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1 Introduction

Dynamic textures (DTs) are textural features repeated in a temporal domain [1]. Effective analysis of DTs can
be one of the important tasks in real applications: background subtraction [2, 3], facial expression [4], etc. Many
efforts [5] have been made to deal with different aspects for enhancing the performance: i) Model-based methods
[6, 7, 8, 9] extracted DT features using the variants of Linear Dynamical System (LDS) [1]; ii) Optical-flow-
based techniques [10, 11, 12] considered the chaotic motions of DTs based on the direction attributes of normal
flow [13]; iii) Geometry-based approaches utilized geometry theory to evaluate self-similarity characteristics:
fractal spectrum [14, 15, 16], lacunarity spectrum [17]; iv) Filter-based methods tried to diminish the negative
influence of illumination and noise [18, 19]; v) Learning-based methods learned deep DT patterns in different
ways: based on CNNs [20, 21, 22], dictionary learning [23, 24], randomized neural network [25]; vi) In simple
frameworks, local-feature-based methods [26, 27, 28] have obtained promising performance by using LBP-based
operators to encode spatio-temporal relationships surrounding a center pixel.
Among those works, the local-feature-based methods have recently obtained significant results in simple
frameworks. These methods generally take into account Local Binary Pattern (LBP) [29] for DT feature
extraction. Zhao et al. [30] could be seen as the pioneers in consideration of LBP to propose local discriminative
descriptors: LBP-TOP - addressing LBP on three collections of plane-images of a given video V , and Volume-
LBP [30] - exploiting LBP on three consecutive frames of V . Motivated by two kinds of these local encodings,
many researchers have made efforts to handle the LBP conventional restrictions for improving the DT
discrimination: sensitivity to noise and near-uniform regions [31, 26, 32, 33]; rotation-invariant issues [34, 35].
Inspired by the simple and effective computation of the LBP method, many techniques were introduced to
capture the principal patterns for textural representation. Bianconi et al. [36] stated that the dominant patterns
play an important role in the descriptor construction. However, locating these key features can be difficult due to
the negative impact of encoding factors. Indeed, realizing the abnormality of 3-adjacent bits in a LBP string,
Chen et al. [37] introduced robust LBPs (RLBP) by switching on/off the center bit of the sub-string if it is
different from the prior and posterior bits. Also, by a switching technique, Tiwari and Tyagi [38] attempted
to modify the noisy bits of the non-uniform LBPs so that the achieved results are uniform for robust DT patterns.
Furthermore, co-occurrence features were introduced in [39, 40] for texture classification, while Nanni et al.
[41] proposed to locate the highest-variance dominant patterns using the neighborhood preserving embedding
technique. Guo et al. [42] built a learning framework for determining dominant patterns, but the high number
of features could be a potential drawback in the case of a larger number of classes. In another aspect, Liao et
al. [43] took a minimum set of pattern labels that represents around 80% of the total occurrences of the LBP
patterns to structure a dominant LBP-based descriptor (DLBP). The fact that DLBP does not encapsulate any
information of the selected LBPs on the way of descriptor construction, Doshi et al. [44] proposed to maintain
the discrimination between different LBPs by using the Borda count method to rank the frequencies of the LBP
patterns. The top n of the ranked patterns were gathered to form a final descriptor.
It can be realized that there exist two obstacles for locating the dominant local patterns which have to be
addressed: i) encapsulating the discrimination of local features [43, 44], ii) the noise sensibility caused by a small
gray-scale change of local neighbors [38, 37]. Different from the above techniques, we propose a novel concept
to efficiently locate robust patterns for the local DT encoding. To be more explicit, we consider the invariant
features in two scales of LTP computation [45] with a pre-defined pair of thresholds {δ1, δ2}. It means that the

1



robust patterns (called RLTPs) would be satisfied if and only if the LTPδ1 patterns are identical to the LTPδ2

ones. Our idea is simple yet effective because it simultaneously deals with two already mentioned issues.
Furthermore, the optical flow estimation and its variants have been used in motion analysis. One of the most
efficient algorithms for the motion estimation was introduced by Sun et al. [46]. It was named Classic+NL
and afterward applied to many applications: motion boundary detection [47], video segmentation [48, 49], etc.
Inspired by Classic+NL, in this work, we propose to address its horizontal and vertical components to locate
robust DT motions with our RLTP operator. To the best of our knowledge, it is the first time that Classic+NL
is used for estimating DT motions, where its outputs will be featured by a local operator for DT description.
Experiments have illustrated that our RLTP-based descriptor has very good results compared to the non-robust
and original ones, i.e., LTP [45] and CLTP [50]. In short, our major contributions can be listed as

• A novel concept of robust RLTP patterns is introduced by considering the invariance of LTP-based features.
RLTP could be a generalization of LTP [45] under the condition of δ1=δ2.

• A crucial derivative of CLTP [50] (called RCLTP) is proposed to be in accordance with RLTP.
• An efficient application is presented to take into account RCLTP for local DT representation.
• The local optical-flow-based features are taken into account DT motions for boosting the discrimination.
• Just addressing the robust patterns, our RCLTP descriptor obtains very good results compared to the

original LTP, CLTP, and other LBP-based ones.

