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Abstract
Adapting a SAT resolution proof into a Max-SAT resolution proof without considerably increasing
its size is an open problem. Read-once resolution, where each clause is used at most once in the
proof, represents the only fragment of resolution for which an adaptation using exclusively Max-SAT
resolution is known and trivial. Proofs containing non read-once clauses are difficult to adapt because
the Max-SAT resolution rule replaces the premises by the conclusions. This paper contributes to
this open problem by defining, for the first time since the introduction of Max-SAT resolution, a
new fragment of resolution whose proofs can be adapted to Max-SAT resolution proofs without
substantially increasing their size. In this fragment, called crossing-free resolution, non read-once
clauses are used independently to infer new information thus enabling to bring along each non
read-once clause while unfolding the proof until a substitute is required.
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1 Introduction

The maximum satisfiability (Max-SAT) problem is an optimization extension of the satisfiab-
ility (SAT) problem and consists, given a formula in Conjunctive Normal Form (CNF), in
determining the maximum number of clauses that it is possible to satisfy by an assignment
of the variables. This well known formalism is used to represent and solve many real-world
and crafted problems making it of great academic and industrial interest [3, 4]. SAT and
Max-SAT are strongly related and share many aspects. In fact, SAT solving techniques are
often used in the context of Max-SAT solving, particularly in SAT-based and Branch and
Bound (BnB) algorithms for Max-SAT [1, 2, 21]. Yet, in theory, bridging the gap between
SAT and Max-SAT inference remains one of the main challenges in the last decade.

One of the first proof systems for Max-SAT is based on an inference rule called Max-SAT
resolution [6, 7, 16, 17], which is an extension of the resolution rule [28] introduced in the
context of SAT. Max-SAT resolution is sound, complete and is the most studied inference
rule for Max-SAT, both in theory and practice [1, 5, 18, 19, 23, 24, 27]. However, adapting
a resolution proof to get a valid Max-SAT resolution proof of reasonable size remains an
open problem. Bonet et al. state that “it seems difficult to adapt a classical resolution proof
to get a Max-SAT resolution proof, and it is an open question if this is possible without
increasing substantially1 the size of the proof ” [7]. Indeed, unlike resolution, the Max-SAT
resolution rule replaces the premises with the conclusions, which is necessary to maintain

1 typically when the size of the adapted proof is exponential with respect to the size of the initial one.
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12:2 From Crossing-Free Resolution to Max-SAT Resolution

Max-SAT equivalence after its application. Moreover, aside from the traditional resolvent
clause, additional clauses2 are also added to ensure Max-SAT equivalence. In [17], Larrosa
et al. describe Max-SAT resolution as “a movement of knowledge”. As such, read-once
resolution proofs, where each clause is used once, represent the only fragment of resolution
for which an immediate and trivial adaptation is possible [6, 7, 12]. Recent works [11, 24]
try to circumvent this problem by allowing the use of the split rule, which intuitively allows
to duplicate a clause by adding one literal, to linearly adapt tree-like resolution refutations.
More specifically, the adaptation takes advantage of the structure of such proofs and applies
the split rule to fix the non read-once input clauses. However, the resulting proofs are in
the ResS proof system [18] in which Max-SAT resolution is augmented with the split rule.
To bridge the gap between SAT and Max-SAT resolution, non read-once clauses need to be
inferred using the clauses produced by Max-SAT resolution.

In this paper, we contribute to this open problem by identifying a new fragment of
resolution, that we call crossing-free resolution, for which an adaptation using only Max-SAT
resolution is possible without substantially increasing the size of the proof. Crossing-free
derivations are defined using the ensuing derivations of non read-once clauses. Intuitively, non
read-once clauses are used independently to infer new information in crossing-free resolution
proofs. The adaptation of such proofs to Max-SAT resolution proofs is shown possible
modulo some minor syntactic subtleties. Furthermore, we show that k-stacked diamond
patterns, which were shown exponential for the adaptation in [24], fall within the crossing-free
resolution fragment and can be adapted into Max-SAT resolution proofs without increasing
their size.

This paper is organized as follows. Section 2 gives some necessary definitions and notations
and presents the necessary background on resolution for SAT and Max-SAT as well as related
work. The crossing-free resolution refinement is introduced in Section 3 and its adaptation
to Max-SAT resolution is presented in Section 4. We study (k-stacked) diamond patterns
and show that they can be adapted without increasing their size in Section 5. Finally, we
conclude in Section 6.

2 Preliminaries

2.1 Definitions and Notations
Let X be the set of propositional variables. A literal l is a variable x ∈ X or its negation x.
A clause C is a disjunction (or a set) of literals. If |C| = 1, C is a unit clause. A formula in
Conjunctive Normal Form (CNF) ϕ is a conjunction (or a multiset) of clauses. An assignment
I : X → {true, false} maps each variable to a boolean value and can be represented as a set
of literals. A literal l is satisfied (resp. falsified) by an assignment I if l ∈ I (resp. l ∈ I). A
clause C is satisfied by an assignment I if at least one of its literals is satisfied by I, otherwise
it is falsified by I. The empty clause □ contains zero literals and is always falsified. A clause
C is a tautology if it contains both a literal l and its negation l, i.e., ∃l ∈ C s.t l ∈ C, and in
such case it is always satisfied. A clause C opposes a clause C ′ if C contains a literal whose
negation is in C ′, i.e., ∃l ∈ C s.t l ∈ C ′. We denote var(l), var(C) and var(ϕ) the variables
appearing respectively in the literal l, the clause C and the formula ϕ. The width of a clause
C is the number of literals occurring in it. A CNF formula ϕ is satisfied by an assignment I,
that we call model of ϕ, if each clause C ∈ ϕ is satisfied by I, otherwise it is falsified by I.

