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a b s t r a c t

To obtain accurate estimates for biodiversity and ecological studies, metabarcoding studies should be 
carefully designed to minimize both false positive (FP) and false negative (FN) occurrences. Internal controls 
(mock samples and negative controls), replicates, and overlapping markers allow controlling metabarcoding 
errors but current metabarcoding software packages do not explicitly integrate these additional experi
mental data to optimize filtering. We have developed the metabarcoding analysis software VTAM, which 
uses explicitly these elements of the experimental design to find optimal parameter settings that minimize 
FP and FN occurrences. VTAM showed similar sensitivity, but a higher precision compared to two other 
pipelines using three datasets and two different markers (COI, 16S). The stringent filtering procedure im
plemented in VTAM aims to produce robust metabarcoding data to obtain accurate ecological estimates and 
represents an important step towards a non-arbitrary and standardized validation of metabarcoding data 
for conducting ecological studies. VTAM is implemented in Python and available from: https://github.com/ 
aitgon/vtam. The VTAM benchmark code is available from: https://github.com/aitgon/vtam_benchmark.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The analysis of environmental DNA (eDNA) using metabarcoding 
has become a powerful approach to studying biodiversity [33,36]. 
DNA metabarcoding offers a cost-efficient, (often) non-invasive, and 
highly sensitive approach for assessing biological diversity from di
verse environmental sources including water, soil, bulk samples, 
sediment, or feces [15,2,24]. However, DNA metabarcoding is prone 
to a series of now well-documented methodological pitfalls that 
pave the way from fieldwork to the desktop, passing by the 
benchtop, and render metabarcoding data especially prone to false 
negatives (FN), and false positives (FN) [1,43]. If not correctly ad
dressed, FN and FP can hinder robustness, repeatability, and 

comparability between ecological studies [13,39,8]. Many authors 
are therefore in search of non-arbitrary and adequate metabarcoding 
data filtering strategies to standardize biodiversity analyses 
[11,29,4]. In particular, accurate and exhaustive curation of FP and 
ensuring repeatability by using technical replicates have proven 
essential for producing accurate ecological estimates [8,25]. These 
bioinformatic curation steps involve a series of good practices in 
study design, notably, the systematic use of mock community 
samples, negative controls, and technical replicates [29,40,5]. How
ever, the use of mock community and negative control samples in 
bioinformatics pipelines was often limited to post-hoc analyses by 
the user to verify the quality expectations (e.g. [23,30,42]).

To date, several original denoising or clustering algorithms are 
available such as Swarm [26], Unoise [18], Deblur [3], and the widely 
used DADA2 [9]. These denoising and clustering algorithms are gen
erally efficient for filtering most PCR and sequencing errors, but they 
cannot account for inter-sample contamination, tag-jump, and chi
meras and therefore must be combined with other tools. In such 

Computational and Structural Biotechnology Journal 21 (2023) 1151–1156

https://doi.org/10.1016/j.csbj.2023.01.034 
2001-0370/© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

]]]] 
]]]]]]

⁎ Corresponding authors.
E-mail addresses: aitor.gonzalez@univ-amu.fr (A. González),  

emese.meglecz@imbe.fr (E. Meglécz).
1 Present address: Institut Curie, LSMP, CurieCoreTech, Paris, France

http://www.sciencedirect.com/science/journal/20010370
www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.01.034
https://github.com/aitgon/vtam
https://github.com/aitgon/vtam
https://github.com/aitgon/vtam_benchmark
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2023.01.034
https://doi.org/10.1016/j.csbj.2023.01.034
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.01.034&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.01.034&domain=pdf
mailto:aitor.gonzalez@univ-amu.fr
mailto:emese.meglecz@imbe.fr


integrated workflows (e. g. QIIME2, [6]; Mothur, [34]; PEMA, [42]; 
SLIM, [17]) several tools are used to denoise data, but control samples 
(mocks or negatives) are not used explicitly for conducting the filtering 
parametrization and obtaining robust and accurate results. Although 
the integration of control samples (mock and negative) is included in 
the metabaR [44] and Begum [41] programs, none of these programs 
use an explicit filtering parametrization based on control samples to 
minimize FP and FN. Instead, they provide graphs for helping users to 
establish filtering parameters. Yet, control samples have been shown 
extremely useful for determining data filtering thresholds and dis
carding false positives from metabarcoding data [11]. Moreover, mock 
community samples can be used to ensure the comparability of data 
between distinct high-throughput sequencing runs [12,40]. In these 
latter cases, negative and mock community samples were processed 
explicitly to set optimal parameters for validating metabarcoding data 
and standardizing biodiversity analyses across samples and High 
Throughput Sequencing (HTS) runs.

