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Abstract: Acute coronary syndrome (ACS) is a set of signs and symptoms caused by a reduction
of coronary blood flow with subsequent myocardial ischemia. ACS is associated with activation of
the leukotriene (LT) pathway with subsequent releases of various LTs, including LTB4, LTC4, and
LTD4, which cause inflammatory changes and induction of immunothrombosis. LTs through cysteine
leukotriene (CysLT) induce activation of platelets and clotting factors with succeeding coronary
thrombosis. CysLT receptor (CysLTR) antagonists such as montelukast (MK) may reduce the risk
of the development of ACS and associated complications through suppression of the activation of
platelet and clotting factors. Thus, this critical review aimed to elucidate the possible protective role of
MK in the management of ACS. The LT pathway is implicated in the pathogenesis of atherosclerosis,
cardiac hypertrophy, and heart failure. Inhibition of the LT pathway and CysL1TR by MK might be
effective in preventing cardiovascular complications. MK could be an effective novel therapy in the
management of ACS through inhibition of pro-inflammatory CysLT1R and modulation of inflam-
matory signaling pathways. MK can attenuate thrombotic events by inhibiting platelet activation
and clotting factors that are activated during the development of ACS. In conclusion, MK could
be an effective agent in reducing the severity of ACS and associated complications. Experimental,
preclinical, and clinical studies are recommended to confirm the potential therapeutic of MK in the
management of ACS.

Keywords: acute coronary syndrome; leukotriene; montelukast; antileukotrienes therapy

1. Introduction

Acute coronary syndrome (ACS) is a set of signs and symptoms caused by a reduction
of coronary blood flow with subsequent myocardial ischemia [1]. According to the elec-
trocardiographic (ECG) changes and duration of symptoms, ACS is divided into unstable
angina, which represents 38%; ST-elevation myocardial infarction (STEMI) representing
30%, and non-ST-elevation myocardial infarction (NSTEMI) representing 25%. Unstable
angina of ACS is differentiated from stable angina, as it occurs suddenly at rest with little
response to treatment [2].
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The cardinal clinical features of ACS are chest pain, dyspnea, nausea, vomiting,
sweating, and tachycardia [3]. ACS is mainly caused by coronary thrombosis, coronary
vasospasm, aortic valve stenosis, severe anemia, and pulmonary hypertension [4]. The
underlying pathogenic mechanisms of ACS are related to rupture of atheroma in 60% and
atheroma erosion in 30%. Most of the atheroma rupture induces the development of STEMI,
while the development of atheroma erosion induces propagation of NSTEMI [5].

Plague rupture provokes in situ inflammatory reactions and thrombosis with subse-
quent ischemic-reperfusion injury (IRI). Thrombolytic therapy is indicated for STEMI, while
nitroglycerin, antiplatelet, low-molecular-weight heparin (LMWH) such as enoxaparin,
and heparin-like drugs such as fondaparinux are effective in this state [6,7].

It has been reported that leukotriene receptor (LT) receptor antagonists such as mon-
telukast (MK) may have potential beneficial effects in the cardiovascular field [8]. Thus, this
critical review aimed to elucidate the possible protective role of MK in the management
of ACS.

2. Leukotriene Pathway

The LT name was initially described in 1979 by Swedish Bengt Samuelsson as a
slow-reaction, smooth-muscle-stimulating substance that was introduced by Feldberg and
Kellaway between 1938 and 1940 [9]. LTs are inflammatory eicosanoid mediators generated
by leukocytes through oxidation of arachidonic acid (AA) and eicosapentaenoic acid (EPA)
by the action of 5-lipoxygenase (5-LO) [9]. LTs use lipid signaling to express and convey
information in autocrine and paracrine patterns to control immune functions. Usually, the
production of LTs is correlated with the release of prostaglandins and histamines [10]. By
the action of 5LO or 5LO-activating protein (FLAP), the AA is converted to LTA4, which
is converted through LTA4 hydrolase and LTC4 synthase to LTB4 and cysteinleukotriene
(CysLT), respectively. LTB4 is inhibited by LY-293111 a specific inhibitor of the LTB4
receptor, while MK, pranlukast, and zafirlukast block CysLT receptor (CysLTR) type 1 [11]
(Figure 1).

