

Stereotactic body radiation therapy (SBRT) as salvage treatment for early stage lung cancer with interstitial lung disease (ILD): An observational and exploratory case series of non-asian patients

J. Pluvy, A. Zaccariotto, P. Habert, J. Bermudez, A. Mogenet, J.Y. Gaubert, P. Tomasini, L. Padovani, L. Greillier

▶ To cite this version:

J. Pluvy, A. Zaccariotto, P. Habert, J. Bermudez, A. Mogenet, et al.. Stereotactic body radiation therapy (SBRT) as salvage treatment for early stage lung cancer with interstitial lung disease (ILD): An observational and exploratory case series of non-asian patients. Respiratory Medicine and Research, 2023, 83, pp.100984. 10.1016/j.resmer.2022.100984 . hal-03962927

HAL Id: hal-03962927 https://amu.hal.science/hal-03962927

Submitted on 5 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S259004122200099X Manuscript_ab10ee58c2c3f49966daafd4ac5482bb

1	Stereotactic body radiation therapy (SBRT) as salvage treatment for early stage
2	lung cancer with interstitial lung disease (ILD): An observational and exploratory
3	case series of non-Asian patients.
4	
5	
6	
7	Authors: J.Pluvy, A.Zacariotto, P.Habert, J.Bermudez, A.Mogenet, JY.Gaubert, P.Tomasini, L.Padovani,
8 0	L.Greillier;
9 10	Affiliations:
11	Dr PLUVY Johan, MD. Department of Multidisciplinary Oncology and Therapeutic Innovations Assistance
12	Publique Hôpitaux de Marseille AP-HM, Hôpital Nord, Marseille, France
13	De ZACCARIOTTO Audreu MAR Reportment of Rediction Operatory Assistance Rublique Useritanu de
14 15	Marseille AP-HM, Marseille, France
16 17	Dr. David HAREDT MD. Dh. D. Dadialagy danartment Hânital Nord, AD HNA Aiy Marceille Univ, HIE Marceille
17	France: Aix Marseille Univ. CERIMED. Marseille, France
19	
20	Dr. Julien BERMUDEZ, MD, Department of Respiratory Medicine and Lung Transplantation, Assistance
21 22	Publique - Hôpitaux de Marseille APHM, Hôpital Nord, Marseille ; Aix -Marseille University, France
23	Dr MOGENET Alice, MD, Aix Marseille University, Department of Multidisciplinary Oncology and
24 25	Therapeutic Innovations Assistance Publique Hôpitaux de Marseille AP-HM, Hôpital Nord, Marseille, France
26	Pr GAUBERT Jean Yves, MD, Radiology Department, Hôpital Nord, Assistance Publique Hôpitaux de
27	Marseille AP-HM, Marseille, France
28	
29 20	Dr TOMASINI Pascale MD,PhD Aix Marseille University, Assistance Publique Hôpitaux de Marseille AP-HM,
30 21	Department of Multidisciplinary Uncology and Therapeutic Innovations. Marsellie, France; Centre de Recharshe on Cansérologia de Marseille (CRCM), Inserm UMB1068, CNRS UMB7258, Marseille, France
32	Recherche en Cancerologie de Marsenie (CRCM), Inserni OMR1008, CNRS OMR7258, Marsenie, France.
33	Pr PADOVANI Laeticia MD Department of Radiation Oncology, Assistance Publique Hôpitaux de Marseille
34	AP-HM, Marseille, France
35	
36	Pr GREILLIER Laurent MD,PhD, Aix Marseille University, APHM, INSERM, CNRS, CRCM, Hôpital Nord,
37	Multidisciplinary Oncology and Therapeutic Innovations Department, Marseille, France
38	
39	
40	Address correspondence to Dr Johan PLUVY, Multidisciplinary Oncology and Therapeutic Innovations
41	Department, AP-HM, Marseille, France
42	Landline: +33491965901
43	E-mail: johan.pluvy@ap-hm.fr
44 45	Author contributions
rJ	

- 46 JP had full access to all of the data in the study and take responsibility for the integrity of the data and the 47 accuracy of the data analysis. Concept and design: JP,AZ,PH,LP,PT,LG Acquisition, analysis, or interpretation
- 48 of the data: all authors. Drafting of the manuscript: JP,PH Critical revision of the manuscript for important

- 49 intellectual content: all authors. Statistical analysis: JP Administrative, technical, or material support: all
- 50 authors Supervision: JYG,LP,PT,LG
- 51

52 Declaration of competing interests

- 53 JP,AZ,PH,JB,AM,GJY,PT,LP,LG nothing to disclose related to the work
- 54
- 55

Keywords: Stereotactic Radiation Therapy; Interstitial Lung Disease; Carcinoma, Non-Small Cell Lung,
 Follow-up Studies

