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ABSTRACT: We have discovered a protein with an amino acid 
composition exceptionally rich in glycine and cysteine residues 
in the giant virus mimivirus. This small 6 kDa protein is among 
the most abundant proteins in the icosahedral 0.75 µm viral 
particles, it has no predicted function but is probably essential 
for infection. The aerobically purified red-brownish protein 
overproduced in Escherichia coli contained both iron and inor-
ganic sulfide. UV/vis, EPR, and Mössbauer studies revealed that 
the viral protein, coined GciS, accommodated two distinct Fe-S 
clusters: a diamagnetic S=0 [2Fe-2S]2+ cluster and a paramag-
netic S=5/2 linear [3Fe-4S]1+ cluster, a geometry rarely stabi-
lized in native proteins. Orthologs of mimivirus GciS were iden-
tified within all clades of Megavirinae, a Mimiviridae subfamily 
infecting Acanthamoeba, including the distantly related tu-
panviruses, and displayed the same spectroscopic features. 
Thus, these glycine/cysteine-rich proteins form a new family of 
viral Fe-S proteins sharing unique Fe-S cluster binding proper-
ties.  

Iron-sulfur (Fe-S) clusters are inorganic cofactors of proteins 
made of iron and sulfide and are essential for life.1 Fe-S cluster-
containing proteins are involved in many biological functions 
including redox and nonredox catalysis, sensing, gene expres-
sion, and regulation.2-5 The most common Fe-S structural ar-
rangements found in proteins are [2Fe-2S], cubane [4Fe-4S], 
and to a lesser extent, cubane [3Fe-4S] clusters.6 Unusual Fe-S 
cluster architectures are also encountered in proteins for spe-
cific biological purposes.2 Many Fe-S cluster mimics have been 
synthesized, providing a library of complex models with a large 
compositional and structural diversity.7 Interestingly, syn-
thetic models of [3Fe-4S]1+ clusters with thiolate ligands exist 
only as a linear 3Fe-arrangement, whereas protein structural 

constraints promote the [3Fe-4S]1+ cuboidal geometry.7-8 Here 
we report on a new family of viral proteins, discovered in giant 
viruses, that bind Fe-S clusters, different from the few other vi-
ral Fe-S proteins characterized so far.9-13 The recombinant GciS 
(Glycine/Cysteine-rich Iron-Sulfur) protein displays unique 
Fe-S binding properties, hence spontaneously stabilizing a lin-
ear-type [3Fe-4S]1+ cluster together with a [2Fe-2S]2+ cluster. 
These structural features may be clues to discovering novel 
functions for viral Fe-S proteins during infection. 

Giant viruses are nucleocytoplasmic large DNA viruses 
(NCLDVs)14 with up to 2.8 Mb genomes encoding 1500 pro-
teins, most of them without resemblance to other cellular or vi-
ral proteins (ORFans).15-16 Giant viruses are found in diverse 
habitats and infect eukaryotes, mostly protists and microalgae 
(reviewed in17). The first giant virus, mimivirus, was discov-
ered in 2003. It has a 1.2 Mb genome encased in icosahedral 
capsids of ~0.75 m diameter, visible by light microscopy, and 
replicates in the amoeba of the Acanthamoeba genus.18-19 Tran-
scriptomic analysis of Acanthamoeba castellanii infected by 
mimivirus revealed a small gene with no-predicted function, 
R633b, the one that is the most transcribed during the late 
phase of infection.20 Mass spectrometry-based proteomics con-
firmed that R633b encodes a 59-amino acid protein peculiarly 
rich in glycine, cysteine, and aromatic residues (Fig. 1). This 
low-complexity protein is among the most abundant in the vi-
ral particles.  

MSCFGGWNGGCGPCGGFGWGGCGPSWGCGPCGFGGGY-
SYRVSYGFGGCGFPGGFGWGGCC 

Figure 1. Amino acid sequence of GciS mimivirus encoded by the 
R633b gene.  