Thus, there are two types of LTs, namely LTB4 and CysLT, which include LTC4, LTE4,
and LTD4. CysLTs are involved in the development of allergy and anaphylaxis. Specifically,
LTB4 induces recruitment of neutrophils with induction of tissue injury and release of
pro-inflammatory cytokines. Therefore, LTB4 antagonists inhibit the development and
propagation of neutrophil-mediated disorders [12,13]. LTA4 is mainly converted to LTB4
and has few inflammatory effects. LTC4 is mainly expressed by eosinophil and mast cells,
which are converted outside the cells to form LTD4 and LTE4, which have inflammatory
effects. Moreover, LTG4 is regarded as an active metabolite of LTE4 that has unknown
biological effects [14,15].

There are two main types of CysLT receptors, which are CysLTR1 and CysLTR2.
CysLTR1 is a G-protein coupled receptor that is mainly activated by LTD4 and LTC4,
causing airway bronchoconstriction and increasing vascular permeability, the influx of
neutrophils and eosinophils, fibrosis and collagen deposition, and membrane hypertrophy
of respiratory epithelium [16]. Additionally, activation of CysLTR1 is associated with
disruption of the blood–brain barrier (BBB) with induction of neuroinflammation and
convulsion. Therefore, CysLTR1 antagonists could be effective against the development of
Parkinson’s disease, Alzheimer’s disease, encephalomyelitis, and multiple sclerosis [17].
CysLTR1 is inhibited by MK, pranlukast, and zafirlukast [17]. CysLTR2 is activated by
LTD4 and LTC4, and it is involved in the development of hypersensitivity and allergic
reactions [18,19]. CysLTR2 is chiefly expressed in the platelets, eosinophils, macrophages,
and mast cells. Furthermore, CysLTR2 is highly expressed in the heart, adrenal gland,
endothelial cells, smooth muscle cells, and airway epithelial cells [18]. MK and other CysLTs
only block CysLTR1; however, gemilukast inhibits both CysLTR1 and CysLTR2, which can
be effective in the management of asthma [20]. Other types of LT receptors such as GPR99,
which is called oxoglutarate or CysLTR3, are stimulated by LTE4 and α-ketoglutarate, while
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GPR99 is inhibited by MK [21]. Overexpression of GPR99 is linked with the development
of hypertension [21].
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Figure 1. Leukotriene pathway and its inhibitors: Membrane phospholipids hydrolyzed by phos-
pholipase A to arachidonic acid (AA), which, by the action of 5-lipoxygenase (5-LO), convert to
leukotriene A4 (LTA4). Further, LTA4 is converted to LTB4 by the action of LTA4 hydrolase and to
cysteinleukotriene (CysLT) by the action of LTC4 synthase. CysLTs act on CysLT receptors (CysLT1R
and CysLT2R).

GPR17 is a G-protein coupled receptor stimulated by LTC4, LTD4, and uracil nu-
cleotides. GPR17 chemical structure is intermediate between CysLTR1 and CysLTR2.
GPR17 is highly distributed in the central nervous system (CNS) mainly in the microglia
cells [22]. Cangrelor, which is a purinergic receptor (P2Y) antagonist, blocks GPR17 [23].

Furthermore, P2Y12 is activated following activation of CysLTR1 by LTs; therefore,
inhibition of P2Y12 by a specific antagonist attenuates the CysLTR1-dependent effect of
LTs. P2Y12 is a chemoreceptor stimulated by adenosine diphosphate (ADP) and belongs
to G-protein coupled purinergic receptor group [24]. P2Y12 is involved in platelet aggre-
gation and thrombosis; it is inhibited by antiplatelet drugs such as clopidogrel, prasugrel,
ticagrelor, and cangrelor [24]. Notably, P2Y12 is also expressed in the vascular smooth
muscle and immune cells and involved in the pathogenesis of inflammation through the
promotion of the interaction between platelets and leukocytes with the release of inflamma-
tory cytokines [24]. Kang et al. illustrated that MK attenuates bone loss through inhibition
expression of P2Y12 [25]. Moreover, LTs can activate peroxisome proliferator-activated
receptors (PPAR). Interestingly, zafirlukast and MK are regarded as a potent modulators
of PPAR-γ [26]. LTs are intricate in the pathogenesis of asthma, dementia, and cognitive
dysfunction [26].

These findings suggest that LTs through activation of LTRs and other related receptors
may be involved in the pathogenesis of respiratory and systemic disorders.

