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We examine the eciency and environmental consequences of assigning species-specic common-property rights, considering a Lotka-Volterra model in which sheries are specialized in the harvesting of a single species. We show that the fragmentation of the ecosystem implies the tragedy of the anticommons even when sheries compete for the resource. Indeed, contrasting the private exploitation equilibrium with the socially optimal solution, we demonstrate that the predator stock is too high while the prey stock is too low under private property rights. A puzzling result is that the "abundant" species is actually underused because of insucient economic incentives; however, the scarce and high-priced species does not necessarily suer from overexploitation. Biological interactions are consequently the main driver of stock depletion. Finally, we investigate how to simultaneously solve both the tragedy of the commons and that of the anticommons and analyze the economic costs of regulating only the tragedy of the commons.

Introduction

Over the past few decades, considerable eorts have been made to ensure sustainable exploitation of sheries resources. Various management tools have been widely implemented globally; however, rights-based management tools seem to have been the most powerful instruments to overcome overexploitation (see, among others, Costello et al. [START_REF] Costello | Can catch shares prevent sheries collapse[END_REF], Newell et al. [START_REF] Newell | Fishing quotas markets[END_REF] and Péreau et al. [START_REF] Péreau | The triple bottom line: Meeting ecological, economic and social goals with individual transferable quotas[END_REF]). However, these tools have not systematically provided successful results to ensure sustainable shing. Many studies have thus examined why regulations may be ineective in managing sh stock. However, none of the analyses associates the failure of rights-based management with the tragedy of the anticommons. This study lls this gap by examining how a species-based management system may imply issues associated with anticommons resources. We specically analyze a system that exclusively assigns property rights over a specic species for a limited group of sheries while species are in a prey-predator relationship.

The literature on sheries management is essentially driven by comparisons between desirable catch levels and actual harvest rates. One strand of studies contrasts open-access regimes with sole ownership (e.g., Clark and Munro [START_REF] Clark | The economics of shing and modern capital theory: A simplied approach[END_REF], Plourde and Yeung [START_REF] Plourde | Harvesting a transboundary replenishable sh stock: A noncooperative game solution[END_REF], Quirk and Smith [START_REF] Quirk | Dynamic Economic Models of Fishing[END_REF], and Smith [START_REF] Smith | Economics of production from natural resources[END_REF]), while another contrasts socially optimal outcomes with the Nash equilibrium (e.g., Munro [START_REF] Munro | The optimal management of transboundary renewable resources[END_REF], Levhari and Mirman [START_REF] Levhari | The great sh war: an example using a dynamic Cournot-Nash solution[END_REF], and Plourde and Yeung [START_REF] Plourde | Harvesting a transboundary replenishable sh stock: A noncooperative game solution[END_REF]). More recently, the literature has been extended to address other issues, particularly those associated with multispecies and spatial considerations. Such modeling renements introduce new externalities that give rise to further economic interactions that still lead to a misalignment between socially optimal outcomes and private solutions. This then raises the question of how to regulate harvest to achieve optimal stock levels.

Various instruments have therefore been implemented globally; however, failures appear to increase. Thompson identies 13 stocks at very low levels despite a reduction in the shing mortality rate. More recently, in 2009, Worm et al. [START_REF] Worm | Rebuilding global sheries[END_REF] showed that 63% of 166 sh stocks mostly coming from North America, Europe, South Africa, Australia, and New Zealand remained below the management-target levels. In a broader study, Hilborn et al. [START_REF] Hilborn | Eective sheries management instrumental in improving sh stock status[END_REF] nd that 24% of 882 sh stocks worldwide have low biomass but high shing pressure. This evidence has raised questions about the form of the regulation. Studies have specically addressed the issue of which instrument is the most ecient (e.g., Hannesson and Kennedy [START_REF] Hannesson | Landing fees versus sh quotas[END_REF] and Weitzman [START_REF] Weitzman | Landing fees vs. harvest quotas with uncertain sh stocks[END_REF]). Rights-based management systems have been largely advocated because these instruments provide incentives to achieve socially optimal outcomes. However, such management tools are also designed to limit shing pressure to overcome the tragedy of the commons. We may indeed wonder if the design of inappropriate management targets may be among the reasons for management failures, which may raise further issues.

Broadly, property rights attempt to assign exclusive rights to specic areas or sh species. Territorial-use rights for sheries typically grant rights to individuals to exploit a resource within a given area. Consequently, the resource is fragmented along with the spatial division. Similarly, species-based property rights allocate catch shares for a given species to several sheries. Examples of such a system are individual shing quotas on blue n tuna in Australia or on surf clam in the United States, as well as the wellknown Icelandic system for cod species. Once again, the resource could be considered as fragmented in the sense that management targets concentrate on single-species statuses, with no consideration of the biological interactions and role played by sh species in the ecosystem. Consequently, the implementation of these management systems make anticommon resources appear to incentivize sheries to underuse the resource (Heller [START_REF] Heller | The tragedy of the anticommons: Property in the transition from Marx to markets[END_REF] and Buchanan and Yoon [START_REF] Buchanan | Symmetric tragedies: commons and anticommons[END_REF]), especially when there is one species that is relatively less valuable. The purpose of this study is thus to examine when the tragedy of the anticommons arises and how to resolve it in a prey-predator system.

In this study, we consider two groups of a limited number of sheries each of which has exclusive rights to harvest a single, specic species. Each shery thus competes with others within a given shing industry, but not with those from the other shing industry and ignores the biological interdependencies between the two species. As usual in the literature, we also consider heterogeneous market prices. Very few studies on multispecies management account for the economic trade-o involved in the exploitation of a preypredator system (e.g., Mendelssohn [40], Hannesson [START_REF] Hannesson | Optimal harvesting of ecologically interdependent sh species[END_REF], and Flaaten [START_REF] Flaaten | Bioeconomics of sustainable harvest of competing species[END_REF]). Interestingly, Hannesson [START_REF] Hannesson | Optimal harvesting of ecologically interdependent sh species[END_REF] shows that the joint exploitation of both species is optimal over a specic range of relative prices; otherwise, only the predators should be harvested. Relative prices are interestingly dened based on biomass transfer between trophic levels as prey and predators may actually be considered as a unique resource that is converted into dierent organisms. Based hereon, we also consider relative prices to account for the dierent values in equivalent biomass. We specically assume that the relatively less valuable resource is the predator species as this raises a complex economic question. The conversion of high-priced prey into predators induces a social cost ignored by the predator sheries. Similarly, prey sheries ignore the social costs of leaving too many prey to be converted into predators.

We use a standard dynamic approach to analyze the tragedy of the commons and that of the anticommons in the long run. Under the species-specic common-property rights, we rst show that the tragedy of the commons arises within both shing industries while the tragedy of the anticommons results from the interaction between the shing industries. Second, we compare the long-term eort and stock levels resulting from optimal management with outcomes under species-specic common-property rights. We show that the global eort of the predator-shing industry is too low and the predator population remains too high because the predator shers ignore the social benet of increasing predator harvesting. More surprisingly, we observe a too-low prey stock while the global eort level may also be too low. This result is due to the intense natural predation because the prey sheries ignore the social costs implied by leaving prey to be converted into predators. Finally, we introduce a system of subsidies to simultaneously overcome all the issues. Nevertheless, we show that regulating only the usual tragedy of the commons may lead to a decrease in the two sheries' aggregate benet, and that it generates additional public spending to correct the tragedy of the anticommons.

The rest of the paper is organized as follows: In the next section, we provide some background to models of multispecies management, with a specic focus on the literature that accounts for relative prices of prey-predator populations. Section 3 introduces the model. Section 4 derives harvesting strategies under species-specic property-rights and socially optimal regimes. A comparison of the outcomes under the two regimes is presented in Section 5. We rst compute some comparative statics to analyze the eect of shery size; we then draw a comparison with respect to stock sizes and eort levels. Section 6 discusses the regulation of the tragedies of the commons and anticommons. Section 7

concludes. An appendix contains all the proofs.