2 A brief survey of LTP and optical flow estimation

2.1 Local ternary pattern and its completed model

Motivated by LBP [29], Tan and Triggs [45] introduced LTP patterns by extending LBPs to ternary strings as

LTPP,R(q) =
{
ξ
(
I(pi)− I(q)

)}P−1

i=0
(1)

where ξ(.) is a ternary function defined subject to a pre-defined threshold δ as ξ(x) = 1, if x ≥ δ; ξ(x) =
0, if − δ < x < δ; ξ(x) = −1, if x ≤ −δ. To be in accordance with LBP, LTP of q is deducted in two
LBP-based patterns subject to that its code is −1 or 1. Concretely, the upper pattern is defined as LTPu

P,R(q) =

LTPP,R(q)
⋂
{1}, while the lower one is defined as LTPl

P,R(q) = LTPP,R(q)
⋂
{−1}.

Motivated by the completed LBP model [51], Rassem and Khoo [50] introduced a completed model of LTP
[45] (so-called CLTP). Accordingly, CLTP includes three complementary components for each of the LTP-
separated patterns: CLTP Su/l, CLTP Mu/l, CLTP Cu/l, where the superscript u/l denotes the upper/lower
patterns. In other words, CLTP would be composed of six components in total. Refer to [50] for further formulas
and discussions. Additionally, other noticeable LTP-based variants were proposed for textual analysis such as
synchronized rotation LTP [52] and feature-based wavelet CLTP [53].

2.2 Optical flow estimation

In order to deal with the aperture problem, Horn and Schunck [13] introduced an optical flow computation by
addressing the apparent velocities of movements in an image I. For a pixel p(x, y) ∈ I at time t, the optical flow
formulation can be generally written as

▽I(p, t).−→v + It(p, t) = 0 (2)

where ▽I(p, t) denotes the derivatives at I(p, t) subject to directions Ix and Iy, i.e., ▽I(p, t) =(
Ix(p, t), Iy(p, t)

)⊤; It(p, t) is the temporal derivative of I(p, t); ▽I(p, t).−→v is the usual dot product of
▽I(p, t) and the 2D velocity −→v = (u, v)⊤. Accordingly, two unknown components of −→v would be estimated in
particular computing fields. Sun et al. [46] proposed a Classic+NL algorithm to interleave the heuristic median
filtering with the approximate minimization. Afterward, Classic+NL has been applied to some applications:
detection of motion boundaries [47], segmentation videos [48, 49], etc. For estimating DT motions, it is the first
time that the horizontal and vertical components of Classic+NL will be featured by a local operator to extract
their robust patterns for DT description.

2



(a) (b): RLTP(I) (c): Ih (d): Iv

Input image I Dominant mask Horizontal Classic+NL Vertical Classic+NL

Figure 1: (a) Input image I. (b) Locating the dominant pixels of I based on its LTP-based features using
{δ1, δ2} = {1, 2}, (P,R) = (8, 1) where the dominant pixels are located by red pixels, the non-dominant
ones are in blue. (c) and (d) are Classic+NL’s horizontal and vertical components of I.
3 Novel robust patterns and their applications

3.1 Locating robust patterns

Taking into account the variability of LTP-based features for different thresholding levels, we propose an
effective method to locate the robust patterns for video representation. Accordingly, a LTP-based pattern is
located to be Robust (hence the acronym RLTP) if and only if it is invariant to the changes of those levels.
Without loss of generality, let us consider two LTP-based encoding phases corresponding to two different pre-
defined thresholds, i.e., {δ1, δ2} with (δ1 < δ2). For similarity, let LTPP,R,δ1(q) and LTPP,R,δ2(q) be two
patterns computed by the operator LTP [45] with two thresholds δ1 and δ2 for a center pixel q, respectively.
RLTP of q would be satisfied with the identical condition as

RLTPδ1,δ2
P,R (q) = LTPδ1

P,R,δ1
(q)

so that LTPδ1
P,R(q) ≡ LTPδ2

P,R(q)
(3)

where ≡ is an identical operator. Thereby, a pixel is also named dominant pixel if and only if its corresponding
LTP-based pattern is robust. Furthermore, it can be deduced that LTP [45] would be a degeneration case of our
RLTP in the case of δ1=δ2. Fig. 1(b) shows an instance of locating the dominant pixels of a real image I subject
to their RLTP-based characteristics.
As mentioned in Section 2.1, LTP [45] can be separated into the upper and lower patterns to be compliant with
the LBP-based computation. Correspondingly, we introduce two novel kinds of robust patterns: upper-robust
(RLTPu) and lower-robust (RLTPl), which are formulated as

RLTPδ1,δ2,u
P,R (q) = LTPδ1,u

P,R (q)

so that LTPδ1,u
P,R (q) ≡ LTPδ2,u

P,R (q)
(4)

RLTPδ1,δ2,l
P,R (q) = LTPδ1,l

P,R(q)

so that LTPδ1,l
P,R(q) ≡ LTPδ2,l

P,R(q)
(5)

Figure 2 illustrates an intuitive instance of locating RLTPu for a center pixel q with a gray-scale level of 19
(in red) and its P = 8 local neighbors. Accordingly, with {δ1, δ2} = {1, 2}, two correspondingly obtained
upper LTP patterns are identical. Subject to our proposed definitions above, the local feature at this pixel is
upper-robust. However, it would not be for the pairs of thresholds {1, 3} or {2, 3} due to the difference at the
blue neighbor. On the other hand, it can be deduced similarly from Fig. 2 that the red pixel is lower-robust for
three scales of these thresholds. As a result, there are many variants of RLTP which are needed to be investigated
for their influence on video representation. We will thoroughly discuss this issue in Section 4.3.
It is worthy of note that our novel concept of RLTP has the following beneficial properties compared to the
former works [43, 44, 38, 37].