Here we introduce VTAM (Validation and Taxonomic Assignment of 
Metabarcoding data), a variant-based filtering pipeline that deals with 
Amplicon Sequence Variants (ASVs), which is based on the method 
described in [11]. VTAM processes explicitly the negative control and 
mock samples to determine optimal filtering parameter settings for 
minimizing both false negatives (FN) and false positives (FP), therefore 
ensuring a balance between the two main types of errors in meta
barcoding studies. Additionally, VTAM addresses other methodological 
pitfalls known to be associated with eDNA metabarcoding (PCR errors, 
chimeras, and pseudogenes; see Table 1 in Supplementary Information 
1) and includes additional features that are unique or rarely included in 
published pipelines: (i) the explicit use of replicates to ensure repeat
ability; (ii) the possibility to integrating multiple overlapping markers 
to further avoid false negatives [12].

2. Materials and methods

2.1. Implementation

VTAM is a command-line application that runs on Linux, MacOS 
or Windows Subsystem for Linux (WSL) based on the method de
scribed in [11]. VTAM is implemented in Python3, using a Conda 
environment to ensure repeatability and easy installation of VTAM 
and these third-party applications: WopMars (https://github.com/ 
aitgon/wopmars/), NCBI BLAST, Vsearch [32], Cutadapt [27]. Data is 
stored in an SQLite database that ensures traceability. Detailed 
documentation is available at https://vtam.readthedocs.io/en/latest/.

The algorithm is described in detail in Supplementary Information 
1. First raw reads are merged, demultiplexed, and trimmed. Then 
amplicon sequence variants (ASVs; unique sequences characterized by 
the number of underlying reads) are computed and ASV read counts in 
different samples and replicates are stored in an SQLite database.

Afterward, the VTAM “filter” command addresses known pitfalls of 
metabarcoding. The FilterLNF (Filter Low Frequency Noise) and 
FilterPCRerror filters eliminate occurrences (presence of an ASV in a 
sample-replicate) with a low relative or absolute frequency. These filters 
are based on the hypothesis that low read counts are due to weak cross- 
sample or exogenous contamination, PCR/sequencing errors, and tag- 
jump. Occurrences are filtered out by the LFN filters if they have low 
read counts either in absolute terms (Nijk < lfn_read_count_cutoff) or 
compared to the total number of reads of the sample-replicate (Nijk/ 
Njk < lfn_sample_replicate_cutoff) or compared to the total number of 
reads of the ASV (Nijk/Ni < lfn_variant_cutoff), where Nijk is the read 
count of ASV i in sample j and replicate k, Njk is the total number of 
reads in sample j of replicate k and Ni is the total number of reads of ASV 
i in the sequencing run. The FilterPCRerror discards occurrences if an 
ASV closely matches another ASV with a significantly higher number of 
reads. The cut-off proportion of FilterPCRerror and all three cut-offs of 
the filterLFN can be obtained in the optimize step (see below).

Two filters eliminate non-reproducible occurrences 
(FilterMinReplicateNumber), or whole replicates (FilterRenkonen). 
Chimeras are eliminated by the FilterChimera, and pseudogenes and 
spurious sequences by FilterCodonStop and FilterIndel.

