostly driven by the increased expression of HLA-ABC (Fig. 1f).
Collectively, these results reveal that distinct populations of circulat-
ing monocytes are enriched in mild and moderate COVID-19 patients.

Metabolic dysfunction in COVID-19 monocytes
The fundamental differences in the phenotype of moderate COVID-
19 monocytes compared to that of healthy individuals led us to
investigate in depth the gene expression profile of ex vivo isolated
classical CD14+ monocytes from patients with moderate COVID-19
and compare themwith those of healthy individuals (Fig. 2). Principal
component analysis (PCA) applied to examine the global distribution
of gene expression profiles from COVID-19 monocytes (n = 10) and
healthy individuals (n = 6) demonstrated a clear separation between
groups along PC1 (Fig. 2a), with genes encoding a number of soluble
factors, chemokines and HLA class II molecules as the main genes
contributing to the separation between healthy and COVID-19
monocytes (Supplementary Fig. 5). Differential gene expression
analysis yielded 422 upregulated and 187 downregulated genes (≥1.5-
fold change, FDR < 0.05) in COVID-19 monocytes compared to heal-
thy controls (Fig. 2b). We used these genes to perform a pathway
enrichment analysis with XGR25 and pathway annotations from
Reactome to gain insight on potential pathways differentially
expressed in COVID-19 monocytes (Supplementary Fig. 6 and Data-
set 3). Interestingly, pathway enrichment identified glycolysis as the
most enriched pathway in COVID-19 monocytes, and also included
metabolism of lipids and lipoproteins among the statistically sig-
nificant pathways (Supplementary Fig. 6). Other significantly enri-
ched pathways included interferon signaling and cytokine signaling,
results that are in agreement with previous reports on the role of
these two pathways in COVID-19 pathogenesis6,16,22 (Supplementary
Fig. 6 and Dataset 3).

We subsequently examined the directionality of expression of the
enriched pathways by analyzing downregulated genes and upregu-
lated genes separately (Fig. 2c). Pathway enrichment analysis of genes
significantly upregulated (≥1.5-fold change, FDR <0.05) in COVID-19
compared to healthy individuals demonstrated a significant increase in
the metabolism of a number of lipids, including sphingolipids, phos-
pholipids, and lipoproteins. Other upregulated pathways in COVID-19
monocytes included interferon signaling, cytokine signaling, and
transmembrane transport of small molecules (Fig. 2c). Heatmap
showing the top 40 upregulated genes from the enriched pathways
demonstrated a somewhat variable expression patterns among
COVID-19 monocytes and included a number of type I interferon-
stimulated genes (IFI27, IFITM2, IFI6, IFITM3,MX1), metabolic enzymes
(ASAH1, CYP27A1, SGPP2, SPHK1) and others (Fig. 2d). Of note, the
highest expressed IFN-related gene was IFI27, which has been sug-
gested as a biomarker of early SARS-CoV-2 infection26. The increased
type I IFNgene signature in COVID-19monocyteswas confirmedby the
increased ex vivo phospho-IRF3 protein expression in moderate
COVID-19 patients compared to healthy individuals (Fig. 2e, f) and by
the increased expression of IFITM2 as an IFN-stimulated gene, mea-
sured by real-time PCR in an expanded cohort of mild and moderate
COVID-19 patients that included samples from those individualswhose
monocytes were subjected to RNA-seq (n = 6 healthy individuals and
n = 10moderate COVID-19 patients) plus additional samples of healthy
individuals (n = 1), mild (n = 7) and moderate patients (n = 3, Fig. 2g).
NFκB activation was examined ex vivo indirectly by IκBα expression
(Fig. 2h, i) and directly by phosphorylation of the p65 NFκB subunit
(Fig. 2j, k), as a readout for cytokine signaling27,28. While monocytes
frommild COVID-19 patients displayed a decrease in the expression of
IκBα compared to that of healthy individuals (Fig. 2i), monocytes from
moderate COVID-19 patients did not. Furthermore, neither mild nor
moderate COVID-19 monocytes displayed an increased expression of
phospho-p65 NFκB (Fig. 2k). This observation suggests that other
additional mechanisms may be regulating the activation of NFκB, and
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that NFκB-driven cytokine responses may be altered in patients with
COVID-19, in agreement with the lack of increased pro-inflammatory
cytokine expression by COVID-19 monocytes (Fig. 2c, Dataset 4) and
with previous single cell transcriptomic data of acute COVID-19
PBMC29. Moreover, several of the genes contributing to the

“Cytokine signaling” pathway enrichment (Fig. 2c) were interferon-
stimulated genes (Dataset 4).

We subsequently selected the set of significantly downregulated
genes in COVID-19 monocytes (≥1.5 fold decrease, FDR <0.05) to
perform pathway enrichment (Fig. 3). The only pathway that was
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significantly downregulated in COVID-19 monocytes was glycolysis
(Fig. 3a and Dataset 5), with decreased expression of a number of
enzymes involved in glucose degradation, including PFKP, ENO1,
PFKB4 and others (Fig. 3b). This metabolic profile with increased
metabolism of lipids (Fig. 2c) and decreased glycolysis was unex-
pected, as glycolysis is an important driver of innate immune cell
function during the recognition of pathogens30. To confirm these gene
expression data, we used SCENITHTM31 to metabolically profile CD14+

monocytes from COVID-19 patients and healthy controls ex vivo.
SCENITHTM uses protein synthesis as a measurement of global meta-
bolic activity. Puromycin incorporation is used as a reliable readout of
protein synthesis levels (and therefore metabolic activity) in vitro and
in vivo. In agreement with the pathway enrichment results, ex vivo
puromycin incorporation was significantly decreased in moderate
COVID-19 monocytes (Fig. 3c, d) compared to healthy individuals,
suggesting decreased metabolic activity. Moreover, the glycolytic
capacity of COVID-19 monocytes was significantly decreased in mod-
erate patients and correlated with disease severity (Fig. 3e), and this
was accompanied by a concomitant increase in mitochondrial
dependency inmonocytes frommoderate COVID-19 patients (Fig. 3e).
The decreased metabolic activity and glycolytic capacity were further
confirmed by Seahorse analysis of extracellular acidification rate
(ECAR) and oxygen consumption rate (OCR) as readouts for glycolysis
and oxidative phosphorylation, respectively (Fig. 3f).

These data suggest that monocytes from COVID-19 patients with
moderate disease display a distinct gene expression signature, char-
acterized by an impaired metabolic profile that is accompanied by
decreased NFκB activation, and maintenance of an intact type I IFN
antiviral response.