61	Abstract: (225 words): Interstitial lung disease (ILD) can coexist with early-stage lung cancer (LC) and may
62	compromise surgery and worsen patients' outcomes. Stereotactic body radiation therapy
63	(SBRT) is the gold standard treatment for medically inoperable early-stage lung cancer, but radiation
64	therapy is contra-indicated for patients with ILD because of the higher risk of severe radiation-induced
65	pneumonitis. SBRT may spare healthy lung tissue, but data are scarce in this rare population. Our
66	exploratory case series aimed to retrospectively identify patients treated with SBRT in this setting: 19
67	patients were diagnosed with early-stage LC-ILD over the past 6 years and 9 received SBRT. Most of them
68	were smokers with a median age of 71, 4 had no pathological documentation. After SBRT, 5 patients had
69	grade I-II respiratory adverse events (AEs), but none had treatment-related grade III-IV respiratory AEs.
70	Two patients died within 6 months of SBRT, and for both, death was related to metastatic relapse. In this
71	case series, the radiological evolution of ILD before radiotherapy and the evolution of the radiotherapy
72	scar on CT-Scan were also explored with different evolutionary models. This exploratory study shows
73	available data that could be studied in a larger retrospective cohort to identify risk factors for SBRT in the
74	LC-ILD population. The use of dosimetric data as a risk factor for SBRT should be done with cautiousness
75	due to heterogeneous and complex dose delivery and different fractionation schedule.

79

80 Introduction:

Lung cancer (LC) shares common pathophysiology and risk factors with interstitial lung disease (ILD) (1). LC incidence is increased in patients with idiopathic pulmonary fibrosis (IPF) (2). A French cohort identified ILD in approximately five percent of newly diagnosed LC cases (3). Interstitial lung disease-lung cancer (LC-ILD) refers to patients with co-existing LC and ILD.

ILD has an impact on the diagnosis and prognosis of LC: in a French cohort, 19% of patients with 85 combined pulmonary fibrosis and emphysema (CPFE) did not have histologically proven LC (2). 86 87 Furthermore 42% of patients in this study did not receive the appropriate standard of care. According to a Japanese cohort of LC-ILD patients who underwent surgical resection, death was related to an 88 89 exacerbation of interstitial pneumonia in approximately 10% of patients (189/1763 patients). Independent 90 predictors of mortality in this study were low forced vital capacity (%FVC), histopathologic stage, male 91 gender, type of surgical procedure, and tumor location (4). These patients also had a higher risk of cancer 92 (50% relapse).

93 Stereotactic body radiation therapy (SBRT) is the preferred treatment for early-stage LCs without a 94 history of ILD refusing surgery, medically inoperable or at high operative risk. SBRT is defined as a 95 radiotherapy technique with modern targeting and planning technologies to deliver higher doses with 96 lower fractions (60Gy 3-8 fractions). This technique can decrease short-term toxicity with higher rates of 97 local control and promising potential long-term cancer control (5,6).

Conventional radiotherapy is contraindicated for patients with severe ILD because of the high risk of radiation-induced pneumonia or flare of existing interstitial pneumonia. Data are limited to series showing a higher risk of radiation-induced pneumonia and death (7,8) but these series over represent asian patients. This risk appears to be increased in subclinical ILD (9). SBRT may spare healthy lung but serious and increasing risks of radiation pneumonitis have been reported to date in patients with subclinical ILD. In a nationwide Japanese survey, most of grade V radiation pneumonitis had underlying ILD (10). Despite the risks, a recent international survey (DIAMORFOSIS) (11) identified radiation therapy as the preferred treatment choice (54.1 % of physicians) for patients with mild-to-moderate ILD (DLCO>35% and FVC > 50 %) with stage I or II LC.

This leads to a clinical dilemma: on the one hand, SBRT may cause respiratory adverse effects, but the other options are high-risk surgery or even systemic therapy. It is also difficult to identify patients who might benefit from each treatment or avoidance of treatment in this setting.

In this study, we aimed to retrospectively identify patients with pre-existing ILD associated with stage I lung cancer or an unproven highly suspicious nodule treated with SBRT and to describe their clinical, functional and radiological outcomes.

114 Materials and methods

115

We performed a single-centre retrospective study of a cohort of consecutive patients with LC-ILD managed between April 2015 and December 2021 in the Department of Thoracic Oncology and Radiation Oncology in Marseille. LC-ILD patients were identified through electronic patients' records. We enrolled patients with histologically or cytologically proven LC or with a high probability of LC (evolving nodule, PET-CT hypermetabolism) but a high risk of complication after biopsy as defined by multidisciplinary board discussion according to European guidelines (12).

Demographic, clinical and treatment (radiotherapy modality, total dose, total treatment time, number of fractions and dose per fraction, V20, V12.5 and mean lung dose (MLD)) data were collected retrospectively. We performed ILD-GAP when indicated. Available CT scans performed at diagnosis and before/after SBRT were reviewed by a thoracic radiologist to examine the ILD pattern and to assess the evolution of images before and after SBRT.

Early death or grade 3-4 respiratory adverse events (AEs) were the co-primary study endpoints. AEs were graded according to the Common Terminology Criteria for Adverse Events (CTCAE, Version 5.0); early death was defined as occurring within 6 months after SBRT.