• Our RLTPs maintain the discriminative information of the local patterns. It should be noted that DLBP
[43] does not encapsulate any local-based discrimination, while IDLBP [44] was formed straightforwardly
by taking top n of the ranked LBPs.

• Thanks to the invariant of LTP-based features in the tolerance intervals of thresholds {δ1, δ2}, RLTP
can efficiently handle the noise issue. Meantime, the abnormal bits were either synchronized or turned
unusually in ATNR-TOP [38] and RLBP [37] so that the outputs would be more insensitive to noise.
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Figure 2: An example of locating RLTPu for a center pixel q (in red) and P = 8 local neighbors.
• Our locating process of robust patterns could be more natural than the other works [37, 38]. Indeed, it

is due to still considering the full relationships by thresholding a center pixel with its local neighbors.
Meanwhile, several forcing processes were addressed in ATNR-TOP [38] and RLBP [37] to modify the
neighbors stipulated for the noise identification.

3.2 Adapting robust features to CLTP operator

To be compliant with the novel concept of robust patterns, we propose to adapt our RLTP to CLTP [50] in order
to make a new local encoding way which only addresses different kinds of robust patterns for DT representation.
For simplicity, let us make two masks of RLTP’s positions for a given image I corresponding to Eqs. (4) and (5)
as

Umask(I) =
[
LTPδ1,u

P,R (I) ≡ LTPδ2,u
P,R (I)

]
Lmask(I) =

[
LTPδ1,l

P,R(I) ≡ LTPδ2,l
P,R(I)

] (6)

As a result, these masks would be binary matrices, where the 1-bits locate the robust patterns while the 0-bits
are for the non-robust ones. As mentioned in Section 2.1, CLTP [50] consists of six complementary components
subject to the upper/lower encoding (i.e., CLTP Su/l, CLTP Mu/l, and CLTP Cu/l). Accordingly, CLTP [50]
will be in accordance with our proposal of robust patterns to form a robust completed LTP-based operator (named
RCLTP) as: For the upper encoding, we have

RCLTP Sδ1,δ2,uP,R (I) = Umask(I) ∗ CLTP Sδ1,δ2,uP,R (I)

RCLTP Mδ1,δ2,u
P,R (I) = Umask(I) ∗ CLTP Mδ1,δ2,u

P,R (I)

RCLTP Cδ1,δ2,u
P,R (I) = Umask(I) ∗ CLTP Cδ1,δ2,u

P,R (I)

(7)

For the lower encoding, we have similarly

RCLTP Sδ1,δ2,lP,R (I) = Lmask(I) ∗ CLTP Sδ1,δ2,lP,R (I)

RCLTP Mδ1,δ2,l
P,R (I) = Lmask(I) ∗ CLTP Mδ1,δ2,l

P,R (I)

RCLTP Cδ1,δ2,l
P,R (I) = Lmask(I) ∗ CLTP Cδ1,δ2,l

P,R (I)

(8)

As the assessments of CLTP [50] and CLBP [51], the full joint integration (i.e., S/M/C) of the above
components could make the obtained features be more discriminative. Therefore, we have RCLTPu

S/M/C (resp.

RCLTPl
S/M/C) for the upper (resp. lower) components. From now on, we refer to RCLTPu/l for simplicity.
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Figure 3: RCLTP of a real image I in Fig. 1(a) using {δ1, δ2} = {1, 2}, R = 1, P = 8, compared to the original
CLTP [50]. For a visual view of histograms, some statistical distributions of RCLTP were hidden due to their
dominance.
3.3 DT representation with two input streams of RCLTP

We propose to exploit the RLTP-based patterns in a multimodal approach by addressing two input streams which
are together complementary for DT representation: i) a raw input video V and ii) its horizontal and vertical
optical-flow-based components Lh and Lv, which are calculated by the Classic+NL algorithm [46]. Traditionally,
LBP-based methods [30, 32, 26] for DT description often partition the video V into plane-image collections
fXY , fXT , and fY T subject to its three orthogonal planes {XY,XT, Y T}. Let us consider an orthogonal plane
z (z ∈ {XY,XT, Y T}) of V . The RCLTP-based features for all plane-images I ∈ fz of the plane z are then
formed as

Υδ1,δ2,z
P,R =

1

Nz

∑
I∈fz

[
RCLTPδ1,δ2,u

P,R (I),RCLTPδ1,δ2,l
P,R (I)

]
(9)

where Nz denotes the number of fz’s plane-images.
Figure 3 intuitively illustrates a computing instance of RCLTPl compared to CLTPl for an image of fXY . It
can be observed that RCLTP would represent more apparent DT features than CLTP. Our idea is to exploit
multimodal input streams by using the RCLTP operator to boost the discrimination. For the first input stream
using the RCLTP-based features of the raw video V , we form Υδ1,δ2,XY

P,R , Υδ1,δ2,XT
P,R , and Υδ1,δ2,Y T

P,R by addressing
this computation on fXY , fXT , and fY T of V , respectively. For the second stream, we only address the spatial
plane-images to compute the optical-flow-based components. Concretely, for each I ∈ fXY , we have the
corresponding Classic+NL-based images: Ih = Lh(I) and Iv = Lv(I), which present the appearance
DT motions (see Figs. 1(c,d) for visual results of this computation). As a result, we have two corresponding
collections of Classic+NL-based images, named fLh

and fLv , respectively. It should be noted that Classic+NL
is not included for the temporal collections due to the less meaningful DT motions. In addition, the values of
Ih and Iv will be normalized in [0, 255] to use the same parameters δ1 and δ2 as the first input stream of the
construction. Finally, based on Eq. (9), a proposed DT descriptor for V would be defined as

