Mohamed Sami Cherif

Djamal Habet

Matthieu Py

From Crossing-Free Resolution to Max-SAT Resolution

Keywords: 2012 ACM Subject Classification Theory of computation → Proof theory Satisfiability, Proof, Max-SAT Resolution Digital Object Identifier 10.4230/LIPIcs.CP.2022.12

Adapting a SAT resolution proof into a Max-SAT resolution proof without considerably increasing its size is an open problem. Read-once resolution, where each clause is used at most once in the proof, represents the only fragment of resolution for which an adaptation using exclusively Max-SAT resolution is known and trivial. Proofs containing non read-once clauses are difficult to adapt because the Max-SAT resolution rule replaces the premises by the conclusions. This paper contributes to this open problem by defining, for the first time since the introduction of Max-SAT resolution, a new fragment of resolution whose proofs can be adapted to Max-SAT resolution proofs without substantially increasing their size. In this fragment, called crossing-free resolution, non read-once clauses are used independently to infer new information thus enabling to bring along each non read-once clause while unfolding the proof until a substitute is required.

Introduction

The maximum satisfiability (Max-SAT) problem is an optimization extension of the satisfiability (SAT) problem and consists, given a formula in Conjunctive Normal Form (CNF), in determining the maximum number of clauses that it is possible to satisfy by an assignment of the variables. This well known formalism is used to represent and solve many real-world and crafted problems making it of great academic and industrial interest [START_REF] Bacchus | MaxSAT Evaluation 2021: Solver and Benchmark Descriptions[END_REF][START_REF] Bacchus | Maximum Satisfiability[END_REF]. SAT and Max-SAT are strongly related and share many aspects. In fact, SAT solving techniques are often used in the context of Max-SAT solving, particularly in SAT-based and Branch and Bound (BnB) algorithms for Max-SAT [START_REF] Abramé | Ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver[END_REF][START_REF] Ansótegui | SAT-based MaxSAT algorithms[END_REF][START_REF] Li | Combining Clause Learning and Branch and Bound for MaxSAT[END_REF]]. Yet, in theory, bridging the gap between SAT and Max-SAT inference remains one of the main challenges in the last decade.

One of the first proof systems for Max-SAT is based on an inference rule called Max-SAT resolution [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF]16,[START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF], which is an extension of the resolution rule [START_REF] Alan | A Machine-Oriented Logic Based on the Resolution Principle[END_REF] introduced in the context of SAT. Max-SAT resolution is sound, complete and is the most studied inference rule for Max-SAT, both in theory and practice [START_REF] Abramé | Ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver[END_REF][START_REF] Bonet | Equivalence Between Systems Stronger Than Resolution[END_REF][START_REF] Larrosa | Towards a Better Understanding of (Partial Weighted) MaxSAT Proof Systems[END_REF][START_REF] Chu | New Inference Rules for Max-SAT[END_REF][START_REF] Narodytska | Maximum Satisfiability Using Core-Guided Max-SAT Resolution[END_REF][START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF][START_REF] Py | Inferring Clauses and Formulas in Max-SAT[END_REF]. However, adapting a resolution proof to get a valid Max-SAT resolution proof of reasonable size remains an open problem. Bonet et al. state that "it seems difficult to adapt a classical resolution proof to get a Max-SAT resolution proof, and it is an open question if this is possible without increasing substantially 1 the size of the proof " [START_REF] Maria | Resolution for Max-SAT[END_REF]. Indeed, unlike resolution, the Max-SAT resolution rule replaces the premises with the conclusions, which is necessary to maintain 2 Preliminaries

Definitions and Notations

Let X be the set of propositional variables. A literal l is a variable x ∈ X or its negation x.

A clause C is a disjunction (or a set) of literals. If |C| = 1, C is a unit clause. A formula in Conjunctive Normal Form (CNF) ϕ is a conjunction (or a multiset) of clauses. An assignment I : X → {true, f alse} maps each variable to a boolean value and can be represented as a set of literals. A literal l is satisfied (resp. falsified) by an assignment I if l ∈ I (resp. l ∈ I). A clause C is satisfied by an assignment I if at least one of its literals is satisfied by I, otherwise it is falsified by I. The empty clause □ contains zero literals and is always falsified. A clause C is a tautology if it contains both a literal l and its negation l, i.e., ∃l ∈ C s.t l ∈ C, and in such case it is always satisfied. A clause C opposes a clause C ′ if C contains a literal whose negation is in C ′ , i.e., ∃l ∈ C s.t l ∈ C ′ . We denote var(l), var(C) and var(ϕ) the variables appearing respectively in the literal l, the clause C and the formula ϕ. The width of a clause C is the number of literals occurring in it. A CNF formula ϕ is satisfied by an assignment I, that we call model of ϕ, if each clause C ∈ ϕ is satisfied by I, otherwise it is falsified by I.

Solving the Satisfiability (SAT) problem consists in determining whether there exists an assignment I that satisfies a given CNF formula ϕ. In the case where such an assignment exists, we say that ϕ is satisfiable, otherwise we say that ϕ is unsatisfiable or inconsistent. The cost of an assignment I, denoted cost I (ϕ), is the number of clauses falsified by I. The Maximum Satisfiability (Max-SAT) problem is an optimization extension of SAT which, for a given CNF formula ϕ, consists in determining the maximum number of clauses that can be satisfied by an assignment of the variables. Equivalently, it consists in determining the minimum number of clauses that each assignment must falsify, i.e., min

I cost I (ϕ).

