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Abstract: Mitral valve prolapse (MVP) is a common valvular heart defect with variable outcomes.
Several studies reported MVP as an underestimated cause of life-threatening arrhythmias and
sudden cardiac death (SCD), mostly in young adult women. Herein, we report a clinical and genetic
investigation of a family with bileaflet MVP and a history of syncopes and resuscitated sudden cardiac
death. Using family based whole exome sequencing, we identified two missense variants in the
SCN5A gene. A rare variant SCN5A:p.Ala572Asp and the well-known functional SCN5A:p.His558Arg
polymorphism. Both variants are shared between the mother and her daughter with a history of
resuscitated SCD and syncopes, respectively. The second daughter with prodromal MVP as well
as her healthy father and sister carried only the SCN5A:p.His558Arg polymorphism. Our study
is highly suggestive of the contribution of SCN5A mutations as the potential genetic cause of the
electric instability leading to ventricular arrhythmias in familial MVP cases with syncope and/or
SCD history.

Keywords: familial mitral valve prolapse; genetic arrhythmia substrate; SCN5A mutation; H558R
polymorphism; syncope; resuscitated sudden cardiac death

1. Introduction

Mitral valve prolapse (MVP) is a common valvulopathy with variable outcomes. It
is characterized by fibromyxomatous changes in the mitral leaflet tissue and a systolic
displacement of one or both mitral valve leaflets into the left atrium [1,2]. The estimated
prevalence of MVP is between 1% and 3% in the general population [3,4]. The diagnosis
is based on transthoracic echocardiography as a systolic billowing of one or both leaflets
exceeding 2 mm beyond the mitral annulus in a long-axis view [1,5].

The complications spectrum of MVP is ranging from arrhythmias, stroke, endocardi-
tis, mitral regurgitation (MR) requiring surgery, and sudden cardiac death (SCD) [6,7].
Arrhythmic MVP has been associated with sudden death with an incidence of up to 2%
per year [8].

Recently, the association of MVP with ventricular arrhythmias as a substrate of SCD has
been documented in patients with MVP. The major arrhythmogenic risk predictors reported
include a history of syncope, ventricular ectopic beats (right bundle branch morphology),
ventricular repolarization abnormalities, left ventricle fibrosis in the papillary muscles, and
mitral annular disjunction, as well as a possible pro-arrhythmic genetic substrate [7–9].

A malignant subset of MVP has been correlated with an increased risk of sudden
death [10]. This subtype is characterized by a bileaflet MVP occurring in young female
patients with biphasic or inverted T waves in the inferior leads, and frequent complex
ventricular ectopic activity with documented ventricular bigeminy or VT and premature
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ventricular contraction configurations of outflow tract alternating with papillary muscle or
fascicular origin [9,10].

A strong hereditary component has been described by reporting several pedigrees
for MVP [11–13]. Disse et al. identified four pedigrees suggesting an autosomal dominant
pattern of inheritance. Genetic linkage analysis of the largest pedigree with 24 members
in three generations showed a significant linkage for markers mapping to chromosome
16 (chr16p11.2-p12.1; MVP1-OMIM# 157700) [14]. Thereafter, missense mutations in the
DCHS1 gene have been identified in different families and segregated with the disease
in affected members (MVP2-Locus MIM# 603057) [12,15]. Toomer et al. restudied a large
family reported by Nesta et al. using exome sequencing and identified missense mutation
in the DZIP1 gene (MVP3-Locus MIM#608671). Thereafter, additional DZIP1 variants have
been prioritized in 42 MVP probands [16,17].

A recessive X-linked pattern of inheritance has been reported as well [18]. Indeed,
missense mutations in the FLNA gene have been identified in MVP familial cases [19].
Delling et al. reported a four- to five-fold risk in the offspring of parents with MVP
compared to parents without MVP, which highlight the relevance of genetic testing [1,11].

Here, we report the clinical and genetic investigation of a family with bileaflet myxo-
matous MVP complicated by several episodes of syncopes and a resuscitated SCD.

2. Results
2.1. Clinical Findings

The index case, a 42-year-old woman, was diagnosed with a bileaflet myxomatous
MVP after a resuscitated SCD at the age 27 years old while she was in a church.

An exhaustive initial assessment was performed, and MVP was the only abnormality
found to explain the occurrence of life-threatening ventricular arrhythmia.

