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a b s t r a c t 

Tractography combined with regions of interest (ROIs) has been used to non-invasively study the structural 
connectivity of the cortex as well as to assess the reliability of these connections. However, the subcortical 
connectome (subcortex to subcortex) has not been comprehensively examined, in part due to the difficulty of 
performing tractography in this complex and compact region. In this study, we performed an in vivo investigation 
using tractography to assess the feasibility and reliability of mapping known connections between structures of 
the subcortex using the test-retest dataset from the Human Connectome Project (HCP). We further validated our 
observations using a separate unrelated subjects dataset from the HCP. Quantitative assessment was performed 
by computing tract densities and spatial overlap of identified connections between subcortical ROIs. Further, 
known connections between structures of the basal ganglia and thalamus were identified and visually inspected, 
comparing tractography reconstructed trajectories with descriptions from tract-tracing studies. Our observations 
demonstrate both the feasibility and reliability of using a data-driven tractography-based approach to map the 
subcortical connectome in vivo . 
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. Introduction 

A brain network is comprised of bundles of axons, which form the
tructural pathways (also referred to as tracts or connections), that allow
ransfer of information between the different regions ( Sotiropoulos and
alesky, 2019 ) and facilitate the performance of complex functions
 Klingberg et al., 1999 ; Mesulam, 1998 ). Axons can be computationally
econstructed (represented as a streamline) using diffusion magnetic res-
nance imaging (dMRI), a non-invasive technique sensitive to the direc-
ion of water motion ( Bammer, 2003 ; Conturo et al., 1999 ). As axons are
undled together, water molecules will preferentially diffuse parallel to
he axonal trajectory, which can then be detected using dMRI to enable
n in vivo estimation of tract trajectories. This process, known as trac-
ography, first estimates the diffusion orientations within all imaging
oxels before traversing from a starting seed location until termination
riteria are met (e.g. quantitative value drops below defined thresholds)
 Sotiropoulos and Zalesky, 2019 ). Additionally, regions of interest (ROI)
an be used to define inclusion and exclusion criteria to constrain tract
rajectories and facilitate identification of connections between terminal
egions. 
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Mapping the human connectome is an important, non-trivial task
hat contributes to disentangling the network organization of the brain
nd increased understanding of changes in healthy aging or due to
isease ( Sporns, 2011 ; Toga et al., 2012 ). To date, much of the work
tudying structural connectivity using dMRI has focused on the cortico-
ortical (between regions of the cortex) and cortico-subcortical (be-
ween cortex and subcortex) tracts, resulting in the development of a
umber of structural connectivity atlases. Such connectivity can be de-
cribed as the cortical connectome. Examples of such atlases include the
ohns Hopkins University white matter atlas, which identified a num-
er of cortico-cortical white matter tracts ( Hua et al., 2008 ; Mori et al.,
005 ; Wakana et al., 2007 ), and the Oxford thalamic connectivity at-
as, which aimed to identify cortico-subcortical connectivity between
egions of the thalamus and the cortex ( Behrens et al., 2003a , 2003b ).
hese atlases have been extensively used to attain an understanding of
hanges associated with aging as well as disease (e.g. thalamic changes
n Alzheimer’s disease; Delli Pizzi et al., 2015 ). Validation of some of
hese connections have also been performed previously in studies of non-
uman primates (NHPs; Siwek and Pandya, 1991; Yeterian and Pandya,
991, 1993) . 
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1 https://humanconnectome.org/study/hcp-young-adult/document/1200- 
subjects-data-release 
Just as there are cortical connections, there is also connectivity
etween subcortical structures (e.g. the thalamus and basal ganglia),
orming the subcortical connections, which can also be referred to as
ubcortico-subcortical connections. These subcortical structures are im-
ortant to motor control ( Gallay et al., 2008 ; Sommer, 2003 ), as well
s cognition and emotion ( Hollander et al., 2015 ). Accordingly, con-
ections between the subcortical structures are integral and have been
tudied extensively in non-human primate (NHP) studies of the motor
etwork ( DeLong and Wichmann, 2007 ; Gallay et al., 2008 ; Krack et al.,
010 ), as well as associative and limbic networks ( Alexander et al.,
986 ; Krack et al., 2010 ; Middleton and Strick, 2000 ; Smith et al., 1998 ).
revious studies have examined subcortical connections with the use of
natomical tracers, which involve injection of either anterograde or ret-
ograde tracers at a structure of interest to map its connections. One
uch example involved the injection of an anatomical tracer at the ven-
ral pallidum, which determined projections to the subthalamic nucleus
STN), as well as the hypothalamus and brainstem ( Haber et al., 1993 ),

Studies that attempt to more comprehensively identify the subcor-
ical connections non-invasively via tractography, that is to map the
ubcortical connectome , have been limited. The scarcity of subcortical
onnectome studies is in part due to the difficulty of tracking the connec-
ions in a compact region where the underlying diffusion signal is com-
licated by multiple diffusion orientations arising from numerous inter-
ecting connections and structures with low anisotropy. One previous
tudy demonstrated the ability to map connections between the basal
anglia and thalamus in vivo using manual segmentations before lever-
ging connectivity strength to parcellate the basal ganglia and thalamus
nto subregions ( Lenglet et al., 2012 ). Recently, in vivo studies have pri-
arily focused on individual connections that comprise specific subcor-

ical connections and have been identified as putative targets for surgical
euromodulation ( Avecillas-Chasin and Honey, 2020 ; Rozanski et al.,
017 ). In one study, the pallidothalamic tract was delineated in order
o study its role in the treatment of dystonia with deep brain stimulation
DBS; Rozanski et al., 2017 ), while another study examined the impor-
ance of pallidoputaminal connectivity to predict DBS outcomes also for
ystonia ( Raghu et al., 2021 ). With the aid of a number of atlas-based
nclusion and exclusion ROIs, as well as extensive manual refinement,
ractography has been used to identify the nigrofugal and pallidofugal
ubcortical connections. ( Avecillas-Chasin and Honey, 2020 ). Recently,
n attempt was made to map subthalamic tracts using ex vivo data, using
OIs to guide and identify specific subcortical connections ( Oishi et al.,
020 ). All of these studies employed tractography to identify the tra-
ectory of the connections using non-invasive techniques, highlighting a
otential for tractography-guided treatment. Reliable and accurate iden-
ification of these connections has the potential to improve diagnosis
nd treatment options. 