RCLTPδ1,δ2
P,R (V) =

[
Υδ1,δ2,XY

P,R ,Υδ1,δ2,XT
P,R ,Υδ1,δ2,Y T

P,R ,

Υδ1,δ2,Lh
P,R ,Υδ1,δ2,Lv

P,R

] (10)

Algorithm 1 illustrates the main steps of this construction.
To better assess the true contributions of our proposed robust patterns, we also structure other DT descriptors
using the original operators LTP [45] and CLTP [50]. These LTP-based descriptors are also constructed in the
same ways as RCLTP. Accordingly, it could be pointed out the following beneficial properties of our RCLTP to
enhance the discrimination power in comparison with others.

• Our RCLTP could be a crucial derivative of CLTP [50]. Indeed, because ours is constructed by the robust
pixels encoded by CLTP, the CLTP’s features for a center pixel are also encapsulated in RCLTP.
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Algorithm 1: Structuring RCLTP descriptor.
Input: A video V; a pair of thresholds {δ1, δ2};
P local neighbors and an interpolating radius R.
Output: A RCLTP descriptor of V .

1: Υδ1,δ2,z
P,R = a zero vector

2: Calculate optical-flow components fLh
and fLv

3: for each I ∈ fXY do
//Computing binary masks of robust patterns
Umask =

[
LTPu

P,R,δ1
(I) ≡ LTPu

P,R,δ2
(I)

]
Lmask =

[
LTPl

P,R,δ1
(I) ≡ LTPl

P,R,δ2
(I)

]
//Computing CLTP’s components for I
Su
I = CLTP Sδ1,δ2,uP,R (I);Sl

I = CLTP Sδ1,δ2,lP,R (I)

Mu
I = CLTP Mδ1,δ2,u

P,R (I);M l
I = CLTP Mδ1,δ2,l

P,R (I)
Cu
I = CLTP Cδ1,δ2,u

P,R (I);C l
I = CLTP Cδ1,δ2,l

P,R (I)
//Histograms of Ψu/l = RCLTP

δ1,δ2,u/l
P,R with a full joint integration Γ of components

Ψu
I = Γ(Umask ∗ Su

I , Umask ∗Mu
I , Umask ∗ Cu

I )
Ψl

I = Γ(Lmask ∗ Sl
I , Lmask ∗M l

I , Lmask ∗ C l
I)

Υδ1,δ2,XY
P,R = Υδ1,δ2,XY

P,R +
[
Ψ

u/l
I

]
end for

4: Υδ1,δ2,XY
P,R = 1

|NXY |Υ
δ1,δ2,XY
P,R ; //Normalization

5: Repeat steps 3 and 4 on the sets fXT , fY T , fLh
, fLv for Υδ1,δ2,XT

P,R , Υδ1,δ2,Y T
P,R , Υδ1,δ2,Lh

P,R , Υδ1,δ2,Lv

P,R

//Concatenating all the obtained histograms
6: RCLTPδ1,δ2

P,R (V) =
[
Υδ1,δ2,XY

P,R ,Υδ1,δ2,XT
P,R ,Υδ1,δ2,Y T

P,R ,

Υδ1,δ2,Lh
P,R ,Υδ1,δ2,Lv

P,R

]

• RCLTP only uses robust patterns for its histogram construction (see Fig. 3). It means the non-robust ones
can be noisy. The thorough assessments in Section 4.3 will have proved this issue.

• Our proposed descriptor is very different from the previous approaches [43, 44]. Indeed, RCLTP consists
of the local features on which LTP patterns were selected, while DLBP [43] is not. In addition, the robust
features for forming RCLTP descriptor are pointed out by the strictly invariant condition with the changes
of thresholds, while IDLBP [44] simply took the top of the ranked LBP patterns.

• Our RCLTP is already very descriptive and a preponderance of the overall patterns, while the other robust
descriptors [37, 38] addressed the whole local features on the way of the descriptor construction.

• Profitable features of optical-flow-based and local-feature-based methods are exploited thanks to using
RCLTP for encoding the Classic+NL’s components.

4 Experiments and evaluations

4.1 Datasets and protocols

UCLA dataset: Saisan et al. [1] composed 200 DT videos containing various sorts of textural motions: fountain,
waterfall, flower, plant, etc. These sequences were sized in 110×160×75 dimension and divided into 50 categories.
For DT classification issue, three schemes are usually addressed as follows. i) 50-class utilizes 50 categories with
two protocols: leave-one-out (50-LOO) [18, 54] and 4-fold cross validation (50-4fold) [32, 26]. ii) 9-class has 9
labels composed of 50 categories. iii) 8-class is formed from 9-class by eliminating the “plants” class due to its
dominance of video quantities (108 DT videos). Both schemes use 50%/50% protocol, i.e., half of the samples
are randomly chosen for training and the rest for testing. A final rate is returned by the mean of 20 trials.
DynTex dataset: Péteri et al. [55] captured more than 650 high-quality videos in variant conditions of
environmental elements. For DT classification issue, three challenging schemes are usually addressed with the
LOO protocol as follows. i) Alpha has three categories with 20 videos for each of them. ii) Beta has 162 DT
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Table 1: Rates of LTP-based descriptors using {δ1 [, δ2]} = {1 [, 2]} with and without Classic+NL’s components.