3. Pharmacology of Montelukast

MK is a monocarboxylic acid with aliphatic sulfide from the quinolone family (Figure 2).
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MK is an orally active CysLTR1 antagonist that blocks the action of LTD4 used in the
prophylaxis of asthma and management of various inflammatory disorders [28]. Similarly,
MK is indicated in the management of urticarial and allergic rhinitis [28]. MK was ap-
proved by the Food and Drug Administration (FDA) in 1998 in the USA. The use of MK is
associated with the development of many adverse effects, including vomiting, nausea, skin
rash, angioedema, mild fever, malaise, paresthesia, muscle cramps, and seizure [28,29]. Pro-
longed use of MK is linked with the development of neuropsychiatric disorders, including
nightmares, insomnia, depression, anxiety, and aggression [29]. In 2009, the FDA declared
that long-term use of MK was associated with increased risk of suicidal behavior [29]. In
2020, the FDA put MK in a boxed warning about the risk of neuropsychiatric disorders
and advises to limit the use of MK for simple allergic reactions when safe alternatives are
available [30].

MK is rapidly absorbed from the intestine with 64% bioavailability, and its absorption
is not affected by food. MK plasma concentration is attained within 2–4 h with high plasma
protein binding. MK has few drug–drug interactions though it inhibits liver metabolizing
enzyme CYP2C8. MK and its metabolites are highly distributed and excreted by bile [31].
The lethal dose in 50% (LD50) of MK is more than 5000 mg/kg [31].

4. Montelukast and Cardiovascular Complications

The general expression of CysLTR is associated with the propagation of different
cardiovascular complications [32]. CysLT2R is highly expressed in the human atrium,
ventricles, apex, septum, and Purkinje cells. In addition, CysLT2R is expressed on the
endothelial cells, monocytes, and smooth muscle cells, while CysLT1R is chiefly present
in the macrophages and monocytes [32]. Surprisingly, only CysLT2R is expressed in
coronary smooth muscles, whereas aortic smooth muscles highly expressed CysLT1R [32].
Of note, CysLTR exerts negative inotropic effects and reduces coronary blood flow without
chronotropic effects [33].

MK and other CysLTR antagonists were originally developed for the management
of asthma. In virtue of its anti-inflammatory property, MK could be effective in treating
atherosclerosis and metabolic syndrome [34]. It has been shown that asthmatic patients
on MK treatments showed a low cardiovascular risk index since MK decreases the risk of
stroke, myocardial infarction, and other cardiovascular complications [8]. Of interest, MK
inhibits epoxide hydrolase, which hydrolyzes beneficial epoxyeicosatrienoic acid to inac-
tive dihydroxyeicosatrienoic acid [35]. Thus, MK and other CysLTR antagonists through
activation of PPAR-γ and inhibition of epoxide hydrolase may reduce cardiovascular com-
plications through the improvement of endothelial function and insulin sensitivity [36].
Animal model studies revealed that MK reduced the risk for the development of myocardial
infarction, ischemic reperfusion injury, and atherosclerosis [37,38]. Ge et al. observed that
MK had an anti-atherogenic effect by inhibiting the expression of monocyte chemoattractant
protein 1 (MCP-1) in rabbits with induced carotid injury [38]. Likewise, Liu’s experimental
study confirmed that MK reduced the propagation of atherosclerosis by inhibiting the
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expression of matrix metalloproteinases (MMPs) (Figure 3) [39]. Activation of PPAR-γ and
inhibition of soluble epoxide hydrolase by MK attenuates propagation of oxidative stress-
induced endothelial injury through suppression expression of AA metabolites [38]. Wang
and colleagues observed that over-expression of soluble epoxide hydrolase was engaged
with the development of atherosclerosis by reducing the anti-inflammatory anti-thrombotic
effects of epoxyeicosatrienoic acid [40].
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Figure 3. Mechanisms of montelukast in different cardiac and vascular diseases: Montelukast
(MK) inhibits inflammasome signaling pathways, including p38 mitogen-activated protein kinase
(p38MAPK), nod-like receptor pyrin 3 (NLRP3) inflammasome, mechanistic target of rapamycin
(mTOR), and advanced glycation end-products (AGEPs). In addition, MK attenuates activation of
cysteinleukotrine (CysLT) and activated factorXI with subsequent inhibition of inflammation and
thrombosis-induced myocardial infarction and acute coronary syndrome (ACS).