Background to multispecies management

Fisheries management has been inuenced by several stages of evolution in the methodological approaches since the static modeling to contrast open access with the maximum sustainable yield (Gordon [19], Scott [START_REF] Scott | The Fishery: The objectives of sole ownership[END_REF]). Dynamic modeling was then introduced to contrast the open-access regime with sole ownership (e.g., Clark and Munro [START_REF] Clark | The economics of shing and modern capital theory: A simplied approach[END_REF], Plourde and Yeung [START_REF] Plourde | Harvesting a transboundary replenishable sh stock: A noncooperative game solution[END_REF], Quirk and Smith [START_REF] Quirk | Dynamic Economic Models of Fishing[END_REF], and Smith [START_REF] Smith | Economics of production from natural resources[END_REF]). Clark and Munro [START_REF] Clark | The economics of shing and modern capital theory: A simplied approach[END_REF] especially revisit the golden rule to characterize the level of natural capital at a steady-state equilibrium.

Finally, other studies contrast the socially optimal outcome with the Nash equilibrium.

For instance, Munro [START_REF] Munro | The optimal management of transboundary renewable resources[END_REF], Levhari and Mirman [START_REF] Levhari | The great sh war: an example using a dynamic Cournot-Nash solution[END_REF], and Plourde and Yeung [START_REF] Plourde | Harvesting a transboundary replenishable sh stock: A noncooperative game solution[END_REF] compare the non-cooperative solution with the optimal exploitation of competition between a limited number of economic agents who share sh stocks to examine an additional eect resulting from strategic interaction. Hannesson [START_REF] Hannesson | Fishing as a supergame[END_REF] specically investigates the impact of the number of agents required to achieve cooperation and shows that cooperation is less likely to emerge as the number of agents rises. Broadly, all these studies identify the commons issue and show how unregulated sheries lead to economic ineciencies. However, most of the studies restrict their analyses to single-species sheries.

Recent studies address further issues, including multispecies management (Hannesson [20], Ströbele W.J. and Wacker [START_REF] Ströbele | The Economics of Harvesting Predator-Prey Systems[END_REF], Doyen et al. [START_REF] Doyen | The tragedy of open ecosystems[END_REF], or recently, Quérou and Tomini [START_REF] Quérou | Managing interacting species in unassessed sheries[END_REF]- [START_REF] Quérou | Marine ecosystem considerations and secondbest management[END_REF]. It is now widely recognized that several sh stocks are embedded in an ecosystem and that all the species interact ecologically in the ecosystem. More precisely, an ecosystem's organisms are distributed according to their feeding positions along a continuum of trophic levels. A series of interconnected trophic levels then forms a food web in which species' interactions involve a transfer of the same biomass from lower to higher levels through consumption. Broadly, we can thus consider that all the species within an ecosystem may be considered as dierent representations of the same resource. Furthermore, the literature on marine ecosystems outlines that specic organisms play a dominant role in ecosystems' dynamics; however, top-down forces such as shing activities or changes in environmental conditions may also alter the population sizes of the organisms in lower trophic levels (Lindegren et al. [START_REF] Lindengren | Interacting trophic forcing and the population dynamics of herring[END_REF]). In a recent economic study, Lai et al. [START_REF] Lai | The role of food web interactions in multispecies sheries management: Bio-economic analysis of Salmon, Herring and Grey seal in the Northern Baltic Sea[END_REF] develop a multispecies model with three trophic levels to numerically analyze the impact of the abundance of a predator (grey seal) and that of prey (young herring) on the salmon stock and sheries under dierent management scenarios in the Baltic Sea. The authors interestingly discuss the economic losses for sheries due to a higher level of predator abundance or lower level of prey abundance, emphasizing the trade-o between species and sheries. Similarly, Blanquist et al. [START_REF] Blomquist | Joint management of marine mammals and a sh species: The case of cod and grey seals in the Nordic-Baltic Sea countries[END_REF] consider the empirical implications of the benets and costs related to grey seals for the harvest and stock size of cod in Nordic Baltic Sea countries. Hoekstra and van den Bergh [START_REF] Hoekstra | Harvesting and conservation in a predatorprey system[END_REF] analyze another type of tradeo considering the economic benet from prey harvesting against conservation benets from non-harvested predators and investigate the possible extinction of the non-harvested species. Kellner et al. [START_REF] Kellner | Optimizing for multi species and multiple values: tradeos inherent in ecosystem-based sheries management[END_REF] show that temporary or permanent shing moratoriums can be a solution when accounting for nonshing values in a multispecies bioeconomic model for the Caribbean area. Quérou and Tomini [START_REF] Quérou | Managing interacting species in unassessed sheries[END_REF] also show that a ban of prey harvesting is socially acceptable when shermen harvest both species. Consequently, this evidence consolidates the idea of considering a single species as only one part of a more global resource: the ecosystem. Such a consideration raises several more complex questions on how to allocate eort across species, how to regulate stocks and the ecosystem, but also on stock availability and the consequences of shing activities. Furthermore, the identication of the desirable stock level within a multispecies model remains an open question as biological interdependencies involve spillovers into all the sheries even when they specically target only one species.

Surprising results from a few previous studies on multispecies management illustrate how the characterization of optimal stock levels may be a complex task. Indeed, there may be situations in which the population of one species may be optimally lower than its level under open access. For instance, May et al. [START_REF] May | Management of Multispecies Fisheries[END_REF] discuss a specic case in which prey will be almost exclusively harvested when the discount rate is high, even if predators are the most valuable species. Actually, predators are initially heavily exploited; however, the only alternative is then to harvest prey instead of waiting for predator stock to recover.

Mendelssohn [START_REF] Mendelssohn | Managing stochastic multispecies models[END_REF] examines the qualitative properties of optimal policies for stochastic multispecies models and shows that less valuable species should be reduced to very low levels, while the stock of more valuable species should be close to the single-species optimum. Hannesson [START_REF] Hannesson | Optimal harvesting of ecologically interdependent sh species[END_REF] specically looks for economic conditions under which both species can be simultaneously harvested. The joint exploitation of both species is optimal over a specic range of relative prices; otherwise, only predators should be harvested. Price limits are characterized based on biomass transfer between trophic levels. Specically, upper limits are reached when the value of prey rises when they are converted into predators.

He provides some intuition using numerical illustrations that subsidies may be required to align the social optimum with free-access. Flaaten [START_REF] Flaaten | Bioeconomics of sustainable harvest of competing species[END_REF] provides similar intuitive observations: One species might be exploited at an economic loss and such exploitation might be subsidized because the optimal long-run stock was lower than the stock level under open access based on specic parameter values. Fischer and Mirman [START_REF] Fischer | Stragegic dynamic interaction: Fish wars[END_REF] also point out a too-low exploitation of predators but a too-high exploitation of prey when economic agents behave non-cooperatively. Interestingly, such studies emphasize the inuence of economic variables on the exploitation of resource stocks. However, these studies address neither the reasons for the under-exploitation of one species nor the related issues or policy implications. In contrast, we help to ll this gap by considering a conicting situation in which predators' population growth only depends on the prey population, which is also the most valuable species, and both species are under a regime of species-specic common-property rights.

The model

We consider a standard Lotka-Volterra model in which the prey population, x(t), follows logistic growth in the absence of predators and harvest, i.e., this population grows at a rate, r > 0, but is limited by the carrying capacity, K > 0. Prey are harvested in quantity H x (t) and suer from predation. A proportion, a > 0, of the prey biomass is killed per unit of predator. If y(t) denotes the predator population, an amount, ax(t)y(t), of prey increases the predator population at a biomass conversion rate, α > 0. This last population declines given the intrinsic mortality rate, δ > 0, and harvesting, H y (t). The dynamics of the prey population, x(t), and those of predators, y(t), are thus characterized as follows:

ẋ(t) = x(t) r 1 -x(t) K -ay(t) -H x (t), (1) 
ẏ(t) = y(t) (aαx(t) -δ) -H y (t). (2) 
We can easily compute a rst reference point, x N , y N , to assess the stock status when the two species coexist but are not harvested. The pristine steady state is given as follows, considering δ aα < K: 1

x N = δ aα and y N = r a 1 -δ aαK .