With reliability studies having been previously performed in trac-
ography studies of cortical connectivity (including, but not limited to
uchanan et al., 2014 ; Cousineau et al., 2017 ; Guevara et al., 2017 ;
chilling et al., 2021 ), an evaluation of the reliability of the subcor-
ical connectome is also warranted. Despite examination of individual
ubcortical connections, to our knowledge, there has yet to be a study
ssessing the reliability of the subcortical connectome. Briefly, reliabil-
ty is defined as the agreement of the results (e.g. similar connectiv-
ty) when applying the same methodology to different acquisitions of
he same subject or to data acquired from different subjects. Not to be
onfused with reproducibility, another term that often gets used inter-
hangeably, which is defined as the ability to produce similar results
hen using an entirely different methodology. Both are important and

an provide valuable insight regarding a method or result. Reliability
tudies can evaluate and increase the confidence of methodological ap-
roaches used to study structural connectivity, while reproducibility
tudies can validate findings by comparing results produced with other
echniques. In this work, we recapitulate pathways of the subcortical
onnectome in the Human Connectome Project (HCP) test-retest dataset.
e aimed to assess the feasibility and reliability of mapping the subcor-
2 
ical connectome, with a specific goal of recapitulating known connec-
ions, through application of subcortical structure segmentations and
robabilistic tractography. Furthermore, we sought to develop a frame-
ork that enabled evaluation of reliability for the subcortical connec-

ome moving forward. Additional validation was performed using the
nrelated subjects dataset of the HCP. 

. Materials and methods 

Processing of the data was performed in containerized computing
nvironments on a high performance compute cluster. An overview
f the general workflow is shown in Fig. 1 . Briefly, publicly available
inimally pre-processed test-retest data from the Human Connectome
roject was used to assess reliability of connections (identified via trac-
ography) between subcortical structures and feasibility of identifying
onnections of known subcortical circuits. Analysis included evaluat-
ng tract overlap, changes in tract density, and examining identified
onnections with trajectories previously described in the literature. Fur-
hermore, processing and analysis was replicated on an unrelated subset
rom the Human Connectome Project. 

.1. Dataset 

Minimally pre-processed subjects as part of the test-retest dataset
n = 36; 11M/25F, aged 22-35) of the Human Connectome Project (HCP)
 Glasser et al., 2013 ; Van Essen et al., 2013 ) were used to assess the relia-
ility of subcortical connections identified via tractography. Briefly, T1-
eighted (T1w) MRI scans were acquired with a 3D MPRAGE sequence
 Mugler and Brookeman, 1990 ): resolution = 0.7 mm isotropic voxels;
epetition time/echo time (TR/TE) = 2400 / 2.14 ms, while dMRI scans
ere acquired in opposite anterior-posterior phase-encoding directions
ith a pulsed gradient spin-echo sequence ( Stejskal and Tanner, 1965 ):

esolution = 1.25 mm isotropic voxels; TR/TE = 5520 / 89.50 ms; b-
alues = 1000, 2000, 3000 s/mm 

2 (90 directions per shell) with 18 b-
alue = 0 s/mm 

2 images. All data was acquired on customized Siemens
kyra 3T MRI systems ( Sotiropoulos et al., 2013 ; Van Essen et al., 2012 ).
ull acquisition details are described in the HCP1200 reference man-
al 1 . As part of the minimal pre-processing pipeline data release, all sub-
ects underwent FreeSurfer processing (v5.3.0-HCP; Fischl et al., 2004 ),
here the cortical ribbons were retained for further processing. 

Further, subjects part of the HCP unrelated dataset that did not over-
ap with test-retest dataset were selected (n = 85; 35M/50F; aged 22-35)
or validation. Acquisition and minimal pre-processing steps from the
CP release of the unrelated dataset were identical to the test-retest
ataset. 

.2. Regions of interest 

To evaluate connections of interest, structural segmentations were
sed as ROIs to assist tractography generation. As previously men-
ioned, cortical reconstruction from FreeSurfer ( Fischl et al., 2004 ) was
rst performed, retaining the cortical ribbon as an exclusion mask.

n addition, subcortical structures where connections terminated were
dentified. Subnuclei of the thalamus were segmented using FreeSurfer
v7.1.0; Iglesias et al., 2018 ), while other subcortical structures (ex-
luding the hippocampus, which is considered part of the archicor-
ex; DeKraker et al., 2020 ; Duvernoy, 2013 ) were identified from the
igBrain subcortical atlas ( Xiao et al., 2019 ) first registered to the
NI2009bAsym template ( Fonov et al., 2011 ). Volumes of all subcorti-

al structures were computed for each subject. A second exclusion mask
as created from an inverted convex hull surrounding the subcortical

tructures to discard streamlines outside of the convex hull. FreeSurfer

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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Fig. 1. General subcortical tractography processing workflow using the minimally preprocessed HCP datasets. (A) An average response function was created from 

individual response functions from each acquisition (per dataset) and to estimate the FODs in each MRI session. Additionally, FreeSurfer was employed to parcellate 
the thalamus and obtain a cortical ribbon. Inclusion and exclusion masks were created, combining subcortical parcellations (transformed to the subject’s native space) 
with FreeSurfer parcellations to perform tractography on the subcortical connectome. (B) Examples of assessments performed, comparing test vs retest sessions, as 
well as the use of an additional unrelated dataset for further comparison. 
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𝑤  
rocessing was performed in the subject’s native space, while the at-
as was transformed to the subject’s native space using the Advanced
ormalization Tools (ANTS v2.1.0; Avants et al., 2009 ). Briefly, the
tlas was transformed to the subject’s native space in a 3-step pro-
ess: (1) linear affine transformation, (2) non-linear symmetric normal-
zation (SyN), and (3) HCP provided subject-specific transformations.
he first two steps transform the labels from MNI2009bAsym space to
NI152NLin6Asym space, while the final step transforms the labels to

he subject’s native space. Transformations between the two spaces can
e found in the available repository (see data availability). 

.3. Tractography 

All tractography processing was performed using the MRtrix3
oftware suite (v3.0_RC3; Tournier et al., 2019 ). First, individual tissue-
pecific response functions were estimated for each subject in both test
nd retest sessions using an unsupervised approach ( Dhollander et al.,
016 ). From here, an averaged group response function was computed
rom the individual response functions. Fiber orientation distribution
FOD) maps were estimated for each subject with a multi-shell, multi-
issue constrained spherical deconvolution (MSMT-CSD) algorithm
 Jeurissen et al., 2014 ), with group average response functions inde-
endently computed for the test-retest and unrelated datasets. The use
f a group average response function minimizes biases in FOD maps
 Raffelt et al., 2012 ), improving the comparability of tractography
ithin datasets with observed differences attributed to the underlying
iffusion data of an individual. Prior to performing tractography, multi-
issue informed log-domain transformed normalization was performed
 Raffelt et al., 2017 ) on the FOD maps. 

As the primary diffusion orientation is also reflected in FODs, ma-
or white matter connections (e.g. the corticospinal tract (CST)) passing
hrough the subcortical region will hinder the ability to identify subcor-
ical trajectories. To traverse trajectories along non-primary diffusion
rientations, the iFOD2 probabilistic algorithm ( Tournier et al., 2010 )
ith a step-size of 0.35mm and maximum angle of 45° between suc-

essive steps was used. Random seeding was performed throughout the
rain until 20 million streamlines, constrained to the subcortical region
ith the previously created exclusion mask, were selected. The chosen
arameters are comparable to what is typically used in iFOD2 algo-
ithms to perform whole-brain tractography with a noted decrease in
tep-size (from 0 . 5 × 𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 to 0 . 25 × 𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 ) to sample more
requently along a streamline’s trajectory. 