Expression of the R633b gene in Escherichia coli (Ec) grown 
aerobically led to red-colored cell pellets (Fig S1). The 



 

corresponding air-purified protein expressed in fusion with a 
His6-SUMO tag was most soluble at extreme pH values (4 or 
10.5), showed a red brownish color, and formed large oligo-
mers, as seen by size-exclusion chromatography and transmis-
sion electron microscopy (Figs S1 and S2). Metal content anal-
ysis by Inductively Coupled Plasma-Mass Spectrometry (ICP-
MS) indicated that the recombinant protein contained only 
iron. Furthermore, ICP-MS and chemical analysis returned iron 
and acid-labile sulfide contents of 0.65 ( 0.10) and 0.70 ( 
0.20) per protein respectively, giving a Fe to S2- ratio of 0.9  
0.3 consistent with the presence of a Fe-S cluster.  

The optical spectrum of the air-purified protein at pH 10.5 
displayed a broad absorption in the near-UV and visible re-
gions, with several absorbance bands at 335, 418, 462, 513, and 
586 nm characteristics of sulfur-to-iron charge transfer bands 
(Fig. 2a). This optical spectrum was different from those ob-
served for cubane [4Fe-4S]2+ or [3Fe-4S]1+ clusters, but remi-
niscent of [2Fe-2S]2+ centers (330, 420, 460, and 550 nm).21-22 
Features near 600 nm are less common and more characteris-
tics of linear-type [3Fe-4S]1+ clusters.22-24 Taking into account 
the extinction coefficients of ε420nm  10 mM-1 cm-1 and ε280nm  
15 mM-1 cm-1 for synthetic [2Fe-2S]2+ clusters22, and ε280nm  30 
mM-1 cm-1 for the GciS polypeptide chain, the presence of one 
[2Fe-2S]2+ cluster per monomer would lead to a A420nm/A280nm 
ratio value of 10/45 = 0.22. Using various GciS preparations 
from mimivirus, we determined a A420nm/A280nm ratio of 0.12  
0.02 (Fig. 2a) which gives a crude estimation of 0.12/0.22 = 
0.54 Fe-S cluster per monomer in agreement with iron and sul-
fide contents. Similar spectra were obtained at pH 4 and 7.8 
(Fig. S3). Finally, the protein isolated anaerobically from bac-
terial cells grown aerobically gave an optical spectrum identi-
cal to that of the protein purified aerobically and was un-
changed upon exposure to air (Fig. S4). This showed that the 
nature and content of Fe-S clusters are insensitive to O2 during 
protein purification or afterward.  

 The X-band EPR spectrum of the mimivirus air-purified GciS 
protein recorded at 15 K displayed only a sharp resonance at g 
 4.3 and a broad absorption feature at g  9.1 characteristics 
of a rhombic S=5/2 system (Fig. 2b). The resonance line at g  
9.1 originates from the lowest and upper Kramers doublets, 
and the g  4.3 resonance line from the middle Kramers dou-
blet. The minimum observed at g  4.15 was consistent with a 
zero-field splitting (ZFS) rhombicity E/D of 0.27, close to the 
maximum value (1/3). A minor contribution of adventitious 
ferric iron was also detected at g  4.27 (asterisks in Figs 2b, 
4). The total S=5/2 species accounted for 0.10  0.03 spin per 
protein. In nonheme iron-containing proteins, S=5/2 species 
can correspond either to a mononuclear ferric iron species, 
such as in rubredoxin,25 or a linear [3Fe-4S]1+ cluster.23 The 
temperature dependence study of the g  4.3 signal between 
3.6 and 40 K gave a ZFS axial parameter (D) of 0.6  0.2 cm-1 
(Fig. S5). This value was similar to those determined for the 
linear [3Fe-4S]1+ cluster in synthetic model (D = 0.7  0.2 cm-1), 
purple aconitase (D = 1.5  0.2 cm-1) and Saccharomyces cere-
visiae (Sc) monothiol glutaredoxin (Grx5) (0.6  0.2 cm-1).24, 26 
Furthermore, the broadness and asymmetry of the g  9.1 peak 
indicated large D-strain for the S=5/2 species, reflecting con-
formational distribution of the protein.27 Overall, this S=5/2 
species was consistent with a linear [3Fe-4S]1+ cluster by com-
parison with previous spectroscopic characterizations of linear 
[3Fe-4S]1+ clusters.23-24 This g  4.3 signal was also visible in 
purified samples solubilized at pH 4 or 7.8 (Fig. S3), in whole 
Ec cells overproducing mimivirus GciS without the SUMO tag, 

as well as in the purified mimivirus particles (Fig. 3). The 
S=5/2 species is therefore independent of the pH, SUMO tag, 
aerobic purification process, and biosynthesis by the bacterial 
or amoebal Fe-S cluster assembly machinery. In other words, 
the S=5/2 linear [3Fe-4S]1+ is an inherent feature of the viral 
protein.  