(

) 3 
When harvesting is introduced, we distinguish between two independent shing industries, s = x, y, each comprising a xed number of sheries. More precisely, we consider n x > 1 sheries in the prey-shing industry and n y > 1 sheries in the predator-shing industry. All sheries are fully specialized, i.e., they target a single-species population.

2

Consequently, the global harvest level, H x and H y , is the sum of individual catches within each industry. Assuming a standard Schaefer harvest function, an individual catch linearly depends on the eort level of the j th shery in industry s, e s,j , and stock abundance at each time period:

3 h s,j (t) = e s,j (t)s(t). (4) 
1 Two other steady-state equilibria may exist: (i) when the two species are driven to extinction, and (ii) when only the prey population survives and consequently reaches the maximum level, K. However the steady-state equilibrium when the two species coexist is the only stable one. 2 Following the literature on single-species management (e.g., Kasperski [START_REF] Kasperski | Optimal multi-species harvesting in ecologically and economically interdpendent sheries[END_REF]), we consider that shermen use a perfectly selective harvest technology such that they cannot participate in other sheries. This assumption is credible when we consider a prey-predator model. For instance, small pelagic gears allow for a better targeting of small coastal pelagic species such as herrings or sardines, or other prey of larger and oceanic pelagic shes. 3 The shing-production function usually depends on a constant catchability parameter, θ > 0, to capture the eciency of a shery. We voluntarily omit the parameter for simplicity as it does not aect Thus, the aggregated eort levels are such that E s (t) = ns j=1 e s,j (t) and the global harvest for each industry is given by H s (t) = ns j=1 e s,j (t)s(t) for s = x, y.

Considering competitive markets, we have constant and species-specic market prices, p s , and c s denotes costs per unit of eort. The prot at time t of the j th shery in industry s is therefore given by the following:

Π s,j (e s,j (t), s(t)) = (p s s(t) -c s ) ≡πs(s(t))
e s,j (t),

where π s (s (t)) denotes the species-specic prot per unit of eort.

Each shery will be incentivized to harvest only when prots are non-negative. Specifically, the minimum prey-and predator-stock levels x min , y min for which prots are non-negative are respectively as follows:

x min = c x p x and y min = c y p y .

Furthermore, the minimum stock levels must be lower than the pristine stock levels (3) to ensure the entry of sheries into the two industries, x min < x N and y min < y N . All sheries will then maximize the present values of their own current prots by choosing their eort paths, e s,j (t), with respect to the dynamics of the sh population. We moreover assume a constant discount rate, ρ, which is larger than the maximum growth rates for prey and predators, r (αaK -δ), respectively.

We recall that a prey-predator relationship involves a transfer of biomass from lower to higher trophic levels through the consumption of prey. Consequently, we can contrast the economic value of one unit of biomass at the lower level, p x , with what we may have harvesting the converted quantity of biomass at the upper level, αp y . We specically assume that the value of a species is higher than that of the biomass converted into predators:

p x > αp y (7) 
This assumption is quite intuitive. From the biological literature (Lindeman [START_REF] Lindeman | The trophic-dynamic aspect of ecology[END_REF]), the ten percent law indicates that most of the energy available at one level in an ecosystem is lost when transferred to an upper level, and only 10% is converted into organisms. This means that this assumption is true as long as the unit price for the predator does not exceed ten times that of the prey.

Harvesting strategies

We now analyze harvesting strategies under two property-right regimes: A commonproperty right with exclusive rights on specic species and a social planner optimizing the following analysis.

the harvesting of the two species. Under the common-property regime with exclusive rights, all sheries within a specic industry compete for a single stock and ignore species' interactions. We refer to such a situation as a species-specic common-property regime. 4.1. Species-specic common-property regime

In this regime, a shery, j, chooses its eort levels over time, e s,j (t), to maximize the present value of its stream of prot by accounting for the stock dynamics of the targeted species, Eqs. ( 1) and ( 2). Fisheries take as granted the behavior of other sheries within the same industry and the stock of the other resource.

Formally, the problem of the jth prey shery is expressed as follows:

max e x,j (t) ∞ 0 π x (x (t)) e x,j (t) exp -ρt dt (8) ẋ(t) = x(t) r 1 -x(t) K -ay(t) -e x,j (t) -nx k=1,k =j e x,k (t) .
The singular control solution solves the following condition:

π x (x) -λ x,j x = 0. (9) 
As usual, we nd that the prot per unit of eort and per unit of stock must be equal to the shadow value of the resource, λ j

x . At the steady state, the shadow value satises the following condition:

ρλ x,j -π x (x)e x,j + λ x,j rx K = 0. (10)
Similarly, for the jth predator shery, we obtain the following maximization problem: max e y,j (t) ∞ 0 π y (y(t)) e y,j (t) exp -ρt dt [START_REF] Doyen | The tragedy of open ecosystems[END_REF] ẏ(t) = y(t) aαx(t) -δ -e y,j (t) -ny k=1,k =j e y,k (t) .

The singular control solution solves the following condition: π y (y) -λ y,j y = 0. Eq. [START_REF] Duarte | Targeted versus Nontargeted Multispecies Fishing[END_REF] states that the economic agent, j, will choose an eort level such that the prot per unit of eort is equal to the total shadow value of the resource, λ y,j y . In the long run, the shadow value of the predators' stock solves for the following: ρλ y,j -π y (y)e y,j = 0. Henceforth, a steady-state solution under a species-specic property regime is dened by the set of conditions ( 9), [START_REF] Costello | Can catch shares prevent sheries collapse[END_REF], [START_REF] Duarte | Targeted versus Nontargeted Multispecies Fishing[END_REF], and (13), with ẋ(t) = ẏ(t) = 0 respectively in Eqs. [START_REF] Clark | The economics of shing and modern capital theory: A simplied approach[END_REF] and [START_REF] Duarte | Targeted versus Nontargeted Multispecies Fishing[END_REF]. The shadow values must be respectively equal to species-specic prots per unit of eort and per unit of biomass:

∀j, λ x,j = λ x = π x (x)
x , and ∀j, λ y,j = λ y = π y (y) y .

(

) 14 
Using the stationary conditions in [START_REF] Costello | Can catch shares prevent sheries collapse[END_REF] and ( 13), we can then characterize the individual shing eorts by the following:

∀j, e x,j = e x = ρ + rx K πx(x) xπ x (x) and
∀j, e y,j = e y = ρπy(y) yπ y (y) .

(

) 15 
Plugging ( 14) and ( 15) into the two stock dynamics, we obtain a system of equations that provides the two long-run stocks:

ρ πx(x) x = π x (x) nx r 1 -x K -ay -r K π x (x), (16) 
ρ πy(y) y = π y (y)

ny (αax -δ). (17) 
Basically, the left-hand sides of Eqs. ( 16) and ( 17) are the returns on the investment of the rent induced by the last unit of prey and predator harvests, respectively, while the right-hand sides outline the private rates of return of leaving a unit of species s in the sea. This value can be seen as a private conservation value for species s. Specically, the conservation value for the prey species is given by the stock eect on individual prot net of the loss induced by the decrease in the prey growth rate. The conservation value for the predator species depends only on the stock eect on individual prot.