Following tractogram creation, each streamline was assigned a
eighting to reflect its contribution to the underlying diffusion signal
sing the updated spherical-deconvolution informed filtering of trac-
ograms (SIFT2) technique enabling the assessment of tract densities
 Smith et al., 2015 ). Using MRtrix3, structural connectivity was estab-
ished by identifying the nearest subcortical label within a 1.5mm radius
t each terminal end of a given streamline. Due to the low anisotropy
ithin gray matter, streamlines whose trajectories intersect other sub-

ortical labels prior to reaching the terminal structures were discarded
see Discussion). Furthermore, the CST, which represents a dominant
ract passing in proximity to many subcortical connections, was sepa-
ately identified in order to visually assess its influence on derived tracts.
dentification of the CST was performed using the brainstem and seg-
entations of both pre- and post-central gyri identified by FreeSurfer as

nclusion regions of interest. Generation of the CST was performed until
00 streamlines were identified in each hemisphere. Similar to the con-
ectivity of the subcortical connectome, streamlines had to terminate
ithin a 1.5mm radius of these segmentations to be considered a part
f the CST. 

.4. Assessment of reliability and accuracy 

An investigation into known subcortical connections of the mo-
or, limbic, and associative networks was performed, quantitatively as-
4 
essing reliability of tract densities and spatial overlaps of identified
onnectivity. Connectivity between structures associated with the net-
orks were identified and extracted ( DeLong and Wichmann, 2007 ;
allay et al., 2008 ; Krack et al., 2010 ), with both ipsilateral self-
onnections (i.e. tracts that start and end in the same ROI) and inter-

emispheric connections excluded from analysis. Further, subcortical
onnections that connect to thalamic nuclei on both terminal ends were
lso excluded. Visual inspection of known connections of the subcortical
onnectome was also performed to evaluate accuracy of tractography-
roduced trajectories with previously described literature. 

.4.1. Anatomical assessment 

Using the method employed to identify connectivity between sub-
ortical structures, a large number of potential connections were found.
ince our goal was to recapitulate known subcortical connections with
n vivo tractography, we focused on those that have been well described
n the literature depicting motor, associative, and limbic subcortical cir-
uitry ( DeLong and Wichmann, 2007 ; Gallay et al., 2008 ; Krack et al.,
010 ). Connectivity between subcortical structures of the basal ganglia
nd thalamus were both visually and quantitatively examined, evaluat-
ng tract trajectories, densities, and overlap. 

.4.2. Tract density 

Streamlines weighted by their contribution to the underlying diffu-
ion signal were summed to calculate the tract density (also referred to
s apparent fibre density (AFD); Raffelt et al., 2012 ) of the connection
etween two subcortical structures. A connectivity matrix for each sub-
ect was created with the AFD representing the edge strength between
wo ROIs (nodes). Further, the percent change in AFDs were calculated
etween test and retest sessions using Equation 1 : 

 𝐴𝐹 𝐷 𝐷𝑖𝑓𝑓 = 

𝐴𝐹 𝐷 𝑇 𝑒𝑠𝑡 − 𝐴𝐹 𝐷 𝑅𝑒𝑡𝑒𝑠𝑡 

𝐴𝐹 𝐷 𝑇 𝑒𝑠𝑡 

× 100% (1)

Additionally, intraclass correlation (ICC) was computed for the tract
ensities between the two datasets as a metric of consistency using a
wo-way, mixed effects model ( McGraw and Wong, 1996 ). Prior to com-
uting an ICC, an analysis of covariance (ANCOVA) was first performed
o identify and account for covariates (age, subject motion, brain vol-
me) with a significant effect on the tract density via linear regression.
n this model, the “raters ” (column factor) were the corrected tract den-
ities and the “targets ” (row factor) were the test and retest session con-
ectivity. A paired t-test was also conducted between average AFDs of
he test and retest sessions. To compare average connectivity of the basal
anglia with average connectivity between the basal ganglia and thala-
us, an one-way ANOVA was performed. The impact of ROI volume

n AFD was assessed using ordinary least squares multiple regression,
reating the average ROI volume across subjects as an independent vari-
ble and AFD as the dependent variable. Further, Spearman’s correlation
as performed between average AFD and the absolute percent change
etween test and retest sessions. 

.4.3. Voxel ‐wise spatial overlap 

An AFD map was first created for each tract identified in the test and
etest sessions by identifying streamlines passing through each voxel.
he sum of streamline weights were assigned to corresponding voxels.
ollowing assignment of streamline weights, the fraction of the tract (a
alue between 0 and 1) passing through a voxel is determined from
he AFD map and used to compute the overlap between tracts from
he weighted Dice similarity coefficient (wDSC; Cousineau et al., 2017 ).
riefly, the wDSC is a modified Dice similarity coefficient for assessing
ractography overlap, minimizing the penalization applied to stream-
ines further from the core of the tract ( Cousineau et al., 2017 ). The
DSC is computed from Equation 2 : 

𝐷𝑆𝐶 ( 𝐴, 𝐵 ) = 

∑
𝑣 ′ 𝐴 𝑣 ′ + 

∑
𝑣 ′ 𝐵 𝑣 ′

∑
𝐴 𝑣 + 

∑
𝐵 𝑣 

(2)
𝑣 𝑣 
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here A and B represent the fraction of streamlines (between 0 and 1)
assing through a voxel and v’ represents a corresponding non-zero
oxel in A and B. The numerator of Equation 2 computes the sum of over-
apping non-zero voxels between A and B, while the denominator calcu-
ates the total sum of non-zero voxels in A and B respectively. Computed
verlaps from wDSC follow similar indicators of agreement as the con-
entional Dice similarity coefficient: poor ( < 0.2), fair (0.2 – 0.4), mod-
rate (0.4 – 0.6), good (0.6 – 0.8) and excellent ( > 0.8; Kreilkamp et al.,
019) . 

In addition to comparing the tract overlap, a Spearman’s correlation
as also computed between the average AFD across the two datasets.
imilar to AFD, a one-way ANOVA was performed to compare the wDSC
or connectivity of the basal ganglia with connectivity between the basal
anglia and thalamus. 