2 referred to as compensation clauses
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Solving the Satisfiability (SAT) problem consists in determining whether there exists an
assignment I that satisfies a given CNF formula ϕ. In the case where such an assignment
exists, we say that ϕ is satisfiable, otherwise we say that ϕ is unsatisfiable or inconsistent.
The cost of an assignment I, denoted costI(ϕ), is the number of clauses falsified by I. The
Maximum Satisfiability (Max-SAT) problem is an optimization extension of SAT which, for
a given CNF formula ϕ, consists in determining the maximum number of clauses that can
be satisfied by an assignment of the variables. Equivalently, it consists in determining the
minimum number of clauses that each assignment must falsify, i.e., min

I
costI(ϕ).

2.2 Resolution for SAT
A well-known proof and refutation system for SAT is based on the resolution rule [28]. Given
two opposed clauses, this rule, defined below, deduces a resolvent clause which can be added
to the formula. A resolution proof or derivation of a clause C is a finite sequence of resolutions
starting from the clauses of ϕ and deducing C usually represented as a finite sequence of
clauses. If C is the empty clause □, the proof is referred to as a refutation of ϕ. A resolution
proof can also be represented in the form of a Directed Acyclic Graph (DAG) whose nodes
are clauses in the proof either having two or zero incoming arcs (resp. if they are resolvents
or clauses of the initial formula). The size of a resolution derivation π, denoted s(π), is the
number of resolvents in it whereas its width, denoted w(π), is the maximum width of all its
clauses.

▶ Definition 1 (Resolution [28]). Given two opposed clauses C1 and C2, the resolution rule
is defined as follows:

C1 = x ∨ A C2 = x ∨ B

C3 = A ∨ B

Many restricted classes of resolution have been studied in the literature, e.g read-once
resolution [13], tree (or tree-like) resolution [15] and linear resolution [22] among others. In
particular, a resolution proof is read-once if each clause is used at most once in the proof.
Similarly, a resolution derivation is tree-like if every intermediate clause, i.e., resolvent, is
used at most once in the derivation. Linear resolution, defined below, lies between tree-like
and general resolution in terms of proof complexity [8, 9]. In this fragment, the proofs are
linear in the sense that each deduced clause is used as premise in the next resolution step.
Note that, when the first condition of (c) holds in the definition, the clause Di is called the
input parent clause of Ci+1.

▶ Definition 2 (Linear resolution [22]). Let ϕ be a CNF formula and C be a clause. A linear
resolution derivation of C from ϕ is a sequence of clauses C1, ..., Cm such that:
(a) C1 is a clause in ϕ

(b) Cm is the clause C

(c) For every i < m, Ci+1 is the resolvent of Ci either with a clause Di from ϕ or with a
clause Ck for some k < i.

2.3 Resolution for Max-SAT
One of the first and most studied proof systems for Max-SAT is the Max-SAT resolution
calculus (MaxRes) which relies on an inference rule extending resolution for Max-SAT
[6, 7, 16, 17]. Other than the resolvent clause, this rule, called Max-SAT resolution and
defined below, introduces new clauses referred to as compensation clauses and essential to

CP 2022
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preserve Max-SAT equivalence. As a sound and complete rule for Max-SAT [6, 7], Max-SAT
resolution plays an important role in the context of Max-SAT theory and solving [5, 18, 24, 27].
In particular, for a given CNF formula, it is possible to generate a Max-SAT resolution proof
of its optimum by applying the saturation algorithm [7]. Furthermore, it is extensively used
and studied in the context of Branch and Bound algorithms for Max-SAT [1, 10, 14, 19] and
more marginally in the context of SAT-based ones [12, 23].

▶ Definition 3 (Max-SAT equivalence). Let ϕ and ϕ′ be two CNF formulas. ϕ and ϕ′ are
Max-SAT equivalent iff for any assignment I : var(ϕ) ∪ var(ϕ′) → {true, false}, we have
costI(ϕ) = costI(ϕ′).

▶ Definition 4 (Max-SAT resolution [6, 7, 16, 17]). Given two opposed clauses C1 and C2,
the Max-SAT resolution rule is defined as follows:

C1 = x ∨ A C2 = x ∨ B

Cr = A ∨ B

CC1 = x ∨ A ∨ B

CC2 = x ∨ A ∨ B

where Cr is the resolvent clause and CC1, CC2 are compensation clauses.

Note that the following rewriting is used to represent the compensation clauses in
compacted form: C ∨a1 ∨ a2 ∨ ... ∨ an = (C ∨a1)∧ (C ∨a1 ∨a2)∧ ...∧ (C ∨a1 ∨a2 ∨ ...∨∨an).
This rewriting was introduced in [17] as a recursive rule to transform the compensation
clauses into CNF form. This also entails that the Max-SAT resolution rule depends on the
ordering of the literals, as reported in [7, 17]. For the sake of simplification, we will allow the
use of this rewriting as two full-fledged rules to manipulate clauses in compacted form. We
will refer to the left-right rewriting as expansion and right-left one as compaction. This may
entail abusing some notations but it is useful to further simplify the proofs. Furthermore,
given three sets of literals A, B and C, the equality C ∨ A ∨ B

∗= C ∨ A ∨ A ∨ B is sound for
Max-SAT as reported in [17] (c.f. Remark 13) and may be as such used in the proofs. We
discuss these subtleties following Theorem 14 in Section 4.