Let us now further discuss the system of Eqs. ( 16) and [START_REF] Fischer | The Compleat Fish Wars: Biological and Dynamic Interactions[END_REF] and observe that the two solutions can be expressed as two implicit functions of the number of sheries in the two industries, respectively x(n x , n y ) and y(n x , n y ). We now want to restrict our analysis to a situation in which the two species coexist while they are jointly harvested in the long run. This specically requires an upper bound on the number of prey sheries. A high number of prey sheries actually depletes too much of the stock of prey. Due to biological interaction, this restricts food for predators. As such, the predator population may reach the minimum level under which harvesting is not protable, y min . From Eq. ( 17), such a situation with non-active predator sheries, E y = 0, leads to a long-run stock level of prey equal to the natural level, x N . To avoid obtaining a steady-state solution (x N , y min ),

we assume that the marginal return on the last unit of prey harvest is lower than the return from leaving it in the sea. This incentive to spare the resource increases the prey population. Formally, the assumption is as follows:

ρ πx(x N ) x < π x (x N ) nx r 1 -x N K -ay min -r K π x (x N ), (18) 
which provides the following upper bound on n x :

n x < π x (x N ) r 1- x N K -ay min ρ+ rx N K πx(x N ) x N ≡ n. (19) 
In the remainder of the paper, we thus restrict the number of prey shers below this threshold n. The following proposition summarizes the main properties of the stationary solution under a species-specic common-property regime.

Proposition 1. If 1 < n x < n, we can say the following: (i) There exists a unique steady-state solution for the system of Eqs.( 16) and [START_REF] Fischer | The Compleat Fish Wars: Biological and Dynamic Interactions[END_REF] in which both species coexist, x(n x , n y ) > 0 and , y(n x , n y ) > 0.

(ii) The long-run harvest strategies are characterized by the two eort levels, e x (n x , n y ) > 0 and e y (n x , n y ) > 0, given by Eq.( 15). (iii) Prots per unit of eort are positive in each industry, π x (n x , n y ), π y (n x , n y ) > 0.

Sole ownership

Thus far, we have considered that the property rights to a species-specic stock are exclusive to a community of sheries. We now assume a sole owner who aims at managing the collective use of the stocks of the two species. Basically, they will choose the eort levels, e s,j (t), for all sheries j in both industries s = x, y to maximize the discount value of the sum of the prot streams, accounting for the two population dynamics given by Eqs. ( 1) and [START_REF] Asche | Individual vessel quotas and increased shing pressure on unregulated species[END_REF]. For consistency, we maintain the assumption that n x < n. As sheries remain symmetric within the industry, the sole owner's problem is dened as follows:

max ex(t),ey(t)≥0 ∞ 0 (n x π x (x(t)) e x (t) + n y π y (y(t)) e y (t)) exp -ρt dt, ẋ(t) = x(t) r 1 -x(t) K -ay(t) -n x e x (t) , (20) 
ẏ(t) = y(t) (aαx(t) -δ -n y e y (t)) .

As previously, considering ẋ(t) = ẏ(t) = 0, we only highlight the steady-state conditions:

π x (x) -λ x x = 0, (21) 
π y (y) -λ y y = 0,

ρλ x -n x π x (x)e x + λ x rx K -λ y aαy = 0, (22) 
ρλ y -n y π y (y)e y + aλ x x = 0.

(

) 24 
The rst two optimality conditions, ( 21) and [START_REF] Hannesson | Landing fees versus sh quotas[END_REF], dene the shadow values as in Eqs. [START_REF] Clark | The economics of shing and modern capital theory: A simplied approach[END_REF] and ( 12) but those values are now evaluated at dierent points. Eqs. ( 23) and [START_REF] Heller | The tragedy of the anticommons: Property in the transition from Marx to markets[END_REF], in contrast to Eqs.( 10) and ( 13), now account for the number of sheries as well as the biological interaction. Specically, in Eqs. ( 23) and ( 24), we account for the eect of stock variation on the industry's aggregate prot and the marginal value of the other species.

Hereafter, we add superscript s to denote the long-term optimal solutions. From the stock dynamics, given ẋ(t) = ẏ(t) = 0, we immediately obtain the steady-state values of eort levels as functions of the steady-state stock levels {x s , y s }:

e s x = 1 nx r 1 -x s K -ay s and e s y = 1 ny (aαx s -δ) . (25) 
We also directly observe from Eqs. ( 21) and ( 22) that the shadow prices, λ s x and λ s y , are equal to the long-run rent per unit of stock:

λ s x = π(x s )
x s s and λ s y = π(y s ) y s .

(
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Finally, using Eqs.( 25) and ( 26), we obtain the conditions required for the long-run levels of the two population stocks:

ρ πx(x s ) x s = π x (x s ) r 1 -x s K -ay s -r K π x (x s ) + αaπ y (y s ), (27) 
ρ πy(y s )

y s = π y (y s )(αax s -δ) -aπ x (x s ). (28) 
The left-hand side of each equation is again the return on the investment of the rent induced by the last unit of harvest; however, the right-hand side is now the social rate of return on leaving a unit of a species in the sea. Considering all the terms on the righthand side, we refer to them as the social conservation value for species s. Specically, in Eq.( 27), the rst two terms reect the stock eect of prey on the aggregated prots net of the loss induced by a decrease in the prey growth rate. The last term measures the positive trophic externality of the population of prey on that of predators. Indeed, leaving one unit of prey in the sea increases the predator population by a rate of αa. Thus, without changing the predator-shing eort, the protability of predator harvesting increases by αaπ y (y s ). In Eq.( 28), the rst term again depicts the externality of the stock of predators while the second term captures the negative trophic externality. An additional predator decreases the population of prey by a rate of a, hence, at a given eort, the protability of harvesting prey.

In contrast to our previous species-specic common-property regime, prots do not need to be positive in both industries because the compensation principle applies. In the prey industry, we observe that the steady-state stock of prey should be greater than the pristine level, x s > x N , due to the predator dynamics (see Eq. 20). Because we have assumed that x min is lower than x N , we can immediately conclude that the prey sheries' prot, π x (x s ), is positive. However, this is not the case for predator sheries.

Indeed, observing the right-hand side of Eq.( 28), we nd that the social conservation value, π y (y)(αax -δ) -aπ x (x), is negative. This value decreases with x due to the price structure, p x > αp y , and reduces to -aπ x (x N ) < 0 when x = x N . As x s ≥ x N when predators subsist at the steady state, this suggests that the predator sheries' prot, π y (y s ), is negative. The next proposition describes the sole owner's equilibrium.

Proposition 2. If 1 < n x < n, we can say the following: (i) There exists a unique steady-state solution given by the system of Eqs.( 27) and [START_REF] Homans | A model of regulated open access resource use[END_REF] in which both species coexist, x s , y s > 0.

(ii) Both species are harvested and the shing eorts, e s

x , e s y > 0, are given by Eq.( 25). (iii) The prot per unit of eort is positive for prey, π x (x s ) > 0, and negative for predators, π y (y s ) < 0.

Proposition 2 shows that the sole owner's harvest strategies are to exploit both species even if harvesting predators is costly. This result is typically driven by biological externality, given that the species at the lower trophic level is more valuable at that level than when converted into the upper level. By contrast, we outline that no shing eort will be engaged when prots are negative under a species-specic property regime, and this case specically arises for a high number of prey-specic sheries.

Commons versus anticommons

Thus far, we have characterized the species-specic common-property regime and sole owner's outcome. We can now analyze how the tragedies of the commons and anticommons arise in this model. The rst tragedy is related to the competition between sheries within industries because of the common property, while the second tragedy is a consequence of the design of property rights induced by an exclusive specialization that neglects the biological interaction. We essentially proceed in two steps. We rst analyze the eects of a change in the number of sheries in each industry when the resource is managed under our species-specic common-property regime. Second, we contrast private property-rights management with socially optimal management. The analysis of the eects of a change in the number of sheries in each industry draws mainly on the implicit function theorem in the system represented by ( 16) and [START_REF] Fischer | The Compleat Fish Wars: Biological and Dynamic Interactions[END_REF]. These results are proven in Appendix C. Tables 1 and2) summarize the results for the prey-and predator-shing industries, respectively..

x(n x , n y ) E x (n x , n y ) e x (n x , n y ) π x (n x , n y ) Nb of prey sheries (n x ) - + - -
Nb of predator sheries (n y ) 1 and2 show that both stocks are aected by the sizes of the sheries. This indicates direct and indirect eects of a change in the size of a given industry on the steady-state stocks. The direct eect depicts the tragedy of the commons while the indirect eect results from the anticommons issue induced by specialization.