Without Classic+NL With Classic+NL
Descriptor 50-Loo 4fold Beta Gamma 50-Loo 4fold Beta Gamma
LTP [45] 60.00 93.00 87.04 89.02 96.00 96.00 90.12 92.42
Our RLTP 80.00 94.00 89.51 91.29 97.50 97.50 92.59 93.18
CLTP [50] 100 100 93.21 92.80 100 100 95.68 95.83
Our RCLTP 100 100 93.83 93.56 100 100 95.68 96.21
Note: 50-Loo and 4fold denote results on the schemes 50-LOO and 50-4fold, respectively.

videos arranged into 10 categories. iii) Gamma has 264 DT videos, also arranged into 10 categories [22, 18].
DynTex++ dataset: Ghanem et al. [56] composed DynTex++ by taking out 345 DynTex’s videos to be clipped
and fixed in size of 50× 50× 50. The obtained results were categorized into 36 categories with 100 sub-videos for
each category, i.e., 3600 DTs in total. For DT classification, the 50%/50% protocol [18, 56] is used for each trial,
and a final rate is then reported by the mean of 10 runtimes.

4.2 Experimental settings

For locating robust patterns, we investigate the influence of thresholds in an amplitude interval from 1 to 5, as
specified by different pairs {δ1, δ2} in Table 6. For encoding the RCLTP-based features, we address a 2-scale
local region {(P,R)} = {(8, 1), (8, 2)} for capturing more further local features. Thereby, it takes t = 8(P +

2)2 = 800 bins for structuring Υδ1,δ2,z
P,R on the plane z. As a result, it leads to taking 5 × t = 4000 bins for 5

image collections (i.e., {fXY , fXT , fY T , fLh
, fLv}) to form the final RCLTP-based descriptor. It should be noted

that the other LTP-based descriptors (i.e., LTP [45] and CLTP [50]) are also addressed with the above settings for
objective evaluations. For classifying DTs, we utilize the linear multi-class SVM classifier of LIBLINEAR [57]
with the default parameters.

4.3 Performing analyses

It can be observed from Table 1 that addressing the Classic+NL-based components has significantly improved
the discrimination of LTP-based DT descriptors. Indeed, for the completed LTP-based descriptors (i.e., CLTP
[50] and our RCLTP), the performances have boosted up 2 ∼ 3%. In the meanwhile, the original LTP-based ones
(i.e., LTP [45] and our RLTP) have increased by up to 17.5%. Those have validated the interest of the integration
of local-feature-based and optical-flow-based approaches for the DT representation. Henceforward, the LTP-
based descriptors including the Classic+NL-based components will be addressed in default on the following
evaluations.

4.3.1 Effectiveness of robust RLTP patterns

It can be verified that our novel idea of RLTP is quite simple, but it works very well in comparison with the
original LTP [45] and non-RLTP. Indeed, based on the experimental results of DT classification in Tables 2 and 4,
we could assert several substantial statements as follows.

• Addressing the robust LTP-based patterns can improve the performance compared to the use of all patterns
of DTs. Indeed, the rates in Table 4 indicate that our RLTP is better than the original LTP [45] on both
simple and challenging schemes. It should be noted that the original LTP is composed of RLTP and non-
RLTP. It means RLTP has a fruitful preponderance of the overall DT features.

• It can be stated that non-RLTP patterns could be noisy and negatively impact the local DT encoding.
Indeed, Table 4 shows the solidly better performance of RLTP compared to non-RLTP. For instance, RLTP
with {δ1, δ2} = {1, 2} obtained 92.59% on Beta, about 4% higher than non-RLTP. In other words, the
experiments have proven the less significance of the non-robust patterns.

• Thanks to the preponderance, RLTP has a little forceful ability of noise resistance with different levels ρ
of the salt-and-pepper noise, compared to LTP [45] (see Table 2). It could be the reason why the original
CLTP consists of the non-robust patterns. It has consolidated the contributions of our proposal.
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Table 2: Performances (%) using {δ1 [, δ2]} = {3 [, 4]} in various levels of salt-and-pepper noise on Gamma of
DynTex.

Descriptor ρ=10% ρ=20% ρ=30% ρ=40% ρ=50% ρ=60%
LTP [45] 89.77 88.26 87.88 87.12 87.12 82.95
Our RLTP 90.15 88.26 87.88 87.88 86.74 82.58
CLTP [50] 92.42 90.91 89.02 86.74 84.47 79.55
Our RCLTP 93.18 90.53 89.39 87.12 86.74 85.98
Note: It should be noted that for objective comparisons, these results are based on the
raw DT plane-images, i.e., without Classic+NL’s components included.

Table 3: Rates (%) on Gaussian noise levels of two schemes: 50-4fold of UCLA and Gamma of DynTex.