.4.4. Identifying a connectivity threshold 

A threshold was defined, such that connections which meet the
hreshold could be considered reliable. This threshold was then applied
o determine the reliability of the known connections as defined by pre-
ious literature and identified with tractography. As noted in previous
tudies, defining a threshold is a non-trivial task ( Shadi et al., 2016 ;
hang et al., 2018 ). If the chosen threshold is too low, tracts that are
ot reliably identified may remain, including those that do not exist in
eality, but if it is too high, legitimate connections may be discarded.
ommon approaches include choosing an arbitrary threshold such that
he majority of the subjects to be analyzed retain the same connections
 Li et al., 2009 ) or by sweeping through a range of thresholds ( Li et al.,
012 ). More recently, a test-retest metric was proposed, wherein relia-
ility was evaluated across a range of thresholds and a final threshold
as selected where the change was at a minimum ( Zhang et al., 2018 ).
ere, we selected our threshold by following a similar test-retest reliabil-

ty procedure, using the tract overlap (wDSC) as the reliability measure.
e first stepped through a range of AFD values to threshold the connec-

ivity matrix before calculating the wDSC for each thresholded matrix.
dditionally, we computed the change in average wDSC between each
tep across the range of AFD values. The wDSC threshold is selected
t the first occurrence where the change between steps is 0 and iden-
ified the corresponding average AFD threshold. Supplementary Fig. 1
emonstrates examples of the connectivity matrix at different thresholds
f tract overlap. 

.4.5. Validation with unrelated dataset 

Processing and analysis of the HCP unrelated dataset followed the
ame workflow as before with the test-retest dataset. As before, known
onnectivity of the subcortical connectome was both visually and quan-
itatively assessed. AFD matrices were computed for each subject as be-
ore, and further separated by hemispheric connectivity to compare with
revious findings. With only a single acquisition session in the unrelated
ataset, an average AFD matrix was computed across subjects, and a
earson’s correlation was performed against the average AFD matrices
f the test and retest sessions to evaluate the similarity of the subcorti-
al connectome. As with the test-retest dataset, the relationship between
FD and the size of the subcortical structures was also evaluated. 

. Results 

.1. Networks of the subcortical connectome 

We investigated the ability of in vivo tractography to both iden-
ify and reliably reproduce the connectivity between different acquisi-
ions of the same human subject, focusing on known subcortical connec-
ions of the motor, associative, and limbic circuits ( DeLong and Wich-
ann, 2007 ; Gallay et al., 2008 ; Krack et al., 2010 ). 

.1.1. Identification of known subcortical connections 

Motor network connectivity using the described tractography meth-
ds could successfully recapitulate known connections as previously de-
5 
cribed in the literature ( Fig. 2 ). Similarly, known connections of both
he associative and limbic network connectivity were also successfully
aptured (Supplementary Fig. 2A and Supplementary Fig. 2B respec-
ively). A wDSC of 0.58 was selected as the final overlap threshold,
hich corresponded to a AFD threshold of 6.5 AFD. Of the known con-
ectivity comprising the motor network, 78% (14 out of 18) of the iden-
ified connections met the threshold. In the associative and limbic net-
orks, 100% and 79% (11 out of 14) of the observed connectivity met

he AFD threshold respectively. Connectivity failing to meet this thresh-
ld was commonly found between a thalamic nucleus (which was often
mall) and another subcortical structure (see Supplementary Table 1 for
ull details), for example, between the putamen and the centromedian
nd parafascicular nuclei of the thalamus in both test and retest ses-
ions. Connectivity between the globus pallidus internus (GPi) and ei-
her division of the mediodorsal nucleus of the thalamus failed to meet
he AFD threshold in both test and retest sessions (both hemispheres
or the magnocellular division and left hemisphere for the parvocellular
ivision). 

Identified connections were also visually inspected, examining the
onnected structures and their trajectories. In observations of tract den-
ity, it was previously noted that basal ganglia connections (e.g. non-
halamic ROI to non-thalamic ROI) were denser, while connections be-
ween the basal ganglia and thalamus (e.g. non-thalamic ROI to thalamic
OI) were sparser. Visual inspection of the known trajectories, reflected

he previous observation of denser connectivity between basal ganglia
tructures, which are also shorter and more direct. Conversely, connec-
ions between the basal ganglia and thalamus were sparser with longer
nd more curved trajectories. These longer trajectories increased the
otential for intersecting GM structures between the basal ganglia and
halamus as was the case for connections between the ventrolateral an-
erior nucleus of the thalamus (VLa) and GPi ( Fig. 3 ), as well as between
TN and globus pallidus externa (GPe) / GPi ( Fig. 4 ). It was observed
hat certain thalamic nuclei were more difficult to reach, as trajectories
ould have to pass through other surrounding thalamic nuclei. Some

purious streamlines were also noted (e.g. streamlines that looped in
he brainstem). Full descriptions of known subcortical connections can
e found in Supplementary Table 1. 

.1.2. Reliability of known subcortical connections 

The reliability of identified connections was evaluated via tract
verlap within motor, associative, and limbic networks. Connections
etween basal ganglia structures exhibited good overlap (average
DSC = 0.751 and 0.722 for left and right hemispheres respectively),
hile connections between the basal ganglia and thalamus demon-

trated moderate to good overlap with the VLa (average wDSC = 0.543
nd 0.560 for left and right hemispheres), ventrolateral posterior nu-
leus of the thalamus (VLp; average wDSC = 0.527 and 0.451 for left
nd right hemispheres), and the ventroanterior nuclei of the thalamus
VA; average wDSC = 0.576 and 0.629 for left and right hemispheres),
hich all had boundaries in the easier to reach lateral region of the

halamus. Some of the connections to the thalamus in each network ex-
ibited poor overlap (average wDSC = 0.176 and 0.167 for left and right
emispheres), coinciding with the same ones that demonstrated a low
FD. For connections between basal ganglia structures, a poor to moder-
te overlap was only found between the caudate and amygdala (average
DSC = 0.354 and 0.152 for left and right hemispheres), where the tract
as sparse and trajectories would have had to pass through other GM

tructures (e.g. putamen, GPe, GPi). Additionally, lower overlap was ob-
erved in the connections between the basal ganglia and thalamus, in
articular connections to the mediodorsal nuclei of the thalamus (MD),
hich was more difficult to reach and in which trajectories also had to
otentially traverse other nuclei of the thalamus. Despite the overlap ob-
erved in a few connections, good overall reliability was demonstrated
or connectivity of each network, with similar measurements for each
emisphere. 
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Fig. 2. Diagram of known anatomical 
subcortico-subcortical connections (in red) 
of the motor network. (A) Connections 
identified from literature are depicted in 
a diagram (left) and chord plot (right). 
(B) Chord plots exhibiting average log- 
transformed tract densities from trac- 
tography derived connections are dis- 
played for test-retest (top-left, top-right) 
and unrelated (bottom) datasets from 

the Human Connectome Project. Coloured 
lines represent known connections, with 
dashed coloured lines specifically indicat- 
ing known connections that did not meet 
the selected tract density threshold. Grey 
lines denote connections identified from 

tractography, but not identified in tract- 
tracing literature. Pearson correlations be- 
tween datasets are shown next to the com- 
parison indicators. 
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.2. Evaluation of subcortical connectivity matrices 

Connectivity matrices were created for both test and retest ses-
ions between subcortical structures for all subjects. Visual assessments
ere first performed, followed by quantitative evaluation of all intra-
emispheric subcortical connections. Reliability of the subcortical con-
ectome was also evaluated and noted to be similar to what was previ-
usly assessed for known connections. 
6 
.2.1. Tract density of all intra ‐hemispheric connections 

Connectivity matrices for test and retest sessions were created from
he computed AFD between subcortical structures for all subjects. A vi-
ual assessment of the computed matrices was first performed, followed
y a quantitative evaluation of the computed AFDs. Matrices were ob-
erved to be similar across subjects and test-retest sessions (Supplemen-
ary Fig. 3). Connections between basal ganglia structures were often
enser (AFD = 2.33 log(AFD) and 2.24 log(AFD)) in left and right hemi-
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Fig. 3. A single subject example of a connection found between the internal segment of the globus pallidus (GPi) and ventrolateral posterior nucleus of the thalamus 
(VLp). Manual refinement of tractography and construction of full corticospinal tract trajectory was performed for visualization purposes. (A) Depiction of ansa 
lenticularis (AL) from the tract tracing literature (left), compared with tractography identified trajectory (right) viewed from coronal anterior. The CST is also 
displayed to demonstrate the major WM tract passing through. (B) Three views (from left to right): superior, sagittal left, and coronal anterior exhibiting the 
trajectories of AL and corticospinal tract (CST) overlaid on a T1-weighted anatomical image. 
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pheres respectively, averaged across test and retest sessions) than con-
ections between the basal ganglia and thalamus (AFD = 1.34 log(AFD)
nd 1.26 log(AFD)) in left and right hemispheres respectively, aver-
ged across test and retest sessions). The difference between the two
roups was also corroborated with a one-way ANOVA for both the left
F = 19.19, p < 0.05) and right (F = 3.75, p < 0.05) hemispheres. Fig. 5 A
emonstrates the average tract densities across the test-retest session. 

The influence that the volume of terminal subcortical structures had
n AFD was also assessed. By plotting the average AFD against the vol-
me of the two terminal subcortical structures ( Fig. 5 B), the average
ract density was observed to increase as the volume of one of the two
tructures increased. Performing an ordinary least squares regression,
e identified a positive linear relationship between the AFD and the

ize of the two subcortical structures (r 2 = 0.210, p < 0.05). 

.2.2. Reliability of all intra ‐hemispheric connections 

Using the previously computed connectivity matrices, an average
FD matrix across subjects was created for the test and retest sessions
7 
ndependently ( Fig. 6 A). Individual subject matrices, as well as aver-
ge session matrices were visually inspected, and minimal differences
ere observed between test and retest sessions. A linear relationship
as identified between the AFDs of the test and retest sessions (Supple-
entary Fig. 3A; 𝜌 = 0.997, p < 0.05), with greater variability observed

etween sessions when the AFD was low. Connectivity was further di-
ided by hemisphere (i.e. intra- hemispheric left vs right) and a box plot
as created to visually compare test and retest tract densities ( Fig. 6 B).
o differences in hemispheric connectivity were observed between test
nd retest sessions, which was further corroborated after performing a
aired t-test between average test and retest AFDs (t = 1.52, p = 0.264
nd t = 1.06, p = 0.293 for left and right hemispheres respectively). 

To quantify the consistency of AFD between test and retest sessions,
e computed the percent change of corresponding subcortical connec-

ions between sessions finding on average a percent change of 36% and
2% for the left and right intra -hemispheric AFD respectively ( Fig. 6 C).
s previously noted, in test-retest pairs where AFD was low, greater
ariability was observed. Correspondingly, a greater absolute percent
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Fig. 4. A single subject example of a connection found between the globus pallidus internal segment (GPi) and subthalamic nucleus (STN). For visualization purposes, 
refinement of tractography was performed and opacity was reduced to 20% to highlight the different segments observed. (A) Depiction of the approximate regions 
associated with different networks (e.g. motor, associative, limbic), identified from the literature (left) is shown for the STN and both internal and external segments 
of the globus pallidus: motor (red), associative (green), limbic (blue). Tractography identified trajectories (right) between the STN and GPi are shown from an 
inferior-to-superior (ventral) view, highlighting the different components associated with each network. (B) Three views (from left to right): superior, sagittal left, 
and coronal anterior exhibiting the connectivity between GPi and STN overlaid on a T1-weighted anatomical image. 
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hange was more likely to be associated with a sparser connection. A
pearman’s correlation between the absolute percent change of AFD and
he average density across test-retest sessions demonstrated a negative
orrelation (Supplementary Fig. 3B; 𝜌 = -0.240, p < 0.05), indicating
ecreasing percent change as tract density increased. Further, an aver-
ge intraclass correlation (ICC) of 0.50 and 0.48 was computed for left
nd right hemispheric connectivity respectively between test and retest
FDs after performing a linear regression to account for brain volume,
 covariate identified to demonstrate a significant effect (F = 7.068,
 < 0.05) after performing an ANCOVA ( Fig. 6 D). As observed in the
ract density, ICC was noted to be greater in connections between basal
anglia structures (ICC = 0.58 and 0.49 for left and right hemispheres
espectively) than between the basal ganglia and thalamus (ICC = 0.46
nd 0.47 for left and right hemispheres respectively). 

Voxel-wise spatial overlap of tracts (calculated via wDSC), was also
omputed between test-retest pairs as another measure of reliability. We
bserved an average wDSC of 0.46 and 0.45 for the left and right intra-

emispheric connectivity respectively. We also plotted and performed a
pearman’s correlation between wDSC and average AFD across both ses-
ions where wDSC is expected to increase with AFD before plateauing.
8 
s expected, we identified a sigmoid relationship (Supplementary Fig.
C; 𝜌 = 0.950, p < 0.05) between the two ( Fig. 3 E), with good overlap
chieved at a AFD around 2.0 log(AFD) and reaching maximum overlap
t approximately around 2.5 log(AFD). The overlap remained low while
he AFD was less than 0 log(AFD) before slowly increasing until the over-
ap began to peak at a log-transformed AFD of around 2 log(AFD). As
DSC was highly correlated with AFD, we further separated and eval-
ated the wDSC to the two previously identified groups. As with obser-
ations from known subcortico-subcortical connections, we noted better
verlap in basal ganglia connectivity (average wDSCs = 0.75 and 0.72
or left and right hemispheres respectively) than in connectivity between
he basal ganglia and thalamus (average wDSCs = 0.46 and 0.44 in left
nd right hemispheres respectively). The difference observed between
he two groups was also supported with a one-way ANOVA for both the
eft (F = 33.53, p < 0.05) and right (F = 41.64, p < 0.05) hemispheres. 