After the initial low stringency filtering, known true positives 
(expected occurrences in mock samples) and false positives (un
expected occurrences in control samples) are detected. This in
formation is used by the VTAM “optimize” command to determine 
optimal parameter values for the FilterFLN and FilterPCRerror steps. 
This command uses the frequency of unexpected variants in mock 
samples to suggest a limit for lfn_sample_replicate_cutoff, and the 
proportion of the closely matching expected and unexpected ASV 
read counts for FilterPCRerror. The other two cutoffs are determined 
by counting the FP and FN for the combination of a series of these 
two parameters and the users can choose the compromise between 
FP and FN. The “filter” command can then be run again with the 
optimized parameters (Fig. 1). The “pool” command is then used to 
produce a single ASV table for multiple overlapping markers by 
grouping variants identical in their overlapping regions. Finally, a 
taxonomic assignment based on the Lowest Taxonomic Group 
method [11] is performed.

2.2. Benchmarking

We have tested VTAM 0.2.0 on two HTS datasets of Cytochrome 
Oxydase subunit I (COI) obtained from fish and bat feces [11,23] and a 
16 S dataset from shark gut content [19]. All three datasets included both 
negative and positive (mock samples) controls, as well as technical (PCR) 
replicates in their experimental design. Most samples of the fish dataset 
were from freshwater, but five samples contained feces from marine 
fishes. We then compared the results obtained from VTAM to those 
obtained using the DALU and OBIbaR pipelines. The DALU pipeline is 
based on the denoising algorithm of DADA2 1.12.1 [9], followed by LULU 
0.1.0 [22]. The OBIbaR pipeline starts with filters implemented by OBIT
ools3 3.0.1b19 [7], followed by metabaR 1.0.0 R package [44]. To ensure 
comparability as much as possible, DALU and OBIbaR pipelines were 
completed using steps equivalent to VTAM: i) replicates were merged 
using the equivalent to the MinReplicateNumber step of VTAM; ii) 
pseudogenes were eliminated by the equivalent of FilterCodonStop and 
FilterIndel for the COI datasets, and iii) chimeras were eliminated by the 
equivalent of FilterChimera. Occurrences with a low number of reads are 
frequently eliminated at the end of analyses, using arbitrary thresholds 
[25]. Hence, the DALU and OBIbaR pipelines were both completed using 
0, 10, 40, and 60 as a cut-off of the minimum number of reads for all three 
datasets. These values were based on the suggested cut-offs optimized by 
VTAM (10 for fish, 40 for shark, 60 for bat). For VTAM, this filtering step is 
included by default and its parameter is established by the “optimize” 
command. Taxonomic assignments were done by VTAM’s “taxassign” 
command for all three pipelines to ensure homogeneity. Detailed pro
tocols are found in Supplementary Information 2 and the result of each 
filtering pipeline is available at https://osf.io/rtngk/.

To compare the performance of pipelines we estimated their 
sensitivity (TP/(TP + FN)), and their precision (TP/(TP + FP)), where 
TP, FP and FN are the numbers of true positives, false positives, and 
false negatives, respectively [21]. Finally, the α-diversity and β-di
versity estimates were calculated based on the ASV richness and the 
Jaccard distances respectively, and compared between the pipelines 
by a t-test using R [31] and the package vegan [28].

3. Results

3.1. Precision and sensitivity

Based on the control samples, the precision (TP/(TP+FP) and 
sensitivity (TP/(TP+FN)) were measured for the three pipelines 
(Fig. 2). Expectedly, the precision of the DALU and OBIbaR pipelines 
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increased with the minimum read count cut-off. While the precision 
of the OBIbaR pipeline with the minimum read count cut-off 60 was 
comparable to the precision of VTAM for the fish and bat datasets, it 
decreased rapidly with the other cut-offs. Moreover, the precision of 
the DALU pipeline was lower than that of the VTAM even with the 
highest tested minimum read count cut-off 60.

Sensitivity was high (0.95–1)Agorize for all datasets and pipe
lines, and it was independent of the minimum read count cut-off for 
most comparisons. However, for the bat dataset with the DALU pi
peline, sensitivity was the highest with the lowest minimum read 
count cut-off (0) but decreased with increasing minimum read count 
cut-off, suggesting a trade-off between sensitivity and precision. 
Overall, the filtering parametrization based on control samples (in
cluding but not limited to the read count cut-off) implemented by 
VTAM allowed us to achieve high precision and sensitivity, out
performing the other pipelines.