Secondary objectives were the description of disease-free survival (DFS) and overall survival (OS) 130 but also the description of specific clinical, functional, radiological outcomes before and after SBRT. Clinical 131 events were assessed according to CTCAE v5.0. Functional worsening was defined by 10 % decrease in 132 predicted FVC or 15 % decrease in Diffusing Capacity for Carbon monoxide (DLCO) predicted over 12 133 134 months. Imaging characteristics were assessed by a radiologist as: location of the nodule in healthy or pathological parenchyma; progressive ILD before SBRT; visual quantification of fibrosis: mild (<10%), 135 moderate (10-25%), high (25-50%), severe (50-75%) and extreme (>75%) following the recently published 136 classification to evaluate the severity of COVID-19 pneumonia (13). The radiologist also assessed imaging 137 progression after SBRT: radiotherapy scar (volume and maximum 2D size), occurrence of radiation 138 pneumonitis, progression of the extent of fibrosis and type (densification or new lesions). 139

140 This is an exploratory study, conducted to design and estimate the feasibility of recruiting a definitive, adequately powered, larger-scale multicenter retrospective cohort. Descriptive analysis was 141 performed using headcounts for discrete variables, median values and interquartile range (IQR) for 142 continuous data. Because of the limited sample size, we could not perform statistical analysis to identify 143 parameters involved in early death or grade III-IV respiratory AEs. OS was defined as the time from Day 1 of 144 SBRT to patient death from any cause. DFS was defined as the time from Day 1 of SBRT and disease 145 progression or death from any cause. Data were censored at the end of the study (December 2021). Kaplan 146 Meier curves were performed using IBM SPSS Statistics for Windows, version 20.0 (IBM Corp., Armonk, 147 148 N.Y., USA).

In accordance with French regulation on retrospective observational studies, no objection to the use of anonymously retrospective data was identified. The study was registered at RGPD/AP-HM (registration number #2021-52) and approved by local Institutional Review Board.

152 Results:

Between April 2015 and December 2021, 1361 patients with ILD were identified in our center, including 38 patients identified with LC-ILD. Of these, three had small-cell lung cancer and 16 had advanced non-small cell lung cancer. Of the 19 patients with early-stage LC-ILD, three received conventional

radiotherapy, seven received surgery and nine SBRT (**Figure 1**). Among these nine patients who received SBRT for the treatment of LC-ILD, 6 were men, with a median age of 71 (range 59–89). 8 out 9 patients were heavy smokers (> 40 pack-years), including 4 active smokers. All were ECOG Performans Status (PS) 0 or 1 at the time of radiotherapy. Baseline demographics, pulmonary characteristics and disease and treatment data of LC-ILD patients treated with SBRT or surgery are detailed in **Figure 1**.

4 patients had no cytologically or pathologically proven LC. Of those who had a tissue sample, all were performed by CT-guided Trans-thoracic Needle Aspiration. All were stage I (12 to 21 mm) in various peripheral sites. Baseline clinical, functional, imaging data with pattern and evolution after SBRT are reported in **Table 1**. All patients had a diagnosis of ILD at the time of SBRT and underwent multidisciplinary discussion. Coexisting emphysema was found in 5 patients. Al patients underwent a pretherapeutic workup with pulmonary functional test (PFT).

After SBRT, 5 patients experienced clinical respiratory AE. None of the patients experienced grade III-IV treatment related respiratory AE. For patient #2, corticosteroid dose was temporarily increased with a one-week course of antibiotics and patient #9 received one week of antibiotics and two weeks of prednisone (20 mg/day).

Two patients died within 6 months after SBRT and for both, death was related to metastatic relapse. Median OS was 17.4 months (IC95% 8.4-26.4), and further risk factors analyses were not possible because of the small size of this population. Median DFS was 13.5 month (IC95%:5.7-21.2) (**Figure 2**). Three patients had functional worsening, but data were missing for two patients.

All patients had baseline and follow-up imaging. Two patients (#5 and #8) did not have any PET-CT before SBRT. These patients did not experience early relapse. Expert radiologists quantified the extent of ILD by visual assessment ranging from mild to severe and found a deterioration of ILD before SBRT in 5 patients. Five other patients had radiation pneumonitis on CT scan during the first year after SBRT and most of them had worsening of ILD (new lesion and extent of ILD) during follow up. Evolution of

180 radiotherapy scar volume (cm³) was also collected (**Figure 3).** For example, we displayed Patient #2 imaging

181 follow-up and parenchyma evolution after SBRT on figure 4.

182 Discussion:

In this case series, SBRT was performed as salvage therapy for LC-ILD in nine patients. Two of them 183 died less than sixth months after SBRT but in both cases, death was related to metastatic relapse and not 184 to a respiratory AE. An initial assessment of oncologic disease should be performed using PET-CT and brain 185 MRI, especially in such risky circumstances, to prevent early relapse, especially for high-risk treatment. In 186 addition, unlike surgery, SBRT does not assess mediastinal lymph node involvement. It should also be 187 noted that the good outcomes can also be explained by the fact that 4 patients did not have histologically 188 189 proven LC and that, despite criteria suggesting malignancy, the nodules seen in these 4 patients could be 190 benign. Furthermore, OS was not significantly better than DFS, which could be explained by the fact that 5 191 patients had metastatic relapse and that systemic treatment options after relapse may be limited for these patients due to their general condition and limited access to innovative therapies such as immune 192 checkpoint inhibitors or targeted therapies and a worse expected tolerance to chemotherapy with a higher 193 risk of ILD exacerbation. 194

195 It is very important to say that 5 patients had respiratory AE but fortunately none of them 196 experienced grade III or IV events. Therapeutic management (by antibiotics, diuretics or corticosteroids) of 197 pulmonary AEs was assessed in our study, but these data are questionable as reports may be missing 198 especially for outpatient management.