.3. Observations in HCP unrelated dataset 

An identical analysis was performed on a subset of the HCP unrelated
ataset, where similar observations were noted. An average connectiv-
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Fig. 5. Averaged log-transformed tract densities across the test-retest dataset. (A) Connectivity matrix highlighting the two groups of connections observed: basal 
ganglia (red) and basal ganglia - thalamus (blue). (B) The relationship between the average tract density of connections and the volume of the terminal nodes is 
shown in a scatterplot. Tract density was noted to increase with an increase in volume of at least one terminal structure. 
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ty matrix was computed and compared against the test-retest dataset,
here notably a Pearson’s correlation coefficient of 0.99 was demon-

trated against both the test (p < 0.05) and retest (p < 0.05) sessions,
ndicative of highly similar AFDs with the unrelated dataset. Full details
f the results from this validation can be found in the Supplementary
aterial. 

. Discussion 

In this study, we evaluated both the feasibility and reliability of
dentifying the subcortical connectome using in vivo tractography data,
pecifically evaluating the possibility of recapitulating known connec-
ions from classic studies of the subcortex. We demonstrated the ability
o identify most of the subcortico-subcortical connections (39 out of 46,
5%) described in the literature. Furthermore, we were able to demon-
trate test-retest reliability and replicate this analysis on a separate HCP
ubset, observing near identical results (see Supplementary Data) and
gain recapitulating most known connections (38 out of 46, 83%). In
he following subsections, we compared our observations with the ex-
sting literature. Importantly, we also recount the challenges that were
aced in studying the subcortical connectome in vivo and suggest possi-
le solutions. 

.1. Identification of known subcortical connections 

Tract-tracing studies have been performed in NHPs to identify and
tudy networks of the subcortical connectome ( Parent and Carpen-
er, 1996 ; Sato et al., 2000a , 2000b ; DeLong and Wichmann, 2007 ;
allay et al., 2008 ; Krack et al., 2010 ; Haber et al., 1993 ). A few of

hese tracts that comprise the networks have also been identified as
otentially important neuromodulatory targets ( Rozanski et al., 2017 ;
vecillas-Chasin and Honey, 2020 ; Raghu et al., 2021 ; Haber et al.,
021 ; Tsuboi et al., 2021 ) and may also be critical biomarkers in aging
r disease progression ( Abos et al., 2019 ). In the present study, we iden-
ified and investigated connections of the motor, associative, and limbic
etworks observing that most known subcortical connections could be
9 
ecapitulated with a data-driven probabilistic tractography approach.
he identified connections were visually inspected to evaluate the tra-

ectories and their plausibility, comparing our observations with the lit-
rature. The ease of identifying trajectories between structures varied,
ith proximity between terminal structures and density playing a fac-

or. Some notable observed trajectories included connections between
he GPi and both the VLa and VLp nuclei of the thalamus, as well as
etween the STN and both GPe and GPi ( Fig. 3 and Fig. 4 ), which have
oth been well studied. Full details regarding our observations are found
n Supplementary Table 1. 

First, focusing on the connection between GPi and VLa/VLp, one
lausible trajectory observed was the ansa lenticularis ( Fig. 3 ). Similar
rigins of the ansa lenticularis observed in this study from tractogra-
hy reconstruction have been previously described from tract-tracing
tudies in NHPs, with similar projections from the GPi to the VLa and
Lp ( Gallay et al., 2008 ). The connection has also been described by
 Parent and Carpenter, 1996 ), noting a trajectory that “forms a well-
efined bundle on the ventral surface of the pallidum…” curving around
he posterior limb of the internal capsule before continuing posteriorly.
long this trajectory, the ansa lenticularis is known to converge with

he lenticular fasciculus in the fields of Forel to form the thalamic fas-
iculus, which continues to VLa and VLp. While we were able to note
he termination in the VLa and VLp in our observations, we were unable
o delineate the transition from ansa lenticularis to thalamic fasciculus.
urther, sparse connections were observed to cross the region of the in-
ernal capsule to connect the GPi with VLa and VLp, which may be part
f the lenticular fasciculus. 

Another notable connection observed was between the STN and
lobus pallidus, including both the internus (GPi) and externus (GPe)
egments ( Fig. 4 ). Direct trajectories were seen, with noticeable separa-
ion differentiating trajectories between the motor, associative, and lim-
ic regions of each structure. Similar separations were also observed in
 connectivity-based segmentation by ( Bertino et al., 2020 ), who noted
n anteroposterior axis arrangement of the limbic, associative, and sen-
orimotor regions to the GPi and GPe. We observed sparse connections
o the associative region of the GPe, attributed to a combination of the
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Fig. 6. (A) Test (left) and retest (right) connectivity matrices are shown, visualizing the log-transformed tract densities between subcortical structures. (B) Log- 
transformed tract densities of the basal ganglia and between basal ganglia and thalamic connectivity are plotted, separated by hemisphere and session. (C) Percent 
change of tract densities between test and retest sessions, separated by hemisphere. (D) Intraclass correlations, measuring consistency between sessions, are shown, 
separated again by hemisphere. (D) wDSC, assessing spatial overlap between sessions, plotted by hemispheric connectivity. For all boxplots, the middle line marks 
the median metric, while whiskers define the maximum and minimum values of each metric, excluding outliers. 
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resence of the GPi and the constraints imposed on tracts going through
ayward GM structures. Nonetheless, similar termination was not only
bserved in the previously mentioned study ( Bertino et al., 2020 ), but
lso in tract-tracing studies, with limbic areas of the STN forming con-
ections with the limbic region of the pallidum and likewise for as-
ociative and sensorimotor connections ( Karachi et al., 2005 ). Other
ract-tracing studies have noted similar connections ( Parent and Car-
enter, 1996 ; Sato et al., 2000b , 2000a ), suggesting projections from
TN to GPe, such as those observed from tractography. 

Constraints were imposed to minimize the presence of false positive
onnections including the use of a convex hull and exclusion of way-
ard GM structures. While these constraints did not completely elimi-
ate false positive connections, only a small number were observed rela-
ive to the total AFD between subcortical structures (see section 3.1 and
10 
upplementary Table 1). In the context of evaluating trajectories, false
ositives were identified as streamlines with implausible trajectories
e.g. crossing the mid-sagittal plane or coursing into the CSF) or those
art of major white matter connections (e.g. CST). We noted spurious
racts of the CST, the dominant wayward tract traversing the subcor-
ex ( Johnson et al., 2008 ), which was falsely included as streamlines
n a number of connections between subcortical structures. The pres-
nce of the CST is a result of the dominant diffusion signal, compli-
ating the ability to accurately identify subcortical connections. Conse-
uently, some streamlines predominantly follow the orientation of the
ominant diffusion signal until reaching the boundary of the convex
ull, where they continue by following its boundary due to the imposed
xclusion criteria. Spurious streamlines were also observed to form a
oop projecting back towards the cortex after entering the brainstem,
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here connectivity is expected to traverse from subcortical structures
 Haber et al., 1993 ). This is likely caused by a combination of the con-
ex hull exclusion mask and the lack of meeting a termination criteria as
he streamline traverses down towards the brainstem. Careful inclusion
f additional constraints, such as segmentations from a priori anatom-
cal knowledge, may be useful to aid in the removal of these spurious
treamlines. Truncation of a streamline once it reaches the boundary is
ne possible solution instead of waiting for a termination criteria to be
et. 