COVID-19monocytes display impaired pathogen sensing ex vivo
The dysfunctional metabolic profile with a downregulation of glyco-
lysis and the defective activation of NFκB, both pathways heavily
involved in the activation of canonical innate immune cell functions
upon virus encounter28,30, led us to examine the functional capacity of

monocytes to sense and respond to SARS-CoV-2 ex vivo (Fig. 4). Upon
UV-inactivated SARS-CoV-2 stimulation (106 viral particles per 106 cells
for 20 h), CD14+ monocytes from healthy individuals displayed a sig-
nificant increase in both TNF and IL-10 production (Fig. 4a, b). How-
ever, COVID-19 monocytes significantly produced less TNF as
compared to healthy monocytes, while no differences were observed
in IL-10 expression (Fig. 4a, b). The defect in TNF production upon
stimulation was not SARS-CoV-2-specific, as stimulation with inacti-
vated common cold coronaviruses (106 viral particles per 106 cells for
20 h) or bacterial lipopolysaccharide (LPS, 100 ng/ml for 20 h) also led
to significantly reducedTNFproduction compared tomonocytes from
healthy individuals (Fig. 4c). In addition, the expression of CD40
(Fig. 4d, e), which is important for monocyte effector function and is
upregulated after virus sensing32, was increased in monocytes from
healthy individuals but not in COVID-19 monocytes. This decreased
expression was confirmed after stimulation with common cold cor-
onaviruses or LPS (Fig. 4f), suggesting that the activation defects in
COVID-19 monocytes in response to pathogen sensing were not spe-
cific to SARS-CoV-2. In addition to CD40, we also examined the
expression of other cell surface receptors involved in antigen pre-
sentation and activation of T cells (Fig. 4g). HLA-DR expression levels
were not further upregulated upon SARS-CoV-2 stimulation in any of
the patient groups, and stimulation still maintained the differences in
expression observed ex vivo among groups (Fig. 4h). Moreover, while
CD80 was significantly upregulated in healthy, mild and moderate
COVID-19 monocytes after SARS-CoV-2 stimulation (Fig. 4g, i), only
healthymonocytes increased the expression of CD86 after stimulation
(Fig. 4j). These results were confirmed in additional in vitro stimulation
with isolated CD14+ monocytes (Supplementary Fig. 7).

The apparent unresponsiveness of COVID-19 monocytes to
pathogen sensing was accompanied by altered metabolic reprogram-
ming. Innate immune cells that sense pathogens increase the rate of
glycolysis overmitochondrial oxidative phosphorylation to enable fast
energy availability33–35. However, COVID-19monocyte energetic profile
measured by SCENITHTM did not increase upon LPS stimulation, unlike
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that of healthy monocytes (Fig. 4k, l). Moreover, when stimulated with
LPS, moderate COVID-19 monocytes showed a decreased glycolytic
capacity (Fig. 4m) and an increase in fatty acid and amino acid oxida-
tion capacity (Fig. 4n) compared to healthymonocytes, that correlated
with a slight but significant decrease in glucose dependency and an
increase in mitochondrial dependency compared to monocytes from
healthy individuals (Supplementary Fig. 8). These data are in

agreement with the enriched metabolic pathways from RNA-seq data
(Fig. 2c, h). Seahorse experiments confirmed the defect in glycolysis in
stimulatedmonocytes fromCOVID-19 patients (Supplementary Fig. 9).
In summary, monocytes from COVID-19 patients display a profound
defect in pathogen sensing ex vivo that is more evident in moderate
than in mild patients and is characterized by an impairment in pro-
inflammatory cytokine production, expression of activation-related
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receptors and metabolic rewiring upon secondary SARS-CoV-2
stimulation.

Pro-thrombotic gene expression signature of COVID-19
monocytes
To globally characterize the gene expression signature of activated
monocytes inCOVID-19, weperformedRNA-seq of isolatedmonocytes
from healthy individuals and patients with moderate COVID-19 sti-
mulated for 20 h with UV-inactivated SARS-CoV-2 as in Fig. 4 (Fig. 5).
PCA clearly separated COVID-19 from healthy monocytes, although
some healthy monocytes clustered with COVID-19 in the principal
component space (Fig. 5a, Supplementary Fig. 10). Quantification of
differentially expressed genes yielded 1,437 upregulated and 2,073
downregulated genes in activated COVID-19 compared to activated
healthy monocytes (≥1.5 fold change, FDR <0.05, Fig. 5b). Pathway
enrichment of differentially expressed genes (≥1.5 fold change vs.
healthymonocytes, FDR <0.05) using XGR software and the Reactome
pathway database demonstrated a number of expected pathways
involved in the innate immune response to pathogens, including type I
IFN signaling, cytokine signaling, interactions between lymphoid and
non-lymphoid cells, NLR sensing, etc. (Supplementary Fig. 11 and
Dataset 6). However, when we focused our analysis on pathways
enriched in upregulated genes in activated COVID-19 monocytes
compared to activated healthy monocytes, the most significantly
enriched pathways were involved in or closely related to hemostasis
and coagulation, including integrin signaling, extracellular matrix
organization, signaling by PDGF, interactions with activated platelets
and general hemostasis (Fig. 5c and Dataset 7). Integrin receptors are
used by cells to interact with other cells and with the extracellular
matrix, by binding numerousmatrix proteins including collagen, actin
and laminin, being also involved in hemostasis and platelet
aggregation36. In addition, monocytes actively bind to platelets form-
ing pro-thrombotic aggregates in inflammatory and vascular
pathologies37,38. Monocytes from COVID-19 patients expressed
increased levels of various collagen subunits (COL1A1, PLOD2, COL6A3,
COL6A1), enzymes involved in collagen triple helix synthesis (COL-
GALT1) and a number of matrix metalloproteinases (MMP1, MMP2,
MMP14, Fig. 5d), which are not only involved in extracellular matrix
remodeling, but they have also been implicated in contributing
directly to platelet activation and priming for aggregation39,40. These
results are in agreement with the clinical observations of hypercoa-
gulability and acquired coagulopathies in patients with COVID-1941–44,
and suggest that monocytes from moderate COVID-19 patients upre-
gulate a pro-thrombotic gene expression signature upon secondary
SARS-CoV-2 sensing.

Interestingly, downregulated pathways in stimulated COVID-19
monocytes compared to stimulated healthy donor monocytes inclu-
ded most of the canonical immunological functions expected for
innate immune cells uponvirus sensing, i.e., interferon signaling, RIG-I/

MDA5-mediated induction of interferons, activation of TCR signaling
in T cells, innate immune functions and interactions with non-
lymphoid cells (Fig. 5e and Dataset 8). The majority of the top 40
genes significantly downregulated in COVID-19 monocytes from these
downregulated pathways consisted of different interferons (IFNA1,
IFNA2, IFNA14, and IFNB1), interferon-stimulated genes (IFIT3, ISG15,
IFIT2, ISG20, IRF7, and MX2) and pathogen-sensing receptors (TLR7,
AIM2, Fig. 5f). This gene signature was functionally confirmed by
examining the activation pattern of IRF3 in response to LPS in mono-
cytes from healthy individuals and patients with mild and moderate
COVID-19 (Fig. 5g). While healthy and mild COVID-19 monocytes sig-
nificantly increased the expression of the phosphorylated formof IRF3
upon LPS stimulation compared to baseline levels, monocytes from
moderate patients did not. This inability to activate IRF3 correlated
with decreased expression of the interferon-stimulated gene IFITM2,
examined in an expanded cohort of healthy, mild and moderate
COVID-19 monocytes after stimulation with SARS-CoV-2 (Fig. 5h). Of
note, examination of NFκB p65 activation, as a main transcription
factor involved in cytokine signaling in innate cells, demonstrated a
defective activation in bothmild andmoderate COVID-19 as compared
to healthy individuals (Fig. 5i).