Resolution for SAT

A well-known proof and refutation system for SAT is based on the resolution rule [START_REF] Alan | A Machine-Oriented Logic Based on the Resolution Principle[END_REF]. Given two opposed clauses, this rule, defined below, deduces a resolvent clause which can be added to the formula. A resolution proof or derivation of a clause C is a finite sequence of resolutions starting from the clauses of ϕ and deducing C usually represented as a finite sequence of clauses. If C is the empty clause □, the proof is referred to as a refutation of ϕ. A resolution proof can also be represented in the form of a Directed Acyclic Graph (DAG) whose nodes are clauses in the proof either having two or zero incoming arcs (resp. if they are resolvents or clauses of the initial formula). The size of a resolution derivation π, denoted s(π), is the number of resolvents in it whereas its width, denoted w(π), is the maximum width of all its clauses.

▶ Definition 1 (Resolution [START_REF] Alan | A Machine-Oriented Logic Based on the Resolution Principle[END_REF]). Given two opposed clauses C 1 and C 2 , the resolution rule is defined as follows:

C1 = x ∨ A C2 = x ∨ B C3 = A ∨ B
Many restricted classes of resolution have been studied in the literature, e.g read-once resolution [START_REF] Iwama | Intractability of Read-Once Resolution[END_REF], tree (or tree-like) resolution [START_REF] Kundu | Tree resolution and generalized semantic tree[END_REF] and linear resolution [START_REF] Loveland | A linear format for resolution[END_REF] among others. In particular, a resolution proof is read-once if each clause is used at most once in the proof. Similarly, a resolution derivation is tree-like if every intermediate clause, i.e., resolvent, is used at most once in the derivation. Linear resolution, defined below, lies between tree-like and general resolution in terms of proof complexity [START_REF] Buresh | The Complexity of Resolution Refinements[END_REF][START_REF] Buss | On Linear Resolution[END_REF]. In this fragment, the proofs are linear in the sense that each deduced clause is used as premise in the next resolution step. Note that, when the first condition of (c) holds in the definition, the clause D i is called the input parent clause of C i+1 .

▶ Definition 2 (Linear resolution [START_REF] Loveland | A linear format for resolution[END_REF]). Let ϕ be a CNF formula and C be a clause. A linear resolution derivation of

C from ϕ is a sequence of clauses C 1 , ..., C m such that: (a) C 1 is a clause in ϕ (b) C m is the clause C (c) For every i < m, C i+1 is the resolvent of C i either with a clause D i from ϕ or with a clause C k for some k < i.

Resolution for Max-SAT

One of the first and most studied proof systems for Max-SAT is the Max-SAT resolution calculus (MaxRes) which relies on an inference rule extending resolution for Max-SAT [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF]16,[START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF]. Other than the resolvent clause, this rule, called Max-SAT resolution and defined below, introduces new clauses referred to as compensation clauses and essential to C P 2 0 2 2

12:4

From Crossing-Free Resolution to Max-SAT Resolution preserve Max-SAT equivalence. As a sound and complete rule for Max-SAT [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF], Max-SAT resolution plays an important role in the context of Max-SAT theory and solving [START_REF] Bonet | Equivalence Between Systems Stronger Than Resolution[END_REF][START_REF] Larrosa | Towards a Better Understanding of (Partial Weighted) MaxSAT Proof Systems[END_REF][START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF][START_REF] Py | Inferring Clauses and Formulas in Max-SAT[END_REF].

In particular, for a given CNF formula, it is possible to generate a Max-SAT resolution proof of its optimum by applying the saturation algorithm [START_REF] Maria | Resolution for Max-SAT[END_REF]. Furthermore, it is extensively used and studied in the context of Branch and Bound algorithms for Max-SAT [START_REF] Abramé | Ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver[END_REF][START_REF] Sami Cherif | Understanding the power of Max-SAT resolution through UP-resilience[END_REF][START_REF] Kügel | Improved Exact Solver for the Weighted MAX-SAT Problem[END_REF][START_REF] Chu | New Inference Rules for Max-SAT[END_REF] and more marginally in the context of SAT-based ones [START_REF] Heras | Read-Once Resolution for Unsatisfiability-Based Max-SAT Algorithms[END_REF][START_REF] Narodytska | Maximum Satisfiability Using Core-Guided Max-SAT Resolution[END_REF].

▶ Definition 3 (Max-SAT equivalence). Let ϕ and ϕ ′ be two CNF formulas. ϕ and ϕ ′ are Max-SAT equivalent iff for any assignment I : var(ϕ) ∪ var(ϕ ′) → {true, f alse}, we have cost

I (ϕ) = cost I (ϕ ′).
▶ Definition 4 (Max-SAT resolution [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF]16,[START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF]). Given two opposed clauses C 1 and C 2 , the Max-SAT resolution rule is defined as follows:

C1 = x ∨ A C2 = x ∨ B Cr = A ∨ B CC1 = x ∨ A ∨ B CC2 = x ∨ A ∨ B
where C r is the resolvent clause and CC 1 , CC 2 are compensation clauses.

Note that the following rewriting is used to represent the compensation clauses in compacted form:

C ∨ a 1 ∨ a 2 ∨ ... ∨ a n = (C ∨ a 1) ∧ (C ∨ a 1 ∨ a 2) ∧ ... ∧ (C ∨ a 1 ∨ a 2 ∨ ... ∨ ∨a n).
This rewriting was introduced in [START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF] as a recursive rule to transform the compensation clauses into CNF form. This also entails that the Max-SAT resolution rule depends on the ordering of the literals, as reported in [START_REF] Maria | Resolution for Max-SAT[END_REF][START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF]. For the sake of simplification, we will allow the use of this rewriting as two full-fledged rules to manipulate clauses in compacted form. We will refer to the left-right rewriting as expansion and right-left one as compaction. This may entail abusing some notations but it is useful to further simplify the proofs. Furthermore, given three sets of literals A, B and C, the equality C ∨ A ∨ B * = C ∨ A ∨ A ∨ B is sound for Max-SAT as reported in [START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF] (c.f. Remark 13) and may be as such used in the proofs. We discuss these subtleties following Theorem 14 in Section 4.