Her 12 leads ECG at rest showed a T wave inversion in the precordial leads V1 and
V2. The corrected QT interval was normal (Figure 1). Therefore, she underwent internal
cardioverter defibrillator implantation. Monitoring of the device revealed appropriate
shocks on ventricular arrhythmia’s recidivism.
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at the first trans-thoracic echocardiography but without late Gadolinium enhancement. 
The patient also underwent coronary angiography with a methylergometrine provoca-
tion test and ventriculography. No lesions of coronary arteries, vasospasm, or takotsubo 
cardiomyopathy were noted. Finally, programmed ventricular stimulation with iso-
prenaline infusion and a provocation test with flecainide injection did not induce ven-
tricular arrhythmia or unmasked an electrical aspect of Brugada syndrome on 12 leads 
surface ECG. 

Her echocardiography follow-up showed a constant moderate MR, with mild 
myxomatous thickened leaflets, the presence of a posterior annulus disjunction, and a 
typical atrialization of posterior leaflet insertion and posterior systolic curling of the in-
ferolateral wall of the left ventricular (LV) (Figure 2A). The left ventricular ejection frac-
tion (LVEF) remains normal but the LV and left atrium (LA) are mildly dilated according 
to the European Society of Cardiology Guidelines [20,21]. 
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Of note, before defibrillator implantation, cardiac Magnetic Resonance Imaging (MRI)
was performed and ruled out structural cardiac diseases such as arrhythmogenic right
ventricular cardiomyopathy or hypertrophic/dilated cardiomyopathies. Cardiac MRI con-
firmed bileaflet MVP with myxomatous impairment (Barlow’s disease) reported at the first
trans-thoracic echocardiography but without late Gadolinium enhancement. The patient
also underwent coronary angiography with a methylergometrine provocation test and
ventriculography. No lesions of coronary arteries, vasospasm, or takotsubo cardiomyopa-
thy were noted. Finally, programmed ventricular stimulation with isoprenaline infusion
and a provocation test with flecainide injection did not induce ventricular arrhythmia or
unmasked an electrical aspect of Brugada syndrome on 12 leads surface ECG.

Her echocardiography follow-up showed a constant moderate MR, with mild myxo-
matous thickened leaflets, the presence of a posterior annulus disjunction, and a typical
atrialization of posterior leaflet insertion and posterior systolic curling of the inferolateral
wall of the left ventricular (LV) (Figure 2A). The left ventricular ejection fraction (LVEF) re-
mains normal but the LV and left atrium (LA) are mildly dilated according to the European
Society of Cardiology Guidelines [20,21].
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Figure 2. Echocardiography of the index case (A), the affected daughter (II-2) (B), and the oldest
daughter with a prodromal MVP (II-1) (C). LV: left ventricle; LA: left atrium; Ao: aorta; MVP: mitral
valve prolapse.

Regarding the treatment, in the years preceding the cardiac arrest event, the patient
consulted a cardiologist for palpitations, describing episodes of tachycardia with sudden
onset and termination which have never been documented. The 12 leads ECG tracing,
the trans-thoracic echocardiography, and the biology were reported as normal. A trial
treatment with a calcium blocker (verapamil) was temporarily taken by the patient with
the only hypothesis of paroxysmal junctional tachycardia. At discharge after cardiac arrest,
the calcium blockers (diltiazem) were continued for 10 months. When the patient was
appropriately treated (one electric shock) by the defibrillator for ventricular tachycardia
(202 beats/min) a treatment with sotalol was initiated.

Family screening revealed one symptomatic daughter (Subject II-2) with a history of
two syncopes at 11 years old while she was on a thrill ride and palpitations during an
intense run. Her 12 leads ECG at rest, the ECG 24 h Holter, and the exercise stress test were
normal. However, her echocardiography showed a bileaflet MVP which predominates on
the anterior leaflet with mild myxomatous thickened leaflets, posterior annulus disjunction,
and winding movement (Figure 2B). The MVP is complicated by a moderate MR. LVEF
and LA volumes were normal. LV was mildly dilated. She received an implantable loop
recorder for VA screening.