Furthermore, we reviewed the ASVs found in the five marine 
samples from the fish dataset. The ASVs validated by DALU and 
OBIbaR (using 10 as read count cut-off) contained false positives 
likely to originate from tag-jump (8 for OBIbaR 41 for DALU), since 
they were variants also found in freshwater samples and from taxa 
that cannot be encountered in marine environments. Based on these 
marine samples VTAM revealed far higher precision (1.00) than 
OBIbaR (0.66) or DALU (0.19).

3.2. The effect of the filtering procedure on biodiversity estimates

The ASV richness was significantly higher in DALU and OBIbaR 
compared to VTAM, in the bat dataset, for all read count cut-offs, in 
the fish dataset using 0 and 10 cut-offs and in the shark dataset using 
0, 10, and 40 cut-offs (Fig. 3, Supplementary Fig. S1, Supplementary 
Table S1). On the contrary, between-sample dissimilarities (related 
to β-diversity) were significantly lower when estimated from data 
obtained from DALU and OBIbaR compared to VTAM in all compar
isons (Fig. 3 and Supplementary Fig. S1). This indicates that VTAM 
filters out more variants per sample and implies the ASV data ob
tained from VTAM has a more discriminating power than the data 
obtained from the other pipelines (Fig. 3).

4. Discussion

4.1. VTAM addresses most technical pitfalls and determines non- 
arbitrary thresholds

The biggest challenge in filtering metabarcoding data is to con
sider the trade-off between false positive (FP) and false negative (FN) 
occurrences. All filtering procedures are a compromise between 
eliminating spurious sequences and losing true signals [16,25,37]. It 
is therefore critical to find optimal filtering parameters to achieve a 

Fig. 1. Workflow of VTAM. 
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balance between false positives and negatives. We have compared 
the performance of VTAM to two different pipelines using three 
different datasets and two different markers. Each pipeline is com
posed of a denoising step (DADA2 and OBITools) enhanced by a 
series of further steps to decrease false positives and thus increase 
precision. The precision of VTAM estimated both from control 
samples or a subset of marine environmental samples is the highest 

among the pipelines, and its sensitivity is also high and similar to the 
sensitivity of the other pipelines. To achieve a similar sensitivity and 
precision to VTAM, the original denoising algorithms (DADA2, 
OBITools) had to be completed by further filtering steps including a 
series of arbitrary cut-offs of minimum read count to find the best 
performance. On the contrary, VTAM integrates several filters to 
control for known artifacts of metabarcoding dealing with false 

Fig. 2. Precision and sensitivity of the three pipelines based on control samples (mock and negative control). The horizontal blue lines give the precision and sensitivity of 
the VTAM software with the given cut-off. The read count cut-off was optimized by VTAM (60 for bat, 10 for fish and 40 for shark). For the DALU and OBIbaR pipelines, 4 cut-offs 
were used based on the optimized VTAM cut-offs and arbitrary values (0, 10, 40, 60).

Fig. 3. ASV richness (A) and beta-diversity (B) of the three metabarcoding pipelines calculated for the three datasets (bat, fish and shark). The diversity estimates were 
calculated based on real samples (without control samples). The bat dataset is the result of diet analyses of different species. Therefore, beta diversity was calculated separately 
within and between bat species. The read count cut-off was 60 for the bat, 10 for the fish, and 40 for shark datasets as optimized by VTAM. * ** * P  <  0.0001, * ** P  <  0.001, * * 
P  <  0.01, * P  <  0.05.
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positives (sequencing and PCR errors, tag-jump, chimeras, pseudo
genes) and repeatability (PCR heterogeneity). Furthermore, the real 
strength of VTAM is to include the explicit and non-arbitrary opti
mization of parameter combinations, while the parametrization 
must be done separately and more subjectively for the other pipe
lines. The underlying hypothesis of the parameter optimization 
based on control samples is that the best parameter setting that 
produces clean control samples can also be applied to real samples 
and reduces FP and FN in the whole dataset. If all species are present 
in an equimolar concentration in the mock and amplify well by PCR, 
the parameter setting suggested by the optimize command can be 
very stringent, and rare or badly amplified species can be eliminated 
from real samples. This calls for the careful construction of mock 
communities to include species representative of the diversity of the 
targeted group. Tag-jump [35] and cross-sample contamination are 
rarely explicitly considered in current metabarcoding pipelines. 
However, failing to filter out these artifacts is likely to inflate false 
positive occurrences, which in turn skew β-diversity estimates by 
inflating inter-sample similarities. This is the pattern we observed in 
our comparison: the DALU and OBIbaR pipelines produced a sig
nificantly higher ASV richness per sample than VTAM, but dissim
ilarities between samples were lower. Moreover, several false 
positives due to tag-jump were not filtered out by DALU and OBIbaR 
in real (marine) samples.