 

Figure 2. (a) UV/vis and (b) EPR signatures of the Fe-S cluster in 
mimivirus recombinant tagged GciS protein purified aerobically 
and solubilized at pH 10.5.  

To further characterize the Fe-S clusters in GciS and confirm 
the presence of a linear [3Fe-4S]1+ species, Mössbauer experi-
ments were performed on isotopically 57Fe enriched purified 
GciS samples at high concentration (7 mM in protein). Fig. 4 
reproduces the Mössbauer spectra recorded at ca 6 K using an 
external magnetic field ranging from 0.06 to 7 T applied paral-
lel to the -rays. The 60 mT spectrum presents an intense dou-
blet that is characteristic of diamagnetic [2Fe-2S]2+ clusters.28 
This was indeed confirmed by the two spectra recorded using 
higher magnetic fields. More importantly, the 4 and 7 T spectra 
revealed another broad contribution that extends from –5 to +5 
mm s–1. The lines detected on both edges of the diamagnetic 
[2Fe-2S]2+ cluster contribution are strongly reminiscent of 
those observed for linear [3Fe-4S]1+ clusters.25,26 The three 
spectra recorded at various magnetic fields can be well repro-
duced by considering the contributions of two all-ferric clus-
ters, the S=0 ground state of the [2Fe-2S]2+ cluster on one hand, 
and the S=5/2 ground state of the linear [3Fe-4S]1+ cluster on 
the other hand (Fig. 4).  

 

 



 

Table 1. Mössbauer parameters used to reproduce spectra shown in Fig. 4 and Fig. S6a  

Fe site Ai/(gnµn) (i=x,y,z)/ (T)b 

x              y         z 
 (mm.s–1) ∆EQ (mm.s–1)  Relative area (%) 

S=5/2 [3Fe-4S]1+ (assuming D = 0.6 cm-1, E/D = 0.27, gx = gy = gz = 2.0 from EPR studies) 

1 –11.7 –13.4 –11.7 0.28 –0.64 –1.2 9 
2 –11.6 –14.3 –13.8 0.28 –0.73 –1.3 9 
3 9.9 10.3 10.0 0.32 0.57 0.5 9 
S=0 [2Fe-2S]2+  
4 - - - 0.27 0.53 0.5 36 
5 - - - 0.28 0.52 1.4 36 

 

Because the 60 mT spectrum is lacking clearly resolved lines 
originating from the linear [3Fe-4S]1+ cluster, quadrupole split-
ting values could not be accurately determined. Accordingly, 
those previously reported for the linear [3Fe-4S]1+ cluster of Sc 
Grx5 reconstituted in the presence of glutathione were used.24 
The ZFS parameters were fixed to the values determined from 
the EPR studies, namely D = 0.6 cm–1 and E/D = 0.27. The hy-
perfine coupling constants obtained here were perfectly con-
sistent with a linear [3Fe-4S]1+ cluster where the central high-
spin ferric ion (Site 3) is antiferromagnetically coupled with the 
two-terminal high-spin ferric ions (Sites 1 and 2), leading to an 
S=5/2 ground state (Fig. S6). The parameters used to repro-
duce the Mössbauer spectra are listed in Table 1. According to 
the contributions indicated in Table 1 and the total iron con-
tent of 0.65 Fe per protein determined by ICP-MS, this gave 
0.23 [2Fe-2S]2+ and 0.06 [3Fe-4S]1+ clusters per protein mono-
mer. Within the uncertainties, this is overall consistent with the 
Fe-S clusters content estimated from EPR and UV/vis analyses.  