These findings in COVID-19 monocytes are consistent with an
unexpected switch from canonical innate immune functions to a pro-
thrombotic phenotype and potential cross-talk with other cells
involved in hemostasis, which suggests that activated monocytes may
contribute to COVID-19 severity by actively impacting hemostasis and
by a reduction in innate immune functions necessary for efficient virus
clearance.

Monocytes from COVID-19 patients are functionally
pro-thrombotic
In order to functionally confirm the pro-thrombotic gene expression
signatureofmonocytes fromCOVID-19weperformed in vitroassays to
test the capacity of monocytes to form monocyte-platelet aggregates
(MPA, Fig. 6), which are an important initiation factor in the generation
of thrombi45–47. Isolated monocytes from healthy individuals and
patients with mild or moderate COVID-19, either unstimulated or sti-
mulated with UV-inactivated SARS-CoV-2 ex vivo, were co-cultured
with freshly isolated platelets from a healthy individual to rule out the
possibility that differential activation of platelets from healthy indivi-
duals and COVID-19 patients would lead to confounding results on the
pro-thrombotic capacity of the monocytes. After 20 h of monocyte-
platelet co-culture, we measured the generation of MPA by deter-
mining the expression of CD41 in monocytes, which is a standard
method to identify MPA (CD41 is a marker of megakaryocytes and it is
not expressed on monocytes48). Monocytes from patients with mod-
erate COVID-19 aggregated significantly more platelets that those of
healthy individuals or patients with mild disease, functionally sup-
porting the pro-thrombotic signature obtained in the RNA-seq analysis

Fig. 4 | Impaired ex vivo pathogen sensing by COVID-19 monocytes. Repre-
sentative example (a) and summary (b) of TNF and IL-10 production bymonocytes
from healthy individuals (n = 19), mild (n = 18), and moderate COVID-19 patients
(n = 19) after ex vivo stimulation with SARS-CoV-2. c Summary of percentage of
TNF- and IL-10-producing monocytes after stimulation with a mixture of heat-
inactivated common cold coronaviruses (CCCoV) or LPS in healthy individuals
(n = 12 for CCCoV and n = 13 for LPS), mild (n = 21 for CCCoV and n = 18 for LPS) and
moderate (n = 12 for CCCoV and n = 19 for LPS) COVID-19 patients. Representative
histograms (d) and summary (e) of CD40 expression in healthy individual (n = 20),
mild (n = 22), and moderate (n = 16) COVID-19 monocytes stimulated with vehicle
(grey) or SARS-CoV-2 (orange). Numbers represent percentage of CD40+ mono-
cytes relative to vehicle-stimulated cells. f Summary of percentage of CD40+CD14+

cells after stimulation with CCCoV or LPS in healthy individuals (n = 17 for CCCoV
and n = 14 for LPS), mild (n = 18 for CCCoV and n = 22 for LPS) andmoderate (n = 13
for CCCoV and n = 10 for LPS) COVID-19 patients. Representative histograms (g)

and summary gMFI of HLA-DR (h), CD80 (i) and CD86 (j) expression of CD14+

monocytes from healthy individuals (n = 15), mild (n = 22) and moderate (n = 9)
COVID-19 patients stimulated with vehicle (white) or SARS-CoV-2 (CoV2, orange).
Lines link paired samples. Representative histogram (k) and summary (l) of
monocyte energetic status measured by puromycin expression (gMFI) of mono-
cytes from healthy individuals (n = 10), mild (n = 8) or moderate (n = 10) COVID-19
patients stimulated with vehicle (open bars) or LPS (striped bars). Glycolytic
capacity (m) and fatty acid and amino acid oxidation capacity (n) of CD14+

monocytes from healthy individuals (n = 7), mild (n = 4), and moderate (n = 9)
COVID-19 patients stimulatedwith LPS. The data inb, c, e, f, l,m andn are shown as
mean ± s.e.m. One-wayANOVAwith Tukey’s correction formultiple comparisons in
b, c, e, f, m and n. Two-way ANOVA with Tukey’s correction for multiple compar-
isons in h, i, j and l. *p <0.05, **p <0.005, ***p <0.001, ****p <0.0001. Source data
are provided as a Source Data file.
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(Fig. 6a‒c). Interestingly, the increase in MPA formation was observed
after ex vivo stimulation with UV-inactivated SARS-CoV-2 (Fig. 6a, c)
but also in ex vivo unstimulated monocytes, which was initially sur-
prising due to the lack of hemostasis-related pathways being sig-
nificantly enriched in the ex vivo RNA-seq datasets (Figs. 2 and 3).
However, upon examination of the RNA-seq analysis from ex vivo
unstimulated monocytes, we identified a number of significantly

upregulated genes in COVID-19 monocytes compared to healthy
individuals that belonged to pathways that included “Hemostasis” and
“Platelet activation, signaling and aggregation” (Dataset 4). Enrichment
of none of these two pathways was statistically significant when con-
sidering the adjusted p-value, but upregulation of the individual genes
was, which could be due to the small number of RNA-seq samples and
the large number of pathways to adjust the p-value for.
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We subsequently took advantage of the available clinical data of
the patients for which RNA-seq analysis of monocytes was performed.
For these patients we had information of the plasma concentration of
D-dimer at the time of blood collection. D-dimer is routinely used in
the clinic as a biomarker for activation of the coagulation and fibri-
nolysis systems49 and it has been extensively investigated for the
diagnosis, monitoring and treatment of venous thromboembolic dis-
eases, for which it is used routinely50. Plasma D-dimer concentration
positively correlates with venous thromboembolic diseases in the
general population and in patients with COVID-1951. We decided to
group samples into high and low plasma D-dimer concentration as a
readout of potential thrombotic issues. While most patients whose
monocytes were used for RNA-seq had elevated D-dimer concentra-
tions at the time of blood collection (>500ng/ml, Dataset 9), we could
clearly identify two groups of patients: those with D-dimer con-
centration>1600 ng/ml (HighD-dimer, range 1647–20,000ng/ml) and
those with D-dimer concentration <1000 ng/ml (Low D-dimer, range
966–534 ng/ml).We then examined the expression of genes belonging
to the pathways potentially associated with hemostasis and coagula-
tion in both ex vivo RNA-seq data and RNA-seq data from stimulated
monocytes in healthy individuals from low and highD-dimer COVID-19
groups (Fig. 6d–f).

Using the RNA-seq datasets from ex vivo isolated monocytes, we
examined the expression of those genes that were significantly enri-
ched in two pathways: “Hemostasis” and “Platelet activation, signaling
and aggregation” (genes and pathways can be found in Dataset 4). In
agreement with the increased capacity to form MPAs, we observed an
increased expression of genes associated with these pathways in a
D-dimer concentration-dependent manner (Fig. 6d). Moreover, while
not all genes were significantly upregulated in the high D-dimer group,
10 out of 12 showed a trend toward an increased gene expression as
D-dimer concentration increased (Fig. 6e). This observation was spe-
cific for these two hemostasis-related pathways, as the trend was not
observed when we examined the normalized read counts of those
genes enriched in another significantly enriched pathway i.e., “Trans-
membrane transport of small molecules”, with only 5 out of the 14
enriched genes showing a trend towards a D-dimer concentration-
dependent increase in expression (Supplementary Fig. 12).