+ + + +
For instance, if we consider the prey-shing industry, a larger number of prey sheries decreases the long-term sh stock due to a higher aggregated harvesting-eort level while the individual eort and prot per unit of eort decrease. These are the key components of the tragedy of the commons. Typically, a rise in the number of prey sheries diminishes the private conservation value for prey (see Eq.( 16)). This mechanically leads to a new steady state with less prey and a higher aggregated catch eort. This also induces a negative externality on all the sheries in the industry as they individually end up with a lower catch eort and smaller prots. A very similar observation can be made about the predator-shing industry (see Table 2).

The observed eects due to the tragedy of the commons within an industry spill over into the other industry due to biological interactions. Fewer prey due to an additional prey shery mechanically reduces the predator population and results in a negative externality on that industry. This reduces not only the aggregated and individual shing eorts but also each predator shery's prot (see the second line of Table 2). In contrast, fewer predators save prey and induce a positive externality on the prey-shing industry.

As depicted in the second line of Table 1, the higher the number of predator sheries, the smaller the prey population, and the smaller the individual and aggregated preyharvesting eorts and prot of each prey shery. It should even be noticed that these results hold independently of the size of each industry. This means that these externalities remain even if a regulator solves the tragedy of the commons in each of the industries. This is typically because of the anticommons eect. Due to the specialization and subsequent exclusivity, the property-rights system still shares a single ecological system.

For a better understanding of the commons and anticommons eects, let us now contrast the outcomes of the two property regimes. To isolate each of them, let us rst address the case in which each industry is controlled by a single specialized shery, i.e., n x = n y = 1. In this case, the sole owner only accounts for the externalities induced by the biological interaction. In a second step, we extend the comparison to all sheries in both industries.

In predator-prey models, it is well known that fewer predators improve the prey population, the high-priced species in our model. This induces a social benet due to this release of predation. To benet from this advantage, the sole owner has therefore an incentive to raise the harvest eort above the level chosen by predator sheries. This suggests predator undershing under our species-specic property regime, i.e., E y (1, 1) < E s y . Con- sequently, the predator population is higher in this case than in the sole owner's situation, i.e., y(1, 1) > y S . Moreover, the sole owner's decision leads the predator-shing industry to operate at a negative prot, according to Proposition 2. Hence, y(1, 1) > y min > y S because prots per eort are increasing in stock.

The comparison of outcomes for the prey industry is not as straightforward. Let us recall the private and social conservation values for prey respectively introduced in Eqs. ( 16) and [START_REF] Hirsch | Dierential topology[END_REF]. Under the assumption on prices, i.e., p x > αp y , both are decreasing with the size of the predator population and are, in the case of a single prey shery, identical when y = y min . Because y(1, 1) > y min > y S , this means that the private conservation value is always lower than the social conservation value independently of the size of the prey population. This clearly suggests a lower prey stock under the species-specic property regime than in the sole owner's case, i.e., x(1, 1) < x S . However, in contrast to the intuition, we observe prey undershing, i.e., E x (1, 1) < E s x . Prey sheries ignore the social benet they generate by increasing the harvest of high-priced prey. To derive this social benet, the sole owner must raise the harvesting eort above the level chosen by the prey shery.

Finally, it remains to extend these results to any possible size of the two industries, integrating the usual eect from the tragedy of the commons. This is fairly straightforward for the ranking of predator stocks. In this industry, no shery is willing to operate at a negative prot independently of both industry sizes. It follows that y(n x , n y ) > y min > y S . From Table 2, we nevertheless know that ∂y ∂nx < 0 and ∂y ∂ny < 0. Even if the stock gap decreases when the size of at least one industry increases, it never disappears.

Thus, the tragedy of the commons in both industries never overcomes the tragedy of the anticommons in the predator-shing industry. The results are less evident for the prey stocks. From the single owner's case, we already know that x(1, 1) < x S . Thus, an additional prey shery simply increases this gap by the usual eect of the tragedy-ofthe-commons mechanism, i.e., x(n x , 1) < x(1, 1) < x S . However, from Table 1, we know that ∂x ∂ny ≥ 0 because the tragedy of the commons in the predator industry has a positive externality on the prey population. We nevertheless show that this opposite eect does not compensate for the anticommons eect, i.e., x(n x , n y ) < x S .

Let us now compare the eort levels. Whatever the management regime, the stationary predator's eort deduced from the predator dynamics is always given by E y = αax -δ. Because x(n x , n y ) < x S , it follows that E y (n x , n y ) < E s y . The result is less obvious for the prey eort. Even if E x (1, 1) < E S

x , Table 1 shows that ∂Ex ∂nx > 0 and ∂Ex ∂ny > 0. Thus, if the upper bound of E x (n x , n y ) is larger than E s x , the tragedy of the commons osets the tragedy of the anticommons. Now, observe that this upper bound is reached for n x = n (see Eq. ( 19)) and n y = +∞ . As n x = n is the size of the prey industry for which the predator shing eort becomes zero, x(n, +∞) must be equal to the pristine level, x N . Meanwhile, y(n, +∞) = y min is the quantity for which the prot in the predator industry becomes zero due to open access. Thus,

E x (n, +∞) = r 1 -x N K -ay min (29)
The next proposition summarizes this discussion. Proposition 3. By comparing the species-specic common-property regime to the soleowner solution, we observe the following: (i) There is a global undershing eort in the predator industry, i.e., E y (n x , n y ) < E s y , which contributes to the emergence of an excessive predator population, i.e., y(n x , n y ) > y s . (ii) This excessive predation leads to a lower prey population, i.e., x(n x , n y ) < x s , which is enforced by a global under-shing eort, i.e., E x (n x , n y ) < E s

x , if and only if E x (n, +∞) < E s

x .

Multispecies management and shery policies

Thus far, we have outlined two sources of issues: the tragedy of the commons and that of the anticommons. Now, we move to the characterization of ecosystem-based shery management (EBFM). We rst derive the optimal regulation scheme to align the speciesspecic common-property regime with the social optimum. In a second step, we want to highlight the implications of regulating the tragedy of the anticommons when shery cooperatives already exist.

A species-specic global regulation system

We consider that the government aims at implementing two species-specic policy tools, one tool for each shing industry. From Proposition 3, we know that the government will be faced with undershing and thus may decide to grant a subsidy, σ s with s = x; y, per unit of harvest.

Under that landing regulation, each shery's prot (5) becomes:

Π s,j (e s,j (t), s(t)) = ((p s + σ s )s(t) -c s ) e s,j (t).

(
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The long-run equilibrium conditions in ( 16) and ( 17) required for the level of the two population stocks at the steady states consequently become:

ρ πx(x) x = π x (x) nx r 1 -x K -ay -r K π x (x) -σ x ρ + r K -1 nx (r(1 -x K ) -ay) , (31) ρ πy(y) y 
= π y (y) ny (αax -δ) -σ y (ρ -1 ny (αax -δ)). (32) 
As the purpose is to implement the optimal stock levels, we observe that the right-hand sides of the conditions in ( 31) and ( 32) should be equal to the right-hand sides of conditions ( 27) and ( 28), respectively. We then deduce that the long-run optimal levels of the subsidy granted to each shery in the two shing industries are respectively as follows:

σ x (n x ) = -π x (x s ) (nx-1) nx E s x -αaπ y (y s ) ρ + r K x s -E s x nx with E s x = r(1 - x s K ) -ay s , (33) 
σ y (n y ) = -π y (y s ) (ny-1) ny E s y + aπ x (x s ) ρ - E s y ny with E s y = αax s -δ. (34) 
A perusal of the numerators of Eqs. ( 33) and [START_REF] Lai | The role of food web interactions in multispecies sheries management: Bio-economic analysis of Salmon, Herring and Grey seal in the Northern Baltic Sea[END_REF] shows that the subsidy scheme must be designed to account for the tragedies of the commons and anticommons. A single instrument, even species-specic, thus allows us to capture all the externalities. Indeed, the rst term in each of the two equations captures the social costs associated with the tragedy of the commons, i.e., the marginal impact of stock variation from the other sheries in competition. Recall that from Proposition 2, we know that π y (y s ) < 0 and that π x (x s ) > 0. Then, the second term reects the social benet associated with the tragedy of the anticommons. The sign of the policy instrument therefore depends on the balance between the magnitudes of the two eects.