A Max-SAT resolution proof or derivation of a formula ϕ′ from ϕ is a finite sequence of
Max-SAT resolutions starting from the clauses of ϕ and deducing ϕ′ and is usually represented
as a finite sequence of formulas. Note that we may allow the addition of tautological clauses
to any formula in the proof. We discuss this syntactic subtlety at the end of Section 4. A
Max-SAT resolution proof can also be represented as a bipartite DAG whose nodes are either
clauses or inference steps (in which case they will be omitted for more simplicity). A sequence
of Max-SAT resolution steps deducing one empty clause is referred to as Max-SAT resolution
refutation. For a given CNF formula, it is possible to generate a Max-SAT resolution proof
of its optimum by applying the saturation algorithm [7]. Note that other inference rules and
proof systems were also studied in the context of Max-SAT [5, 11, 18, 20, 27].

Unlike resolution, the Max-SAT resolution rule replaces the premises by the conclusions.
Larrosa et al. describe Max-SAT resolution as “a movement of knowledge” [17]. Because of
this specificity, it is not easy to adapt a resolution proof to obtain a Max-SAT resolution proof.
Indeed, in resolution proofs, several resolution steps can share the same premise, because the
premises are not consumed after the application of a resolution step. On the other hand, the
premises of a Max-SAT resolution step are consumed after its application. Consequently, the
immediate adaptation of a resolution proof for Max-SAT is only possible if it is read-once
[6, 7, 12]. In this fragment, it is simply sufficient to replace every resolution step in the
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proof by a Max-SAT resolution step to produce a Max-SAT resolution proof of similar size.
However, adapting any resolution proof to a Max-SAT proof without substantially increasing
its size remains an open problem.

Recent works [11, 24] augment the Max-SAT resolution rule by the split rule defined
below, forming a new system stronger than MaxRes and called ResS [18], to linearly adapt
tree-like resolution refutations into ResS refutations. More specifically, the adaptation takes
advantage of the structure of such proofs and applies the split rule, which intuitively allows to
duplicate a clause by adding one literal, to fix the non read-once input clauses. Furthermore,
the substitution algorithm introduced in [26] also enables to generate substitutes for non
read-once clauses using SAT oracles but no guarantee is provided for the size of the computed
ResS refutations. To the best of our knowledge, read-once resolution remains the only
fragment of resolution for which an adaptation using exclusively Max-SAT resolution is
possible without substantially increasing the proof size. In the next section, we define a new
refinement of resolution for which this is possible.

▶ Definition 5 (Split). Given a clause C and variable x, the split rule is defined as follows:

C

x ∨ C x ∨ C

3 Crossing-Free Resolution

The main difficulty in adapting resolution proofs to Max-SAT resolution ones lies in inferring
a substitute for non read-once clauses. Indeed, such clauses must be naturally inferred using
Max-SAT resolution while unfolding (i.e., reading and applying) the initial resolution proof,
contrary to previous works [11, 24] where non read-once clauses are artificially fixed using the
split rule before the actual unfolding of the proof. In this section, we define a new fragment
of resolution, referred to as crossing-free resolution. The idea behind this refinement is to
ensure enough manoeuvrability of proofs in terms of structure in order to infer substitutes
for non read-once clauses when necessary. To this end, we define below the notion of ensuing
derivation of a non read-once clause. Intuitively, this particular derivation is ensued from a
non read-once clause in the sense that it is sufficient to delimit the impact of its multiple use.
Note that a node where a set of given paths in a resolution proof intersect will be referred to
as their junction node.

▶ Definition 6 (Ensuing derivation). Let ϕ be a CNF formula and π a resolution derivation
of clause C from ϕ. The ensuing derivation of a non read-once clause C ′ in π, denoted
ED(C ′), is the sub-derivation of π formed by all the resolution steps in the paths starting
from C ′ in π until their first junction node. We call the clause derived in the junction node,
the ensued clause of C ′, denoted EC(C ′).

▶ Example 7. We consider the resolution derivation π represented in Figure 1 of clause
C = x6 from the formula ϕ = {x1 ∨ x3 ∨ x4, x4 ∨ x5, x4 ∨ x5, x1 ∨ x4, x2 ∨ x4 ∨ x6, x5 ∨
x7, x2 ∨ x3 ∨ x7, x5 ∨ x7}. The non read-once clauses x4 and x2 ∨ x3 ∨ x7 and their ensuing
derivations are respectively represented in red and blue. Furthermore, we have EC(x4) = x6
and EC(x2 ∨ x3 ∨ x7) = x2 ∨ x3.

Recall that clauses are consumed after the application of Max-SAT resolution. Therefore,
it seems difficult to adapt resolution derivations in which ensuing derivations of non read-once
clauses cross. Indeed, in such cases, the formula can significantly evolve as compensation
clauses may be used while others may be generated. As such, crossing-free resolution ensures
that ensuing derivations are disjoint, i.e., do not cross, as defined below.

CP 2022
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x4 ∨ x5 x4 ∨ x5

x1 ∨ x3 ∨ x4 x4 x1 ∨ x4 x2 ∨ x4 ∨ x6

x1 ∨ x3 x1 x2 ∨ x6

x3 x3 ∨ x6

x2 ∨ x3

x6

x2 ∨ x3 ∨ x5 x2 ∨ x3 ∨ x5

x5 ∨ x7 x2 ∨ x3 ∨ x7 x5 ∨ x7

Figure 1 Ensuing derivations in a crossing-free resolution proof.

▶ Definition 8 (Crossing-free resolution derivation). Let ϕ be a CNF formula and π a resolution
derivation of clause C from ϕ. π is crossing-free iff for every pair of non read-once clauses
(C1, C2), ED(C1) and ED(C2) are disjoint, i.e., they do not contain a shared arc.

▶ Example 9. We consider the same formula ϕ in Example 7. The resolution derivation π

of clause C = x6 from ϕ represented in Figure 1 is crossing-free since the ensuing derivations
of the non read-once clauses x4 and x2 ∨ x3 ∨ x7 are disjoint.