ILD is considered as a risk factor for severe radiation pneumonitis after conventional 3D conforming radiotherapy: subclinical ILD was associated to grade II to V radiation pneumonitis in previously reported studies (9). Four of the patients who died in a Korean retrospective study had diffuse interstitial change in pre-RT CT-scan (14). Standard radiotherapy is therefore contra-indicated in current guidelines for patients with ILD.

204 SBRT may spare healthy lung, but some studies also identified pre-existing ILD as a risk factor of 205 radiation-induced pneumonitis: pre-existing interstitial pneumonitis shadow, on CT-scan was well

correlated to severe radiation pneumonitis (1-year cumulative incidence of 57 % with existing interstitial 206 pneumonitis shadow versus 2 % without) in Yamashita study (15). The implementation of such pre-207 screening reduced the incidence of radiation pneumonitis. Another Japanese study identified 16 % of 208 subclinical ILD: grade II-V radiation pneumonitis was identified in three out of 16 patients with subclinical 209 210 ILD. In terms of disease control, no significant differences were identified in OS and 3 years local control 211 rates between the group with and without ILD (16). These results should be taken with caution and further research is needed to clarify this issue (17). Ueki (18) study retrospectively included 157 patients treated 212 with SBRT including 20 ILD patients. Pre-existing ILD was also identified as a risk factor for grade II (HR: 5.52 213 [2.43-12.5]) and grade ≥III (HR 6.96 [0.98-49.7]) radiation pneumonitis. 214

In the LC-ILD population, Median Lung Dose (MLD), V20, V30 and normal tissue complication probability (NTCP) seem well correlated to the incidence and severity of radiation pneumonitis for standard radiotherapy (14).

In a systematic review of 13 different studies of SBRT, authors suggest that V20 ≤ 6.5% and mean lung dose 218 ≤ 4.5 Grays (Gy) were associated to reduced mortality (19). In another study, severe radiation pneumonitis 219 was not correlated with dose-volume histogram parameters (15). In our series, only two patients had a V20 220 >6.5% and MLD > 4.5 Gy, and both had worsening ILD extension and appearance of new ILD lesions 221 222 without determining the potential SBRT imputability due to the small size of the series. It is very important to understand that the use of dosimetric data as a risk factor for SBRT such as V20 should be done with 223 caution. Indeed, the modalities of SBRT prescription and dose are complex and are not always available in 224 published studies (maximum dose, prescription isodoses, type of radiotherapy, overall treatment course) 225 226 and therefore the published data are only valid for the patients of the center. This heterogeneity in 227 treatment modalities prevents extrapolation of results presented in the literature. A quality control of 228 dosimetry would be mandatory in order to be able to conclude on this point in future studies.

229 Chronic ILD are heterogeneous. Accurate diagnosis and classification influence both prognosis and 230 treatment. IPF has the poorest prognosis of the fibrosing ILD due to the predominance of fibrosis, whereas

inflammation may coexist or pre-exist with fibrosis in non-IPF ILD. Gender, age and lung function tests (FVC
and DLCO) are important predictors of survival, but the ILD subtype should be considered as it influences
survival in risk prediction models such as the ILD-GAP model (20).

A subset of patients may have a progressive decline affecting outcomes and treatment choice: progressive fibrosing interstitial lung disease (PF-ILD) is characterised by a decline over the past 2 years defined as relative FVC of at least 10% of predicted value, decline in relative FVC of 5-10% of predicted value, and worsening of respiratory symptoms or increase in the extent of fibrosis on high-resolution CT.

Antifibrotic therapy with nintedanib or pirfenidone can slow down the decline in lung function in IPF, with an expanded indication for PF-ILD with nintedanib (21). We tried to identify the radiological course of ILD before radiotherapy. It might be interesting to study whether such a prior course is associated with a more negative effect of radiotherapy or other local treatments. The evolution of the radiotherapy scar on CT-Scan was also explored (Figure 3) and different evolutionary patterns could emerge such as hypertrophic, stable or regression for this type of population and it could be interesting to correlate it with functional decline and to different isodoses.

Remarkably, 8 patients had a LC located in the parenchyma affected by ILD. This seems to be consistent with the literature where tumor nodules are usually found in fibrotic areas in about 68% of cases (1). Whether the treatment of a nodule located in a fibrotic area might have better results compared with a healthy parenchyma by preserving it remains an open question. But on the other hand, a proximal nodule could have a different histology with a worse prognosis, such as small cell lung cancer, or treatment of the fibrotic area could trigger an exacerbation of fibrosis in the healthy parenchyma.

251 Moreover, our study involves non-Asian patients whereas most existing studies in LC-ILD involve 252 Japanese patients. Epidemiological data suggest ethnic differences between the Japanese population, and 253 the rest of the world, potentially related to genetic factors: acute exacerbation of IPF may be more 254 frequent and respiratory AE induced by EGFR (Epidermal Growth Factor Receptor) Tyrosine Kinase

255 Inhibitors is also more frequent in Japan (22). This suggests the importance of performing the same 256 analysis for non-Japanese patients and determine whether the results are similar.