We also examined the expression (normalized read counts) of
those genes enriched in pathways potentially related to a pro-
thrombotic signature in RNA-samples from COVID-19 monocytes sti-
mulated with UV-inactivated SARS-CoV-2, again dividing the samples
into low and high D-dimer concentrations in plasma (Fig. 6f). The
pathways testedwere “Integrin cell surface interactions”, “Extracellular
matrix organization”, “Response to elevated platelet cytosolic Ca2+”,
“Signaling by PDGF”, “Hemostasis” and “Platelet aggregation (plug
formation)” (Genes andpathways canbe found inDataset 7; 81 genes in
total). Interestingly, while all the genes were significantly upregulated

in COVID-19 patients as compared to healthy controls, no differences
in their expression were found between the two groups of patients
with low and high plasma D-dimer concentration in a heatmap built
with z-score transformed normalized gene counts of all the genes
within the abovementioned pathways (Fig. 6f).Moreover, heatmaps of
individual pathways did not reveal any differences in the expression of
the corresponding genes based on plasma D-dimer concentration
(Supplementary Fig. 13). This observation suggests that secondary
SARS-CoV-2 sensing may switch monocyte phenotype and function-
ality in a D-dimer concentration-independent manner.

Endotoxin tolerance signature enriched in COVID-19monocytes
A number of works have suggested similarities between the char-
acteristics of the immune response in COVID-19 patients and those of
septic individuals, including multiple organ dysfunction, immuno-
suppression, coagulopathies and acute respiratory failure52. To deter-
mine the similarities between the transcriptional signature of COVID-
19 monocytes with that of sepsis monocytes, we utilized publicly
available microarray gene expression data on sepsis monocytes and
healthy controls53 and we tested the estimated fold changes for cor-
relation with those from our ex vivo (Fig. 7a) and activated (Fig. 7b)
COVID-19 and healthy monocytes. The sepsis dataset compared 6 age-
matched healthy individuals to 8 adult Gram-negative urinary sepsis
patients, with samples taken within 4 h of hospital admission53. No
clear correlation was observed in any of the two contrasts, which
suggests that the transcriptional signature of CD14+ monocytes in
moderate COVID-19 is not similar to that of monocytes in sepsis.

The lack of cytokine expression, activation of costimulatory
receptors, impaired antigen presentation potential and metabolic
impairments displayed by moderate COVID-19 monocytes resembled
the phenotype observed in LPS-induced tolerance54. We have pre-
viously defined an endotoxin tolerance gene expression signature
from publicly available microarray data on monocytes stimulated
in vitro with LPS55 that comprises 398 genes. Out of these, 318 genes
were detected in our RNA-seq dataset. We tested for correlation of the
endotoxin tolerance signature with ex vivo (Fig. 7c) and activated
(Fig. 7d) COVID-19 monocytes, and while ex vivo COVID-19monocytes
did not display a clear correlation with the tolerance signature, acti-
vated COVID-19 monocytes displayed similar directionality of expres-
sion in those genes from the tolerance signature that were detected in
the dataset. These data were further confirmed in barcode plots
(Fig. 7e), showing a statistically significant enrichment of the endo-
toxin tolerance gene signature in the list of differentially expressed
genes from stimulated COVID-19 monocytes compared to healthy
controls, for both upregulated and downregulated genes. These data
are in agreement with the observed diminished response of COVID-19
monocytes to secondary LPS stimulation in both total PBMC (Fig. 4c, f)
and isolated CD14+ monocytes (Supplementary Fig. 14).

Fig. 5 | Gene expression signature of SARS-CoV-2-stimulated COVID-19 mono-
cytes. a Principal component analysis of all genes from healthy (white) and mod-
erate COVID-19 (blue) monocytes stimulated with SARS-CoV-2. The variance
explained by each component is stated in brackets.bVolcano plots of differentially
expressed genes for activated COVID-19 vs. activated healthy monocytes. Red
shows genes with fold change ≥1.5 and FDR <0.05. c Bar plots depict the top
10 significantly enriched (FDR<0.05) pathways for stimulatedCOVID-19 vs. healthy
individual monocytes using upregulated genes (≥1.5 fold increase, FDR<0.05).
Fold enrichment is plotted as log2(FC) and bars labelled with the adjusted p-value.
d Heatmap of the top 40 significantly upregulated gene members of the pathways
in c. e Bar plots depict the top 10 significantly enriched (FDR<0.05) pathways for
stimulated COVID-19 vs. healthy individual monocytes, using downregulated genes
(≥1.5 fold decrease, FDR <0.05), plotted as log2(FC) and bars labelled with the
adjusted p-value. f Heatmap of the top 40 significantly downregulated genes in
stimulated COVID-19 vs. healthy individual monocytes that are members of the
pathways in e. g Phospho-IRF3 (Ser 396) expression (fold change to baseline gMFI)

for healthy (n = 14), mild (n = 15) and moderate (n = 10) COVID-19 monocytes sti-
mulated with LPS (mean ± s.e.m.). h IFITM2 gene expression (relative to GAPDH)
measured by real-time PCR and stimulated monocytes from healthy individuals
(n = 14), mild (n = 7), and moderate (n = 23) COVID-19 patients. Boxes extend from
the 25th to the 75th percentiles, the horizontal line within the boxes shows the
median, and the whiskers extend from the minimum to the maximum values.
i Phospho-NFκBp65 (Ser 529) expression (fold change to baseline gMFI) for healthy
(n = 14), mild (n = 15), and moderate (n = 10) COVID-19 monocytes stimulated with
LPS (mean±s.e.m.). For d and f, gene expression values are scaled by row; red
indicates relatively high expression, and blue low expression. Both rows and col-
umns are clustered using EuclideandistanceandWard’smethod.Mixedmodelwith
Tukey’s post hoc test for g and i. One-way ANOVAwith Tukey’s test for h. For g and
i, two-way ANOVAwith Tukey’s correction for baseline vs. other time points within
the same group. *p <0.05, ***p <0.001 for healthy individuals, #p <0.05, ##p <0.005
for mild COVID-19 patients, $$$p <0.001 for moderate COVID-19 patients.
****p <0.0001. Source data are provided as a Source Data file.
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Discussion
Here we employed metabolic, transcriptomic and functional assays to
identify a number of phenotypic and functional alterations in COVID-
19 monocytes that characterize moderate disease and we have pro-
vided the functional characteristics of monocyte responses in mild
SARS-CoV-2 infections as an example of an efficiently and successfully
cleared infection without excessive immunopathology. Important

alterations in metabolism and transcriptional signatures characterize
moderate COVID-19 monocytes and are important aspects of a global
unresponsiveness phenotype uponpathogen sensing characterized by
a transcriptional switch from canonical innate immune functions to a
pro-thrombotic signature. This pro-thrombotic phenotypewas further
confirmed functionally, and is in agreement with clinical observations
that patients with moderate and severe COVID-19 are at higher risk of
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developing hemostasis issues42,43,56. The initial inflammatory response
mounted upon SARS-CoV-2 infection could potentially drive the
changes in monocyte functionality, as inflammation is well known to
activate the coagulation system57–59. Moreover, while our results are
focused on the functionality of monocytes, previous data have shown
that platelets from patients with COVID-19 are activated ex vivo during
the acute phase of disease and have increased capacity to form
monocyte-platelet aggregates48, which supports the notion of inflam-
mation driving the initial activation and functional switch of these cell
types, promoting the initiation of hemostasis issues andpotentially the
diminished innate immune functions upon secondary stimulation. In
addition, the metabolic defects observed in COVID-19 monocytes
probably underlie the observed diminished response to secondary
stimulation, as they modulate innate immune functions including
cytokine expression, activation, phagocytic capacity, etc30,60,61. More
mechanistic studies are needed to understand the link between coa-
gulation and hyporesponsiveness to secondary monocyte stimulation
in COVID-19 patients.