Note that the crossing-free resolution refinement entails an interesting property established
in the following proposition. Intuitively, this property ensures that non read-once clauses are
used independently to infer new information in crossing-free resolution proofs. This entails
that each ensuing derivation in a crossing-free resolution proof can be adapted independently
as described in the next section.

▶ Proposition 10. Let ϕ be a CNF formula, π be a crossing-free resolution derivation
of clause C from ϕ and C ′ a non read-once clause in π. Every clause Cl in ED(C ′) s.t
Cl /∈ {C ′, EC(C ′)} is read-once.

Proof. Let Cl be a clause in ED(C ′) s.t Cl /∈ {C ′, EC(C ′)}. Clearly, if Cl is not read once,
ED(Cl) shares at least one arc with ED(C ′) which is absurd since π is crossing-free. ◀

4 From Crossing-Free Resolution to Max-SAT Resolution

In this section, we show that crossing-free resolution derivations can be adapted to Max-
SAT resolution derivations modulo some minor syntactic subtleties without substantially
increasing their size. In the following proposition, we first provide some patterns which will
be encountered in the adaptation.

▶ Proposition 11. Let A, B, C and {l} be four sets of literals s.t |C| > 0. The following
deductions can be done in O(|C|) inference steps:
(a) (A ∨ C) ∧ (B ∨ C) ⊢MaxRes A ∨ B

(b) (l ∨ A ∨ C) ∧ (l ∨ B) ⊢MaxRes A ∨ B ∨ C

(c) (l ∨ A ∨ C) ∧ (l ∨ B ∨ C) ⊢MaxRes A ∨ B ∨ C

Proof. We provide the proof for case (a) by induction on |C| = n:
If n = 1, then C = {l′}. Clearly, (A ∨ l′) ∧ (B ∨ l′) ⊢MaxRes A ∨ B by application of a
Max-SAT resolution step on literal var(l′).
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Suppose n > 1 and let l′ ∈ C. By the induction hypothesis, we can deduce (A ∨ C) ∧
(B ∨ C \ {l′}) ⊢MaxRes A ∨ B ∨ l′ in n − 1 inference steps. Furthermore, B ∨ C =
(B ∨ C \ {l′}) ∧ (B ∨ l′) by expansion and (A ∨ B ∨ l′) ∧ (B ∨ l′) ⊢MaxRes A ∨ B by
application of a Max-SAT resolution step on variable var(l′). Therefore, we conclude
that we can deduce (A ∨ C) ∧ (B ∨ C)} ⊢MaxRes A ∨ B in O(n) inference steps.

Proofs for cases (b) and (c) are similar by induction on |C|. ◀

Next, we start dealing with the adaptation of crossing-free resolution derivations and
particularly ensuing derivations. To generate a substitute for a non read-once clause, note
that we can use the literals in the junction nodes (c.f. Lemma 1 in [24]) of an ensuing
derivation, i.e., nodes where paths starting from the non read-once clause intersect. To
generate such substitutes using Max-SAT resolution, we start by dealing with read-once linear
parts in the proof. Informally, we want to drag (i.e., bring along) each non read-once clause
while unfolding the proof until they are reused. This is formally established for read-once
linear parts of the proof in the following lemma. Note that the implications of equality ∗= in
the proof will be further discussed at the end of the section.

▶ Lemma 12. Let ϕ be a CNF formula, π = C1, ..., Cs(π) be a read-once linear resolution
derivation of clause C ̸= □ from ϕ. We can deduce ϕ ⊢MaxRes C ∧(C1 ∨C) in O(s(π)×w(π))
inference steps.

Proof. Let m = s(π). Since π is read-once, it can be trivially adapted into a Max-SAT
resolution derivation of C from ϕ of the same size by replacing every resolution step with a
Max-SAT resolution step [6, 7, 12]. Next, we prove by induction on i ∈ {1, .., m − 1} that we
can infer C ′

i = C1 ∨ Ci+1 at the ith Max-SAT resolution step:
For i = 1, the first Max-SAT resolution on clauses C1 = l1 ∨ A1 and D1 = l1 ∨ B1 w.r.t
var(l1) generates the following compensation clause:

CC1|1 = l1 ∨ A1 ∨ B1
∗= l1 ∨ A1 ∨ A1 ∨ B1 = C1 ∨ C2 = C ′

1

Note that to establish the equality ∗=, we can add the tautological clauses l1 ∨A1 ∨B1 ∨A1
(or alternatively l1∨A1∨A1) to the formula) in which case l1∨A1∨A1 ∨ B1 can be trivially
inferred by compaction. Furthermore, if D1 is a unit clause, CC1|1 is not generated.
However, we can simply add the tautological clauses l1 ∨ A1 ∨ A1 which correspond to
C1 ∨ C2 since D1 = l1 (i.e., B1 is empty).

Ci = li ∨ Ai Di = li ∨ Bi

Ci+1 = Ai ∨ Bi

CC1|i = li ∨ Ai ∨ Bi

C ′
i−1 = C1 ∨ Ci = C1 ∨ li ∨ Ai

C1 ∨ li ∨ Ai

C1 ∨ Ai

C1 ∨ Ai ∨ Bi

C ′
i = C1 ∨ Ai ∨ Bi = C1 ∨ Ci+1

var(li)

var(li)

Figure 2 Induction step to infer C′
i at the ith step. Solid lines represent the application of

the Max-SAT resolution rule whereas dashed lines represent compaction or expansion. Unused
compensation clauses are omitted.