In our study, radiological patterns were reviewed by expert radiologist and all patients had Multidisciplinary discussion, Heterogeneity of ILD patterns, function status and types of treatments is another important issue for further studies. An effort should be made for accurate collection of these data in order to identify the best predictive model. As already studied before surgery, the role of preventive anti-inflammatory or antifibrotic therapy and the identification of the potential target population has to be studied in this setting.

Here we studied the role of SBRT, but a literature review of different treatments (19) identified that the weighted proportion of treatment-related mortality (and ILD-specific toxicity) depended on the type of treatment: 2.2 (12%) after surgery ,15.6 (25%) after SBRT, 4.3 (18,2%) after particle beam therapy and 8.7 (25%) after radiofrequency ablation (RFA). Efforts must also be made to define the best therapeutic decision for this population.

A prospective Canadian phase II study is recruiting patients treated with SBRT for LC-ILD (T1-269 2NOMO). Survival and toxicity outcomes of 3 different cohorts stratified by the severity of ILD (ILD-GAP 270 index) are being assessed. In this study, SBRT (50Gy in 5 fractions with pre-specified de-escalation rules) is 271 delivered using rotational therapy (volumetric modulated arc therapy, or Tomotherapy) or static beams 272 (3D conformal or intensity modulated radiotherapy) (23).

Our study was a feasibility study, with some limits since not all patients had histologically proven LC, but this reflects the daily practice with some patients not eligible for biopsy due to the high risk of pneumothorax or haemoptysis induced by the procedure.

Another challenge was to identify these rare patients: we used the ICD-10 diagnosis code. This method unambiguously identifies ILD, it nevertheless involves a selection bias with potentially more severe patients but reflecting the reality of the practice and on the other hand avoiding recall bias. In our cohort, we identified about 3% of lung cancers among the 1361 patients followed for ILD, which means that we

could not identify with this method patients with undiagnosed ILD or patients with interstitial lung abnormalities (ILAs) which are an independent risk of mortality with predominantly subpleural fibrosis (24). The prevalence of ILAs is 4 to 9% in smokers over 60 years old. The study of the effects of lung cancer treatments on patients with ILAs is another important research topic.

In conclusion this feasibility study has identified various retrospective data that are readily available in order to define what could be useful for a larger retrospective cohort. Defining poor prognosis criteria for such heterogeneous population could be valuable for designing clinical trials with the objective to prevent potential harmful toxicities and adequately select patients who could benefit from the treatment. The use of dosimetric data as a risk factor for SBRT should be done with cautiousness due to heterogeneous and complex dose delivery and various modalities of prescription which is a specific concern to take in account for future studies.

291

292 (3016)

words

Patients Variables	#1	#2	#3	4#	#5	#6	#7	#8	#9
Gender (age year)	M (59)	M (72)	M (80)	M (66)	F (66)	M(75)	M (71)	F(71)	F(89)
Smoking (pack-year)	active(10)	never	former (40)	former (40)	former (75)	former (50)	active (60)	active (60)	active (45)
Date of ILD Diagnosis	2000	2005	2016	2011	2016	1999	2003	2019	2019
Biopsy TTNA	Yes (ADC)	No	No	No	Yes (ADC)	No	Yes (Sq)	Yes (ADC)	Yes (ADC)
Emphysema	Yes	0	Yes	0	Yes	Yes	Yes	0	0
Radiology Pattern	NSIP	UIP	NSIP	UIP	UIP	CBD	UIP	OP	OP
MDD diagnosis	CTD-ILD	CTD-ILD	CPFE	IPF	CPFE	CBD	CTD-ILD	OP	OP induced by statin
Nodule in Pathological parenchyma	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
ILD imaging worsening before radiotherapy	No	No	No	Yes	No	Yes	Yes	Yes	Yes
Visual Fibrosis	Moderate	Moderate	High	High	Severe	Severe	High	Mild	Moderate
quantification	10-25	10-25	25-50	25-50	50-75	50-75	25-50	<10%	10-25
Date of radiotherapy	01/2019 (IMRI	09/2019(IMRI	07/2019 (Cyber	(Jruo Boom®)	(True Ream®)	(IMPT tomothorapy)	12/2018((IMPT tomothorapy)	(IMPT tomothoropy)
Doso (Gy) (Eraction (E4/2/10						
Dose per fraction	00/8/7.5	00/8/7.5	54/ 5/ 18	50/10/5	00/8/7.5	43/3/9	59.5/7/8.5	00/3/12	00/8/7.5
Overall treatment duration (d)	17	13	4	26	13	11	5	8	16
V20/V12,5/MLD	3%/6%/2.5Gy	4.3%/9%/4.2Gy	0.9%/1.3%/1.72G y	5%/7.5%/3.6Gy	3.6%/7.5%/3,8 Gy	1.5%/3.3%/6Gy	8.9%/13.5%/6Gy	2.7%5.5%/2.5Gy	6.6%13%/4.9Gy
Overall Survival (month)	34.9	19	5.4	17.4	7.8	4.8	20.8	24.3	14.3
Relapse (Vital Status)	Metastatic	Metastatic	Metastatic	Metastatic	NO (Dead:	Metastatic	Metastatic	NO	NO
	(Alive)	(Dead)	(Dead)	(Dead)	COPD exacerbation)	(Dead)	(Dead)	(Alive)	(Dead :myeloid Leukemia)
DFS (months)	13.5	7.4	3.7	7.9	7.8	3.6	14.6	24.3	14.3
GAP-Index	1	Ш	П	Ш	II	N.A	П	N.A	N.A
(%1y mortality)	(5.6 %)	(39.2%)	(16.2%)	(39.2%)	(16.2%)		(16.2%)		
PFT before radiotherapy	12/2018	05/2019	11/2018	01/2018	10/2017	06/2020	11/2018	10/2015	01/2020
FVC (%Pred)	3130(77)	2600(63)	2710(77)	2480(52)	1700(79)	2230(61)	1810(66)	3000(114)	2470(103)
DLCO(%Pred)	39	23	24	29	22	24	60	NA	NA
Respiratory AE after RT (grade) Treatment	Yes (1)	Yes (2) -Antibiotics 7days -Temporary Prednisone increase dose	No	No	Yes (2)	No	No	Yes (1)	Yes (2) -Antibiotics 7days -Prednisone 14days (20mg/d)
Lung function decline	Yes	Yes	No	No	NA	NA	NA	No	Yes
(%FVC)	(-11%)	(-15%)	(-9%)	(-4%)	N	N		(-9%)	(-23%)
(time to occur)	No	Yes (5m)	No	Yes (11m)	No	No	Yes (11m)	Yes (3m)	Yes (3m)
CT ILD acute worsening	Yes (6m)	No	Yes (3m)	No	No	No	No	No	Yes (3m)
CT ILD chronic worsening; Extent (month)	No	No	No	No	No	No	Yes (11m) Yes (18m)	No	Yes (8m)
CT ILD worsening new lesions (month)	No	Yes (14m)	No	No	No	No	Yes (20m)	Yes (13m)	Yes (8m)