The use of technical replicates is an important tool to minimize 
both false positives and false negatives [2,20]. False positives can be 
strongly reduced by accepting an occurrence (presence of a variant 
in a sample) only if the variant is present in at least a certain number 
of replicates. This strategy is strongly advised to reduce experi
mental stochasticity to validate ASV occurrences. Furthermore, re
moving highly dissimilar replicates from other replicates of the same 
sample (renkonen filter) further reduces the effect of experimental 
stochasticity [14]. Although these repeatability filters are im
plemented in VTAM and metabaR, they are absent from all other 
existing tools.

4.2. Not only bioinformatics: the importance of the benchtop

Adequate use of VTAM implies a thorough experimental design 
and reAgorizelies on negative and positive controls. In particular, 
standardized mock samples are critical. While commercial mock 
samples are available for some taxonomic groups (bacteria and 
fungi), the metabarcoders that study metazoa or plants must not 
neglect the construction of adequate mock samples to standardize 
their analyses (see: [12,30]). Apart from finding adequate para
meters for data analyses, mock samples are also useful in ensuring 
that sufficient sequencing coverage has been achieved. Furthermore, 
in large-scale studies involving several distinct high-throughput 
sequencing runs, the systematic use of identical mock samples as 
standards for parametrization of the filtering should minimize the 
effect of random fluctuations and make samples comparable be
tween runs [12,40].

Finally, the use of multiple primer sets presents an invaluable 
means for limiting false negatives [12,37]. It improves the detection 
of taxa and haplotypes by mitigating the loss of poorly amplified 
taxa or haplotypes by a single primer pair.

4.3. Implications in metabarcoding studies

The choice of metabarcoding data filtering and validation stra
tegies is critical for obtaining robust data and accurate ecological 
estimates [16,37,43]. Only robust and standardized filtering are ex
pected to produce adequate data for conducting thorough meta
phylogeographic studies (e.g. [38]), ecological studies (e.g. [40]), and 
ecosystem monitoring (e.g. [10]). In this perspective, a precise 
curation of false positives (e.g. sequencing and PCR errors, chimeras, 

internal and external contamination) and ensuring repeatability by 
using technical replicates have both proven essential for producing 
accurate biodiversity estimates [8,25]. The stringent filtering pro
cedure implemented in VTAM aims to produce robust meta
barcoding data for the estimation of accurate ecological estimates 
and represents an important step towards the standardization of the 
validation of metabarcoding data for conducting ecological studies.

5. Conclusion

VTAM is a comprehensive pipeline that provides tables of vali
dated ASVs with taxonomic assignments from raw input FASTQ files. 
VTAM addresses many technical issues listed in the metabarcoding 
literature for validating metabarcoding data by including features 
rarely considered in most metabarcoding pipelines: (i) parameter 
optimization based on control samples, (ii) explicit handling of re
plicates and (iii) multiple overlapping markers. Its precision is higher 
than other frequently used bioinformatic pipelines. Specifically, the 
filtering procedure of VTAM explicitly uses control samples and 
technical replicates to provide an accurate curation of false positives. 
The optimization procedure based on control samples provides an 
objective data filtering strategy to standardize biodiversity analyses. 
While the stringent filtering of VTAM decreases (within-sample) α- 
diversity and increases (between-samples) β-diversity, it has proven 
to provide accurate estimates to conduct robust ecological studies 
(e.g. [40]). We, therefore, believe VTAM represents an innovative and 
so-expected tool for the robust validation of metabarcoding data and 
for conducting ecological analyses.
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