CP 2022
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x4 x2 ∨ x4 ∨ x6

x2 ∨ x6 x2 ∨ x3

x3 ∨ x6

x4 x2 ∨ x4 ∨ x6

x2 ∨ x6

x4 ∨ x2 ∨ x6

x2 ∨ x3

x3 ∨ x6

x2 ∨ x6 ∨ x3

x4 ∨ x6

x4 ∨ x2 ∨ x6

x4 ∨ x6 ∨ x3

x4 ∨ x3 ∨ x6

Figure 3 Dragging the non read-once clause while unfolding a read-once linear section of the
proof. Solid lines represent the application of the Max- SAT resolution rule whereas dashed lines
represent compaction or expansion. Unused compensation clauses are omitted.

Suppose that we can generate C ′
i−1 = C1 ∨ Ci at the ith − 1 Max-SAT resolution step.

The ith step on Ci = li ∨ Ai and Di = li ∨ Bi w.r.t var(li) generates the resolvent
Ci+1 = Ai ∨Bi and the compensation clauses CC1|i = li ∨Ai ∨Bi and CC2|i = li ∨Ai ∨B.
The induction step to infer C ′

i is represented in Figure 2. Note that similarly to the base
case, if Di = li(i > 1) is a unit clause, i.e., the ith step corresponds to a deletion of literal
li from Ci = li ∨ Ai deducing the resolvent Ci+1 = Ai, the tautological clauses li ∨ Ai ∨ Ai

can be added to the formula thus replacing CC1|i in Figure 2. However, as showcased in
the same figure, the addition of such clauses in case D1 is unit can be avoided since the
initial expansion step on C ′

i−1 suffices to generate C1 ∨ Ai = C1 ∨ Ci+1 = C ′
i.

Finally, by Proposition 11 (case b.), the inference of C1 ∨ Ai ∨ Bi in Figure 2 requires
O(|Bi|) Max-SAT resolution steps and, thus, every step in π is clearly adapted in O(w(π))
inference steps to generate C and C1 ∨ Cm. Therefore, we conclude that we can deduce
ϕ ⊢MaxRes C ∧ (C1 ∨ Cm) in O(s(π).w(π)) inference steps. ◀

▶ Example 13. We consider the read-once linear derivation of clause x3 ∨ x6 from ϕ =
{x4, x2 ∨ x4 ∨ x6, x2 ∨ x3} represented on the left of Figure 3. The Max-SAT resolution
proof deducing x3 ∨ x6 and x4 ∨ x3 ∨ x6 is represented on the right of Figure 3.

Next, we establish our main result on the adaptation of crossing-free resolution derivations.
The proof in the following theorem particularly deals with the junction nodes in ensuing
derivations, i.e., nodes where the paths starting from the non read-once clauses intersect.
More specifically, we want to drag or bring along the non read-once clause through these
particular nodes. We provide an illustration of a full adaptation in Example 15.

▶ Theorem 14. Let ϕ be a CNF formula and π be a crossing-free resolution derivation of
clause C from ϕ. We can deduce ϕ ⊢MaxRes C in O(s(π) × (s(π) + w(π))2) inference steps.
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l ∨ A l ∨ B

A ∨ B

l ∨ A ∨ B

l ∨ A ∨ B

Cl ∨ l ∨ A Cl ∨ l ∨ B

...
...

Cl Cl ∨ l

Cl ∨ l ∨ A
Cl ∨ A ∨ B

Cl ∨ l ∨ A ∨ B

Cl ∨ l ∨ A
Cl ∨ A

Cl ∨ A ∨ B

var(l)

var(l)

var(B)
var(l)

Figure 4 Inferring Cl ∨ A ∨ B in a junction node of ED(Cl). Solid lines represent the application
of the Max-SAT resolution rule, bold double arcs represent the application of Max-SAT resolution
to delete opposed sets of literals and dashed lines represent compaction or expansion. Unused
compensation clauses are omitted.

l l ∨ B

B

l ∨ B

Cl ∨ l ∨ B

...
...

Cl Cl ∨ l

Cl ∨ B

var(l)

var(l)

Figure 5 Inferring Cl ∨ C′ in case A is empty in a junction node of ED(Cl). Solid lines represent
the application of the Max-SAT resolution rule whereas dashed lines represent compaction and
expansion. Unused compensation clauses are omitted.

l ∨ A l ∨ A

A

Cl ∨ l ∨ A Cl ∨ l ∨ A

...
...

Cl Cl ∨ l

Cl ∨ l ∨ A

Cl ∨ A

var(l)

var(l)

Figure 6 Inferring Cl ∨ C′ in case A = B in a junction node of ED(Cl). Solid lines represent
the application of the Max-SAT resolution rule whereas dashed lines represent compaction and
expansion. Unused compensation clauses are omitted.
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Proof. Property 10 ensures that each ensuing derivation can be adapted independently. Let
Cl be a non read-once clause in π and w.l.o.g we only consider it ensuing derivation ED(Cl).
We prove that at each step of ED(Cl) deriving clause C ′, we can infer C ′ and SC ∨ C ′ where
SC is either Cl or its substitute in the path leading to C ′. The proof is by induction on the
size of the derivation. The base case where the derivation is empty is trivial. Next, using
Lemma 12, we can suppose w.l.o.g that C ′ is derived in a junction node (of paths starting
from Cl). Let l ∨ A and l ∨ B be the premises of the resolution step deriving C ′ = A ∨ B.