Noise for 50-4fold Noise for Gamma Time(s)
Descriptor (P,{R}) Mapping dB=1 dB=3 dB=5 dB=1 dB=3 dB=5
VLBP [30] (4,1) - 91.00 92.00 94.00 87.12 89.02 90.53 ≈ 0.22
LBP-TOP [30] (8,1) u2 97.50 99.50 98.50 77.65 84.47 87.12 ≈ 0.15
CLSP-TOP [32] (8,1) riu2 98.00 99.50 99.00 82.95 84.47 87.50 ≈ 0.27
HILOP [33] (8,{1,2}) u2 99.50 99.50 99.50 88.64 90.91 91.29 ≈ 0.50
CLBP [51] (8,1) riu2 99.50 99.50 99.50 85.98 87.88 89.39 ≈ 0.23
HoGF [58] (8,1) riu2 100 100 100 90.53 90.15 90.53 ≈ 0.54
LTP [45] (8,1) riu2 97.50 97.50 98.00 86.74 90.15 90.91 ≈ 0.21
Our RLTP (8,1) riu2 97.50 97.50 98.00 87.50 89.78 89.78 ≈ 0.23
CLTP [50] (8,1) riu2 98.50 99.00 100 90.91 92.80 93.18 ≈ 0.43
Our RCLTP (8,1) riu2 99.00 99.50 100 91.67 92.80 93.56 ≈ 0.78

Note: “-” means “not available”.

4.3.2 Complexity of encoding RCLTP-based patterns

Let us consider a given image I with dimension H×W . Subject to Alg. 1, the complexity for locating the robust
upper-lower patterns is QUL ≈ 2×H×W+QLTP, where QLTP ≈ O(P ×H×W) denotes the complexity of the
LTP encoding [45] with P local neighbors. As presented in Section 2.1, the complexity of the CLTP encoding
[50] can be deduced as QCLTP ≈ 3×QLTP due to the separate calculation of CLTP components. Meanwhile, that
of the histogram computation is estimated as QΨ ≈ 6 ×H ×W . So we have QI ≈ (QUL +QCLTP +QΨ) ≈
O(P ×H×W).
For a video V with T frames which is split into three plane-image collections {fXY , fXT , fY T }, the complexity
of computing the robust patterns on fXY is approximated as QXY

Υ ≈ T ×(QI+2×QL), where QL ≈ H×W×Nv

is the complexity of calculating the optical-flow components with the best Nv flow vectors [59], (Nv = 3 in
practice). Meanwhile, QXT

Υ = QY T
Υ ≈ T ×QI is for the computation on fXT and fY T . As a result, QRCLTP ≈

QXY
Υ +QXT

Υ +QY T
Υ , i.e., QRCLTP ≈ O(P ×H×W×T ). So it can be seen that our QRCLTP is equivalent to that

of other LBP-based descriptors: MEWLSP [28], VLBP [30], CSAP-TOP [60], FoSIG [61], CVLBP [31], V-BIG
[62], HILOP [33], MDP [27], etc. (refer to those works for more detail), whilst the proposed descriptor achieved
better results compared to theirs (see Table 7). In terms of the processing time, we measured the runtime of
some of them for encoding a DT video. The last column of Table 3 shows that RCLTP would take more time in
processing a Dyntex++’s video due to the extraction and encoding of optical-flow components. It is noteworthy
that all those methods were implemented in raw MATLAB codes with single-threading on a 64-bit Linux desktop
with CPU Core i7 3.4GHz 16G RAM.

4.3.3 Assessments of RCLTP descriptors

For the experimental results in Table 6, it can be stated that our RCLTP based on the following major factors in
order to boost the discrimination, compared to CLTP [50].
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Table 4: Performance (%) of RLTP compared to non-RLTP and the original LTP [45].
Original LTP [45] Our RLTP non-RLTP

{δ1[, δ2]} {1} {2} {3} {4} {1, 2} {2, 3} {3, 4} {1, 2} {2, 3} {3, 4}
50-LOO 96.00 97.00 96.00 97.00 97.50 97.00 97.00 95.50 96.50 96.50
50-4fold 96.00 97.00 96.50 97.00 97.50 97.00 97.00 95.50 96.50 97.00
Beta 90.12 90.12 90.74 90.12 92.59 91.36 91.98 88.89 90.12 88.89
DynTex++ 91.58 91.72 90.86 90.33 93.67 93.20 93.93 92.83 92.72 91.49

65.17% RLTP 84.75% RLTP 46.42% RLTP

Input image I {δ1, δ2} = {1, 2} {δ1, δ2} = {4, 5} {δ1, δ2} = {1, 5}

Figure 4: RCLTP Sδ1,δ2,u8,1 for image I with pairs of thresholds.

• As RCLTP is derived from CLTP [50], it would maintain the properties of CLTP in the way of the
histogram construction.

• Thanks to addressing RLTP in the encoding, RCLTP is very descriptive and has a solid preponderance
of the overall CLTP features. The experiments have validated that locating the robust patterns with the
deviation of thresholds can lead to better performance. For instance of {δ1, δ2} = {4, 5}, RCLTP pointed
out 96.91% on Beta, ≈0.6% higher than CLTP encoded by each threshold (see Table 5).

• RCLTP would be affected by the amplitude of threshold deviation. Indeed, Table 6 shows RCLTP with the
high deviations has downward performance. It is because the higher amplitude is addressed, the fewer
robust patterns can be located. Fig. 4 shows the dominant quantity (84.75%) of robust patterns with
{δ1, δ2} = {4, 5} compared to the other deviations. This also explains why RCLTP with this setting
achieved such good rates (see Table 6).

• Also, thanks to the preponderance, RCLTP is better than the original CLTP in the ability of noise
resistance. Indeed, the performance of CLTP was dramatically reduced to 79.55% at the salt-and-pepper
noise level ρ = 60%, while that of RCLTP was decreased by less than 1%, i.e., 85.98% (see Table 2). In
terms of Gaussian noise, it can be observed from Table 3 that whatever the noise level is, RCLTP is more
generally stable than non-RLTP, CLTP, and other LBP-based methods. Particularly, RCLTP has the best
noise robustness on the challenging scheme “Gamma”, while HoGF [58] is more stable but does not obtain
better performance in DT recognition, e.g., ours is over 1% higher than HoGF’s in the heaviest noise level
(i.e., dB=1), and 3% better in dB=5.