.2. Reliability of the subcortical connectome 

Upon visual inspection, the connectivity matrices demonstrated sub-
ectively similar tract densities (AFDs), that is the sum of weighted
treamlines that comprise a connection, across subjects and datasets.
or a given subject in the test-retest dataset, the tract density was ex-
ected and observed to be similar across sessions. After correcting for
rain volume, a covariate with significant effect on tract density, this
as reinforced quantitatively, where no significant difference was iden-

ified between test-retest subjects and an average ICC of 0.49 and 0.48
as observed for left and right hemispheric connectivity respectively,
ith a noted higher reliability in connections between basal ganglia

tructures (see section 3.1.2 ). While AFDs were not perfectly identi-
al between sessions, changes in AFD were likely due to differences in
he acquired data between sessions. Furthermore, tractography seed-
ng was performed randomly within the brain mask until the desired
umber of streamlines were met. The SIFT technique employed in the
resent study helped to minimize the differences between observations
y weighting each streamline to best match the underlying diffusion sig-
al ( Smith et al., 2015 ). Comparison of AFD reliability with other stud-
es was difficult as different metrics of density are often employed (e.g.
aw streamline count) and further compounded by the limited number
f subcortical connectome studies ( Lenglet et al., 2012 ). In a compari-
on with a study of the cortical connectome, AFDs weighted by length
ere employed to examine the consistency of connections of interest
 Buchanan et al., 2014 ). In their assessment, a similar average ICC of
.62 was demonstrated, suggesting our findings within the subcortical
onnectome are comparable. 

To validate our findings, we also replicated the analysis on the HCP
nrelated dataset, observing similarities between the two datasets from
isual inspection and quantitative comparison. We demonstrated high
imilarity of connectivity matrices across datasets, with a Pearson’s
orrelation coefficient of 0.99 between the averaged connectivity
atrix of the unrelated dataset as well as test and retest connectivity
atrices. Due to a lack of subcortical connectome reliability studies,
irect comparison of our findings was challenging as often different
onnectomes were investigated, typically focused on cortico-cortical
r cortico-subcortical connections. However, in an investigation of
ortical connectome reliability across different different resolutions,
earson’s correlation coefficients between 0.724 (high resolution) to
.958 (low resolution) were computed between connectivity matrices
f different subjects ( Cammoun et al., 2012 ). While we acknowledge
here were differences in the acquisition and protocol, our observations
uggest that the subcortical connectome can be reliably reconstructed
o a similar degree as the cortical connectome. 

In addition to being able to reliably reconstruct similarly dense con-
ections, it is also important to be able to capture the trajectory of
he connections in a reliable manner. To that end, we computed the
DSC to measure the voxel-wise overlap of identified connectivity be-

ween test and retest sessions, minimizing the penalty on streamlines
urther from the tract core. Connections with similar trajectories would
raverse the same voxel space and consequently demonstrate higher wD-
Cs. To our knowledge, while no previous work has evaluated tract over-
ap of the subcortical connectome, wDSC has been used to demonstrate
he reproducibility in the cortical connectome ( Boukadi et al., 2019 ;
ousineau et al., 2017 ). Our observed wDSC in connectivity between
11 
asal ganglia structures was within the reported range (wDSC = 0.71
o 0.82) of four examined cortico-cortical tracts identified using sim-
lar techniques ( Boukadi et al., 2019 ). Similarly, wDSC has been em-
loyed to examine test-retest reliability of cortico-cortical tractography
n the Parkinson’s Progression Markers Initiative dataset, where a wDSC
f 0.72 was identified as a threshold for good overlap in their study
 Cousineau et al., 2017 ). The same study also examined reliability of
ortico-subcortical connections using an ROI defining a general cortical
egion (e.g. sensorimotor cortex, associative cortex, limbic cortex) to an
OI defining a subcortical structure (e.g. caudate, putamen, thalamus),
here poor reliability of cortico-subcortical connectivity was noted. The
oor reliability was attributed to a combination of the quality of atlas
sed to define ROIs, partial volume effects, motion and the low reso-
ution of the data, as well as the difficulty of performing tractography
o the subcortical brain regions where structures are generally smaller
 Cousineau et al., 2017 ). 

Overall, we demonstrated that the methods employed in the present
tudy can produce subcortical connectomes with comparable reliabil-
ty to those that have been used to study cortico-cortical and cortico-
ubcortical connectomes. Although we observed worse reliability in con-
ectivity between the basal ganglia and thalamus, we believe this is pri-
arily attributed to the sparse connections resulting from imposed GM

onstraints. Further some nuclei of the thalamus were more difficult
o reach, with other nuclei present along the expected trajectory, while
thers were smaller in size. Some changes to the tractography algorithm
e.g. angle, maximum streamline length, etc.) or further optimization of
onstraints may be required to improve the overall connectivity with the
halamus. In subsequent work, the described framework can be lever-
ged to evaluate the impact of modifications to the original algorithm
nd their impact on the resultant tractography. 

.3. Clinical significance 

The ability to reliably identify subcortical connections has impor-
ant clinical implications for diagnosis and treatment planning, poten-
ially improving targeting of specific subcortical structures. Previous
tudies have examined neuromodulation of specific subcortical connec-
ions ( Avecillas-Chasin and Honey, 2020 ; Rozanski et al., 2017 ). Accu-
ate and robust identification of the subcortical connectome can facili-
ate and enhance the ability to study pathologic changes due to disease.
urthermore, the ability to reliably identify subcortical connections also
ncreases the likelihood of avoiding collateral connections, which can re-
ult in undesirable side effects. One consideration for clinical translation
s the acquisition protocol and scan time. While clinical data is typically
ollected at lower angular and spatial resolutions than that of the data
n this study, recent advancements in parallel imaging will help to make
igher quality diffusion MRI feasible in a clinically-feasible time frame.