The induction hypothesis ensures that there exists a Max-SAT resolution derivation of
l ∨ A and C ∨ l ∨ A. As showcased in Figure 4, Cl ∨ l can be used to replace the occurrences
of Cl in the derivation of l ∨ B. Note that to avoid using tautological substitutes, we can
suppose w.l.o.g that l /∈ Cl by interchanging the proofs of l ∨ A and l ∨ B when necessary
thus entailing a different unfolding order of the original proof and the generation of the exact
same clause as a substitute in such nodes. Again, similarly to the left side, the induction
hypothesis ensures the existence of a Max-SAT resolution derivation of l∨B and Cl∨ l∨ l ∨ B

and, therefore, Cl ∨ l ∨ B by expansion. Clearly, C ′ = A ∨ B can be derived by Max-SAT
resolution and we showcase in Figure 4 how Cl ∨ C ′ = C ∨ A ∨ B can be inferred using the
compensation clauses as well as Cl ∨ l ∨ A and Cl ∨ l ∨ B.
Note that the following particular cases can occur:

A or B is empty, in which case a unit clause is used to derive C ′ = A ∨ B. We represent
in Figure 5 how to derive Cl ∨ C ′ in case A is empty. The derivation in case B is empty
is symmetric and thus omitted. Notice that in the case both A and B are empty, π is a
refutation and there is no need to derive Cl ∨ C ′ in the last Max-SAT resolution step. In
fact, more generally, this is also not necessary for the last junction node in an ensuing
derivation in π.
A = B in which case the generated compensation clauses are tautological and are not
necessary to derive Cl ∨ C ′ = Cl ∨ A as showcased in Figure 6.

Finally, in each junction node we need O(|B|) inference steps to deduce Cl ∨ A ∨ B using case
(c) in Proposition 11. Similarly, using expansion on A and pattern (b) in Proposition 11, we
need O(|A| × |B|) inference steps to deduce Cl ∨ l ∨ A. It is important to note that the width
of the proof may evolve while generating substitutes for non read-once clauses as literals
may be added in junction nodes. However, the width remains bounded by w(π) + s(π) and
thus each junction node can be adapted in O((w(π) + s(π))2) inference steps. Therefore, we
conclude that we can deduce ϕ ⊢MaxRes C in O(s(π) × (s(π) + w(π))2) inference steps. ◀

▶ Example 15. We consider the formula ϕ = {x1 ∨ x3 ∨ x4, x4 ∨ x5, x4 ∨ x5, x1 ∨ x4, x2 ∨
x4 ∨ x6, x2 ∨ x3} and the derivation π of clause x6 from ϕ represented in Figure 1. We omit
the section of the proof (in blue) deriving clause x2 ∨x3 for simplicity. Note that this omitted
part, i.e., the ensuing derivation of the non read-once clause x2 ∨ x3 ∨ x7 corresponds to a
diamond pattern [24]. Such patterns will be studied in Section 5 (refer to Example 23 for
the adaptation). The adaptation of proof π is reported in Figure 7. We reuse the adaptation
of the linear read-once section in Example 3. The non read-once clause and its substitutes
are colored in red and added tautological clauses are represented in green. Note that this is
one of the possible adaptations depending on the order chosen for adapting the branches of
ED(x4). Finally, we stress the fact that we could have generated the clause C = x4 ∨ x6
after the last Max-SAT resolution step on clauses x3 ∨ x3 (but we omit this inference since
x6 = EC(x4) as mentioned in the proof of Theorem 14). Indeed, C can be inferred by an
additional Max-SAT resolution step on the compensation clauses obtained in the last step,
i.e., clauses x3 ∨ x6 and x4 ∨ x3 ∨ x6. In the proof of Theorem 14, this corresponds to the
case where B is empty in a junction node of an ensuing derivation.
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x4 ∨ x5 x4 ∨ x5

x4 x4 ∨ x2 ∨ x6

x2 ∨ x6

x4 ∨ x2 ∨ x6

x3 ∨ x6

x2 ∨ x3

x2 ∨ x6 ∨ x3

x4 ∨ x6

x4 ∨ x2 ∨ x6

x4 ∨ x6 ∨ x3

x4 ∨ x3 ∨ x6

x4 ∨ x3 ∨ x6

x4 ∨ x3 x4 ∨ x1

x1 ∨ x3

x4 ∨ x3 ∨ x1 x4 ∨ x3 ∨ x1 ∨ x3

x4 ∨ x3 ∨ x1 ∨ x3

x4 ∨ x3 ∨ x1 ∨ x3

x4 ∨ x1 ∨ x3 x4 ∨ x1 ∨ x3

x1 ∨ x3

x3

x6

Figure 7 Adaptation of a crossing-free resolution derivation. Solid lines represent the application
of the Max-SAT resolution rule whereas dashed lines represent compaction and expansion. Unused
compensation clauses are omitted.

Next, we discuss some minor syntactic subtleties that occur in the adaptation. First, it is
important to note that the use of the expansion and compaction rewritings as full fledged
rules is relevant for simplification but not necessary. Recall that these two rules are mainly
used in order to switch between the different equivalent forms of C when it is written in CNF
form. Each form corresponds to a different ordering of the literals in C. When applying
Max-SAT resolution, a relevant order may be chosen when necessary. However, an application
of a compaction followed by an expansion may correspond to a certain rearrangement of the
variables in CNF form. This may occur when adapting the read-once linear part of the proof.
Indeed, as showcased in Figure 2, a compaction may be followed by an expansion to isolate
the clause C1 ∨ li ∨ Ai from the compact form C1 ∨ Ai. Similarly, as shown in Figure 4, it
may be necessary to isolate the clause Cl ∨ l from the compact form Cl ∨ l ∨ A when dealing
with junction nodes.

More specifically, we may need to rearrange a certain literal at the beginning or at the
end of the ordering. In Proposition 16, we prove that it is possible to switch the first and
last literals in the CNF form of C in O(|C|) inference steps. This entails that in the proof
of Theorem 14, the compaction and expansion rules can be omitted and replaced with
O(s(π) × (s(π) + w(π))) Max-SAT resolutions. Clearly, this does not impact our result in
terms of the size of the resulting adaptation. In Example 17, we provide the full simplified
adaptation of the proof in Example 15 without the use of rewriting rules.