4

Under a species-specic common-property regime, from Proposition 3, we know that predators are overpopulated and undershed despite the presence of the usual tragedy of the commons. Given a single predator shery, the tragedy of the anticommons requires that the predator catch be subsidized. As the number of predator sheries increases, the amount of the subsidy decreases, i.e., ∂ ny σ y (n y ) < 0, suggesting that a situation in which the tragedy of the commons occurs leads to a reduction in the shing gap between a common-property regime and the socially optimal scenario. Nevertheless, from Condition (28), we can easily observe that the externalities resulting from the anticommons oset the tragedy of the commons in the predator-shing industry, i.e., aπ x (x s ) > π y (y s ) (ny-1) ny E s y .

This result is due to the fact that predator sheries do not account for the opportunity benet they will generate in the prey-shing industry by increasing their catch. Consequently, the government will always grant a subsidy to the predator sheries.

Similarly, for the prey-shing industry, we know that the stock is underpopulated although there is undershing. Without competition among sheries, when n x = 1, only the tragedy of the anticommons remains and the government must subsidize the prey harvest to internalize the opportunity cost of letting prey be converted into predators

.

Moreover, as the number of prey sheries increases, the amount of the subsidy monotonically decreases. The nature of the policy may even change if the term associated with the tragedy of the commons, -π x (x s ) (nx-1) nx E s

x , exceeds the term for the tragedy of the anticommons, αaπ y (y s ). This happens over a given number of prey sheries, n *

x , dened as follows:

6 n * x = π x (x s )E s x π x (x s )E s x + αaπ y (y s ) . ( 35 
)
Proposition 4 summarizes the discussion.

Proposition 4. A landing regulation entails implementing a system of species-specic subsidies for a harvest, dened by Eqs. [START_REF] Kellner | Optimizing for multi species and multiple values: tradeos inherent in ecosystem-based sheries management[END_REF] and [START_REF] Lai | The role of food web interactions in multispecies sheries management: Bio-economic analysis of Salmon, Herring and Grey seal in the Northern Baltic Sea[END_REF]. The regulator may, however, implement a tax on the prey harvest when n x > n * x . 6.2. The cost of cooperative shing rights This section examines a situation in which there exist cooperative shing rights. Such organization generally involves a group of sheries that share common characteristics, including target species and shing technology. In our framework, this corresponds to our species-specic common-property regime when a single shery manages the industry, i.e., when n s = 1 for s = x, y.

This type of agreement that neutralizes the tragedy of the commons neglects the tragedy of the anticommons and even induces some additional social costs. In a rst step, we characterize the social benet induced by stopping cooperation in the predator industry. Second, we assess the additional regulation costs to solve the tragedy of the anticommons in the presence of a cooperative.

Let us now dene the social benet as the discounted sum of prots at the steady state:

Π(n x , n y ) = 1 ρ π x (n x , n y )E x (n x , n y ) + π y (n x , n y )E y (n x , n y ) (36) 
We aim to contrast the joint prot in the presence of cooperative, i.e., Π(1, 1), with that in a situation in which predator sheries behave uncooperatively, i.e., Π(1, n y ). This corresponds to examining the impact of an additional predator shery on the social benet.

Recall that prots and eorts actually depend on the number, n y , only because of stocks. Thus, the joint prot, Π, also depends on n y because of stocks. By applying the usual chain rule, we obtain the eect of an increase in the number of predator sheries on the joint prot: 

From Eqs. ( 16)-( 17) and π y (y) > 0, we have ∂Π ∂x = p x E x (x, y) -r K π x (x) + π y (y)αa > 0;

thus, from Table 1, ∂Π ∂x ∂x ∂ny > 0. Concerning the second term, recall that the long-run prey stock is higher than the natural level, x N , and the derivative, ∂Π ∂y , is decreasing in x under Assumption 7. Moreover, because ∂Π ∂y = π x (x N )(-a) + p y E y (x N ) < 0, then, using Table 1, we obtain ∂Π ∂y ∂y ∂ny > 0. The following proposition summarizes this discussion.

Proposition 5. The tragedy of the commons that occurs in the predator-shing industry contributes to achieving a second-best equilibrium even in the presence of the tragedy of the anticommons, compared with a situation in which both shing industries are organized as cooperatives.

Therefore, there exists a social benet of deregulating the predator industry 7 . Now, let us show that there is an additional cost of solving the tragedy of the commons in both industries without considering the tragedy of the anticommons. To do this, consider that cooperatives are organized within each industry, and let us now characterize the system of subsidies required to solve the tragedy of the anticommons. From Eqs. [START_REF] Kellner | Optimizing for multi species and multiple values: tradeos inherent in ecosystem-based sheries management[END_REF] and [START_REF] Lai | The role of food web interactions in multispecies sheries management: Bio-economic analysis of Salmon, Herring and Grey seal in the Northern Baltic Sea[END_REF], these subsidies no longer depend on the industry sizes and are equal to σ s (n s ) when n s = 1, with s = x, y:

σ x (1) = -aαπ y (y s ) ρ + r K x s -E s x > 0, σ y (1) = aπ x (y s ) ρ -E s x > 0 (38) 
Moreover, we know from Eqs. ( 33) and ( 34) that the level of the subsidy decreases with n x and n y , i.e., ∂ nx σ x (n x ) < 0 and ∂ ny σ y (n y ) < 0. Then, we obtain the following:

σ x (n x ) ≤ σ x (1), σ y (n y ) ≤ σ y (1) (39) 
As the objective is to implement the socially optimal outcome, this means that the total amount of subsidies granted by the regulator to sheries is higher when cooperatives are organized. We can therefore say the following: Proposition 6. The cost of public spending is greater when only the tragedy of the commons is internalized than when both the tragedy of the commons and that of the anticommons are globally regulated.

Conclusion

This analysis specically contributes to the literature on multispecies management and complements the literature on the economic tradeo implied by the exploitation of species in interaction. In this study, we specically analyze the economic and ecological implications of a species-specic common-property rights system in a prey-predator model when the prey species is more valuable when harvested than when converted into a predator. We nd that the predator-shing industry should operate at economic losses under sole ownership as the losses would be oset by the opportunity benet for the prey-shing industry. We also nd that the tragedy of the commons traditionally arises within the two separate shing industries; however, the exclusive rights system implies the tragedy of the anticommons as the two species are underexploited. A combination of the two issues leads to (i) a too-low prey stock but an abundant predator population under a species-specic common-property right system and (ii) too-low eort levels for the two shing industries. We nally discuss how to regulate these issues and analyze the implications of regulating only the tragedy of the commons as it may be done in shery cooperatives. We especially nd that a system of subsidies allows the two issues to be overcome, while the regulation of the tragedy of the anticommons entails additional costs when the tragedy of the commons has already been overcome.

This study provides interesting insights into how the tragedy of the anticommons arises in the context of sheries. We nevertheless adopt a very simple representation of the ecosystem as we only consider two species and even one type of interactions. An immediate question arises as to whether we may observe the same issues considering other types of biological interactions. For instance, competition between species should entail reciprocal opportunity benets for other sheries when one of the competitive species is harvested. In contrast, mutualistic relationships generate reciprocal opportunity costs.