The oldest sister, 23 years old (Subject II-1), is currently asymptomatic. Her echocar-
diography revealed a prodromal MVP with a mild holosystolic MR, a posterior annulus
disjunction, and a winding movement (Figure 2C). She had no cardiac remodeling and no
systolic dysfunction.

The father (Subject I-1) had normal echocardiography.
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2.2. Genetic Findings

Whole-exome sequencing analysis allowed us to prioritize two missense variants in the
SCN5A gene. One heterozygous rare variant shared between the index case and her daughter
(II-2) NM_000335:exon12:c.1715G>T; p.(Ala572Asp) (MAF = 0.0051 in the gnomAD database;
MAF = 0.0032 in the European non-Finnish population). The variant is located in the DI–DII
interdomain linker of Nav1.5 channel. The SCN5A:p.(Ala572Asp) is predicted as probably
pathogenic by UMD-predictor and has a CADD-phred score = 19.44 (GRCh37-v1.6).

The second variant, NM_000335:exon12:c.1673T>C; p.(His558Arg) is found in all the
family members. Thus, the father (I-1) and the oldest daughter (II-1) with prodromal MVP
carried only the modulatory SCN5A:p.(His558Arg) polymorphism (Figure 3).
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and p.(His558Arg) in the SCN5A gene.

This common variant (MAF = 0.223) is extensively studied and well-known as a
functional modifying polymorphism. Indeed, the p.(His558Arg) may act in a mutation-
specific manner as a risk-allele or a protector allele in the presence of other rare and/or
causal highly penetrant variants in the same gene or in separate gene [22–25].

Due to the close physical genetic distance between the Ala572 and His558, both
alleles are in the “cis” phase. Thus, Ala572 and His558 are invariably linked. This “cis”
configuration has been confirmed by Tester et al. [24]. Of note, in our cases, the His558Arg
polymorphism was found in a homozygous state in all family members.

It is noteworthy that no other clinically relevant variants that may explain the pheno-
type in this family were found. More specifically, genes implicated in MVP, valvulopathies,
and cardiac channelopathies were targeted and screened.

Both symptomatic family members (I-2 and II-2) carried the two variants. The fa-
ther and the paucisymptomatic daughter (II-1) carried only the p.(His558Arg) polymor-
phism (Figure 3).

More recently, another daughter of the family has been recruited for clinical and
genetic screening. Her cardiac evaluation showed no MVP (Figure 4). Sanger sequencing
revealed the absence of the SCN5A:p.(Ala572Asp) variant. She carried only the common
SCN5A:p.(His558Arg) polymorphism (Figure 5).
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3. Discussion

We report a family with bileaflet MVP female cases and a history of resuscitated SCD
and syncope episodes. Whole exome sequencing of the family allowed us to identify a
rare heterozygous variant SCN5A:p.(Ala572Asp) in the index case and her symptomatic
daughter and the common polymorphism p.(His558Arg) in the same gene.

The SCN5A gene encodes the α-subunit of the voltage-gated sodium channel (Nav1.5),
a key regulator of the inward sodium current. Mutations in the SCN5A gene cause different
cardiac channelopathies with diverse phenotypes such as familial atrial fibrillation type
10 (OMIM#614022), Brugada syndrome (OMIM#601144), and long QT syndrome type
3 (OMIM#603830) [26–28]. SCN5A mutations have been also identified in patients with
primary cardiomyopathies [26,29]. In addition to the pleiotropic nature of the SCN5A
gene, intrafamilial phenotypic variability has been recently reported. Indeed, Balla et al.
identified an SCN5A variant (p.Leu135Pro) in several family members with multiple cardiac
diseases ranging from Brugada syndrome to arrhythmogenic cardiomyopathy [30].

The association of myxomatous bilealflet MVP and the SCN5A gene has been reported
twice. Missov et al. identified a mutation in the SCN5A gene in a female MVP patient with
out-of-hospital cardiac arrest and flail posterior leaflet leading to a severe eccentric MR [30].
The second reported patient by Mahajan et al. is a young adult woman as well (37 years
old) with history of sudden cardiac arrest during a dance class. Two missense variants have
been identified in this patient in SCN5A and LMNA genes [31]. Of note, our index case is
42 years old and her daughter (subject II-2) presented her first arrhythmic event at the age
of 11 years old.