In the atherosclerotic lesions, the expression of 5-LO and FLAP and their metabolites,
including LTB4, LTA4, and LTC4 and LTD4 and LTC4 are increased with the augmentation
of the expression of CysLTR [41]. These findings suggest close relationships between the
development of atherosclerosis and the activation of LT pathway, so targeting this pathway
could limit the progression of the atherosclerotic process. In atherosclerotic lesions, the
activated macrophages are augmented, which are the major source of 5-LO [41]. A clinical
study observed that long-term treatment with MK reduced serum level of C-reactive protein
(CRP) in the asthmatic patients [42]. Long-term follow-up studies proposed that MK by
its anti-inflammatory effect may inhibit the advancement of atherosclerosis [43]. It has
been shown that LT signaling pathway is implicated in the pathogenesis of atherosclerosis
through suppression of lipid retention, accumulation of foam cells, and intimal hyperplasia
with subsequent propagation of atherosclerosis [43].

Furthermore, LT increases the risk for rupture of atherosclerotic plaque through
degradation of extracellular matrix [43]. For these reasons, augmentation of LTs may be
correlated with the development of ischemic changes. In addition, over-expression of
CysLTR in the atherosclerotic lesions increases the risk of atherosclerotic complications
such as myocardial infarction, ischemic stroke, and aortic aneurysm [44]. Deletion of
5-LO in experimental mice reduced the development of atherosclerotic lesions by about
25-fold [45]. Likewise, an experimental study demonstrated that atorvastatin inhibits the
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advancement of atherosclerotic lesions by inhibiting the expression of CysLT1R and FLAP
as well as regulating the expression of 5-LO [46].

Regarding clinical studies, Revan et al. found that genetic variation in the LT pathway
was linked with the development of early atherosclerotic lesions [47]. Genetic variations in
the expression of 5-LO are associated with increasing intima-media thickness and progres-
sion of atherosclerosis in a cohort study [48]. These verdicts implicated the LT pathway in
the pathogenesis of atherosclerosis; hence, LT pathway inhibitors or CysLTR antagonists
could be effective in preventing the development of atherosclerosis. Different studies
revealed that CysLT1R antagonists such as MK and FLAP inhibitors decrease the develop-
ment of atherosclerosis in mice [49,50].

In the atherosclerotic lesions, LTC4 expression and its mediator, known as multi-drug
resistance protein 1 (MRP-1), were increased, causing oxidative stress injury in humans [51].
Of interest, LTC4 and LTD4 increase the expression of adhesion molecules such as P-
selectin in the CysLT2R-dependent pathway, and thus, MK may be ineffective in the
suppression of this pathway, as it merely blocks CysLT1R [52]. Furthermore, the induction
release of pro-inflammatory cytokines and chemokines by LTD4 was not suppressed by
the action of MK and other CysL1TR antagonists, as the release of inflammatory cytokines
are mainly mediated by the CysL2TR [53]. Remarkably, LTD4 can induce the release of
anti-inflammatory cytokine IL-10, which has a protective immunomodulatory effect against
the development of atherosclerosis [53].

Moreover, overexpression of GPR99 is associated with the development of cardiac
hypertrophy [54]. Nguyen et al. illustrated that MK can inhibit the pharmacological
activity of GPR99, thereby limiting inflammatory progression and development of cardiac
hypertrophy [55]. Further, changes in the expression of GPR107 and GPR99 could be
the possible cause for the propagation and pathophysiology of hypertension in rats [21].
Moreover, the development and progression of chronic heart failure are associated with
the escalation of the LT pathway [56]. Inhibition of LTB4 may reduce the inflammatory
changes and progression of heart failure [56]. Suppression of LTB4 and AA metabolites
decreases the risk for the development of heart failure [56].

These observations suggest that the LT pathway is implicated in the pathogenesis of
atherosclerosis, cardiac hypertrophy, and heart failure. Inhibition of the LT pathway and
CysL1TR by MK might be effective in preventing cardiovascular complications.

5. Montelukast and Acute Coronary Syndrome

Notably, soluble epoxide hydrolase increases the expression of fatty acid synthase
in the mononuclear cells in patients with ACS [57]. A prospective study involving 65
patients with ACS compared to 65 healthy controls illustrated that serum levels of soluble
epoxide hydrolase and fatty acid synthase were increased in ACS patients [57]. A study
including 667 ACS patients revealed that high-soluble epoxide hydrolase serum level
is correlated with the severity of ACS [58]. Suppression of soluble epoxide hydrolase
attenuates cardiac ischemic-reperfusion injury in vivo [59]. In addition, inhibition of soluble
epoxide hydrolase attenuates the progression of hypertension, which is the major risk factor
for the development of ACS [59]. These findings suggest that inhibition of soluble epoxide
hydrolase by MK could be a therapeutic strategy for preventing the development of ACS.