More broadly, we may improve the analysis by considering more than two species in interaction. This should specically help us to analyze how the spillovers of harvesting one species spread over the entire ecosystem, especially with species that are not directly linked with the targeted species. Finally, we have considered a regulation system based on the intervention of the government. We may instead analyze a unitization system of the ecosystem based on cooperation between the two shing industries. However, this would drive the analysis of the characterization of a prots-sharing rule, especially of how the prey-shing industry would oset the economic losses of the predator shing.

Nevertheless, all these considerations would be interesting to develop in future studies.

and that the condition, n x < n, is equivalent to assuming that φ1 (x N , y min ) < 0. Moreover, if the unique solution is in the interior of ∆, such that x (n x , n y ) > δ αα , the second equation ensures that y (n x , n y ) > y min .

(o) Method

The proof is based on a homotopy argument. An intuitive presentation can be found in Eaves and Schmedders [START_REF] Eaves | General equilibrium models and homotopy methods[END_REF] (for a more detailed argument, see also Villanacci et al. [55] ch.7 or Hirsch [START_REF] Hirsch | Dierential topology[END_REF] ch.5). Following their presentation, a complex equation system, φ(x, y) = 0, has a unique solution in the interior of ∆ if there exists (i) a simple equation system, ψ(x, y) = 0, and (ii) a homotopy, H : [0, 1] × ∆ → R 2 , given by H(x, y, λ) = (1 -λ) φ(x, y) + λ ψ(x, y), with the following properties:

• ψ(x, y) = 0 admits a unique solution and 0 is a regular value of both ψ and H (i.e., ∂ x,y ψ and ∂ x,y,λ H are of full rank)

• H-1 (0) is a compact subset of int (∆) × [0, 1],
where int denotes the interior To construct this function, let us rst observe that there exists a unique

x 1 ∈ x N , K with the property that φ2 x 1 , r a (1 -x1 K ) = 0 as (i) lim x→x N φ2 x, r a (1 -x K ) = φ2 x N , y N = ρ πy(y N ) y N > 0
because, by the assumption that y min < y N , (ii)

lim x→K φ2 x, r a (1 -x K ) = φ2 (K, 0) = -∞ and (iii) d dx φ2 x, r a (1 -x K ) = ∂ x φ2 -r aK ∂ y φ2 = - pyαa Ny - rρcy aKy 2 < 0. Now, let us introduce ψ : ∆ → R 2 given by ψ(x, y) = x - x y -ȳ
, with x N < x < x 1 and 0 < ȳ < y min . This function admits a unique solution (x, y) = (x, ȳ) that is regular because ∂ ψ(x, y) = I, the identity of R 2 . We can now construct H(x, y, λ) = (1 -λ) φ(x, y) + λ ψ(x, y). Because this function takes as parameters (x, ȳ), the generic transversality theorem (see Eaves and Schmedders [START_REF] Eaves | General equilibrium models and homotopy methods[END_REF]) aords us the opportunity to choose (x, ȳ) such that 0 is a regular value of H.

(ii) H-1 (0) is a compact subset of int (∆) × [0, 1]
To verify that H-1 (0) is a compact subset of int (∆) × [0, 1], let us assume the contrary, i.e., there exists a sequence (x n , y n , λ n ) → (x ∞ , y ∞ , λ ∞ ) with the property that ∀n, (x n , y n , λ n ) ∈ H-1 (0) and

(x ∞ , y ∞ , λ ∞ ) ∈ ∂∆ × [0, 1]. If y ∞ = 0, we observe that φ2 (x n , y n ) → -∞ as x ∞ nite and that ψ2 (x ∞ , y ∞ ) = -ȳ, hence H2 (x ∞ , y ∞ , λ ∞ ) < 0.
We can therefore say ∃N > 0, ∀n > N , H (x n , y n , λ n ) = 0, which is the desired contradiction. Now, assume that x ∞ = x N and y ∞ > y min . It follows that φ2 (x ∞ , y ∞ ) > 0 as (αax N -δ) = 0 and π y (y ∞ ) > 0 for y ∞ > y min . Moreover, ψ2 (x ∞ , y ∞ ) = y ∞ -ȳ > 0 because ȳ < y min . This is again a contradiction because H2 (x ∞ , y ∞ , λ ∞ ) > 0. If x ∞ = x N and y ∞ ≤ y min , our assumption says that φ1 (x N , y min ) < 0. Because ∂ y φ = apx N > 0, we deduce that φ1 (x ∞ , y ∞ ) < 0. The desired contradiction is achieved by observing that ψ 1 (x ∞ , y ∞ ) = x N -x < 0 so that H1 (x ∞ , y ∞ , λ ∞ ) < 0. Let us nally consider the case in which r(1 -x∞ K ) -ay ∞ = 0. Let us rst observe that φ1 (x ∞ , y ∞ ) > 0 because π(x ∞ ) > 0. Thus, as long as x ∞ ≥ x, ψ1 (x ∞ , y ∞ ) ≥ 0, and the contradiction is achieved. If x ∞ < x, we know by the choice of x < x 1 (see point (i)) that φ2 x, r a (1 -x K ) > 0, and as the function is decreasing φ2 x ∞ , r a (1

-x∞ K ) = φ2 (x ∞ , y ∞ ) > 0.
Moreover, by construction of φ2 this also implies, when x ∞ > x N , that y ∞ > ȳ, hence ψ2 (x ∞ , y ∞ ) > 0, a contradiction.

(iii) The properties of ∂ φ It remains to show that det (∂ φ) is sign-invariant at each solution. By computation and the denition of π x (x) and π y (y), the following is immediate:

∂ φ = ρ cx x 2 + 2 r K p x a (p x -αp y ) a (p x -αp y ) ρ cy y 2 (B.2)
Because we evaluate the determinant of the Jacobian matrix for each (x, y) that satises φ(x, y) = 0, we also observe, after computation, that the diagonal terms can be written as follows: To verify that y s < y min , let us observe that φ2 (x N , y min ) = aπ x (x N ) > 0 because x N > x min . Moreover, we know that x s > x N (interiority) and ∂ x φ2 > 0 as p x > αp y . It follows that φ2 (x s , y min ) > 0.

                           ρ cx x 2 + 2 r K p x = y x      p x (ρ -r + rx K ) + r K π x (
As ∂ y φ2 = ρ cy y 2 > 0, we deduce that y s < y min ; otherwise, φ2 (x s , y s ) > 0, a contradiction.

Appendix C. Numbers of sheries and steady state (i) Eects of n x and n y on the sh stock By applying the implicit function theorem to Eq.(A.2), we know the following: (iii) Eects of n x and n y on the individual eorts From Eq.(A.2), we know that the long-run eort levels are given by e x = (ρ + r (iv) Eects of n x and n y on the prots per unit of eort Because these prots are given by π s (s) with s = x, y, we can say that ∂πs(s) ∂θ = ∂πs(s) ∂s ∂s ∂θ with θ ∈ {n x , n y }. If we now note that ∂πs(s) ∂s = p s > 0 for s = x, y, we can, by Eq.(C.4), obtain ∂πx ∂nx , ∂πx ∂nx .

Recall that a stationary predator-harvesting eort level is always given by E = αax -δ. Thus, if x(n x , n y ) ≤ x s , then E y (n x , n y ) ≤ E S y . (iv) E x (n x , n y ) ≤ E S x i E s

x ≤ E x (n, +∞)

Follows from our discussion.