▶ Proposition 16. Let n be a natural number and l1, ..., ln be n literals. We can deduce
(l1) ∧ (l1 ∨ l2) ∧ ... ∧ (l1 ∨ ... ∨ ln−1 ∨ ln) ⊢MaxRes (ln) ∧ (ln ∨ l2) ∧ ... ∧ (ln ∨ l2 ∨ ... ∨ ln−1 ∨ l1)
in O(n) inference steps.
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x5 ∨ x4 x5 ∨ x4

x4 x4 ∨ x2 ∨ x6

x2 ∨ x6

x3 ∨ x6

x2 ∨ x3

x2 ∨ x6 ∨ x3

x4 ∨ x6

x4 ∨ x2 ∨ x6

x4 ∨ x6 ∨ x3

x4 ∨ x3 x4 ∨ x1

x1 ∨ x3

x4 ∨ x1 ∨ x3 x4 ∨ x1 ∨ x3

x1 ∨ x3

x3

x6

Figure 8 Adaptation of a crossing-free resolution proof to a Max-SAT resolution proof. Unused
compensation clauses are omitted.

Proof. By induction on n we have:
If n = 1 the result is trivial.
For n > 1, the application of Max-SAT resolution on clauses l1 ∨ .... ∨ ln−2 ∨ ln−1 and
l1 ∨ ....∨ ln−1 ∨ ln w.r.t var(ln−1) generates the resolvent clause C = l1 ∨ ....∨ ln−2 ∨ ln and
the compensation clause CC = l1∨....∨ln−2∨ln∨ln−1. Furthermore, by induction, we can
deduce (l1)∧(l1∨l2)∧...∧(l1∨...∨ln−2∨ln) ⊢MaxRes (ln)∧(ln∨l2)∧...∧(ln∨l2∨...∨ln−2∨l1)
in O(n − 1) inference steps. A single additional Max-SAT resolution step on clauses
CC and ln ∨ l2 ∨ ... ∨ ln−2 ∨ l1 w.r.t var(l1) is sufficient to generate the resolvent clause
ln ∨ l2 ∨ ... ∨ ln−2 ∨ ln−1 and the compensation clause ln ∨ l2 ∨ ... ∨ ln−1 ∨ l1. Therefore,
we deduce the wanted result in O(n) inference steps. ◀

▶ Example 17. We consider the same formula ϕ in Example 15. We represent in Figure 8 a
Max-SAT resolution proof (without rewriting) of clause x6 from ϕ. Notice how we use the
following rearrangement x6 ∧ (x6 ∨ x3) ⊢MaxRes x3 ∧ (x3 ∨ x6) to generate the substitute
x4 ∨x3. Furthermore, the tautological clause x4 ∨x3 ∨x1 ∨x3 colored in green in Figure 7 and
the rearrangement in which it is involved are not necessary since the last required substitute
for x1, i.e x4 ∨ x1 ∨ x3 is naturally generated by the preceding Max-SAT resolution step.
Therefore, they can be deleted as is the case for the full adaptation without rewriting in
Figure 8.

Next, we discuss the implications of the equality ∗= used in the proof of Lemma 12, i.e.,
l ∨ A ∨ B

∗= l ∨ A ∨ A ∨ B. Recall that this equality is sound for Max-SAT (c.f. Remark
13 in [17]). However, to avoid adding it as a standalone rule and as explained in the
proof of Lemma 12, we can consider the addition of tautological clauses. This may also be
required in case of unit clauses. It is important to note that the number of tautological
clauses added to the formula in an adaptation of a crossing-free resolution derivation π is in
O(s(π)× (w(π)+s(π))). A similar phenomenon was also noted in [8]. In addition, notice how
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the adaptation may also rely on tautological compensation clauses which are generated by
Max-SAT resolution. Such clauses are usually deleted or omitted in the literature [6, 7, 17]
but they may carry important information which is necessary to infer substitutes for non
read-once clauses.

Finally, we establish our result on crossing-free refutations in the following corollary.
We also illustrate in Example 19 an adaptation of a crossing free resolution refutation to a
Max-SAT resolution refutation.

▶ Corollary 18. Let ϕ be an unsatisfiable CNF formula and π be a crossing-free resolution
refutation of ϕ. We can deduce ϕ ⊢MaxRes □ from ϕ in O(s(π)3) inference steps.

Proof. Trivially entailed from Theorem 14 since w(π) = O(s(π)) for refutations. ◀

▶ Example 19. We consider the unsatisfiable CNF formula ϕ = {x1, x1∨x3, x1∨x2, x2∨x3}
and the refutation π of ϕ represented in Figure 9. Clearly, π is crossing-free since there is only
one non read-once clause, i.e., x1. In fact, π also corresponds to the ensuing derivation of x1
and □ is its ensued clause, i.e., ED(x1) = π and EC(x1) = □. Two possible adaptations
of π are illustrated in Figure 10. The non read-once clause and its substitutes are colored
in red. The possible adaptations correspond to different possible orderings of the proof. In
the adaptation on the left, we consider that the resolution step on clauses x1 ∨ x1 and x1
precedes the one on clauses x1 and x1 ∨ x2, and inversely for the adaptation on the right.
Note that the adaptation on the left corresponds to the handmade example provided by
Bonet et al. in [6, 7] (c.f. Example 1 in [6] or Example 3 in [7]).

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3 x2

x3

□

Figure 9 Crossing-free resolution refutation.

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x1 ∨ x3

x2 ∨ x3

x3

□

x1 x1 ∨ x2 x2 ∨ x3

x2

x1 ∨ x2

x1 ∨ x3

x3

x2 ∨ x3

x3

x1 ∨ x3

□

Figure 10 Two possible adaptations of the crossing-free resolution refutation represented in
Figure 9 depending on the ordering of the resolution steps involving the non read-once clause x1.
Unused compensation clauses are omitted.
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5 On (k-stacked) Diamond Patterns

In this section, we study particular resolution refutations, called k-stacked diamond patterns,
which were introduced and shown exponential for the adaptation (to ResS) in [24]. A diamond
pattern (x, y, A) where x, y /∈ A is the sequence of resolutions represented in Figure 11. Note
that the particular diamond pattern (x, y,□) is a resolution refutation. Now, imagine that
the topmost clause of (x, y,□) is derived through another diamond pattern. We iterate the
same reasoning to define a k-stacked diamonds pattern as in Definition 20.

▶ Definition 20 (k-stacked diamond). Let k ≥ 1 be a natural number and let xi and yi where
1 ≤ i ≤ k be distinct variables. A k-stacked diamond pattern is formed by k diamond patterns
(xi, yi, Ai) where 1 ≤ i ≤ k such that A1 = □ and Ai = (x1 ∨ · · · ∨ xi−1) for 1 < i ≤ k. Each
diamond (xi, yi, Ai) is stacked on top of (xi−1, yi−1, Ai−1) such that the last conclusion of
the former is the topmost central premise of the latter.

When k > 2, the size of a k-stacked diamond P is s(P ) = 3k while the size of the
computed refutation in ResS [18], i.e., Max-SAT resolution augmented with the split rule, by
the adaptation in [24] is at least 2k−1 which is exponential in the size of P . First, notice
that k-stacked diamond patterns fall within the crossing-free resolution. Furthermore, these
patterns can be adapted to Max-SAT resolution refutations without increasing their size as
established in 22. Such an adaptation is illustrated in Example 23.

▶ Proposition 21. Let k ≥ 1 be a natural number. A k-stacked diamond resolution refutation
is crossing-free.

▶ Proposition 22. Let ϕ be a CNF formula, k ≥ 1 be a natural number and π be a k-stacked
diamond resolution refutation. There exists a Max-SAT resolution refutation π′ of ϕ s.t
s(π′) ≤ s(π).

Proof. We show how to adapt every diamond pattern without increasing its size In Figure 12.
This is entailed by the fact that each diamond is clearly a crossing-free derivation and more
specifically an ensuing derivation of a non read-once clause. As such, a k-stacked diamond P

can be adapted in at most s(P ) Max-SAT resolution steps. ◀

▶ Example 23. We consider the ensuing derivation of clause x2 ∨ x3 ∨ x7 represented in
Figure 1. As mentioned in Example 15, this part of the proof corresponds to a diamond
pattern. Its adaptation is illustrated in Figure 13 (the non read-once clause and its substitute
are represented in red). The adaptation can be added on top of clause x2 ∨ x3 in Figure 8 to
obtain the full adaptation of the initial crossing-free proof represented in Figure 1.

6 Conclusion

In this paper, we introduced a new fragment of resolution, called crossing-free resolution, in
which ensuing derivations of non read-once clauses are disjoint. We showed that crossing-free

x ∨ Ax ∨ y x ∨ y

y ∨ A y ∨ A

A

Figure 11 Diamond pattern (x, y, A).
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x ∨ y x ∨ A x ∨ y

y ∨ A

x ∨ y ∨ A

x ∨ y ∨ A y ∨ A

A

Figure 12 Adaptation of a diamond pattern (x, y, A).

x7 ∨ x5 x7 ∨ x2 ∨ x3 x7 ∨ x5

x5 ∨ x2 ∨ x3

x7 ∨ x2 ∨ x3 ∨ x5

x5 ∨ x2 ∨ x3

x2 ∨ x3

Figure 13 Adaptation of the diamond pattern in the resolution proof represented in Figure 1
(colored in blue) corresponding to the ensuing derivation of clause x7 ∨x2 ∨x3. Unused compensation
clauses are omitted.

resolution derivations and in particular crossing-free refutations can be adapted to Max-SAT
resolution proofs without substantially increasing their size. To the best of our knowledge,
this is the first non trivial fragment, i.e., different from read-once resolution, whose adaptation
is shown possible using only Max-SAT resolution with a reasonable guarantee on the size of
the adapted proofs. The idea behind the adaptation is to naturally infer substitutes for non
read-once clauses by dragging them along while unfolding the initial resolution proof and by
relying on compensation clauses produced by Max-SAT resolution. Furthermore, we show
that diamond patterns, which were shown exponential for the adaptation in [24], fall within
the crossing-free resolution fragment and can be adapted into Max-SAT resolution proofs
without increasing their size.

Our results contribute to the difficult open problem of adapting resolution proofs to Max-
SAT resolution proofs without increasing their size [6, 7] and, therefore, helps to bridge the
gap between resolution for SAT and Max-SAT. Furthermore, unlike SAT solvers, Max-SAT
solvers are still not able to output certificates in the form of Max-SAT equivalent proofs
mainly due to the variety of solving paradigms and due to the theoretical gap between SAT
and Max-SAT resolution. Our work can be useful in this regard and particularly in improving
the efficiency of independent proof builders for the Max-SAT problem [25]. Finally, as future
work, it would be interesting to characterize a larger intersection between SAT and Max-SAT
resolution by proving that an adaptation of an extended refinement of resolution (ideally
unrestricted resolution) without a substantial increase in the size of the proofs is possible,
even through augmenting Max-SAT resolution by other inference rules.

CP 2022
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