On the other hand, PPAR-γ agonists were reported to be effective in the reduction
of ACS [60]. PPAR-γ agonists reduce the expression of pro-inflammatory cytokines and
macrophage activation in the coronary bed [60]. In a case-control study, PPAR-γ serum
level was reduced in ACS patients and inversely correlated with cardiac troponin compared
with controls [61]. Therefore, PPAR-γ serum level could be a predictive biomarker for the
development of ACS mainly myocardial infarction [61]. Single-gene polymorphism in
PPAR-γ predisposes the development of ACS in the Turkish population [62]. Remarkably,
expression of LTC4 and CysLT1R are increased during adipogenesis through upregula-
tion of PPAR-γ [63]. Therefore, inhibition of CysLT1R by MK might be effective in the
management of obesity-induced inflammatory disorders.
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Of note, LTC4 increases intima-media thickness and calcium contents in the coronary
atherosclerotic plaques [64]. In addition, hypoxic stress in ACS increases the expression of
CysLT1R and LTC4 in mice [49]. Within coronary atherosclerotic lesions, CysLTs are gener-
ated under hypoxic and ischemic conditions causing augmentation of vascular reactivity
and propagation of coronary vasoconstriction [49,65]. Thus, CysLTs lead to noteworthy
coronary hemodynamic changes. For example, administration of LTD4 in patients with
significant coronary stenosis leads to an augmentation of coronary resistance measured by
coronary angiogram [66]. A previous in vitro study demonstrated that LTD4- and LTC4-
induced coronary vasospasm during angiography was inhibited by MK [66]. It has been
shown that the sensitivity of CysLTs to induce coronary vasospasm was increased due to
the release of binding molecules, which increase the binding of CysLTs to the coronary
atherosclerotic lesions [67]. Moreover, CysLT1Rs expression is increased in response to the
released pro-inflammatory cytokines from coronary atherosclerotic lesions [67]. Interest-
ingly, CysLT1R expression is higher than CysLT2R in the carotid and coronary intima [68].
In an experimental study, CysLTs promote the release of pro-inflammatory cytokines with
induction expression of adhesion molecules [68].

These findings proposed that CysLTs play a critical role in the pathogenesis of ACS,
and the use of CysLT1R antagonists such as MK might be of value in attenuating the
severity of ACS (Figure 3).

6. Montelukast and Myocardial Infarction

It has been shown that LTs are involved in the pathogenesis of myocardial infarction.
Additionally, genetic variation in 5-LO increases the risk of myocardial infarction in both an-
imals and humans [32]. Production of CysLTs is augmented in ischemic-reperfusion injury
following the development of myocardial infarction [32]. Different experimental studies
illustrated that levels of CysLTs are increased after acute myocardial infarction. CysLTs
induce coronary vascular resistance and increase infarct size and coronary endothelial
dysfunction [69,70].

During the development of myocardial infarction, several inflammatory cells invade
myocardial tissues that release LTs, which also recruit inflammatory cells and induce
vascular smooth contractility, the proliferation of smooth muscle cells, and the increase of
vascular permeability [71]. Gross et al.’s experimental study illustrated that production
of LTs were augmented due to over-expression of 5-LO, which increases the release of
pro-inflammatory cytokines [72]. A cohort study illustrated that overexpression of 5-
LO increases the risk for the development of myocardial infarction [73]. Therefore, MK
via inhibition of CysLT1R can reduce the severity of myocardial ischemia by inhibiting
apoptosis and the production of reactive oxygen species (ROS) (Figure 3) [74].

Moreover, LTD4 plays an integral role in the development of myocardial ischemia
through the induction of coronary constriction. LTD4 has been reported to be a potent
coronary vasoconstrictor in the isolated heart [75]. Surprisingly, zafirlukast was shown
to be ineffective against experimental myocardial ischemia since myocardial ischemia is
mainly mediated by CysLT2R [76]. Notably, activation of CysLT2R results in progressive
myocardial ischemia with more inflammatory changes [76]. In addition, upregulation of
endothelial CysLT2R increases the risk of myocardial ischemia and apoptosis [77].

Moreover, GPR17, which is a receptor for LTD4 and LTC4, increases the risk of cardiac
ischemia through interaction with cardiac CysLT1R [78]. Inhibition of GPR17 by MK
reduces myocardial ischemia and fibrosis [79]. Furthermore, urinary levels of CysLTs were
increased following myocardial infarction and coronary bypass surgery [79]. Another
study found that rupture of coronary plaque was associated with increased urinary LTs in
patients with ACS [80]. However, urinary LTs as a potential biomarker of plaque rupture
or inflammatory changes during myocardial infarction need to be elucidated through
further study. Many studies observed that inhibition of the LT pathway increases recovery
following myocardial infarction [81,82].
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Despite these findings, there are controversial studies concerning the protective effects
of CysLT1R antagonists in myocardial ischemia. For example, Shekher et al. found that
CysLT1R antagonists did not alter infarct size and reperfusion injury following myocardial
infarction [83]. Further, coronary ligation with the development of myocardial infarction
and ischemic reperfusion injury in experimental mice was not ameliorated by 5-LO in-
hibitors or CysLT1R antagonists [77]. However, CysLT1R antagonists may produce neutral
effects [84]. Genetic variation in LTA4 leads to ethnic risk factors for the development of my-
ocardial infarction [85]. Recently, Hori et al.’s upregulation of LTB4 receptors exacerbated
inflammatory changes following myocardial infarction [86].

A systematic review involving 28 studies illustrated that CysLT1R antagonists reduce
the risk of myocardial infarction, ischemic stroke, and other cardiovascular complica-
tions [87]. In addition, CysLT1R antagonists could be effective for the secondary prevention
of cardiovascular diseases. The reduction of recurrent myocardial infarction in male sub-
jects on MK therapy was significant as compared to male subjects not on MK treatment
(HR = 0.65, 95% CI = 0.43–0.99) in a three-year follow-up study [87]. These findings suggest
that MK may affect the expression and activity of CysLT2R, which is chiefly engaged with
myocardial ischemia.

Moreover, MK attenuates lipopolysaccharide (LPS)-induced myocardial injury in a
dose-dependent manner [88]. Herein, MK could have cardioprotective effects against
endotoxemia-induced inflammatory changes during acute myocardial injury. This effect of
MK can be attributed to its anti-inflammatory and antioxidant effects [88]. A single-center,
prospective, observational study showed that patients with previous myocardial infarction
had higher urinary LTs as compared with unstable angina [89].

7. Effects of Montelukast on the Inflammatory Signaling Pathway in Acute
Coronary Syndrome

Different inflammatory signaling pathways are activated during the development of
ACS that correlated with the severity of ACS. Mitogen-activated protein kinase (MAPK) is
activated during ACS [90]. MAPK family includes extracellular signal-regulated kinase
(ERK), c-Jun N-terminal kinase (JNK), and p38. MAPK family and toll-like receptor 4
(TLR4) are increased in patients with ACS compared to the controls [91]. Indolfi et al.
confirmed that p38MAPK was increased in the T lymphocytes in patients with ACS [92]. In
a comparative study, p38MAPK activities in T lymphocytes were not significant in patients
with unstable angina compared to the healthy controls. However, it was higher in patients
with ST-elevation myocardial infarction [92]. These findings confirmed that p38MAPK
could be a potential biomarker to differentiate subtypes of ACS.

Likewise, nod-like receptor pyrin 3 (NLRP3) inflammasome is an inflammatory signal-
ing pathway involved in the release of pro-inflammatory cytokines with the induction of
pyroptosis [19]. It has been shown that NLRP3 inflammasome is activated in ACS mainly
in acute myocardial infarction, causing hyperinflammation and cardiac fibrosis [93]. Mauro
et al. revealed that the NLRP3 inflammasome is highly activated in acute myocardial
infarction [94]. NLRP3 inflammasome senses intracellular signaling during tissue ischemia
and provokes immune response during acute myocardial infarction [94]. In addition, coro-
nary ischemia induces activation of NLRP3 inflammasome through ROS [95]. Activated
NLRP3 inflammasome in ACS triggers inflammatory changes and cardiac dysfunction.
Moreover, the mechanistic target of the rapamycin (mTOR) signaling pathway is activated
during heart failure following acute myocardial infarction through the autophagic pro-
cess [96]. Likewise, advanced glycation end-products (AGEPs) are triggered during ACS
and contribute to the development of post-myocardial remodeling and dysfunction [97].

Therefore, targeting p38MAPK, NLRP3 inflammasome, mTOR, and AGEPs may
reduce the risk of complications in patients with ACS (Figure 3). It has been illustrated
that MK can inhibit both p38MAPK and NLRP3 inflammasome in different studies. It has
been reported that MK inhibits microglial activation through suppression of p38MAPK
signaling [98]. Further, Zhou et al. demonstrated that MK attenuated neuropathic pain



Pharmaceuticals 2022, 15, 1147 9 of 15

by inhibiting p38MAPK and NF-κB in a rat model [99]. Updated studies showed that MK
alleviates hepatotoxicity by inhibiting the NLRP3 inflammasome signaling pathway in an
animal model [100,101]. Furthermore, MK and other CysLT1R antagonists have abilities to
block the activation of mTOR and AGEPs in various experimental studies [102,103].

These verdicts suggest that MK may reduce the severity of ACS by reducing the
activity of p38MAPK, NLRP3 inflammasome, mTOR, and AGEPs. This pleiotropic effect of
MK may not be mediated by blocking CysLT1R; thus, extensive researches are warranted
in this regard.

Taken together, MK could be an effective novel therapy in the management of ACS
through inhibition of pro-inflammatory CysLT1R and modulation of inflammasome signal-
ing pathways. Experimental, preclinical, and clinical studies are recommended to confirm
the potential therapeutic of MK in the management of ACS.

8. Montelukast and Thrombosis in Acute Coronary Syndrome

Thrombosis plays an integral role in the pathogenesis of ACS since disruption and
rupture of coronary atherosclerotic plaque expose subendothelial collagen with the release
of tissue factors and pro-coagulant molecules, which activate platelet activations and fibrin
formation [104]. These changes induce endothelial dysfunction and immunothrombosis
with the development of coronary obstruction and subsequent ischemic-reperfusion injury
in ACS [104,105]. Platelet activations trigger atheromatous complications after rupture of
the coronary atheromatous plaque [104,105].

Moreover, inflammation through activation of monocytes, macrophages, and mast
and T cells contributes to the pathogenesis of ACS via rupture of atherosclerotic plaque and
release of pro-inflammatory cytokines [106]. Pro-inflammatory cytokines induce the expres-
sion of endothelial adhesion molecules with succeeding thrombus formation [106–108].

It has been shown through in silico and vitro experiments that MK had an antithrom-
botic effect by inhibiting factor XI (FXIa) [109]. In vivo study has also confirmed the
inhibitory effect of MK on the activation of FXIa [110]. Houard and colleagues illustrated
that expression of 5-LO and LTB4 are increased in the intramural thrombus [110]. Thus,
LTs are engaged with the propagation of coronary thrombosis. A previous study revealed
that peptido-LTs are potent agonists of clotting factors including the von Willebrand fac-
tor with induction expression of P-selectin from endothelial cells [111]. Notably, LTC4
induces the release of thromboxane A2, IL-33, and high-mobility group box 1 (HMGB1)
from activated platelets, causing immunothrombosis [112–114]. Tang et al. observed that
stimulation of GRP91 increases platelet aggregation and release of LT4 [115]. Therefore,
CysLT1R inhibitors such as MK may reduce platelet activation and aggregation during the
propagation of ACS and thrombotic events.

Taken together, MK has the ability to attenuate thrombotic events by inhibiting
platelet activation and clotting factors, which are activated during the development of
ACS (Figure 3).

The present review had many limitations, including a paucity of clinical studies that
evaluate the clinical effectiveness of MK in patients with ACS. Moreover, sequential levels
of LTs were not assessed in most of the clinical studies to find the association with severity
and recovery.

9. Conclusions

ACS is associated with activation of LT pathway with subsequent releases of vari-
ous LTs, including LTB4, LTC4, and LTD4, which cause inflammatory changes and the
induction of immunothrombosis. LTs through CysLTRs induce activation of platelets and
clotting factors with succeeding coronary thrombosis. CysLTR antagonists such as MK
may reduce risk development of ACS and associated complications through suppression
activation of platelet and clotting factors. Taken together, MK could be an effective agent in
reducing severity of ACS and associated complications. Experimental and clinical studies
are warranted in this regard.
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