A question that remains to be answered is the driver(s) of the
described circulating monocyte dysfunction. Ex vivo isolated mono-
cytes from moderate COVID-19 patients are pro-thrombotic while
maintaining some innate immune functions (Fig. 2). However, sec-
ondary pathogen sensing ex vivo triggers a switch in COVID-19
monocyte gene expression signature and functionality from canonical
innate immune functions to pro-thrombotic phenotype. It remains to
be determined whether any soluble factors in the microenvironment
contribute to this reprogramming, or even the direct infection of
monocytes by SARS-CoV-2, which has been previously suggested62.
Thephenotypeweobserve in circulatingmonocytes is in clear contrast
with the functionality ofmonocyte-derivedmacrophages in the lungof
COVID-19 patients10. In this regard, our study is limited by the lack of
bronchoalveolar lavage fluid (BALF) paired samples to compare the
phenotype and function of circulating monocytes with those infil-
trating the target tissue. However, some previous publications exam-
ining paired airway and blood samples have shown differences in the
signatures of circulating and lung innate immune cells, with low HLA-
DR expressing, dysfunctionalmonocytes in the blood, and hyperactive
airway monocyte and macrophages producing pro-inflammatory
cytokines10,29,63. The underlying mechanisms for these differences
remain elusive. During the course of viral infections, circulating
monocytes rapidly leave the bloodstream and migrate to target tis-
sues, where, after pathogen sensing and/or other microenvironmental
stimuli, they differentiate into macrophages and/or dendritic cells. In
this study, we examined the functionality of monocytes during the
acute phase of disease, early after symptom onset. It remains to be
determined whether these dysfunctionalmonocytes have the capacity
to migrate to the lungs and contribute to lung inflammation, or whe-
ther their dysfunction is such thatmigration is impaired andmonocyte
migration only occurred during the very initial phases of infection

before monocyte acquired the impairments observed in this study. Of
note, some of the defective pathways displayed by COVID-19 mono-
cytes, as for example glycolysis, have been shown to be essential for
migration of other cells to target tissue64,65. Finally, the results descri-
bed in this study beg the question of whether the functional impair-
ments observed in monocytes during the acute phase of infection are
COVID-19-specific. While stimulation with other viruses and bacterial
products led to similar altered immune phenotypes in COVID-19
monocytes (Fig. 4), it seems likely that these processes occur with
other moderate respiratory viral infections, as has been shown in
seasonal Influenza vaccination66. Longitudinal studies of monocyte
dynamics during SARS-CoV-2 and other respiratory viral infections
using both blood and BALF samples are warranted to answer these
questions.

Methods
Participants and clinical data collection
Disease severity was categorized based on the WHO ordinal classifi-
cation of clinical improvement, where 0 (uninfected) describes people
with no clinical or virological evidence of infection, 1-2 describe
ambulatory patients without (1) or with (2) limitation of activities, and
3-4 corresponds to hospitalized patients with no oxygen therapy (3) or
oxygen by mask or nasal prongs (4). Peripheral blood was collected
from all participants and processed following a common standard
operating protocol. For inpatients, clinical data were abstracted from
the electronic medical records into summary participant sheets. Par-
ticipant group characteristics are summarized in Dataset 1.

Healthy donors (WHO0) were Imperial College staff with no prior
diagnosis of or recent symptoms consistent with COVID-19, and where
possible, were matched in age and sex distribution with COVID-19
patients. None of the participants of this study were COVID-19
vaccinated.

Blood samples from the COVID-19 patients examined in this
work come from two different studies. COVIDITY study is a pro-
spective observational serial sampling study of whole blood to
observe the evolution of SARS-CoV-2 infection to characterize the
host response to infection over time in peripheral blood (ethics
approval obtained from the Health Research Authority, South Cen-
tral Oxford C Research Ethics Committee). The population of study
were >18-year-old patients and/or staff at Imperial College Health-
care NHS Trust/Imperial College London with confirmed COVID-19
from a positive SARS-CoV-2 RT-PCR test from NHS laboratories or
Public Health England. After informed consent was obtained, sam-
pleswere taken 3-14 days after symptom initiation andwere classified
as 1 or 2 disease severity.

Samples from patients with moderate COVID-19 admitted to
hospitals in London (Hammersmith Hospital, Charing Cross Hospital,
Saint Mary’s Hospital) and eligible to participate in the MATIS trial
(NCT04581954)67 provided consent (ethics approval by the Health

Fig. 6 | Monocytes from moderate COVID-19 patients are functionally pro-
thrombotic.Monocyteswere isolated fromhealthy individuals,mild andmoderate
COVID-19 patients, and left unstimulated or stimulated with UV-inactivated SARS-
CoV-2 for 20h. a Representative dot plots of the expression of CD41 on ex vivo
isolated (upper row) or stimulated (lower row)monocytes from healthy individuals
(left), mild (middle), and moderate (right) COVID-19 patients (n = 4 individuals per
group) after co-culture with freshly isolated platelets from a healthy individual.
Numbers in each dot plot represent CD41 gMFI. b, c Summary of CD41 gMFI on
unstimulated (b) or stimulated (c) monocytes after co-culture with healthy donor
platelets (n = 4 individuals in each group). Boxes in b and c extend from the 25th to
the 75th percentiles and whiskers extend down to the minimum and up to the
maximum values. d RNA-seq datasets from ex vivo isolated monocytes from
moderate COVID-19 patients were grouped into low and high D-dimer concentra-
tions. Heatmap of z-score-transformed normalized read counts of significantly
upregulated genes in “hemostasis” and “platelet activation, signaling, and

aggregation” pathways in healthy (n = 6), low D-dimer concentration (n = 4) and
high D-dimer concentration (n = 6) moderate COVID-19 monocytes. Gene expres-
sion values are scaled by column, and each row represents one individual.
e Summary of normalized gene counts of the genes in d, shown as mean±s.e.m.
f RNA-seq datasets from stimulated monocytes from moderate COVID-19 patients
were grouped into low and high D-dimer concentrations. Heatmap of z-score-
transformed normalized read counts of significantly upregulated genes in “Integrin
cell surface interactions”, “Extracellular matrix organization”, “Response to ele-
vated platelet cytosolic Ca2+”, “Signaling by PDGF”, “Hemostasis” and “Platelet
aggregation (plug formation)” pathways in healthy (n = 12), low D-dimer con-
centration (n = 8) and high D-dimer concentration (n = 6) moderate COVID-19
monocytes. Gene expression values are scaled by column, and each row represents
one individual. One-way ANOVA with Tukey’s correction for multiple comparisons
for b, c, e. *p <0.05, **p <0.005. Source data are provided as a Source Data file.
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Research Authority, London-Surrey Borders Research Ethics Commit-
tee) and bloodwas collected 3-14 days after disease onset and 0-2 days
after hospitalization and positive PCR, and before study treatment
initiation. Moderate patients displayed mild or moderate COVID-19
pneumonia, defined as grade 3 or 4 WHO severity. Samples were col-
lected fromMarch 2020 to February 2021 and none of the participants
had received a COVID-19 vaccine.