A Max-SAT resolution proof or derivation of a formula ϕ ′ from ϕ is a finite sequence of Max-SAT resolutions starting from the clauses of ϕ and deducing ϕ ′ and is usually represented as a finite sequence of formulas. Note that we may allow the addition of tautological clauses to any formula in the proof. We discuss this syntactic subtlety at the end of Section 4. A Max-SAT resolution proof can also be represented as a bipartite DAG whose nodes are either clauses or inference steps (in which case they will be omitted for more simplicity). A sequence of Max-SAT resolution steps deducing one empty clause is referred to as Max-SAT resolution refutation. For a given CNF formula, it is possible to generate a Max-SAT resolution proof of its optimum by applying the saturation algorithm [START_REF] Maria | Resolution for Max-SAT[END_REF]. Note that other inference rules and proof systems were also studied in the context of Max-SAT [START_REF] Bonet | Equivalence Between Systems Stronger Than Resolution[END_REF][START_REF] Filmus | MaxSAT Resolution and Subcube Sums[END_REF][START_REF] Larrosa | Towards a Better Understanding of (Partial Weighted) MaxSAT Proof Systems[END_REF][START_REF] Chu | A Clause Tableau Calculus for MaxSAT[END_REF][START_REF] Py | Inferring Clauses and Formulas in Max-SAT[END_REF].

Unlike resolution, the Max-SAT resolution rule replaces the premises by the conclusions. Larrosa et al. describe Max-SAT resolution as "a movement of knowledge" [START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF]. Because of this specificity, it is not easy to adapt a resolution proof to obtain a Max-SAT resolution proof. Indeed, in resolution proofs, several resolution steps can share the same premise, because the premises are not consumed after the application of a resolution step. On the other hand, the premises of a Max-SAT resolution step are consumed after its application. Consequently, the immediate adaptation of a resolution proof for Max-SAT is only possible if it is read-once [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF][START_REF] Heras | Read-Once Resolution for Unsatisfiability-Based Max-SAT Algorithms[END_REF]. In this fragment, it is simply sufficient to replace every resolution step in the proof by a Max-SAT resolution step to produce a Max-SAT resolution proof of similar size. However, adapting any resolution proof to a Max-SAT proof without substantially increasing its size remains an open problem.

Recent works [START_REF] Filmus | MaxSAT Resolution and Subcube Sums[END_REF][START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF] augment the Max-SAT resolution rule by the split rule defined below, forming a new system stronger than MaxRes and called ResS [START_REF] Larrosa | Towards a Better Understanding of (Partial Weighted) MaxSAT Proof Systems[END_REF], to linearly adapt tree-like resolution refutations into ResS refutations. More specifically, the adaptation takes advantage of the structure of such proofs and applies the split rule, which intuitively allows to duplicate a clause by adding one literal, to fix the non read-once input clauses. Furthermore, the substitution algorithm introduced in [26] also enables to generate substitutes for non read-once clauses using SAT oracles but no guarantee is provided for the size of the computed ResS refutations. To the best of our knowledge, read-once resolution remains the only fragment of resolution for which an adaptation using exclusively Max-SAT resolution is possible without substantially increasing the proof size. In the next section, we define a new refinement of resolution for which this is possible.

▶ Definition 5 (Split). Given a clause C and variable x, the split rule is defined as follows:

C x ∨ C x ∨ C 3

Crossing-Free Resolution

The main difficulty in adapting resolution proofs to Max-SAT resolution ones lies in inferring a substitute for non read-once clauses. Indeed, such clauses must be naturally inferred using Max-SAT resolution while unfolding (i.e., reading and applying) the initial resolution proof, contrary to previous works [START_REF] Filmus | MaxSAT Resolution and Subcube Sums[END_REF][START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF] where non read-once clauses are artificially fixed using the split rule before the actual unfolding of the proof. In this section, we define a new fragment of resolution, referred to as crossing-free resolution. The idea behind this refinement is to ensure enough manoeuvrability of proofs in terms of structure in order to infer substitutes for non read-once clauses when necessary. To this end, we define below the notion of ensuing derivation of a non read-once clause. Intuitively, this particular derivation is ensued from a non read-once clause in the sense that it is sufficient to delimit the impact of its multiple use. Note that a node where a set of given paths in a resolution proof intersect will be referred to as their junction node.

▶ Definition 6 (Ensuing derivation). Let ϕ be a CNF formula and π a resolution derivation of clause C from ϕ. The ensuing derivation of a non read-once clause C ′ in π, denoted ED(C ′), is the sub-derivation of π formed by all the resolution steps in the paths starting from C ′ in π until their first junction node. We call the clause derived in the junction node, the ensued clause of C ′ , denoted EC(C ′).

▶ Example 7. We consider the resolution derivation π represented in Figure 1 of clause

C = x 6 from the formula ϕ = {x 1 ∨ x 3 ∨ x 4 , x 4 ∨ x 5 , x 4 ∨ x 5 , x 1 ∨ x 4 , x 2 ∨ x 4 ∨ x 6 , x 5 ∨ x 7 , x 2 ∨ x 3 ∨ x 7 , x 5 ∨ x 7 }.
The non read-once clauses x 4 and x 2 ∨ x 3 ∨ x 7 and their ensuing derivations are respectively represented in red and blue. Furthermore, we have EC(x 4) = x 6 and EC(x

2 ∨ x 3 ∨ x 7) = x 2 ∨ x 3 .
Recall that clauses are consumed after the application of Max-SAT resolution. Therefore, it seems difficult to adapt resolution derivations in which ensuing derivations of non read-once clauses cross. Indeed, in such cases, the formula can significantly evolve as compensation clauses may be used while others may be generated. As such, crossing-free resolution ensures that ensuing derivations are disjoint, i.e., do not cross, as defined below.