3 )=

 3 x) + aαc y + 2 r K p x x y =A + a(p x -αp y ) δ)p y -ac x x =B + a(p x -αp y )Because we have assumed that ρ > r, p x > αp y and under an additional technical sucient condition, (ρ + δ)p y > ac x , it is immediate that A, B, C > 0; thus, it follows thatdet ∂ φ| φ(x,y)=0 = AB + AC + BC > 0 (B.4)(iv) Negativity of the predator shery's prot, π s y (y s ) < 0

= 1 ∂ 3 )

 13 -∂ (x,y) φ φ(x,y)=0 -(nx,ny) φ φ(x,y)=0 (C.1) Moreover, using Eq.(A.3), we can say the following:-∂ (x,y) φ φ(x,y)=0 Eq.(A.2) with respect to n x , n y , we obtain the following:∂ (nx,ny) φ φ(x,y)=0 =The signs directly follow from the non-negativity of the harvesting eorts. From these observations, we immediately deduce the following: Eects of n x and n y on the aggregated eorts Because the aggregated eorts are, at the steady state, given by E x = r(1-x K )-ay and E y = αax-δ, we know that for all θ ∈ {n y , n y } , .4), we directly conclude that ∂Ex ∂nx ≥ 0, ∂Ey ∂nx ≤ 0 and ∂Ey ∂ny ≥ 0. To compute the last derivative, let us observe, from the denition of the steady state (see Eq.(A.2)), that the prey-harvesting eort can also be written asE x = (ρ + r K x) πx(x)nxpxx . It follows that ∂Ex ∂ny = ∂Ex ∂x ∂x ∂ny > 0, with ∂Ex ∂x = ρ nxcx pxx 2 + rnx K > 0.

K 6 )

 6 x)πx(x) pxx and e y = ρ πy(y) pyy . It follows that for θ ∈ {n x , n y },∂ex ∂θ = d dx (ρ + r K x) πx(x)From point (i), we can therefore conclude that ∂ex ∂nx ≤ 0, ∂ex ∂ny ≥ 0, ∂ey ∂nx ≤ 0 and ∂ey ∂ny ≤ 0.

Table 1 :

 1 Number of sheries and prey harvesting y(n x , n y ) E y (n x , n y ) e y (n x , n y ) π y (n x , n y )

	Nb of predator sheries (n x )	-	-	-	-
	Nb of prey sheries (n y )	-	+	-	-

Table 2 :

 2 Number of sheries and predator harvesting

	Tables

•

  The det (∂ x,y φ) is, at equilibrium, always of the same sign (i) The choice of ψ(x, y)

AS we have assumed that ρ is greater than the maximum growth rate of each of the two species, the two denominators, those of Eqs.[START_REF] Kellner | Optimizing for multi species and multiple values: tradeos inherent in ecosystem-based sheries management[END_REF] and[START_REF] Lai | The role of food web interactions in multispecies sheries management: Bio-economic analysis of Salmon, Herring and Grey seal in the Northern Baltic Sea[END_REF], are positive.

Subsidizing the prey sector does not necessarily mean decreasing the stock as interaction matters and the regulator collectively controls the exploitation of the whole ecosystem.

Using Condition[START_REF] Hirsch | Dierential topology[END_REF], we know that the denominator of the threshold in (35) is strictly positive.

We can also consider the deregulation of the prey-shing industry; however, we do not obtain clear-cut results.
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Appendix A. Proof of Proposition 1

We essentially have to check that the system comprising Eqs. [START_REF] Fischer | Stragegic dynamic interaction: Fish wars[END_REF] and [START_REF] Fischer | The Compleat Fish Wars: Biological and Dynamic Interactions[END_REF] admits, for 1 < n x < n, a unique solution (x (n x , n y ) , y (n x , n y )) that belongs to the interior of the following set:

and satises y (n x , n y ) > y min . The interiority condition ensures that, at the steady state, (i) both species coexist, i.e., (x (n x , n y ) , y (n x , n y )) 0, (ii) prey are harvested, i.e., e x (n x , n y ) = 1 nx (r(1 -

x min , and (iii) with the additional result that y (n x , n y ) > y min , prots are strictly positive in the predator sector, π y (n x , n y ) > 0, and predators are harvested, i.e., e y (n x , n y ) = 1 ny (ααx (n x , n y ) -δ) > 0.

Let us now note that a steady state that solves Eqs.( 16) and ( 17) is a zero of φ : ∆ → R 2 given by the following:

By computation,

We simply have to prove that the system comprising Eqs. ( 27) and ( 28) admits, for n x < n, a unique solution that belongs to the interior of ∆ and now has the property that y s < y min . This again ensures that (i) both species coexist, i.e., (x s , y s ) 0, (ii) both species are harvested, i.e., e s x , e s y 0, and (iii)

This is equivalent to studying the zero of the function, φ : ∆ → R 2 , given by the following:

As φ1 (x N , y min ) = φ1 (x N , y min ) because π y (y min ) = 0, the assumption that n x < n now becomes φ1 (x N , y min ) < 0. We rst verify that φ(x, y) = 0 admits a unique solution in int(∆), and then that y s < y min . For the rst part, the method, as in the proof of Proposition 1, is based on a homotopy argument.

(i) Choice of ψ(x, y) and regularity of Ĥ To dene this function, let us rst introduce x 0 given by r 1 -x0 K -ay min = 0 and observe that x 0 > x N because we have assumed that y N > y min . Now, construct ψ : ∆ → R 2 given by ψ(x, y) =

x -x y -ȳ with x N < x < x 0 and 0 < ȳ < y min . Obviously, ψ(x, y) admits a unique and regular solution, (x, y) = (x, ȳ), as ∂ψ(x, y) = I, the identity of R 2 . We can then dene Ĥ(x, y, λ) = (1 -λ) φ(x, y) + λ ψ(x, y) and use the generic transversality theorem to choose (x, ȳ) such that 0 is a regular value of Ĥ.

Let us assume the contrary, i.e., there exists a sequence, (x n , y n , λ n ) → (x ∞ , y ∞ , λ ∞ ), with the properties that ∀n, (x n , y n , λ n ) ∈ Ĥ-1 (0) and (x ∞ , y ∞ , λ ∞ ) ∈ ∂∆ × [0, 1]. Let us rst assume that y ∞ = 0. It follows that φ2 (x n , y n ) → -∞ as x ∞ nite and ψ(x ∞ , y ∞ ) = -ȳ. We can therefore say ∃N > 0, ∀n > N , Ĥ (x n , y n , λ n ) = 0, which is the desired contradiction. Now, assume that

since y ∞ ≤ y min . We also observe that K 1 -a r y min = x 0 (see part (i) of the proof). We can therefore say that ψ1 (x ∞ , y ∞ ) > x 0 -x > 0 and obtain the desired contradiction. If y ∞ > y min , let us rst observe that φ2 (x N , y ∞ ) > 0 as (αax N -δ) = 0 and, in this case,

From Propositions 1 and 2, we respectively know that π y (y(n x , n y )) ≥ 0 ≥ π y (y s ) . The result then follows from the fact that π y (y) is increasing and π y (y min ) = 0.

(ii) x(n x , n y ) ≤ x s From (i) of Appendix Appendix C, we know that ∂x ∂nx ≤ 0 and ∂x ∂ny ≥ 0; it therefore remains to show, roughly, that x(1, ∞) ≤ x s . More precisely, we know, from Eq. (A.2) with n

= 0, such that y(1, ∞) corresponds to the open access solution, i.e., y(1, ∞) = y min . If we recall the rst equation, φ1 (x, y), of the sole owner's system (see Eqs. ( 27) and ( 28)), we can say the following: The last inequality follows from the fact that y min ≥ y s (see (i) of this appendix) and that ∂ y φ1 (x, y) = a (p x -αp y ) > 0. Now, let us observe that ∂ x φ1 (x, y) = ρ cx x 2 + 2 r K p x > 0. Because φ1 (x(1, n y ), y s ) ≤ 0 and φ1 (x s , y s ) = 0, we can say that x(1, ∞) ≤ x s and conclude that x(n x , n y ) ≤ x s .

(iii) E y (n x , n y ) ≤ E s y