PBMC isolation, storage, and thawing
Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll
Hypaque (GE Healthcare) gradient centrifugation <4 h after blood
collection. The PBMC layer was collected, washed with PBS, resus-
pended at 20million cells/ml in fetal bovine serum supplementedwith
10%DMSOand stored at−150 °Cor liquid nitrogen. For PBMCthawing,
vials were thawed in apre-warmedwater bath at 37 °Cand immediately
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transferred to a 15ml conical tubewhere 5ml of warm completemedia
(37 °C) were added drop by drop. The tubes were subsequently cen-
trifuged for 10min at 250x g and resuspended in warm media. The
media used was RPMI 1640 supplemented with 2 nM L-glutamine,
5mM HEPES, and 100 U/μg/ml penicillin/streptomycin (Biowhittaker,
Walkersville, MD), 0.5mM sodium pyruvate, 0.05mM non-essential
amino acids (Life Technologies, Rockville, MD), and 5% human AB
serum (Gemini Bio‐Products, Woodland, CA).

Flow cytometry staining for monocyte immunophenotyping
PBMCs were thawed and rested for 2 h at 37 °C in RPMI 1640 media
supplemented with 2 mM L-glutamine, 5% human AB serum, and 1x
Penicillin and Streptomycin. For ex vivo phenotypic characterization,
300,000-500,000 PBMC were stained with LIVE/DEAD Fixable Dead
Cell Dyes (Thermo Fisher Scientific) according to the manufacturer’s
specifications. A Fc receptor (FcR) blocking step was performed using
FcR Blocking Reagent Human (Miltenyi Biotec) before cell surface
antibody staining (Supplementary Table 1). The antibodies used in the
stainings were the following: CD14 (61D3, eBioscience), CD3 (UCHT1,
BD), CD19 (HIB19, BD), CD1c (L161, Biolegend), CD40 (5C3, Biolegend),
CD141 (M80, Biolegend), CD304 (12C2, Biolegend), CD86 (BU63, Bio-
legend), CD80 (BB1, BD Pharmigen), HLA-DR (L243, Biolegend), CD301
(H037G3, Biolegend), HLA-ABC (W6/32, Biolegend), TIM-3 (F38-2E2,
Invitrogen), PD-1 (EH12.2H7, Biolegend), and CD16 (3G8, BD). Cells
were subsequently fixed using the Foxp3 staining buffer kit (Thermo
Fisher Scientific) following the manufacturer’s recommendations and
resuspended in 250 µl of PBS. Classical monocytes were gated on size
and granularity, live cells, exclusion of other main cell lineages (CD3-

CD56-CD66b-CD16-CD19-) and CD14+ (Supplementary Figure 15).
For intracellular staining, the aforementioned protocol was used,

and an additional step for intracellular staining was added after fixation.
The antibodies used for intracellular staining were the following: TNF
(Mab11, Biolegend) and IL-10 (JES3-907, Thermo Fisher Scientific).
Intracellular staining was performed using the Foxp3 staining buffer kit.

Samples were run on a Fortessa instrument (BD Biosciences) and
analyzed using FlowJo v.10.

Dimensionality reduction and tSNE plots were obtained by
downsampling each of the 15 samples per group (healthy, mild COVID-
19 and moderate COVID-19) to 1,500 monocytes per sample, and the
concatenated sample was used to calculate tSNE axes using 1,000
iterations, perplexity of 40 and the default learning rate (4734). In
order to obtain cell clusters, we used Phenograph68 plugin in FlowJo,
with k = 166 and all compensated parameters.

Generation of virus stocks
SARS-CoV-2 virus (SARS-CoV-2/England/IC19/2020 isolate, kindly
provided by Wendy S Barclay) was expanded in Vero-E6 cells. Briefly,
Vero-E6 cells were plated in serum-free medium (OptiPRO SFM con-
taining 2x GlutaMAX) in T75 flasks and infected with SARS-CoV-2 at a
multiplicity of infection of 0.1 and a final volume of 5ml. Cells were

incubated for 2 h at 37 °C, 5% CO2, after which the inoculum was
removed and complete medium without serum was added to the
culture. Cells were incubated for 3–5 days (until cytopathic effects
were observed). Subsequently, cell culture supernatant was collected,
centrifuged at 1000 x g, 4 °C for 15min and transferred to a new 50ml
tube for a second centrifugation at 1000 x g, 4 °C for 15min. Viral
supernatantwas collected,filtered through0.45μmand analiquotwas
taken for titration. The rest of the supernatant was UV-inactivated and
concentrated using Retro-X concentrator (Takara Bio), following
manufacturer’s recommendations and published protocols69,70.

Human coronaviruses (CCCoV) 229E, OC43 and NL63 strains
(Public Health England) were expanded in MRC-5 (kindly provided by
DrRobWhite, Imperial College London), BSC-1 (PublicHealth England)
and LLCMK2 (Public Health England), respectively. Briefly, cell lines
were plated in serum-free medium (DMEM, 1x non-essential amino
acids) in T75 flasks and infected with CCCoV (229E, OC43 or NL63) at a
multiplicity of infection of 0.1 and a final volume of 5ml. Cells were
incubated for 2 h at 37 °C, 5% CO2, after which the inoculum was
removed and medium without serum was added to the culture. Cells
were incubated for 3-5 days (until cytopathic effects were observed).
Subsequently, cell culture supernatant was collected, centrifuged at
1000 xg, 4 °C for 15min and transferred to a new 50ml tube for a
second centrifugation at 1000 xg, 4 °C for 15min. Viral supernatant
was collected, filtered through 0.45 μm and an aliquot was taken for
titration. The rest of the supernatant was heat-inactivated and con-
centrated using Retro-X concentrator (Takara Bio), following manu-
facturer’s recommendations and published protocols69,70.

Titration of virus stocks
For SARS-CoV-2 titration, samples were serially diluted in OptiPRO
SFM, 2X GlutaMAX (1:10) and added to Vero cell monolayers for 1 hour
at 37 °C, 5% CO2. The inoculum was subsequently removed and cells
were overlayed with DMEM containing 0.2% w/v bovine serum albu-
min, 0.16% w/v NaHCO3, 10mM HEPES, 2 mM L-Gutamine, 1X P/S and
0.6% w/v agarose. Plates were incubated at 37 °C, 5% CO2 for 3 days.
The overlay was then removed and monolayers were stained with
Crystal violet solution for 1 hour at room temperature. The plates were
washedwithwater anddried, and the virus plaqueswere then counted.