C P 2 0 2 2

12:6

From Crossing-Free Resolution to Max-SAT Resolution

x 4 ∨ x 5 x 4 ∨ x 5 x 1 ∨ x 3 ∨ x 4 x 4 x 1 ∨ x 4 x 2 ∨ x 4 ∨ x 6 x 1 ∨ x 3 x 1 x 2 ∨ x 6 x 3 x 3 ∨ x 6 x 2 ∨ x 3 x 6 x 2 ∨ x 3 ∨ x 5 x 2 ∨ x 3 ∨ x 5 x 5 ∨ x 7 x 2 ∨ x 3 ∨ x 7 x 5 ∨ x 7
Figure 1 Ensuing derivations in a crossing-free resolution proof.

▶ Definition 8 (Crossing-free resolution derivation). Let ϕ be a CNF formula and π a resolution derivation of clause C from ϕ. π is crossing-free iff for every pair of non read-once clauses

(C 1 , C 2), ED(C 1)
and ED(C 2) are disjoint, i.e., they do not contain a shared arc.

▶ Example 9. We consider the same formula ϕ in Example 7. The resolution derivation π of clause C = x 6 from ϕ represented in Figure 1 is crossing-free since the ensuing derivations of the non read-once clauses x 4 and x 2 ∨ x 3 ∨ x 7 are disjoint.

Note that the crossing-free resolution refinement entails an interesting property established in the following proposition. Intuitively, this property ensures that non read-once clauses are used independently to infer new information in crossing-free resolution proofs. This entails that each ensuing derivation in a crossing-free resolution proof can be adapted independently as described in the next section.

▶

From Crossing-Free Resolution to Max-SAT Resolution

In this section, we show that crossing-free resolution derivations can be adapted to Max-SAT resolution derivations modulo some minor syntactic subtleties without substantially increasing their size. In the following proposition, we first provide some patterns which will be encountered in the adaptation.

▶
(a) (A ∨ C) ∧ (B ∨ C) ⊢ M axRes A ∨ B (b) (l ∨ A ∨ C) ∧ (l ∨ B) ⊢ M axRes A ∨ B ∨ C (c) (l ∨ A ∨ C) ∧ (l ∨ B ∨ C) ⊢ M axRes A ∨ B ∨ C
Proof. We provide the proof for case (a) by induction on |C| = n:

If n = 1, then C = {l ′ }. Clearly, (A ∨ l ′) ∧ (B ∨ l ′) ⊢ M axRes A ∨ B by application of a
Max-SAT resolution step on literal var(l ′).

Suppose n > 1 and let l ′ ∈ C. By the induction hypothesis, we can deduce ◀

(A ∨ C) ∧ (B ∨ C \ {l ′ }) ⊢ M axRes A ∨ B ∨ l ′ in n -1 inference steps. Furthermore, B ∨ C = (B ∨ C \ {l ′ }) ∧ (B ∨ l ′) by expansion and (A ∨ B ∨ l ′) ∧ (B ∨ l ′) ⊢ M axRes A ∨ B
Next, we start dealing with the adaptation of crossing-free resolution derivations and particularly ensuing derivations. To generate a substitute for a non read-once clause, note that we can use the literals in the junction nodes (c.f. Lemma 1 in [START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF]) of an ensuing derivation, i.e., nodes where paths starting from the non read-once clause intersect. To generate such substitutes using Max-SAT resolution, we start by dealing with read-once linear parts in the proof. Informally, we want to drag (i.e., bring along) each non read-once clause while unfolding the proof until they are reused. This is formally established for read-once linear parts of the proof in the following lemma. Note that the implications of equality * = in the proof will be further discussed at the end of the section.

▶ Lemma 12. Let ϕ be a CNF formula, π = C 1 , ..., C s(π) be a read-once linear resolution derivation of clause C ̸ = □ from ϕ. We can deduce ϕ ⊢ M axRes C ∧ (C 1 ∨ C) in O(s(π) × w(π)) inference steps.
Proof. Let m = s(π). Since π is read-once, it can be trivially adapted into a Max-SAT resolution derivation of C from ϕ of the same size by replacing every resolution step with a Max-SAT resolution step [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF][START_REF] Heras | Read-Once Resolution for Unsatisfiability-Based Max-SAT Algorithms[END_REF]. Next, we prove by induction on i ∈ {1, .., m -1} that we can infer

C ′ i = C 1 ∨ C i+1 at the i th Max-SAT resolution step: For i = 1, the first Max-SAT resolution on clauses C 1 = l 1 ∨ A 1 and D 1 = l 1 ∨ B 1 w.r.t var(l 1)
generates the following compensation clause:

CC 1|1 = l 1 ∨ A 1 ∨ B 1 * = l 1 ∨ A 1 ∨ A 1 ∨ B 1 = C 1 ∨ C 2 = C ′ 1
Note that to establish the equality * =, we can add the tautological clauses l 1 ∨ A 1 ∨ B 1 ∨ A 1 (or alternatively l 1 ∨A 1 ∨A 1) to the formula) in which case l 1 ∨A 1 ∨A 1 ∨ B 1 can be trivially inferred by compaction. Furthermore, if D 1 is a unit clause, CC 1|1 is not generated. However, we can simply add the tautological clauses From Crossing-Free Resolution to Max-SAT Resolution

l 1 ∨ A 1 ∨ A 1 which correspond to C 1 ∨ C 2 since D 1 = l 1 (i.e., B 1 is empty). C i = l i ∨ A i D i = l i ∨ B i C i+1 = A i ∨ B i CC 1|i = l i ∨ A i ∨ B i C ′ i-1 = C 1 ∨ C i = C 1 ∨ l i ∨ A i C 1 ∨ l i ∨ A i C 1 ∨ A i C 1 ∨ A i ∨ B i C ′ i = C 1 ∨ A i ∨ B i = C 1 ∨ C i+1 var(l i) var(l i)
x 4 x 2 ∨ x 4 ∨ x 6 x 2 ∨ x 6 x 2 ∨ x 3 x 3 ∨ x 6 x 4 x 2 ∨ x 4 ∨ x 6 x 2 ∨ x 6 x 4 ∨ x 2 ∨ x 6 x 2 ∨ x 3 x 3 ∨ x 6 x 2 ∨ x 6 ∨ x 3 x 4 ∨ x 6 x 4 ∨ x 2 ∨ x 6 x 4 ∨ x 6 ∨ x 3 x 4 ∨ x 3 ∨ x 6