Since the setting of {δ1, δ2} = {4, 5} pointed out the best RCLTP’s results on most datasets (see Table 6), it
should be recommended for real applications as well as for the below comprehensive comparisons.

4.4 Comparison with local-feature-based methods

It can be observed from Table 7 that our proposed descriptor of the robust patterns obtained very good
performance compared to the existing local-feature-based methods. Concretely, RCLTP mostly achieved the best
rates compared to other LTP-based approaches, i.e., LTP-Lac [66], LTP [45], CLTP [50]. For comparing with
the LBP-based ones, rates of RCLTP are respectively 100%, 100%, 99.25%, and 99.46% on 50-LOO, 50-4fold,
9-class, and 8-class, the best rates among all existing local-based methods. Also, ours obtained competitive the
highest rates on the challenging schemes: 100% on Alpha, 96.91% on Beta, 95.83%, and 96.67% on DynTex++.
It can be observed that MDP [27] has the same rate on Beta (96.91%), but it is not better than ours on the
remaining schemes. Similarly, MEWLSP [28] is superior on DynTex++ (98.48%), but it is not higher than ours
on all UCLA schemes, and it has not been verified on the challenging ones. It should be emphasized that the
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Table 5: Rates (%) of RCLTP compared to CLTP [50].

Descriptor Original CLTP [50] Our RCLTP
{δ1[, δ2]} {1} {2} {3} {4} {5} {1, 2} {2, 3} {3, 4} {4, 5}
Beta 95.68 96.91 96.30 96.30 96.30 95.68 96.30 96.30 96.91
Gamma 95.83 95.45 95.83 95.83 95.83 96.21 95.83 95.45 95.83

Table 6: Classification rates (%) of RCLTP on DT datasets.
Dataset UCLA DynTex DynTex++
{δ1, δ2} 50-LOO 50-4fold 9-class 8-class Alpha Beta Gamma
{1, 2} 100 100 99.15 99.13 100 95.68 96.21 96.31
{2, 3} 100 100 99.00 98.48 100 96.30 95.83 96.42
{3, 4} 100 100 99.40 98.75 100 96.30 95.45 95.59
{4, 5} 100 100 99.25 99.46 100 96.91 95.83 96.67
{1, 3} 100 100 98.90 98.60 100 93.83 95.45 96.20
{2, 4} 100 100 98.95 98.48 100 95.68 95.83 95.86
{1, 4} 100 100 99.05 98.04 100 95.06 95.45 96.09
{2, 5} 100 100 98.45 98.15 100 96.30 95.45 95.68
{1, 5} 100 100 98.80 98.04 100 95.68 94.70 95.76

above existing methods addressed the whole local features of the analysis to form their descriptors, while ours
just took advantage of the key features. This has consolidated the efficacy of our proposal.

5 Conclusions

We have suggested a novel concept for the location of robust patterns based on the invariant of LTP-based
features. It can handle two issues of the dominant patterns which the existing local methods [43, 44, 38, 37] have
either missed or dealt with inadequately: i) maintaining the local features on the way of descriptor construction,
ii) the noise sensibility caused by small gray-scale changes of local neighbors. RLTP has been adapted to CLTP
[50] to efficiently locate the robust CLTP-based patterns of the spatial-temporal features and optical-flow-based
motions for DT representation. Experiments have validated that ours has very good performance compared to
the non-robust descriptor, the original ones (i.e., LTP [45] and CLTP [50]), as well as the local-feature-based
methods.
For perspectives, instead of using RLTPu/l for the locating processes, it can consider other dominant patterns
based on the invariance of CLTP Mu/l and CLTP Cu/l. Also, the concepts of n-ary codes [67] in various
significant conditions can be taken into account for our locating robust patterns to have for further enhancement.

Acknowledgments

We would like to express our sincere appreciation for the editors and the reviewers, who pointed out the valuable
and insightful remarks allowing us to clarify the presentation of this work. Thanh Phuong Nguyen was supported
by ANR ASTRID ROV-Chasseur. Also, we would like to send many thanks to those in Faculty of IT, HCMC
University of Technology and Education, Thu Duc City, Ho Chi Minh City, Vietnam, who gave us enthusiastic
support.

References
[1] P. Saisan, G. Doretto, Y. N. Wu, S. Soatto, Dynamic texture recognition, in: CVPR, 2001, pp. 58–63.

[2] I. Ali, J. Mille, L. Tougne, Space-time spectral model for object detection in dynamic textured background, Pattern Recognit. Lett. 33 (13) (2012) 1710–1716.

[3] A. C. Cruz, B. Bhanu, N. S. Thakoor, Background suppressing gabor energy filtering, Pattern Recognit. Lett. 52 (2015) 40–47.