Captions :

Figure 1: Study Flow chart: Distribution of patients with probable lung cancer and Interstitial Lung Disease (LC-ILD) and Baseline Oncological and demographic data of patients with early-stage LC-ILD treated with SBRT and Surgery N: headcounts, IQR: Interquartile Range,CT: Computed Tomography, TTNA: Trans-thoracic Needle Aspiration, ADK: Adenocarcinoma Sq: Squamous

Figure 2: Kaplan Meier Curves for Overall survival and Disease-Free Survival for the 9 patients. OS and DFS were considered for all patients: the time origin was set at the first day of radiotherapy treatment and the status of each patient (alive, dead, or lost to follow-up, relapse) was determined on the study termination date (set at December, 2021)

Figure 3: Radiotherapy scar volume evolution after SBRT (cm³)

Figure 4: Example of patient #2 with Sjögren's syndrome and interstitial lung disease (ILD). A) Axial parenchyma view of unenhanced chest CT showing traction bronchiolectasis (arrowhead) and scissural distortion (white thin arrow). B) Two years after during follow-up, ILD was stable but a subpleural nodule appears in the lingula, C) with hypermetabolic activity on PET-CT. This nodule was a biopsy proven adenocarcinoma and was treated by stereotactic body lung radiation therapy, D) follow-up six months after the end of SBRT showed an acute radiation pneumonitis (white arrow with black line) and E) one year after a consolidation of the radiation pneumonitis with a mild extend of ILD without new lesions.

Table: Baseline and evolution of clinical, function and imaging after stereotaxic radiotherapy. *ADC: adenocarcinoma, AE: adverse events, CBD: chronic berrylium disease, CPFE: combined pulmonary fibrosis and emphysema, CTD-ILD: connective tissue disease associated with ILD, DLCO: diffusion capacity of the lung for carbon monoxide, FVC: forced vital capacity, Gy: Gray, ILD: interstitial lung disease, IMRT: intensity-modulated radiation therapy, IPF: idiopathic pulmonary fibrosis, OP: organizing pneumonia, UIP: usual interstitial pneumonia, NSIP: Non Specific Interstitial Pneumonia PFT: pulmonary function test, RT: radiotherapy, Sq: squamous cell, TTNA: Trans-thoracic Needle Aspiration*

References:

- Naccache JM, Gibiot Q, Monnet I, Antoine M, Wislez M, Chouaid C et al. Lung cancer and interstitial lung disease: a literature review. J Thorac Dis. 2018 Jun;10(6):3829-3844. doi: 10.21037/jtd.2018.05.75. PMID: 30069384; PMCID: PMC6051867..
- Girard N, Marchand-Adam S, Naccache JM, Borie R, Urban T, Jouneau S et al . Lung cancer in combined pulmonary fibrosis and emphysema: a series of 47 Western patients. J Thorac Oncol. 2014 Aug;9(8):1162-70. doi: 10.1097/JTO.000000000000209. PMID: 25157769.
- Gibiot Q, Monnet I, Levy P, Brun AL, Antoine M, Chouaïd C et al. Interstitial Lung Disease Associated with Lung Cancer: A Case-Control Study. J Clin Med. 2020 Mar 5;9(3):700. doi: 10.3390/jcm9030700. PMID: 32150840; PMCID: PMC7141363.
- 4) Sato T, Watanabe A, Kondo H, Kanzaki M, Okubo K, Yokoi K et al. Long-term results and predictors of survival after surgical resection of patients with lung cancer and interstitial lung diseases. J Thorac Cardiovasc Surg. 2015 Jan;149(1):64-9, 70.e1-2. doi: 10.1016/j.jtcvs.2014.08.086. Epub 2014 Sep 18. PMID: 25439777.
- 5) Videtic GMM, Donington J, Giuliani M, Heinzerling J, Karas TZ, Kelsey CR and al Stereotactic body radiation therapy for early-stage non-small cell lung cancer: Executive Summary of an ASTRO Evidence-Based Guideline. Pract Radiat Oncol. 2017 Sep-Oct;7(5):295-301. doi: 10.1016/j.prro.2017.04.014. Epub 2017 Jun 5. PMID: 28596092.
- 6) Chang JY, Mehran RJ, Feng L, Verma V, Liao Z, Welsh JW et al. Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncol. 2021 Oct;22(10):1448-1457. doi: 10.1016/S1470-2045(21)00401-0. Epub 2021 Sep 13. PMID: 34529930; PMCID: PMC8521627.
- 7) Ozawa Y, Abe T, Omae M, Matsui T, Kato M, Hasegawa H et al. Impact of Preexisting Interstitial Lung Disease on Acute, Extensive Radiation Pneumonitis: Retrospective Analysis of Patients with Lung Cancer. PLoS One. 2015 Oct 13;10(10):e0140437. doi: 10.1371/journal.pone.0140437. PMID: 26460792; PMCID: PMC4603947.
- Fujimoto T, Okazaki T, Matsukura T, Hanawa T, Yamashita N, Nishimura K et al. Operation for lung cancer in patients with idiopathic pulmonary fibrosis: surgical contraindication? Ann Thorac Surg. 2003 Nov;76(5):1674-8; discussion 1679. doi: 10.1016/s0003-4975(03)00966-4. PMID: 14602310.
- 9) Yamaguchi S, Ohguri T, Matsuki Y, Yahara K, Oki H, Imada H et al. Radiotherapy for thoracic tumors: association between subclinical interstitial lung disease and fatal radiation pneumonitis. Int J Clin Oncol. 2015 Feb;20(1):45-52. doi: 10.1007/s10147-014-0679-1. Epub 2014 Mar 11. PMID: 24610080.
- Nagata Y, Hiraoka M, Mizowaki T, Narita Y, Matsuo Y, Norihisa Y et al. Survey of stereotactic body radiation therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group. Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):343-7. doi: 10.1016/j.ijrobp.2009.02.087. PMID: 19735861.
- 11) Tzouvelekis A, Antoniou K, Kreuter M, Evison M, Blum TG, Poletti V et al. The DIAMORFOSIS (DIAgnosis and Management Of lung canceR and FibrOSIS) survey: international survey and call for consensus. ERJ Open Res. 2021 Jan 25;7(1):00529-2020. doi: 10.1183/23120541.00529-2020. PMID: 33532484; PMCID: PMC7837280.
- 12) Vansteenkiste J, Crinò L, Dooms C, Douillard JY, Faivre-Finn C, Lim E et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer

consensus on diagnosis, treatment and follow-up. Ann Oncol. 2014 Aug;25(8):1462-74. doi: 10.1093/annonc/mdu089. Epub 2014 Feb 20. PMID: 24562446.