Suppose that we can generate

C ′ i-1 = C 1 ∨ C i at the i th -1 Max-SAT resolution step. The i th step on C i = l i ∨ A i and D i = l i ∨ B i w.r.t var(l i) generates the resolvent C i+1 = A i ∨ B i and the compensation clauses CC 1|i = l i ∨ A i ∨ B i and CC 2|i = l i ∨ A i ∨ B.
The induction step to infer C ′ i is represented in Figure 2. Note that similarly to the base case, if D i = l i (i > 1) is a unit clause, i.e., the i th step corresponds to a deletion of literal l i from C i = l i ∨ A i deducing the resolvent C i+1 = A i , the tautological clauses l i ∨ A i ∨ A i can be added to the formula thus replacing CC 1|i in Figure 2. However, as showcased in the same figure, the addition of such clauses in case D 1 is unit can be avoided since the initial expansion step on Next, we establish our main result on the adaptation of crossing-free resolution derivations. The proof in the following theorem particularly deals with the junction nodes in ensuing derivations, i.e., nodes where the paths starting from the non read-once clauses intersect. More specifically, we want to drag or bring along the non read-once clause through these particular nodes. We provide an illustration of a full adaptation in Example 15.

C ′ i-1 suffices to generate C 1 ∨ A i = C 1 ∨ C i+1 = C ′ i . Finally,
▶ Theorem 14. Let ϕ be a CNF formula and π be a crossing-free resolution derivation of clause C from ϕ. We can deduce ϕ ⊢ M axRes C in O(s(π) × (s(π) + w(π)) 2) inference steps. Proof. Property 10 ensures that each ensuing derivation can be adapted independently. Let Cl be a non read-once clause in π and w.l.o.g we only consider it ensuing derivation ED(Cl). We prove that at each step of ED(Cl) deriving clause C ′ , we can infer C ′ and SC ∨ C ′ where SC is either Cl or its substitute in the path leading to C ′ . The proof is by induction on the size of the derivation. The base case where the derivation is empty is trivial. Next, using Lemma 12, we can suppose w.l.o.g that C ′ is derived in a junction node (of paths starting from Cl). Let l ∨ A and l ∨ B be the premises of the resolution step deriving

l ∨ A l ∨ B A ∨ B l ∨ A ∨ B l ∨ A ∨ B Cl ∨ l ∨ A Cl ∨ l ∨ B Cl Cl ∨ l Cl ∨ l ∨ A Cl ∨ A ∨ B Cl ∨ l ∨ A ∨ B Cl ∨ l ∨ A Cl ∨ A Cl ∨ A ∨ B var(l) var(l) var(B) var(l)
l ∨ A l ∨ A A Cl ∨ l ∨ A Cl ∨ l ∨ A Cl Cl ∨ l Cl ∨ l ∨ A Cl ∨ A var(l) var(l)
C ′ = A ∨ B.
The induction hypothesis ensures that there exists a Max-SAT resolution derivation of l ∨ A and C ∨ l ∨ A. As showcased in Figure 4, Cl ∨ l can be used to replace the occurrences of Cl in the derivation of l ∨ B. Note that to avoid using tautological substitutes, we can suppose w.l.o.g that l /

∈ Cl by interchanging the proofs of l ∨ A and l ∨ B when necessary thus entailing a different unfolding order of the original proof and the generation of the exact same clause as a substitute in such nodes. Again, similarly to the left side, the induction hypothesis ensures the existence of a Max-SAT resolution derivation of l ∨ B and Cl ∨ l ∨ l ∨ B and, therefore, Cl ∨ l ∨ B by expansion. Clearly, C ′ = A ∨ B can be derived by Max-SAT resolution and we showcase in Figure 4 how Cl ∨ C ′ = C ∨ A ∨ B can be inferred using the compensation clauses as well as Cl ∨ l ∨ A and Cl ∨ l ∨ B.

Note that the following particular cases can occur:

A or B is empty, in which case a unit clause is used to derive C ′ = A ∨ B. We represent in Figure 5 how to derive Cl ∨ C ′ in case A is empty. The derivation in case B is empty is symmetric and thus omitted. Notice that in the case both A and B are empty, π is a refutation and there is no need to derive Cl ∨ C ′ in the last Max-SAT resolution step. In fact, more generally, this is also not necessary for the last junction node in an ensuing derivation in π. A = B in which case the generated compensation clauses are tautological and are not necessary to derive Cl ∨ C ′ = Cl ∨ A as showcased in Figure 6. Finally, in each junction node we need O(|B|) inference steps to deduce Cl ∨ A ∨ B using case (c) in Proposition 11. Similarly, using expansion on A and pattern (b) in Proposition 11, we need O(|A| × |B|) inference steps to deduce Cl ∨ l ∨ A. It is important to note that the width of the proof may evolve while generating substitutes for non read-once clauses as literals may be added in junction nodes. However, the width remains bounded by w(π) + s(π) and thus each junction node can be adapted in O((w(π) + s(π)) 2) inference steps. Therefore, we conclude that we can deduce ϕ ⊢ M axRes C in O(s(π) × (s(π) + w(π)) 2) inference steps. ◀ ▶ Example 15. We consider the formula ϕ = {x 1 ∨ x 3 ∨ x 4 , x 4 ∨ x 5 , x 4 ∨ x 5 , x 1 ∨ x 4 , x 2 ∨ x 4 ∨ x 6 , x 2 ∨ x 3 } and the derivation π of clause x 6 from ϕ represented in Figure 1. We omit the section of the proof (in blue) deriving clause x 2 ∨ x 3 for simplicity. Note that this omitted part, i.e., the ensuing derivation of the non read-once clause x 2 ∨ x 3 ∨ x 7 corresponds to a diamond pattern [START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF]. Such patterns will be studied in Section 5 (refer to Example 23 for the adaptation). The adaptation of proof π is reported in Figure 7. We reuse the adaptation of the linear read-once section in Example 3. The non read-once clause and its substitutes are colored in red and added tautological clauses are represented in green. Note that this is one of the possible adaptations depending on the order chosen for adapting the branches of ED(x 4). Finally, we stress the fact that we could have generated the clause C = x 4 ∨ x 6 after the last Max-SAT resolution step on clauses x 3 ∨ x 3 (but we omit this inference since x 6 = EC(x 4) as mentioned in the proof of Theorem 14). Indeed, C can be inferred by an additional Max-SAT resolution step on the compensation clauses obtained in the last step, i.e., clauses x 3 ∨ x 6 and x 4 ∨ x 3 ∨ x 6 . In the proof of Theorem 14, this corresponds to the case where B is empty in a junction node of an ensuing derivation. Next, we discuss some minor syntactic subtleties that occur in the adaptation. First, it is important to note that the use of the expansion and compaction rewritings as full fledged rules is relevant for simplification but not necessary. Recall that these two rules are mainly used in order to switch between the different equivalent forms of C when it is written in CNF form. Each form corresponds to a different ordering of the literals in C. When applying Max-SAT resolution, a relevant order may be chosen when necessary. However, an application of a compaction followed by an expansion may correspond to a certain rearrangement of the variables in CNF form. This may occur when adapting the read-once linear part of the proof. Indeed, as showcased in Figure 2, a compaction may be followed by an expansion to isolate the clause C 1 ∨ l i ∨ A i from the compact form C 1 ∨ A i . Similarly, as shown in Figure 4, it may be necessary to isolate the clause Cl ∨ l from the compact form Cl ∨ l ∨ A when dealing with junction nodes.

x 4 ∨ x 5 x 4 ∨ x 5 x 4 x 4 ∨ x 2 ∨ x 6 x 2 ∨ x 6 x 4 ∨ x 2 ∨ x 6 x 3 ∨ x 6 x 2 ∨ x 3 x 2 ∨ x 6 ∨ x 3 x 4 ∨ x 6 x 4 ∨ x 2 ∨ x 6 x 4 ∨ x 6 ∨ x 3 x 4 ∨ x 3 ∨ x 6 x 4 ∨ x 3 ∨ x 6 x 4 ∨ x 3 x 4 ∨ x 1 x 1 ∨ x 3 x 4 ∨ x 3 ∨ x 1 x 4 ∨ x 3 ∨ x 1 ∨ x 3 x 4 ∨ x 3 ∨ x 1 ∨ x 3 x 4 ∨ x 3 ∨ x 1 ∨ x 3 x 4 ∨ x 1 ∨ x 3 x 4 ∨ x 1 ∨ x 3 x 1 ∨ x 3 x 3 x 6
More specifically, we may need to rearrange a certain literal at the beginning or at the end of the ordering. In Proposition 16, we prove that it is possible to switch the first and last literals in the CNF form of C in O(|C|) inference steps. This entails that in the proof of Theorem 14, the compaction and expansion rules can be omitted and replaced with O(s(π) × (s(π) + w(π))) Max-SAT resolutions. Clearly, this does not impact our result in terms of the size of the resulting adaptation. In Example 17, we provide the full simplified adaptation of the proof in Example 15 without the use of rewriting rules.

▶ Proposition 16. Let n be a natural number and l 1 , ..., l n be n literals. We can deduce

(l 1) ∧ (l 1 ∨ l 2) ∧ ... ∧ (l 1 ∨ ... ∨ l n-1 ∨ l n) ⊢ M axRes (l n) ∧ (l n ∨ l 2) ∧ ... ∧ (l n ∨ l 2 ∨ ... ∨ l n-1 ∨ l 1) in O(n) inference steps.
C P 2 0 2 2 12:12 From Crossing-Free Resolution to Max-SAT Resolution We consider the same formula ϕ in Example 15. We represent in Figure 8 a Max-SAT resolution proof (without rewriting) of clause x 6 from ϕ. Notice how we use the following rearrangement x 6 ∧ (x 6 ∨ x 3) ⊢ M axRes x 3 ∧ (x 3 ∨ x 6) to generate the substitute x 4 ∨ x 3 . Furthermore, the tautological clause x 4 ∨ x 3 ∨ x 1 ∨ x 3 colored in green in Figure 7 and the rearrangement in which it is involved are not necessary since the last required substitute for x 1 , i.e x 4 ∨ x 1 ∨ x 3 is naturally generated by the preceding Max-SAT resolution step. Therefore, they can be deleted as is the case for the full adaptation without rewriting in Figure 8.