.4. Implementation choices for the tractography algorithm 

Tractography involves choices that need to be made at each step
f the workflow that affect downstream steps and analysis. One such
ecision was the choice of segmentations used to identify connectivity
f the subcortical connectome. As we were interested in the connec-
ivity between specific subcortical structures, we pooled together exist-
ng atlas-based segmentations ( Iglesias et al., 2018 ; Lau et al., 2020 ;
iao et al., 2019 ) to serve as terminal ROIs and to minimize variabil-

ty that may be introduced by manual segmentation. Choice of atlas-
ased segmentation was influenced by convenience and familiarity, with
 focus on tools that are openly available. The thalamus labels used
re readily available through a commonly used neuroimaging software
ackage (i.e. FreeSurfer; Iglesias et al., 2018 ). Openly available seg-
entations of other subcortical structures were propagated from a sin-

le high-resolution template ( Xiao et al., 2019 ). Different approaches
o identifying ROIs can lead to varying shapes and boundaries, which
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ould have some downstream effects on identified connectivity. For ex-
mple, in histology-based segmentations, ROIs may be defined by the
nderlying nuclei, whereas in structural connectivity-based segmenta-
ions, ROIs may be related to regional connectivity. Furthermore, certain
tructures, including the caudate or putamen can also be subdivided into
ifferent components ( Khan et al., 2019; Tian et al., 2020; Tziortzi et al.,
014 ), similar to the thalamus. With many segmentation schemes read-
ly available and multiple considerations to contemplate, it is important
o note that choice of segmentation is often dependent on the aims of
he specific study ( Arslan et al., 2018 ). 

Segmentation accuracy is also important for capturing the true un-
erlying subcortical structure, with size influencing the reconstructed
onnectivity as has been previously noted ( Sotiropoulos and Za-
esky, 2019 ) and also observed in this study. An ROI larger than the
tructure, especially in the small subcortical region, may overlap with
ther structures or extend into the WM or CSF. On the other hand, an
OI smaller than the structure may exclude connectivity that does not
each the boundaries, although some of this is alleviated by using the
adial search strategy employed. Due to the relationship between ROI
ize and tract density (see Fig. 5 B), the ability to identify connections in
mall structures is challenging and some expected connections may re-
ain unidentified. Nonetheless, the segmentations present incorporated
ata from histology and largely reflect the underlying anatomy. 

We chose to include a GM exclusion criteria in our tractography al-
orithm, removing connectivity passing through other subcortical struc-
ures along its trajectory. This choice was made in part to limit the num-
er of false positives passing through GM structures where multiple dif-
usion orientations and low anisotropy are often observed that result in
 significant increase in spurious streamlines. However, it is known that
ubcortical connections can pass through other structures ( Sato et al.,
000a , 2000b ). As a result of this constraint, we noticed sparse con-
ectivity between regions where another GM structure is along the ex-
ected trajectory. One possible solution is to make use of anatomical
riors to allow for the traversal of GM structures in cases where con-
ections are known to pass through (e.g. allowing connections to pass
hrough GPi when connecting GPe and STN). Such a solution has been
reviously implemented for cortico-cortical connectivity in the White
atter Query Language, where predefined regions (inclusion and ex-

lusion) and endpoint ROIs are used to identify connections of interest
 Wassermann et al., 2016 ). To implement this for the subcortical con-
ectome would require detailed curation of anatomical knowledge to
dentify the necessary inclusion and exclusion wayward ROIs required
n addition to the terminal regions. Unfortunately, even without explicit
xclusion of wayward GM ROIs, the ability for tracts to pass through GM
ill be challenging due to the reduced anisotropy in GM (e.g. in the pal-

idum). 
In a similar manner, the inclusion of WM priors as wayward ROIs

ay improve anatomical accuracy. With a data-driven approach to iden-
ifying the subcortical connectome, we had observed the presence of ma-
or tracts (e.g. CST), spurious streamlines, and in some instances, multi-
le trajectories between two subcortical structures. By using a WM prior,
rajectories from major tracts and spurious streamlines could be filtered,
hile individual trajectories can be isolated. In a previous study of trac-

ography reproducibility, a suggestion was made to include the use of
natomical priors as guidance to improve identification of connectivity
 Maier-Hein et al., 2017 ). One such possibility is to leverage the seg-
entations of subcortical connections surrounding the zona incerta that
ave been previously identified with high resolution, in vivo anatomical
RI ( Lau et al., 2020 ) to help differentiate observed connections from
 data-driven approach. Additionally, drawing anatomical knowledge
rom NHP and post-mortem studies can help to establish priors that can
mprove anatomical accuracy by minimizing the number of false posi-
ive connections and help to discern trajectories. However, optimizing
he use of anatomical priors remains an open challenge even for well un-
erstood tracts like the CST ( Rheault et al., 2020 ; Schilling et al., 2021 ).
ltimately, moving forward, our described framework would allow for
12 
he evaluation of different implementation choices and their impact on
oth identification and reliability of mapping the subcortical connec-
ome. 

.5. Application of connectivity thresholds 

As previously described, defining a threshold is a non-trivial task (see
ection 2.4.4 ). While there are different methods for defining a thresh-
ld, including selection of an arbitrary value or by sweeping through
 range of values, the present study uses a test-retest technique to de-
ermine an appropriate threshold value. Such an approach is limited
o test-retest datasets. However, the threshold can be applied to other
atasets processed with the same techniques, as was performed on the
CP unrelated dataset. To apply the threshold to other datasets, an anal-
sis should first be performed to assess whether the defined threshold is
ppropriate. 

.6. Limitations 

Several limitations are worth noting beyond those related to choices
ade in the implementation of the trajectory algorithm (see previ-

us section). Validation of tractography identified connections in vivo

s a known challenge, given the limited ability to compare to ground
ruth trajectories, which have been conventionally identified using tract-
racing in experimental animals. While the most accurate comparisons
ould be performed between tract-tracing and tractography on the same
rain, this is not feasible in humans. Fortunately, connections between
egions are highly similar across different primates ( Grisot et al., 2021 ).
n the current study, we limited our investigation to known connec-
ions between ROIs of the basal ganglia and the thalamus in order to
ompare our observations with previously described trajectories. As a
esult, we did not explore the complete network circuitry to other re-
ions of the brain (e.g. brainstem, cerebellum, cortex, etc). Some of these
nexplored regions contain important nodes, such as connectivity with
he hypothalamus ( Haber et al., 1993 ) and pedunculopontine nucleus of
he brainstem ( DeLong and Wichmann, 2007 ). Other connections of in-
erest, including between the sensory thalamus (e.g. medial and lateral
eniculate nuclei) and the striatum, have been previously examined in
xperimental animals ( Takada et al., 1985 ). Future work should explore
he network circuitry more comprehensively, which should be increas-
ngly feasible with increasing availability of brain atlases. 

. Conclusion 

In this study, we demonstrated that identifying the subcortical con-
ectome using a data-driven probabilistic approach with in vivo trac-
ography was both feasible and reliable, with a particular focus on the
ssessment of known connections that have been previously described.
uantitative evaluation of the subcortical connections demonstrated

imilar tract densities and overlap comparable to what has been shown
n existing studies focused on cortico-cortical and cortico-subcortical
etworks. Performing this assessment also highlighted areas requiring
mprovement to address the challenges of tractography in the subcortex.
he methods used in this study can serve as a framework for evaluat-

ng the impact of modifications to the tractography workflow, with the
oal of increasingly accurate and reliable mapping of the subcortical
onnectome. 
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