The SCN5A:p.(Ala572Asp) found in the present family has been studied by Tester et al.
in order to assess its pathogenicity and contribution to the physiopathology of Long QT
Syndrome (LQTS) [24]. Functional studies showed no gating kinetic or current density
differences compared with wild-type channels when Asp572 was studied in the back-
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ground of His558. However, when expressed with Arg558, significant kinetics changes
were found [24]. Moreover, a threefold increase in late/persistent sodium current and
slower time constants of recovery from inactivation were observed [24]. The authors
have concluded that the presence of the p.His558Arg polymorphism along with the
p.Ala572Asp variant produced Nav1.5 channels with moderate to altered LQT3-like gain-
of-function properties [24].

Furthermore, the SCN5A:p.Ala572Asp mutation has been found in approximately 3%
of European torsades de pointes–positive congestive heart failure or myocardial infarction
cases compared to 0.7% of European controls [32,33]. More interestingly, the same mutation
has been identified in 1.6% of female SCD cases compared with 0.27% of controls [32,34].
Thus, SCN5A:p.Ala572Asp seemed to be overrepresented in female proarrhythmic cases.

Ventricular and supraventricular arrhythmias were associated with complications
of MVP [1,8,35]. Indeed, about 66% of MVP patients have a higher prevalence of ven-
tricular arrhythmias (34%) with premature ventricular contractions as the most common
pattern [35,36]. In addition, early repolarization and QT dispersion have been documented
in MVP cases and suggested as arrhythmogenic factors [2,37].

Hourdain et al. reported the largest cohort of resuscitated patients with SCD in whom
MVP was the only detectable cause [9]. MR has been demonstrated to be an independent
arrhythmogenic risk factor. Nevertheless, polymorphic ventricular arrhythmias originating
from the posterior papillary muscle with typical prolonged duration were reported as
frequent and represented the main ventricular arrhythmia triggers. Long-term follow-up
revealed the recurrence of life-threatening arrhythmias in those patients [9].

In the present family study, WES data were analyzed with a primary focus on genes
related to MVP such as DCHS1 and DZIP1 but also on genes implicated in valvular
and aortic defects. The only relevant variants found are SCN5A:p.(Ala572Asp) and
SCN5A:p.(His558Arg).

In light of these findings, we hypothesized that the genetic substrate of arrhythmic
MVP leading to life-threatening arrhythmias could be attributed to variants in the cardiac
sodium channel.

In conclusion, MVP is an underestimated cause of arrhythmic SCD, mostly in young
adult women. Genetic testing may play a crucial role to help stratify patients for more
personalized clinical management and to identify at-risk family members early.

4. Materials and Methods

This study was conducted according to the principles of the Declaration of Helsinki
and to the ethical standards of the first author’s institutional review board (Registration
number: 2016-A00958-53).

4.1. Whole Exome Sequencing (WES)

Peripheral blood sample was collected after obtaining written informed consent from
all family members included in this study or their guardians. Genomic DNA was extracted
by standard techniques.

Family based WES was performed using the NimbleGen SeqCap EZ MedExome
kit according to the manufacturer’s protocol (Roche Sequencing Solutions, Madison, MI,
USA). Paired-end 150 bp reads from the DNA libraries were sequenced using Illumina
NextSeq 500 platform (Illumina, San Diego, CA, USA). Raw fastQ files were aligned to
the hg19 reference human genome (University of California Santa Cruz, UCSC) using the
maximum exact matches algorithm in BWA software. Alignment quality was evaluated
using Qualimap 2.2.1.

Variant calling and annotation were performed using GATK and ANNOVAR best
practices, respectively. Variant annotation and exome analysis were performed with VarAFT
software, version 2.17 (http://varaft.eu, accessed on 15 July 2022).

http://varaft.eu
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4.2. In Silico Analysis Tools
Variant Prioritization

Variant prioritization was carried out using Variant Annotation and Filtering Tool
(VarAFT http://varaft.eu/, accessed on 15 July 2022). A pedigree-based analysis was
performed considering autosomal dominance and recessivity as well as X-linked dominance
and recessivity patterns of inheritance.

A pedigree-based analysis was performed considering both “common disease-rare
variant” and “common disease-common variant” hypotheses. Our strategy was driven by
the high prevalence of the MVP in the general population. Thus, we removed non-coding
and synonymous variants, and no frequency filter was applied.
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