x 5 ∨ x 4 x 5 ∨ x 4 x 4 x 4 ∨ x 2 ∨ x 6 x 2 ∨ x 6 x 3 ∨ x 6 x 2 ∨ x 3 x 2 ∨ x 6 ∨ x 3 x 4 ∨ x 6 x 4 ∨ x 2 ∨ x 6 x 4 ∨ x 6 ∨ x 3 x 4 ∨ x 3 x 4 ∨ x 1 x 1 ∨ x 3 x 4 ∨ x 1 ∨ x 3 x 4 ∨ x 1 ∨ x 3 x 1 ∨ x 3 x 3 x 6
Next, we discuss the implications of the equality * = used in the proof of Lemma 12, i.e.,

l ∨ A ∨ B * = l ∨ A ∨ A ∨ B.
Recall that this equality is sound for Max-SAT (c.f. Remark 13 in [START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF]). However, to avoid adding it as a standalone rule and as explained in the proof of Lemma 12, we can consider the addition of tautological clauses. This may also be required in case of unit clauses. It is important to note that the number of tautological clauses added to the formula in an adaptation of a crossing-free resolution derivation π is in O(s(π) × (w(π) + s(π))). A similar phenomenon was also noted in [START_REF] Buresh | The Complexity of Resolution Refinements[END_REF]. In addition, notice how the adaptation may also rely on tautological compensation clauses which are generated by Max-SAT resolution. Such clauses are usually deleted or omitted in the literature [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF][START_REF] Larrosa | A logical approach to efficient Max-SAT solving[END_REF] but they may carry important information which is necessary to infer substitutes for non read-once clauses.

Finally, we establish our result on crossing-free refutations in the following corollary. We also illustrate in Example 19 an adaptation of a crossing free resolution refutation to a Max-SAT resolution refutation.

▶ Corollary 18. Let ϕ be an unsatisfiable CNF formula and π be a crossing-free resolution refutation of ϕ. We can deduce ϕ ⊢ M axRes □ from ϕ in O(s(π) 3) inference steps.

Proof. Trivially entailed from Theorem 14 since w(π) = O(s(π)) for refutations. ◀ ▶ Example 19. We consider the unsatisfiable CNF formula ϕ = {x 1 , x 1 ∨x 3 , x 1 ∨x 2 , x 2 ∨x 3 } and the refutation π of ϕ represented in Figure 9. Clearly, π is crossing-free since there is only one non read-once clause, i.e., x 1 . In fact, π also corresponds to the ensuing derivation of x 1 and □ is its ensued clause, i.e., ED(x 1) = π and EC(x 1) = □. Two possible adaptations of π are illustrated in Figure 10. The non read-once clause and its substitutes are colored in red. The possible adaptations correspond to different possible orderings of the proof. In the adaptation on the left, we consider that the resolution step on clauses x 1 ∨ x 1 and x 1 precedes the one on clauses x 1 and x 1 ∨ x 2 , and inversely for the adaptation on the right. Note that the adaptation on the left corresponds to the handmade example provided by Bonet et al. in [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF] (c.f. Example 1 in [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF] or Example 3 in [START_REF] Maria | Resolution for Max-SAT[END_REF]).

x 1 ∨ x 3 x 1 x 1 ∨ x 2 x 2 ∨ x 3 x 3 x 2 x 3 □ Figure 9
Crossing-free resolution refutation. In this section, we study particular resolution refutations, called k-stacked diamond patterns, which were introduced and shown exponential for the adaptation (to ResS) in [START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF]. A diamond pattern (x, y, A) where x, y / ∈ A is the sequence of resolutions represented in Figure 11. Note that the particular diamond pattern (x, y, □) is a resolution refutation. Now, imagine that the topmost clause of (x, y, □) is derived through another diamond pattern. We iterate the same reasoning to define a k-stacked diamonds pattern as in Definition 20.

x 1 ∨ x 3 x 1 x 1 ∨ x 2 x 2 ∨ x 3 x 3 x 1 ∨ x 3 x 2 ∨ x 3 x 3 □ x 1 x 1 ∨ x 2 x 2 ∨ x 3 x 2 x 1 ∨ x 2 x 1 ∨ x 3 x 3 x 2 ∨ x 3 x 3 x 1 ∨ x 3
▶ Definition 20 (k-stacked diamond). Let k ≥ 1 be a natural number and let x i and y i where

1 ≤ i ≤ k be distinct variables. A k-stacked diamond pattern is formed by k diamond patterns (x i , y i , A i) where 1 ≤ i ≤ k such that A 1 = □ and A i = (x 1 ∨ • • • ∨ x i-1) for 1 < i ≤ k. Each diamond (x i , y i , A i) is stacked on top of (x i-1 , y i-1 , A i-1
) such that the last conclusion of the former is the topmost central premise of the latter.

When k > 2, the size of a k-stacked diamond P is s(P) = 3k while the size of the computed refutation in ResS [START_REF] Larrosa | Towards a Better Understanding of (Partial Weighted) MaxSAT Proof Systems[END_REF], i.e., Max-SAT resolution augmented with the split rule, by the adaptation in [START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF] is at least 2 k-1 which is exponential in the size of P . First, notice that k-stacked diamond patterns fall within the crossing-free resolution. Furthermore, these patterns can be adapted to Max-SAT resolution refutations without increasing their size as established in 22. Such an adaptation is illustrated in Example 23.

▶ Proposition 21. Let k ≥ 1 be a natural number. A k-stacked diamond resolution refutation is crossing-free.

▶ Proposition 22. Let ϕ be a CNF formula, k ≥ 1 be a natural number and π be a k-stacked diamond resolution refutation. There exists a Max-SAT resolution refutation π ′ of ϕ s.t s(π ′) ≤ s(π).

Proof. We show how to adapt every diamond pattern without increasing its size In Figure 12. This is entailed by the fact that each diamond is clearly a crossing-free derivation and more specifically an ensuing derivation of a non read-once clause. As such, a k-stacked diamond P can be adapted in at most s(P) Max-SAT resolution steps. ◀ ▶ Example 23. We consider the ensuing derivation of clause x 2 ∨ x 3 ∨ x 7 represented in Figure 1. As mentioned in Example 15, this part of the proof corresponds to a diamond pattern. Its adaptation is illustrated in Figure 13 (the non read-once clause and its substitute are represented in red). The adaptation can be added on top of clause x 2 ∨ x 3 in Figure 8 to obtain the full adaptation of the initial crossing-free proof represented in Figure 1.