- 13) Revel MP, Boussouar S, de Margerie-Mellon C, Saab I, Lapotre T, Mompoint D et al. Study of Thoracic CT in COVID-19: The STOIC Project. Radiology. 2021 Oct;301(1):E361-E370. doi: 10.1148/radiol.2021210384. Epub 2021 Jun 29. PMID: 34184935; PMCID: PMC8267782.
- 14) Lee YH, Kim YS, Lee SN, Lee HC, Oh SJ, Kim SJ et al Interstitial Lung Change in Preradiation Therapy Computed Tomography Is a Risk Factor for Severe Radiation Pneumonitis. Cancer Res Treat. 2015 Oct;47(4):676-86. doi: 10.4143/crt.2014.180. Epub 2015 Feb 13. PMID: 25687856; PMCID: PMC4614226.
- 15) Yamashita H, Kobayashi-Shibata S, Terahara A, Okuma K, Haga A, Wakui R, et al. Prescreening based on the presence of CT-scan abnormalities and biomarkers (KL-6 and SP-D) may reduce severe radiation pneumonitis after stereotactic radiotherapy. Radiat Oncol. 2010 May 9;5:32. doi: 10.1186/1748-717X-5-32. PMID: 20459699; PMCID: PMC2876174.
- 16) Yamaguchi S, Ohguri T, Ide S, Aoki T, Imada H, Yahara K et al. Stereotactic body radiotherapy for lung tumors in patients with subclinical interstitial lung disease: the potential risk of extensive radiation pneumonitis. Lung Cancer. 2013 Nov;82(2):260-5. doi: 10.1016/j.lungcan.2013.08.024. Epub 2013 Sep 7. PMID: 24054547.
- 17) Takeda A, Sanuki N, Enomoto T, Kunieda E. Subclinical interstitial lung disease: is it a risk factor for fatal radiation pneumonitis following stereotactic body radiotherapy? Lung Cancer. 2014 Jan;83(1):112. doi: 10.1016/j.lungcan.2013.10.009. Epub 2013 Oct 22. PMID: 24199683.
- 18) Ueki N, Matsuo Y, Togashi Y, Kubo T, Shibuya K, Iizuka Y et al. Impact of pretreatment interstitial lung disease on radiation pneumonitis and survival after stereotactic body radiation therapy for lung cancer. J Thorac Oncol. 2015 Jan;10(1):116-25. doi: 10.1097/JTO.00000000000359. PMID: 25376512.
- 19) Chen H, Senan S, Nossent EJ, Boldt RG, Warner A, Palma DA et al. Treatment-Related Toxicity in Patients With Early-Stage Non-Small Cell Lung Cancer and Coexisting Interstitial Lung Disease: A Systematic Review. Int J Radiat Oncol Biol Phys. 2017 Jul 1;98(3):622-631. doi: 10.1016/j.ijrobp.2017.03.010. Epub 2017 Mar 15. PMID: 28581404.
- 20) Ryerson CJ, Vittinghoff E, Ley B, Lee JS, Mooney JJ, Jones KD et al. Predicting survival across chronic interstitial lung disease: the ILD-GAP model. Chest. 2014 Apr;145(4):723-728. doi: 10.1378/chest.13-1474. PMID: 24114524.
- 21) Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N Engl J Med. 2019 Oct 31;381(18):1718-1727. doi: 10.1056/NEJMoa1908681. Epub 2019 Sep 29. PMID: 31566307.
- 22) Saito S, Lasky JA, Hagiwara K, Kondoh Y. Ethnic differences in idiopathic pulmonary fibrosis: The Japanese perspective. Respir Investig. 2018 Sep;56(5):375-383. doi: 10.1016/j.resinv.2018.06.002. Epub 2018 Jul 27. PMID: 30061050.
- 23) Palma DA, Chen H, Bahig H, Gaede S, Harrow S, Laba JM, Qu XM, Rodrigues GB, Yaremko BP, Yu E, Louie AV, Dhaliwal I, Ryerson CJ. Assessment of precision irradiation in early non-small cell lung cancer and interstitial lung disease (ASPIRE-ILD): study protocol for a phase II trial. BMC Cancer. 2019 Dec 11;19(1):1206. doi: 10.1186/s12885-019-6392-8. PMID: 31829203; PMCID: PMC6905060.

24) Hatabu H, Hunninghake GM, Richeldi L, Brown KK, Wells AU, Remy-Jardin M et al. Interstitial lung abnormalities detected incidentally on CT: a Position Paper from the Fleischner Society. Lancet Respir Med. 2020 Jul;8(7):726-737. doi: 10.1016/S2213-2600(20)30168-5. PMID: 32649920; PMCID: PMC7970441.

Figure 1:

٦Г

		Total popula	ation		
		N or	[IQR]		
		(median)			
Age		(71)	[66-77]	Age	
Gender	Women/Men	3/6		Gender	
Origin	Caucasian	8	Origin		
	North Africa	1			
Smoking	Never smoker	1		Smoking	
Status	Former smoker	4		Status	
	Active smoker	4			
	Pack-Year	47.5	[40-60]		
ECOG PS	0	7		ECOG PS	
	1	2			
Histologic	No biopsy	4	Histology		
biopsy	Biopsy	5 (all CT-sca	5 (all CT-scan guided		
		TTNA)	TNM		
		ADC : 4 Sq :	1		
TNM	T1aN0	4			
	T1bN0	3			
	T1cN0	2			
Size (mm)		(16)	[14.5-18.5]	Size (mm	
FVC (mL)		(2480)	[2020-2855]	FVC (mL)	
FVC (%Pred)		(77)	[62-91]	FVC (%Pr	
VEMS (mL) VEMS (%Pred)		(1750)	[1460-2065]	VEMS (m	
		(74)	[52-87]	VEMS (%	
DLCO(%Pred)	24	DLCO(%P		
Overall Survival		17.4	Overall Su		
Relapse		6 relapse/9	Relapse		
DFS (months	.)	13.5	DFS (mon		

7 early-stage LC-ILD treated with surgery:

		Total population			
		N or [IQR]			
		(median)			
Age		(72)	[67-76]		
Gender	Women/Men	1/6			
Origin	Caucasian	5			
	North Africa	2			
Smoking	Never smoker	2			
Status	Former smoker	5			
	Pack-Year	50	[0-60]		
ECOG PS	0	4			
	1	3			
Histology		Sq : 6			
		ADC 1			
TNM	T1cN0	1			
	T2a	1			
	T4	2			
	T1cN2	1			
	T4N1	1			
Size (mm)		(35)	[25-45]		
FVC (mL)		(3310)	[2400-3460]		
FVC (%Pred)		(99)	[80-108]		
VEMS (mL)		(2560)	[1800-2940]		
VEMS (%Pred)		(106)	[82-114]		
DLCO(%Pred)		(58%)	[56-71]		
Overall Surviva	al	Median not reach (2death)			
		28 &14 months			
Relapse		1 relapse/7 (24 months)			
DFS (months)		Not Reach			

Figure 2:

