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Abstract: Thermoelectric materials have attracted extensive attention because they can directly con-
vert waste heat into electric energy. As a brand-new method of alloying, high-entropy alloys (HEAs)
have attracted much attention in the fields of materials science and engineering. Recent researches
have found that HEAs could be potentially good thermoelectric (TE) materials. In this study, special
quasi-random structures (SQS) of PbSnTeSe high-entropy alloys consisting of 64 atoms have been gen-
erated. The thermoelectric transport properties of the highest-entropy PbSnTeSe-optimized structure
were investigated by combining calculations from first-principles density-functional theory and on-
the-fly machine learning with the semiclassical Boltzmann transport theory and Green–Kubo theory.
The results demonstrate that PbSnTeSe HEA has a very low lattice thermal conductivity. The electrical
conductivity, thermal electronic conductivity and Seebeck coefficient have been evaluated for both
n-type and p-type doping. N-type PbSnTeSe exhibits better power factor (PF = S2σ) than p-type
PbSnTeSe because of larger electrical conductivity for n-type doping. Despite high electrical thermal
conductivities, the calculated ZT are satisfactory. The maximum ZT (about 1.1) is found at 500 K for
n-type doping. These results confirm that PbSnTeSe HEA is a promising thermoelectric material.

Keywords: thermoelectrics; high-entropy alloys (HEA); DFT calculations; transport properties

1. Introduction

In recent years, the energy problem has become increasingly serious. Thermoelectric
materials have attracted extensive attention as they can directly convert waste heat into
electric energy [1–4]. The figure of merit ZT = S2σT/κ [5] is used to evaluate the thermo-
electric conversion efficiency in which S, σ, T, and κ are the Seebeck coefficient, electrical
conductivity, temperature, and thermal conductivity (electronic and lattice), respectively.
However, due to the strong coupling between these parameters, it is not easy to improve
the thermoelectric efficiency [6]. Therefore, in order to improve the thermoelectric efficiency,
various routes have been explored, e.g., using band engineering to improve power factor
(S2σ) [7,8], and reducing the dimensionality of the material to reduce the lattice thermal
conductivity [9–11]. In addition to improving the thermoelectric efficiency of existing
materials with these strategies, finding new thermoelectric materials is also an important
approach [12–14].

As a recent method of alloying, high-entropy alloys has attracted much attention in
the fields of materials science and engineering [15–20]. A bibliographic search from the
Chemical abstract Service/SciFinder database indicates that more than 11,000 papers have
been published on high-entropy alloys (HEA) since 2002. Most of these references deals
with materials containing mainly transition metal elements (Ti, Cr, Fe, Cu, Mo, Co, Ni, Nb,
Ta, Pt, . . . ) occasionally combined with metals or non-metals of the principal elements (Al,
Si, P, . . . ). These HEA have been investigated for, e.g., their mechanical (see Refs. [21–24]),
catalytic [25–28], photocatalytic [29–32], and refractory [33–36] properties. To date, over
350 reviews have been published on HEAs various properties [37–42]. High-entropy alloys
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are typically defined as a single-phase, solid solution with five or more principal elements,
each in a 5 to 35% molar ratio, resulting in high configurational mixing entropy (∆Smix),
defined as ∆Smix = −R∑icilnci, where ci and R are the compositional ratio and the gas
constant, respectively [15]. It is generally admitted that the high entropy of mixing favors
the formation of solid solutions and reduces the number of phases [15]. Because of the
lattice distortion effects [43], which reduce phonon velocity and enhance the scattering of
phonons, high-entropy alloys generally have low lattice thermal conductivity [44–46]. As
high-entropy sulfides, Cu5Sn1.2MgGeZnS9 has been reported with a ZT value of 0.58 at
773 K [47]. The high-entropy metal chalcogenide (Ag,Pb,Bi)(S,Se,Te) alloy with a NaCl-
type structure has been investigated and it was found that this compound is a n-type
semiconductor with very low κL and good power factor resulting in a figure of merit
of 0.54 at 723 K [48]. Recently, an n-type PbSe-based high-entropy material formed by
entropy-driven structural stabilization was studied for its thermoelectric properties. The
ZT value was found to reach 1.8 at 900 K, which corresponds to a material exhibiting
good thermoelectric properties [49]. Apart from HEA, other, more conventional, types of
compounds have been reported bearing low thermal conductivity, such as Zintl phases (e.g.,
Ba2ZnSb2 [50]), argyrodites [51], sulfide-containing films [52], rare-earth molybdates [53],
perovskites (e.g., [54]), and defective metal chalcogenide thin films [55], to cite a few.
Typically, the thermal conductivity of these compounds lies below 1 W/(m K). The reasons,
or the conjunction of reasons, for this low thermal conductivity have been identified
by means of the combined density-functional theory and Boltzmann transport theory
approaches. The investigations have evidenced large Grüneisen parameters, low-lying
optical and acoustic phonon frequencies, short phonon lifetime, and the presence of defects.
We shall mention that, to date, several papers report on the prediction of the thermal
conductivity of materials using a combined approached based on ab initio molecular
dynamics used to train a machine-learned force field subsequently used with the Green–
Kubo formalism to derive the heat flux and thermal conductivity [56–58]. These approaches
are similar to the one used in this work, which is based on the work from Verdi et al. [59].
It has been shown that this machine-learned approach is very effective and yields property
data close to those obtained from the Boltzmann transport theory (see, e.g., Ref. [60]).

The fact remains that, so far, most of the research driven on the thermoelectric prop-
erties of high-entropy alloys are mainly experimental studies, theoretical studies on TE
performance of high-entropy alloys being more seldom. Recently, PbSnTeSe has been
experimentally investigated by Fan et al. [61] and Raphel et al. [62,63], who report appre-
ciably similar results for the thermoelectric performance of the material (see below). The
modelling of HEAs transport properties constitute a challenge, and both the simulation
methods and their derived predictions have to be confronted to experimental data to as-
sess their validity. In this context, we present in this paper for the first time a complete
approach that allows one to obtain all the transport coefficients, including the figure of
merit, of a high-entropy alloy. The thermoelectric transport properties of the PbSnTeSe
high-entropy alloy have been calculated by combining state-of-the-art methods based on
the special quasi-random structures approach to generate the HEA structure, the first-
principles density-functional theory (DFT), and the Boltzmann transport and Green–Kubo
theories. First, from the DFT-computed material electronic states, the electronic transport
properties (electronic conductivity, Seebeck coefficient and electronic thermal conductivity)
were calculated using the linearized Boltzmann transport equation, and the power factor
was obtained. Next, the lattice thermal conductivity was evaluated according to the Green–
Kubo (GK) theory [64] using on-the-fly machine-learned force fields (MLFF) [65,66]. Finally,
the figure of merit of PbSnTeSe was determined. The results demonstrate that PbSnTeSe
has very low lattice thermal conductivities. Despite high electrical thermal conductivities,
the calculated ZT are satisfactory. The maximum ZT (about 1.1) is found at 500 K for n-type
doping. These results confirm the interest of this HEA for thermoelectric applications.
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2. Computational Details

Our computations were performed within the DFT framework utilizing the projector
augmented wave (PAW) [67] technique, as implemented in the Vienna Ab Initio Simula-
tion Package (VASP) [68–70]. The Perdew–Burke–Ernzerhof (PBE) functional under the
generalized gradient approximation (GGA) [71] was utilized as the exchange-correlation
functional. The nonempirical PBE functional is known to yield accurate crystal parameters
and properties, and is known to fulfil many sum rules on the exchange-correlation hole [72].
Generally, where GGA functionals fail, local density functionals fail too. Concerning
the thermal conductivity, compared to local density functionals, PBE does not over bind
structures (it slightly under binds), hence the interatomic force constants are not too soft.
Overall, the lattice thermal conductivity is quite the same whether using local density or
GGA functionals [73].

The special quasi-random structures (SQS) of high-entropy alloys have been generated
using the Monte Carlo SQS (MCSQS) tool as implemented in the alloy theoretic automated
toolkit (ATAT) [74]. A 2 × 2 × 2 supercell consisting of 64 atoms was built for calculations.
A 3 × 3 × 3 Monkhorst–Pack k-point mesh was used, and the kinetic energy cutoff was
set to 400 eV. The geometric structures were totally relaxed until the Hellmann-Feynman
forces were less than 0.01 eV/Å. The electronic transport properties were computed with
the Boltztrap2 code, which implements the semiclassical Boltzmann theory under the
relaxation time approximation (RTA) [75]. As the calculation of transport coefficients is very
demanding in term of the band structure accuracy, a much denser, 9 × 9 × 9 k-point mesh
was employed to obtain the electrons energy eigenvalues for the subsequent electronic
transport properties calculation. As within the RTA the lifetime of electrons has to be
determined separately, which constitutes an inherent limitation to the linearized Boltzmann
transport equation approach, the relaxation time (τ) was determined using the deformation
potential (DP) theory [76]. Due to heavy elements present in the structure, the spin–orbit
coupling (SOC) effect was considered in our calculations. The lattice thermal conductivity
was calculated using the Green–Kubo theory for which the heat flux was obtained from the
on-the-fly machine-learned force fields [65,66] module of VASP. The evident advantage of
using this approach is that classical molecular dynamics allows for catching the phonon
dynamics at any order and is applicable to potentially extremely large structures. The
difficulty is that interatomic parameters of good quality have to be available. The first step
of the MLFF elaboration consists in training the force field by machine learning through
molecular dynamics (MD) simulations in the NVT ensemble, where N, V, and T are the
number of particles, volume and temperature, respectively, that are kept constant during
the simulations (canonical ensemble). A supercell of 512 atoms was used for the training,
and the MD simulations were run with a time step of 1 fs. Then, after training, the force
field was used to equilibrate the system in the NVT ensemble at the desired temperature
with a time step of 1 fs for 100 ps. Finally, the heat flux was calculated through molecular
dynamics simulations in the NVE ensemble, where N, V and the energy E are kept constant
(microcanonical ensemble), with a time step of 1 fs for 100 ps. For the ensemble average,
10 independent molecular dynamics simulations were performed for the calculation of the
heat flux.

The design of the force-field (FF) is described in detail in Ref. [59]. We give a brief
summary here. The fitting of the force-field parameters relies on the availability of a
database (DB) of structures, the quality of the fitting being assessed from energies, atomic
forces, and stress tensors. This DB is built on-the-fly through the ab initio molecular
dynamics (AIMD) simulations. At each step of the AIMD a decision is made as to whether
a new AIMD step should be run to add a new structure to the DB or if the MD step is
run with the FF. The decision is made after the estimated errors between the ab initio
atomic forces and the FF ones based on a Bayesian inference. Hence, the algorithm relies
on the Bayesian linear regression to assess the quality of the FF parameters. In our case,
the force-field parameters were built from a DB containing more than 2100 structures. The
Bayesian error on the atomic forces, energies and stress are below 0.006 eV/Å, 0.5 meV and



Materials 2023, 16, 235 4 of 15

0.04 kB, respectively. The FF parameters quality is assessed based on the capability of the
FF to reproduce properly the two-body and three-body distributions (Equations (2) and (3)
in Ref. [59]) that represent the likelihood to find, around a given atom, an atom at a certain
distance or a pair of atoms at a certain distance and angle, respectively. Thereupon, the
calculated cell parameters with the FF yields are the same as those obtained ab initio.

3. Results and Discussion
3.1. Structural and Electronic Properties of PbSnTeSe High-Entropy Alloy

The PbSnTeSe high-entropy alloy is based on the NaCl-type face-centered cubic (FCC)
crystal structure and a 2 × 2 × 2 supercell containing 64 atoms was constructed. Figure 1a
shows the schematic illustration of the crystal structure of the PbSnTeSe HEA. The HEA
structure was built from the PbTe crystal structure for which the same atomic ratio of 50%
was employed for both Pb and Sn on the Pb Wyckoff positions, and Te and Se on the Te
Wyckoff positions. Figure 1b shows the special quasi-random structure of PbSnTeSe high-
entropy alloys generated by the MCSQS tool of ATAT. The optimized lattice parameters
of the PbSnTeSe are a = 12.74 Å, b = 12.65 Å, and c = 12.68 Å, α = 89.8◦, β = 90.2◦, and
γ = 90.6◦.
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Figure 1. (a) Schematic view of the crystal structure of PbSnTeSe. (b) SQS generated by ATAT.

The band structure of PbSnTeSe was calculated along the line (0 0 0)-(0 1
2 0)-(0 1

2
1
2 )-

(0 0 1
2 )-(0 0 0) of the Brillouin zone and is depicted in Figure 2. PbSnTeSe is a semiconductor

with a direct band gap. Without spin–orbit coupling, the valence-band maximum (VBM)
and the conduction-band minimum (CBM) are both located at the Γ point. Because of the
heavy elements Pb, Te and Sn, the spin–orbit coupling effect was accounted for. The band
gap decreases from 0.21 eV to 0.08 eV when considering the SOC effects, and the direct
bandgap shifts slightly away from Γ. In addition, the SOC lifts the degeneracy of the crystal
states leading to two states (j = l ± 1

2 ) between the high symmetry k-points, which can be
explained by the main contribution of the p atomic orbitals of the atoms.
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3.2. Seebeck Coefficient, Electrical Conductivity, and Power Factor of PbSnTeSe

Based on the calculated electronic structure, the Seebeck coefficient (S) of PbSnTeSe was
determined. Figure 3 shows the Seebeck coefficient at 300 K, 500 K, and 700 K as a function
of carrier concentration. For both n-type and p-type doping, the Seebeck coefficients first
rise then decrease as the carrier concentration increases, which can be interpreted from the
Mott formula [77]

S =
8π2k2

B
3eh2 m∗dT

( π

3n

) 2
3 (1)

where h, kB, m*d, T and n are the Planck constant, Boltzmann constant, density of states
effective mass and carrier concentration, respectively. According to this expression, apart
from the effect of temperature, the Seebeck coefficient is governed by the ratio m*d n−2/3.
Assuming the simple evolution of the density of states (DOS) for 3D materials as the
square-root of the state energies (see, e.g., Figure 39.1 in Ref. [78]), at low doping level the
curvature radius increases drastically and hence the DOS mass, and overall, the Seebeck
coefficient increases sharply. As the doping level increases further, the DOS mass becomes
roughly constant, and the n−2/3 term starts dominating in the Mott formula, leading to a
decrease of S. For both low and highly doped compound (n ~ 1017 cm−3 and n ≥ 1021 cm−3),
the Seebeck coefficient is improved with the increase in the temperature, which can also
be understood by this formula. In the meantime, the maximum S values are reduced
with the temperature increase. The peak values of S for PbSnTeSe are all in the range of
160–190 µV/K with little difference between n-type and p-type.
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Figure 3. Seebeck coefficient (S) for n-type (a) and p-type (b) PbSnTeSe at 300 K, 500 K and 700 K as a
function of carrier concentration.

As in RTA the electrical conductivity is scaled by the carrier relaxation time τ, this
parameter has to be determined to get the values of σ. For this, the deformation potential
(DP) theory [76] was utilized, from which the expression of τ reads:

τ =
2
√

2π}4C

3(kBTm∗)
3
2 E2

1

(2)

where } and T are the reduced Planck constant and temperature, respectively. The effective
mass of the carrier is calculated by m∗ = }2/

(
∂2E/∂k2), and the elastic constant is defined

as C =
[
∂2E/∂(∆a/a0)

2
]
/V0 where E, ∆a and V0 are the total energy of the system, the

change of the lattice parameter and the equilibrium volume, respectively. The DP constant
E1 corresponds to the shift of the band edge energy and is given by E1 = ∂Eedge/∂(∆a/a0),
where Eedge is the band edge energy. The calculated τ values are listed in Table 1. At
the temperatures of 300 K, 500 K, and 700 K, the relaxation times for n-type and p-type
PbSnTeSe vary from 158 to 44.3 fs and from 17.3 to 4.78 fs, respectively. The relaxation
time for the n-type PbSnTeSe is larger than that of the p-type because the effective mass
and deformation potential of the n-type compound are smaller than those of the p-type.
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The decrease in the relaxation time with increasing temperature means that the scattering
of carriers is gradually enhanced. The scattering inhibits the transport of carriers, which
should lead to a decrease of the conductivity with increasing temperature.

Table 1. Elastic constant C, deformation potential E1, effective mass m* and relaxation times τ at
300 K, 500 K and 700 K of PbSnTeSe.

Carrier Type C E1 m* τ (fs) τ (fs) τ (fs)
eV/Å3 (eV) (me) 300 K 500 K 700 K

Hole 0.195 12.945 0.520 17.3 8.06 4.87
Electron 0.195 6.434 0.303 158 73.4 44.3

Based on the calculated relaxation time, the electrical conductivity (σ) of PbSnTeSe
was obtained. Figure 4 shows the calculated σ at 300 K, 500 K and 700 K as a function of
the carrier concentration. For both n-type and p-type doping, σ increases with the increase
in carrier concentration. For low carrier concentrations σ increases with temperature, and
for high concentrations (>1019 cm−3) σ decreases with the increase in temperature, which
can be understood from the Drude–Sommerfeld formula [79–81]:

σ = neµ (3)

µ =
τe
m∗

(4)

where n is the carrier concentration and µ is the mobility of the carriers. As mentioned
above, with the temperature increase the relaxation time decreases, which leads to a
decrease in mobility, hence the conductivity decreases as the temperature increases. In
each case, the n-type PbSnTeSe has a better electrical conductivity than the p-type, which is
caused by a larger relaxation time for the n-type than for the p-type PbSnTeSe.
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as a function of carrier concentration.

Based on the calculated S and σ, the power factor PF (S2σ) was determined. Figure 5
shows the calculated PF at 300 K, 500 K, and 700 K as a function of carrier concentration.
For both n-type and p-type doping, the PF first increases then decreases with the increase
in carrier concentration. The peak values of PF for p-type and n-type PbSnTeSe are in the
range of 0.9–1.2 mW/(m K2) and 7–8 mW/(m K2), respectively. In each case, the optimal
PF values for n-type doping are larger than those for p-type doping because of the higher
electrical conductivity, indicating that n-type doping is more efficient than the p-type at
improving the TE performance of PbSnTeSe.
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3.3. Electronic Thermal Conductivity of PbSnTeSe

Thermal conductivity is composed of two parts, the electronic thermal conductivity
(ke) and the lattice thermal conductivity (kL). The electronic thermal conductivity was
calculated using the Wiedemann–Franz law [82,83],

ke = LσT (5)

where L was approximated by the Lorenz number L0 that takes the value 2.44× 108 WΩK−1.
Whereas the deviation of the L/L0 ratio from one is still an open question for nanoscale
materials [84], it seems that the deviation from the Wiedemann–Franz law occurs mainly at
low temperature (well below 300 K) where lattice vibrations increase the L/L0 ratio above 1.
However, this tendency can also be counteracted by electronic corrections, leading finally
to a small change of the L/L0 ratio (between 0.8 and 1.2, at most). For bulk compounds, the
same effects can occur. Therefore, we are confident that the conclusions presented hereafter
should not change drastically with L. Figure 6 shows the calculated ke at 300 K, 500 K,
and 700 K as a function of the carrier concentration. Due to the linear correlation between
ke and σ, the impact of carrier concentration and temperature on the electronic thermal
conductivity is the same to that on the electrical conductivity. For both n-type and p-type
doping, ke increases with the increase in carrier concentration, and increases (decreases,
resp.) with temperature for low (high, resp.) carrier concentrations. In each case, the n-type
PbSnTeSe has a larger ke than the p-type.
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3.4. Machine-Learned Force-Field Potential

To build an interatomic potential force field (FF) for PbSnTeSe the on-the-fly machine-
learned FF algorithm integrated in the VASP code was used. The training strategy of
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MLFF consists in constructing the force field on the fly during MD simulation and the
predicted Bayesian error is used at every MD step to judge whether additional first-principle
calculations need to be performed and a new structure be included in the dataset or not.
When the force field is trained by the on-the-fly machine-learning algorithm, many of
the MD steps are carried out with the force field, and first-principles calculations are
executed only when the predicted Bayesian error is large. Figure 7 depicts the estimated
Bayesian error of the MLFF, which shows that it is consistently lowering. Table 2 shows
the root-means-square errors (RMSE) in the energies, forces, and stress tensors predicted
by MLFFs for the training dataset. The predicted errors are low, which agrees with the
general observation that the Bayesian linear regression (BLR), which was adopted to
obtain the regression coefficients of kernel-based methods, leads to lower errors than
other methods [59]. The lattice parameters calculated with the MLFF are a = 12.72 Å,
b = 12.64 Å, c = 12.67 Å, α = 89.9◦, β = 90.1◦ and γ = 90.2◦, which are very close to those
calculated with PBE.
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Table 2. Root-means-square errors in the energies, forces, and stress tensors predicted by the MLFF
for the training dataset.

Energy (meV/Atom) Force (eV/Å) Stress (kB)

1.045 0.057 0.244

3.5. Lattice Thermal Conductivity of PbSnTeSe

According to the Green–Kubo theory, the thermal conductivity and the heat flux are
related by [64]:

κ = lim
t→∞

1
3kBT2V

∫ t

0
< j
(
t′
)

j(0) >dt′ (6)

where kB, T and V denote the Boltzmann constant, the temperature, and the volume of the
system, respectively. j(t) is the heat flux and the symbols < · > represent the ensemble
average over every MD simulation. Based on the heat flux calculated by the MLFF, the
heat-flux autocorrelation function (HFACF) of PbSnTeSe was obtained. Figure 8a shows
the calculated normalized averaged HFACF at the temperature of 300 K as a function of
correlation time. At the beginning, the HFACF starts at one and rapidly drops to oscillate
around zero. As correlation time increases, the oscillation gradually decreases, and finally
approaches zero, indicating that the HFACF has converged. The HFACF is then used
to determine the thermal conductivity (κL) of PbSnTeSe. Figure 8b shows the calculated
κL at the temperature of 300 K as a function of correlation time. The trend of κL over
correlation time is the same as that of HFACF. Initially, the oscillation is relatively large and
finally tends to stabilize converging towards a constant value, hence asserting the proper
convergence of our simulations.
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Figure 8. Lattice thermal properties at 300 K from GK theory. (a) Heat-flux autocorrelation function
(HFACF) normalized by its zero-time value and (b) lattice thermal conductivity as a function of
correlation time at T = 300 K.

Using the same approach, the value of κL was computed for various temperatures in
the range 300–700 K (Figure 9). At 300 K, the κL value is 0.4 W K−1 m−1, which is a very low
value of the lattice thermal conductivity, favorable for thermoelectric materials. This is due
to the lattice distortion effect of high-entropy alloys that can reduce phonon velocity and
enhance phonon scattering, resulting in low thermal conductivity. Additionally, one can
observe that when the temperature rises, the thermal conductivity of the lattice decreases,
which is also due to an increase in phonon scattering at higher temperatures.
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Figure 9. Lattice thermal conductivity of PbSnTeSe as a function of temperature.

3.6. Figure of Merit of PbSnTeSe

Based on the electronic and thermal transport coefficients, the ZT value can be deter-
mined. Figure 10 shows the calculated ZT at 300 K, 500 K, and 700 K as a function of the
carrier concentration. For both p-type and n-type PbSnTeSe, the ZT value first increases to
an optimal value then decreases with increasing concentration. The peak value of ZT for
n-type does not vary significantly as the temperature rises, only the ideal carrier concen-
tration shifts a little towards higher values. However, for p-type, the peak of ZT increases
significantly with increasing temperature, and the ideal carrier concentration shifts to
higher values. The best ZT value for n-type PbSnTeSe is 1.1 at 500 K, while for p-type
doping it amounts to 0.75 at 700 K. At each temperature, the ZT value for n-type compound
is greater than that of p-type, mainly resulting from the large electrical conductivity for
n-type doping, indicating that n-type PbSnTeSe exhibits better thermoelectric properties
than the p-type.

Materials 2023, 16, x FOR PEER REVIEW 11 of 16 
 

 

3.6. Figure of Merit of PbSnTeSe 

Based on the electronic and thermal transport coefficients, the ZT value can be deter-

mined. Figure 10 shows the calculated ZT at 300 K, 500 K, and 700 K as a function of the 

carrier concentration. For both p-type and n-type PbSnTeSe, the ZT value first increases 

to an optimal value then decreases with increasing concentration. The peak value of ZT 

for n-type does not vary significantly as the temperature rises, only the ideal carrier con-

centration shifts a little towards higher values. However, for p-type, the peak of ZT in-

creases significantly with increasing temperature, and the ideal carrier concentration 

shifts to higher values. The best ZT value for n-type PbSnTeSe is 1.1 at 500 K, while for p-

type doping it amounts to 0.75 at 700 K. At each temperature, the ZT value for n-type 

compound is greater than that of p-type, mainly resulting from the large electrical con-

ductivity for n-type doping, indicating that n-type PbSnTeSe exhibits better thermoelec-

tric properties than the p-type. 

 

Figure 10. Figure of merit (ZT) for n-type (a) and p-type (b) PbSnTeSe at 300 K, 500 K, and 700 K as 

a function of carrier concentration. 

3.7. Comparison with Available Data on PbSnTeSe and Other HEA 

As mentioned in the introduction section, Fan et al. [61] and Raphel et al. [62,63] have 

reported experimental investigations on the thermoelectric properties of PbSnTeSe. The 

transport coefficients reported by these groups are presented in Table 3. We first note that 

the experimental figures of merit ZT are lower than ours by a factor of around two. To 

trace back the origin of this difference, we compare the predicted transport coefficients at 

700 K and for the carrier concentration in electrons of 6 × 1019 e/cm−3 with the experimental 

results from Fan et al. The calculated total thermal conductivity (2.3 W/(mK)) is higher 

than that obtained experimentally, which should degrade the theoretical ZT value, but 

this is not what we observe. By contrast the calculated power factor S2 is much higher 

(almost eight times as high). As our Seebeck coefficient is the same as the experimental 

one, the reason for the difference is to be found in the electrical conductivity. Indeed, theo 

amounts to 15 × 104 S/m. This large value can be explained by two factors. First, the calcu-

lated gap that includes the spin–orbit interaction is smaller by a factor of three than the 

experimental result, and second, we are modeling a pure, defect-free compound. In real 

compounds, electrons are scattered by impurities, defects, and grains boundaries, which 

are not accounted for in our model. 

  

Figure 10. Figure of merit (ZT) for n-type (a) and p-type (b) PbSnTeSe at 300 K, 500 K, and 700 K as a
function of carrier concentration.

3.7. Comparison with Available Data on PbSnTeSe and Other HEA

As mentioned in the introduction section, Fan et al. [61] and Raphel et al. [62,63] have
reported experimental investigations on the thermoelectric properties of PbSnTeSe. The
transport coefficients reported by these groups are presented in Table 3. We first note that
the experimental figures of merit ZT are lower than ours by a factor of around two. To trace
back the origin of this difference, we compare the predicted transport coefficients at 700 K
and for the carrier concentration in electrons of 6 × 1019 e/cm−3 with the experimental
results from Fan et al. The calculated total thermal conductivity (2.3 W/(mK)) is higher
than that obtained experimentally, which should degrade the theoretical ZT value, but
this is not what we observe. By contrast the calculated power factor S2σ is much higher
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(almost eight times as high). As our Seebeck coefficient is the same as the experimental
one, the reason for the difference is to be found in the electrical conductivity. Indeed, σtheo
amounts to 15 × 104 S/m. This large value can be explained by two factors. First, the
calculated gap that includes the spin–orbit interaction is smaller by a factor of three than
the experimental result, and second, we are modeling a pure, defect-free compound. In real
compounds, electrons are scattered by impurities, defects, and grains boundaries, which
are not accounted for in our model.

Table 3. Experimental thermoelectric properties of PbSnTeSe (from Refs. [61,62]). The data from
Fan et al. [61] are at 700 K and for n = 6 × 1019 e/cm−3, and those from Raphel et al. [62] are at 625 K.

Property Fan et al. [61] Raphel et al. [62]

Seebeck coefficient (µV/K) 160 160

Electrical conductivity (S/m) 2.86 × 104 2.65 × 104

Power factor (W/(mK2)) 8 × 10−4 6.7 × 10−4

Lattice thermal conductivity (W/(mK)) 0.87 0.45

Total thermal conductivity (W/(mK)) 1.2 0.9

Figure of merit 0.45 0.47

Recently, Bafekry et al. [85] have reported thermoelectric properties for the GeSnPb-
SSeTe HEA. Their investigation is limited to the electronic transport properties (Seebeck
coefficient and electrical and electronic thermal conductivities) but the electrons relaxation
time was not determined. Interestingly, the Seebeck coefficient for the n-doped compound
is very similar to that of PbSnTeSe (around−150 µV/K). Assuming about the same value of
the electron relaxation time the electrical conductivity of GeSnPbSSeTe is of the same order
of magnitude (~20 × 104 S/m) as that of PbSnTeSe. Assuming further that the thermal
conductivity is similar for both compounds, one can infer that these compounds perform
equally. From the experimental side [86], GeSnPbSSeTe shows a similar Seebeck coefficient,
but the electrical conductivity is much lower, being of the order of 600 S/m.

As a different HEA, Sn0.25Pb0.25Mn0.25Ge0.25Te was investigated both experimentally
and theoretically by Wang et al. [87]. A ZT value of 1.0 was found at 700 K, probably
due to a drastic decrease in the thermal conductivity down to 0.76 W/(mK) by entropy
engineering, compared to SnTe (4 W/(mK)). Compared to PbSnTeSe, the Seebeck coefficient
of Sn0.25Pb0.25Mn0.25Ge0.25Te is twice as small (~100 µV/K), but the power factor is notably
higher (14 × 10−4 W/(mK2)). It was indeed observed that the electrical conductivity
increases with alloying with more elements. This result shows that, PbSnTeSe could be
an interesting candidate for thermoelectric application as a high-entropy alloy materials,
but there is probably room for improvement, in particular on the electrical conductivity by
further alloying with other elements.

4. Conclusions

In summary, by combining first-principles calculations and on-the-fly machine learn-
ing technique with the semiclassical Boltzmann transport theory and Green–Kubo theory,
the thermoelectric transport properties of PbSnTeSe high-entropy alloy have been thor-
oughly investigated. The electronic and thermal transport coefficients of PbSnTeSe high
entropy-alloy have been discussed in detail. The results indicate that PbSnTeSe has very low
lattice thermal conductivities, below 0.4 W K−1 m−1. It has been found that the PF values
for n-type doping are always larger than those for p-type doping because of the higher
electrical conductivity. The n-type PbSnTeSe exhibits better thermoelectric properties than
the p-type. The maximum ZT (≈1.1) is found at 500 K for n-type doping. These results
confirm that the PbSnTeSe HEA is a promising thermoelectric (TE) material.
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