10



Table 7: Comparison of classification rates (%) on datasets.
Dataset UCLA DynTex DynTex++
Method 50-LOO 50-4fold 9-class 8-class Alpha Beta Gamma
VLBP [30] - 89.50 96.30 91.96 - - - 94.98
LBP-TOP [30] - 94.50 96.00 93.67 98.33 88.89 84.85 94.05
CVLBP [31] - 93.00 96.90 95.65 - - - -
HLBP [26] 95.00 95.00 98.35 97.50 - - - 96.28
CLSP [32] 99.00 99.00 98.60 97.72 95.00 91.98 91.29 95.50
MEWLSP [28] 96.50 96.50 98.55 98.04 - - - 98.48
WLBPC [54] - 96.50 97.17 97.61 - - - 95.01
CVLBC [63] 98.50 99.00 99.20 99.02 - - - 91.31
CSAP [60] 99.50 99.50 96.80 95.98 96.67 92.59 90.53 -
FoSIG [61] 99.50 100 98.95 98.59 96.67 92.59 92.42 95.99
V-BIG [62] 99.50 99.50 97.95 97.50 100 95.06 94.32 96.65
HILOP [33] 99.50 99.50 97.80 96.30 96.67 91.36 92.05 96.21
MDP [27] 100 100 98.70 98.70 98.33 96.91 92.05 95.86
RUBIG [64] 100 100 99.20 99.13 100 95.68 93.56 97.08
VSCR [65] - 99.43 - - 92.24 - - -
LTP-Lac [66] - 99.70 96.80 99.20 89.60 80.90 79.90 94.80
LTP∗ [45] 97.00 97.00 96.60 95.65 98.33 90.12 93.56 91.72
Our RCLTP 100 100 99.25 99.46 100 96.91 95.83 96.67
Note: “-” means “not available”. “∗” means results of local DT descriptor LTPδ=2 [45] that are reported by this

work with the Classic+NL’s components included [46].

[4] P. Yang, Q. Liu, D. N. Metaxas, Boosting encoded dynamic features for facial expression recognition, Pattern Recognit. Lett. 30 (2) (2009) 132–139.

[5] T. T. Nguyen, T. P. Nguyen, A comprehensive taxonomy of dynamic texture representation, ACM Computing Surveys 55 (1) (2023) 1–39.

[6] A. B. Chan, N. Vasconcelos, Modeling, clustering, and segmenting video with mixtures of dynamic textures, IEEE Trans. PAMI 30 (5) (2008) 909–926.

[7] A. Mumtaz, E. Coviello, G. R. G. Lanckriet, A. B. Chan, Clustering dynamic textures with the hierarchical EM algorithm for modeling video, IEEE Trans. PAMI 35 (7) (2013) 1606–1621.

[8] Y. Wang, S. Hu, Chaotic features for dynamic textures recognition, Soft Computing 20 (5) (2016) 1977–1989.

[9] Y. Qiao, Z. Xing, Dynamic texture classification using multivariate hidden markov model, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101-A (1) (2018) 302–305.

[10] C. Peh, L. F. Cheong, Synergizing spatial and temporal texture, IEEE Trans. IP 11 (10) (2002) 1179–1191.

[11] S. Fazekas, D. Chetverikov, Analysis and performance evaluation of optical flow features for dynamic texture recognition, Sig. Proc.: Image Comm. 22 (7-8) (2007) 680–691.

[12] T. T. Nguyen, T. P. Nguyen, F. Bouchara, X. S. Nguyen, Directional beams of dense trajectories for dynamic texture recognition, in: ACIVS, Vol. 11182, 2018, pp. 74–86.

[13] B. K. P. Horn, B. G. Schunck, Determining optical flow, Artificial Intelligence 17 (1-3) (1981) 185–203.

[14] Y. Xu, Y. Quan, Z. Zhang, H. Ling, H. Ji, Classifying dynamic textures via spatiotemporal fractal analysis, Pattern Recognition 48 (10) (2015) 3239–3248.

[15] Y. Xu, S. B. Huang, H. Ji, C. Fermüller, Scale-space texture description on sift-like textons, CVIU 116 (9) (2012) 999–1013.

[16] H. Ji, X. Yang, H. Ling, Y. Xu, Wavelet domain multifractal analysis for static and dynamic texture classification, IEEE Trans. IP 22 (1) (2013) 286–299.

[17] Y. Quan, Y. Sun, Y. Xu, Spatiotemporal lacunarity spectrum for dynamic texture classification, CVIU 165 (2017) 85–96.

[18] S. R. Arashloo, J. Kittler, Dynamic texture recognition using multiscale binarized statistical image features, IEEE Trans. Multimedia 16 (8) (2014) 2099–2109.

[19] T. T. Nguyen, T. P. Nguyen, F. Bouchara, A novel filtering kernel based on difference of derivative gaussians with applications to dynamic texture representation, SPIC 98 (2021) 116394.

[20] X. Qi, C.-G. Li, G. Zhao, X. Hong, M. Pietikainen, Dynamic texture and scene classification by transferring deep image features, Neurocomputing 171 (2016) 1230 – 1241.

[21] V. Andrearczyk, P. F. Whelan, Convolutional neural network on three orthogonal planes for dynamic texture classification, Pattern Recognition 76 (2018) 36 – 49.

[22] S. R. Arashloo, M. C. Amirani, A. Noroozi, Dynamic texture representation using a deep multi-scale convolutional network, J. Vis. Commun. Image Represent. 43 (2017) 89–97.

[23] Y. Quan, Y. Huang, H. Ji, Dynamic texture recognition via orthogonal tensor dictionary learning, in: ICCV, 2015, pp. 73–81.

[24] Y. Quan, C. Bao, H. Ji, Equiangular kernel dictionary learning with applications to dynamic texture analysis, in: CVPR, 2016, pp. 308–316.
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