For CCCoV titration, viral supernatants were serially diluted in
DMEM, non essential amino acids (1:10) and added to MRC-5 (229E
strain), BSC-1 (OC43 strain) or LLCMK2 (NL63 strain) cell monolayers
for 1 hour at 37 °C, 5% CO2. The inoculum was subsequently removed
and cells were overlayed with DMEM medium for 4-5 days (until
cytopathic effects were observed). An endpoint dilution assay was
used to determine viral infectivity titers69.

Ex vivo stimulation assays
PBMC were thawed and rested for 2 h at 37 °C in complete media.
250,000 PBMCwere plated in polystyrene plates (Corning) to prevent
unspecific stimulation of monocytes by adherence to the plastic

Fig. 7 | Endotoxin-induced tolerance signature significantly enriched inCOVID-
19 monocytes. Correlation plot of sepsis vs. healthy individual gene expression
signature and ex vivo (a) or stimulated (b) COVID-19 vs. healthy individual mono-
cyte gene expression signature. Each point represents a gene detected in both the
sepsis public microarray dataset and the COVID-19 RNA-seq dataset. The log2(FC)
between sepsis and healthy controls is plotted against the log2(FC) for ex vivo
COVID-19 monocytes vs. healthy control monocytes, and the points are colored
according to the significance and direction of effect in the COVID-19 contrast (grey,
not significant; red, significantly upregulated; blue, significantly downregulated).
Correlation plot of endotoxin-induced tolerance gene signature and ex vivo (c) or
stimulated (d) COVID-19 vs. healthy monocyte signature. Each point represents a
gene detected in both the endotoxin gene signature public dataset and our COVID-
19 vs. healthy RNA-seq dataset. The log2(FC) between endotoxin tolerance and LPS
response is plotted against the log2(FC) for COVID-19 vs. healthy monocytes, and

the points colored according to the significance and direction of effect in the
COVID-19 contrast as in a. Some of the most differentially expressed genes in the
COVID-19 vs. healthy monocyte dataset are identified in the plot. e Barcode plot
showing enrichment of the endotoxin tolerance (ET) gene set in the differential
gene expression results for SARS-CoV-2-stimulated COVID-19 vs healthy mono-
cytes. The ranked test statistics from DESeq2 for the SARS-CoV-2-stimulated
COVID-19 vs. healthy contrast are represented by the central shadedbar, with genes
downregulated in COVID-19 on the left and upregulated genes on the right. The
ranks of the ET gene set within the COVID-19 contrast are indicated by the vertical
lines in the central bar. The weights of these genes (log2(FC) from the ET gene
expression analysis) are indicated by the height of the red and blue lines above and
below the central bar. The red and blue lines at the top and bottom indicate relative
enrichment of the ET genes (split into genes with positive and negative FCs in the
ET contrast) in each part of the plot.
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plate71. Cells were stimulated with vehicle, UV-inactivated SARS-CoV-2
(CoV-2), 100 ng/ml LPS or a mixture of heat-inactivated common cold
coronaviruses consisting of the 229E, OC43, andNL63 strains (CCCoV)
at 106 viral particles per 106 cells for 20 h. For intracellular stainings,
GolgiStopTM (BD Biosciences) was added to the cultures 10 h after sti-
mulation for a total of 10 h. For ex vivo stimulation of monocytes,
CD14+ monocytes were isolated using a positive selection magnetic
sorting kit (StemCell Technologies, UK) from total PBMC and stimu-
lated following the same protocol as for total PBMC.

RNA isolation and sample preparation for RNA-seq analysis
CD14+ monocytes were sorted in a FACS Aria from total PBMC either
ex vivo or after a 20-hour stimulation with 106 UV-inactivated SARS-
CoV-2 viral particles per 106 cells and lysed with RLT Plus buffer (Qia-
gen). The following gating strategy was used to sort CD14+ monocytes:
size and granularity-based gating on FSC vs SSC, live cells (cells
negative for propidium iodide), CD3-CD19-CD66b-CD16-CD56-CD14+.
Post-sort purity was determined in all samples by flow cytometry (by
CD14 staining) and was above 98% in all samples. RNA was isolated
using the RNeasyMicro Plus Kit (Qiagen) following themanufacturer’s
guidelines inAppendixD of theQiagen RNeasy handbook. RNAquality
was quantified using the Agilent RNA 6000 Pico Kit (Agilent Tech-
nologies) following the manufacturer’s guidelines. RNA samples were
stored at −80 °C until further processing.

Monocyte-platelet aggregate (MPA) assay
Frozen PBMC were thawed and rested for 2 h before CD14+ isolation
using a positive selection kit (StemCell Technologies, UK). Isolated
monocytes were stimulated or not with UV-inactivated SARS-CoV-2 as
above. Platelets were isolated from platelet rich plasma (PRP) of
healthy donor fresh blood right after collection into citrate tubes by
centrifugation. Co-cultureswere set at amonocyte:platelet ratio of 1:25
and incubated for 24 h at 37 °C, 5% CO2. Subsequently, cells were
washed with Hepes buffer and stained for flow cytometry with a via-
bility dye as above and antibodies to CD14, CD41 and CD33. Gating
strategy shown in Supplementary Fig. 15.

RNA-seq analysis
RNA-sequencing was performed by the Oxford Genomics Centre.
PolyA-enriched strand-specific libraries were prepared using NEBNext
Ultra II Directional RNA Library Prep Kits (Illumina). All samples were
pooled together and 150bp PE reads were sequenced on a Novaseq
system, resulting in a median read count of 28 million per sample.

Raw data was processed using the Sanger Nextflow RNA-seq
pipeline. Briefly, reads were aligned to the reference genome
(GRCh38.99) using STAR v2.7.372 in the two-passmode (using ENCODE
recommended parameters) and gene expression was quantified using
featureCounts73. Mapping table and quality control metrics from
FastQC and RNA-SeQC74 indicated high data quality for all samples
with no outliers detected.

RNA-seq data analysis was performed in R v4.1 in Rstudio Server.
Features that did not have at least 10 reads in at least 6 samples (the
size of the smallest biological subgroup) were filtered out using the
genefilter package75, resulting in a processed data set on 16,328 fea-
tures. Principal component analysis (PCA) with the prcomp function
was used to explore the relationship between samples, after the fil-
tered gene counts were transformed using a regularized log transfor-
mation from the DESeq276 package.

Differential gene expression analysis was carried out using
DESeq2, comparing unstimulated monocytes from COVID-19 patients
(n = 10) to unstimulated monocytes from healthy controls (n = 6), and
SARS-CoV-2-stimulated monocytes from COVID-19 patients (n = 14) to
stimulated monocytes from healthy controls (n = 12). Genes with
FDR <0.05 and a fold change (FC) ≥ 1.5 were deemed significantly
differentially expressed. Pathway enrichment analysis was performed

using Fisher’s exact test in XGR25 with annotations from Reactome,
using all genes retained in the processed RNA-seq data as the back-
ground, and employing the xEnrichConciser options. An adjusted
p-value (FDR) threshold of 0.05 was used to identify significantly
enriched pathways. Pheatmap package was used to draw heatmaps
illustrating variation in gene expression across samples.