 

Figure 3 X-band EPR spectra of mimivirus recombinant tagged 
GciS purified aerobically at pH=10.5 (a), whole Ec cells overpro-
ducing mimivirus GciS (R633b gene) (b) or another gene (R341) 
as a negative control (c), and purified mimivirus particles (d).  

 

Figure 4. Mössbauer spectra of mimivirus air-purified recombi-
nant GciS showing the signatures of (S=0) [2Fe-2S]2+ and (S=5/2) 
linear [3Fe-4S]1+ clusters. The black line is the spectral simula-
tion resulting from the addition of individual cluster contribu-
tions. 

Finally, we aimed to determine whether GciS was conserved 
within Megavirinae, a proposed subfamily of Mimiviridae.17 A 
simple blast search without filtering revealed that the protein 
was conserved in all members of clade A (mimivirus). Bioinfor-
matic analyses also showed that orthologues of GciS from mim-
ivirus may be found in other members of the subfamily. Possi-
ble orthologues were identified in clades B (moumouviruses), 
C (megaviruses) and D (tupanviruses). Despite sequence vari-
ability between clades, all display high glycine, cysteine, and ar-
omatic residue contents (Fig S7). All air-purified recombinant 
proteins from mimivirus, moumouvirus, moumouvirus aus-
traliensis, moumouvirus maliensis, megavirus chilensis and tu-
panvirus soda lake were brownish red and contained less than 
0.9 iron per monomer (Table S1). As for mimivirus, the puri-
fied proteins displayed similar UV/vis and EPR spectra reflect-
ing the presence of both [2Fe-2S]2+ and linear [3Fe-4S]1+ clus-
ters (Fig. 5). We estimated that the S=5/2 linear [3Fe-4S]1+ 
cluster accounted for between 0.03 and 0.10 cluster per pro-
tein, and the [2Fe-2S]2+ cluster accounted for between 0.04 and 
0.30 cluster per protein (Table S1). In summary, this shows 
that these sequences retrieved by bioinformatic analysis define 
a new family of proteins, featuring small sizes, with low-



 

complexity glycine, cysteine and aromatic-rich sequences, and 
with the innate ability to stabilize Fe-S clusters in the form of 
[2Fe-2S]2+ and linear [3Fe-4S]1+ clusters. In addition, ongoing 
studies of the dithionite-reduced proteins by Mössbauer and 
EPR reveal that both Fe-S clusters cannot redox cycle.  

 

Figure 5. UV/vis (a) and EPR signatures (b, c: zoom around 90 
mT) of GciS proteins from clades A (mimivirus, black), B (mou-
mouvirus, moumouvirus australiensis, and moumouvirus 
maliensis in blue, red, and pink, respectively), C (megavirus 
chilensis, orange), and D (tupanvirus soda lake, green).  

 
In conclusion, we identified a linear-type [3Fe-4S]1+ cluster 

as well as a [2Fe-2S]2+ cluster in the small, low-complexity, Fe-
S proteins from Megavirinae giant viruses. These Fe-S clusters 
were observed independently from pH and the presence of O2 
during (or after) protein purification. Viral particles of 
Megavirinae contain a wealth of these Fe-S proteins which 
raises questions about their role during host/virus interaction. 
Indeed, the linear 3Fe arrangement was barely observed in 
proteins and was never associated with any known physiolog-
ical function. This unusual geometry in biology was first re-
vealed in synthetic Fe-S models in the early 1980s,22, 29-30 be-
fore being identified in oxidized and partially unfolded mito-
chondrial beef-heart aconitase.23 The linear 3Fe form was also 
detected in a few [4Fe-4S]-containing enzymes31-34 and un-
folded ferredoxins,35-38 and was most often attributed to a de-
graded Fe-S form. More recently, stabilization in the presence 
of glutathione of a linear [3Fe-4S]1+ cluster in Sc Grx5, an im-
portant component in Fe-S cluster biogenesis, led to the pro-
posal that the linear 3Fe form may be an intermediate during 
Fe-S cluster assembly.24 Investigating the Fe-S binding proper-
ties of GciS proteins, in the context of their structural proper-
ties, is thus an essential prerequisite to give clues to their phys-
iological role and perhaps unveil new functions for viral Fe-S 
proteins. 
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