Conclusion

In this paper, we introduced a new fragment of resolution, called crossing-free resolution, in which ensuing derivations of non read-once clauses are disjoint. We showed that crossing-free x 7 ∨ x 5 x 7 ∨ x 2 ∨ x 3 x 7 ∨ x 5

x 5 ∨ x 2 ∨ x 3 x 7 ∨ x 2 ∨ x 3 ∨ x 5

x 5 ∨ x 2 ∨ x 3

x 2 ∨ x 3 resolution derivations and in particular crossing-free refutations can be adapted to Max-SAT resolution proofs without substantially increasing their size. To the best of our knowledge, this is the first non trivial fragment, i.e., different from read-once resolution, whose adaptation is shown possible using only Max-SAT resolution with a reasonable guarantee on the size of the adapted proofs. The idea behind the adaptation is to naturally infer substitutes for non read-once clauses by dragging them along while unfolding the initial resolution proof and by relying on compensation clauses produced by Max-SAT resolution. Furthermore, we show that diamond patterns, which were shown exponential for the adaptation in [START_REF] Py | Towards Bridging the Gap Between SAT and Max-SAT Refutations[END_REF], fall within the crossing-free resolution fragment and can be adapted into Max-SAT resolution proofs without increasing their size.

Our results contribute to the difficult open problem of adapting resolution proofs to Max-SAT resolution proofs without increasing their size [START_REF] Maria | A Complete Calculus for Max-SAT[END_REF][START_REF] Maria | Resolution for Max-SAT[END_REF] and, therefore, helps to bridge the gap between resolution for SAT and Max-SAT. Furthermore, unlike SAT solvers, Max-SAT solvers are still not able to output certificates in the form of Max-SAT equivalent proofs mainly due to the variety of solving paradigms and due to the theoretical gap between SAT and Max-SAT resolution. Our work can be useful in this regard and particularly in improving the efficiency of independent proof builders for the Max-SAT problem [START_REF] Py | A Proof Builder for Max-SAT[END_REF]. Finally, as future work, it would be interesting to characterize a larger intersection between SAT and Max-SAT resolution by proving that an adaptation of an extended refinement of resolution (ideally unrestricted resolution) without a substantial increase in the size of the proofs is possible, even through augmenting Max-SAT resolution by other inference rules.

 by application of a Max-SAT resolution step on variable var(l ′). Therefore, we conclude that we can deduce(A ∨ C) ∧ (B ∨ C)} ⊢ M axRes A ∨ B in O(n) inference steps.Proofs for cases (b) and (c) are similar by induction on |C|.

Figure 2

 2 Figure 2 Induction step to infer C ′ i at the i th step. Solid lines represent the application of the Max-SAT resolution rule whereas dashed lines represent compaction or expansion. Unused compensation clauses are omitted.

Figure 3

 3 Figure 3 Dragging the non read-once clause while unfolding a read-once linear section of the proof. Solid lines represent the application of the Max-SAT resolution rule whereas dashed lines represent compaction or expansion. Unused compensation clauses are omitted.

▶ 13 .

 13 by Proposition 11 (case b.), the inference of C 1 ∨ A i ∨ B i in Figure 2 requires O(|B i |) Max-SAT resolution steps and, thus, every step in π is clearly adapted in O(w(π)) inference steps to generate C and C 1 ∨ C m . Therefore, we conclude that we can deduce ϕ ⊢ M axRes C ∧ (C 1 ∨ C m) in O(s(π).w(π)) inference steps.◀ Example We consider the read-once linear derivation of clause x 3 ∨ x 6 from ϕ = {x 4 , x 2 ∨ x 4 ∨ x 6 , x 2 ∨ x 3 } represented on the left of Figure3. The Max-SAT resolution proof deducing x 3 ∨ x 6 and x 4 ∨ x 3 ∨ x 6 is represented on the right of Figure3.

Figure 4 Figure 5

 45 Figure 4 Inferring Cl ∨ A ∨ B in a junction node of ED(Cl). Solid lines represent the application of the Max-SAT resolution rule, bold double arcs represent the application of Max-SAT resolution to delete opposed sets of literals and dashed lines represent compaction or expansion. Unused compensation clauses are omitted.

Figure 6

 6 Figure 6 Inferring Cl ∨ C ′ in case A = B in a junction node of ED(Cl). Solid lines represent the application of the Max-SAT resolution rule whereas dashed lines represent compaction and expansion. Unused compensation clauses are omitted.

Figure 7

 7 Figure 7 Adaptation of a crossing-free resolution derivation. Solid lines represent the application of the Max-SAT resolution rule whereas dashed lines represent compaction and expansion. Unused compensation clauses are omitted.

Figure 8

 8 Figure 8 Adaptation of a crossing-free resolution proof to a Max-SAT resolution proof. Unused compensation clauses are omitted.

□Figure 10

 10 Figure 10 Two possible adaptations of the crossing-free resolution refutation represented in Figure 9 depending on the ordering of the resolution steps involving the non read-once clause x1. Unused compensation clauses are omitted.

Figure 11 Figure 12

 1112 Figure 11 Diamond pattern (x, y, A).

Figure 13

 13 Figure 13 Adaptation of the diamond pattern in the resolution proof represented in Figure 1 (colored in blue) corresponding to the ensuing derivation of clause x7 ∨ x2 ∨ x3. Unused compensation clauses are omitted.

12:14 From Crossing-Free Resolution to Max-SAT Resolution