For testing the enrichment of the sepsis signature in our datasets,
publicly available microarray gene expression data on sepsis patients
and healthy controls were accessed using GEOquery (GSE46955)53.
Gene expression between patients and controls was compared using
limma77, for both the unstimulated and stimulated conditions. Subse-
quently, the estimated fold changes were tested for correlation with
those from the COVID-19 vs. healthy control results. Where multiple
probes were available for the same gene in themicroarray dataset, the
top-ranked probe was selected for the comparison.

For comparison to the endotoxin-induced tolerance signature, we
have previously defined an endotoxin tolerance gene signature78 from
publicly available microarray data on in vitro LPS-stimulated mono-
cytes. Briefly, two datasets (GSE1521955 and GSE2224879) were accessed
through GEO. Genes that were differentially expressed following a
single LPS treatment (LPS response genes), and that were also differ-
entially expressed between singly- and doubly-stimulated cells were
identified. This resulted in an endotoxin tolerance gene signature
comprising 398 genes, of which 318 were detected in the RNA-seq
dataset. We tested for enrichment of this gene set in the COVID-19
versus healthy contrasts using the geneSetTest function and barco-
deplot functions from limma.

Quantification of mRNA expression by real-time PCR
Isolated RNA was converted to complementary DNA by reverse tran-
scription (RT) with random hexamers and Multiscribe RT (TaqMan
Reverse Transcription Reagents; Thermo Fisher Scientific). For IFITM2
expression assays, the Hs00829485_sH probe was used (Thermo
Fisher Scientific). The reactions were set up using the manufacturer’s
guidelines and run on a StepOnePlue Real-Time PCRMachine (Thermo
Fisher Scientific). Values are represented as the difference in cycle
threshold (Ct) values normalised to GAPDH expression
(Hs02786624_g1) for each sample as per the following formula: Rela-
tive RNA expression = (2-ΔCt) x 100080.

Metabolic profiling using SCENITHTM

SCENITHTM is a flow cytometry-based method for profiling energy
metabolism with single cell resolution31 ex vivo or after in vitro
stimulation in sorted cells or complex cell mixtures. It uses puromycin
incorporation to nascent proteins as a measurement for protein
translation, which is tightly coupled to ATP production and therefore
can be used as a readout for the energetic status of the cells at a
given time.

PBMC were plated at 250,000–300,000 cells per well in 96 well
plates and rested for 2 h at 37 °C, 5%CO2 for ex vivo stainings, or rested
for 2 h and stimulated for 20 hwith 100ng/ml LPS. Subsequently, cells
were treated for 45min at 37 °C, 5% CO2 with Control (vehicle, Co),
100mM 2-deoxy-D-glucose (DG, Sigma-Aldrich), 1μM oligomycin (O,
Sigma-Aldrich) or a combination of both drugs (DGO). 10μg/ml pur-
omycin was added to all conditions for the same amount of time. Cells
were subsequentlywashedwith roomtemperature PBS and stained for
viability, cell surface markers and fixed as described above. Intracel-
lular staining of puromycin was performed using the anti-puromycin
monoclonal antibody (1:600 dilution, clone R4743L-E8) for 45min at
4 °C. The SCENITHTM kit containing stabilized puromycin, anti-
puromycin antibody and metabolic inhibitors were kindly provided
by Dr Argüello.

For the analysis of the energetic status of cells, puromycin geo-
metric mean fluorescence intensity was analyzed in each of the four
abovementioned conditions (Co, DG, O, DGO). To calculate the
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percentage of glucose dependence, the following formula was used:
100*(Co-DG)/(Co-DGO).Mitochondrial dependence (%) was calculated
as 100*(Co-O)/(Co-DGO). Glycolytic capacity (%)was calculated as 100-
Mitochondrial dependence. Fatty acid and amino acid oxidation
capacity (%) was calculated as 100-Glucose dependence.

Metabolic profiling using Seahorse
Sorted CD14+ monocytes from unstimulated or SARS-CoV-2-
stimulated (20 h at 37 °C, 5% CO2) PBMC were plated at a range of
80,000–120,000 in duplicates for healthy and COVID-19 sample pairs,
based on the minimum cell number obtained for each pair of samples
in individual experiments. An XFp real-time ATP rate assay kit (Agilent
Technologies) was used following manufacturer’s recommendations
and samples were run in a Seahorse XF HS Mini Analyzer (Agilent
Technologies). For basal oxygen consumption rate (OCR) and extra-
cellular acidification rate (ECAR) measurements, 10 cycles were run
and their average was taken as basal values per subject tested.

Phosphoflow assays
For ex vivo phosphorylation assays, thawed PBMC were plated at
250,000 cells per well in 96 well polypropylene plates and rested for
2 h at 37 °C, 5% CO2. PBMCwere fixed with pre-warmed (37 °C) Cytofix
(BD Biosciences) for 20min at 37 °C, 5% CO2 and permeabilized with
Perm III buffer (BD Biosciences) overnight at −20 °C. Cultures were
subsequently stainedwithCD3 (UCHT1, BDBiosciences), CD20 (H1, BD
Biosciences), CD14 (M5E2, Biolegend), CD16 (B73.1, BD Biosciences),
phospho-IRF3 (Ser 396, Bioss), phospho-NFkB p65 (Ser 529, BD Bios-
ciences) in PBS for 1 hour at room temperature, washed with PBS and
resuspended in 250 μl PBS.

For phosphorylation assays after LPS stimulation, PBMC were
plated as above and stimulatedwith 100 ng/ml LPS for a total of 1 hour.
Samples were fixed at 0, 5, 15, 30, 45, and 60min after LPS addition for
20min at 37 °C, 5% CO2, and stained as above.

Statistical analyses
Data were analyzed using GraphPad Prism version 9.4. Normal dis-
tribution of the data was tested using the Anderson-Darling and
D’Agostino and Pearson normality tests, or Shapiro-Wilk test for those
datasets with a small number of replicates. Normally distributed data
by at least one of the two tests were analyzed using one- or two-way
ANOVA when comparing more than two groups of one or two inde-
pendent variables, respectively. A two-tailed t-test was used to com-
pare two groups. Data are presented as mean ± s.e.m. Where data are
presented as box and whiskers, the boxes extend from the 25th to the
75th percentile and the whiskers are drawn down to the minimum and
up to the maximum values. Horizontal lines within the boxes denote
the median. p values <0.05 were considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNA-seq datasets generated during the current study have been
deposited in the EuropeanGenome-PhenomeArchive under accession
code EGAD00001009800. Reference genome used was GRCh38.99
was used as reference genome. Gene expression data from sepsis
patientswas obtained from theGene ExpressionOmnibus (GSE46955).
Microarray data from in vitro LPS-stimulated monocytes (endotoxin
tolerance signature) were also obtained from the Gene Expression
Omnibus (datasets GSE15219 and GSE2224879). The raw numbers for
charts and graphs are available in the Source data file whenever pos-
sible. Source data are provided with this paper.
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