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Marseille Université, Campus de Luminy, 13288, Marseille, France
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Abstract

This work presents a model of a harvested population in a multisite environment. Locally

it has the shape of the Gordon-Schaefer model. This model gives rise, placing us in the

case of a fishery, to an equilibrium of the stock and the fishing effort and, therefore, of the

yield that is obtained per unit of time. Considering that the management of the fishery

can act on the fishing costs, the yield is optimized as a function of the cost.

The objective of the work is to compare the maximum obtained yield in two extreme

cases: unconnected sites and connected sites with rapid movements of both the stock and

the fishing effort. The analysis of the model, first in an environment with two sites and

later with any number of them, makes it possible to establish the conditions for one of

the two cases to be more favorable from the point of view of the yield. In this way, it is

proposed towards which of the two compared cases management should be directed.
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1. Introduction1

Multisite fisheries consist of a network of discrete fishing sites connected to each other2

by fish movements. Some sites can be created by man as areas where fishing is totally3

prohibited such as marine protected areas (MPA), (Hilborn et al. , 2006), or partially4

prohibited, especially at certain periods of the year. Other fishing areas are intentionally5

created as fish aggregating devices (FADs) because they attract fish that can be caught6

there more easily, (Fonteneau et al. , 2000) and (Dagorn et al. , 2007). The various7

fishing zones generally correspond to heterogeneous sites, in particular with regard to the8

environmental characteristics, such as the surface of the zone, the depth, the presence of9

a shelter zone, the underwater vegetation or even the resources available for the growth10

of the various species of commercial fish. All these local characteristics of the fishing sites11

affect the growth rate and carrying capacity of the fish species which is usually assumed12

to grow logistically. Heterogeneity can also result from human intervention, in particular13

by installing reefs or artificial habitats (AHs). AHs are known to increase the carrying14

capacity of the site where they are installed (Polovina and Sakai , 1989) and attract fish15

(Bortone , 1998). In the case of a heterogeneous multisite fishery made up of sites that16

are more or less rich in the resources available for the fish, it is frequently assumed that17

the fish are distributed according to the resource available on each site. Fish will be more18

numerous in resource-rich areas than in poorer areas. For logistic sites, when the fish are19

distributed among them proportionally to the corresponding carrying capacities, they are20

said to adopt the Ideal Free Distribution (IFD), (Bernstein et al. , 1999) and (Fretwell and21

Lucas , 1970).22

In the case of a single fishing site, without adding economic assumptions, it is usual to23

consider the Schaefer model, (Schaefer , 1957; Clark , 1990):24

N ′ = rN
(

1− N

K

)
− qEN (1)

It represents a population of size (stock) N(t) at time t, whose growth is depicted by the25

logistic model with intrinsic growth rate r > 0 and carrying capacity K. The exploitation26

term, qEN , follows the catch-per-unit-effort hypothesis and, thus, it is proportional to the27

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4176482

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



stock level, with E denoting the constant fishing effort and constant q being the catchability28

coefficient. If r − qE > 0, for any positive initial condition, N(t) tends to an equilibrium29

N∗ = K(1 − qE/r). It is also well known (Clark , 1990) that the yield at equilibrium30

Y (E) = qK(1− qE/r)E, as function of E, attains its maximum for EMSY = r/(2q). The31

corresponding yield, called maximum sustainable yield (MSY), is YMSY = rK/4, and the32

equilibrium stock biomass is NMSY = K/2.33

In (Auger et al. , 2022) a simple spatialized version of Schaefer’s model is studied.34

Only two sites are considered and the local dynamics is of the form (1). Furthermore, the35

fish stock move between the two sites on a faster time scale than that associated with local36

dynamics:37

dN1

dτ
= m2N2 −m1N1 + ε

(
r1N1(1−

N1

K1

)− qE1N1

)
dN2

dτ
= m1N1 −m2N2 + ε

(
r2N2(1−

N2

K2

)− qE2N2

) (2)

For i = 1, 2, Ni is the population density on site i. Parameters ri, Ki, and Ei represent38

the intrinsic growth rate, the carrying capacity, and the fishing effort, respectively, on39

site i. The catchability is q. The movement rates for the stock, mi, are constant and40

site dependent. Time scales are included in the model by using the fast time variable τ41

together with the small positive parameter ε that represents their ratio.42

As a consequence of the existence of two time scales, the two-dimensional model (2)43

can be analyzed through a one-dimensional Schaefer-type model. The MSY of (2) is easily44

approximated with the help of this one-dimensional model. From it, it is straightforward to45

compare the MSY for connected and isolated sites. In this latter case the MSY is calculated46

just by adding the two local MSY. An important result obtained in (Auger et al. , 2022)47

is that the MSY for a system of two connected fishing sites is always less than or equal48

to the MSY of the system with isolated sites. Thus, there is no interest in facilitating the49

connection between the sites because this would not increase the MSY of the system. This50

is the conclusion when we have not yet brought economic issues into the model.51

Fishing boats also travel between the various fishing areas. The fishing boats are evenly52

distributed among the various fishing areas, avoiding having to meet all at the same time53
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on the same site. The distribution of the boats in the fishing fleet on the different sites54

has an effect on the overall catch made on the multisite fishery. In a global way, the55

combined distribution of fish stock and fishing vessels among the various fishing areas has56

a significant effect on the overall catch of the multisite fishery, (Brochier et al. , 2021).57

From the shipowner’s point of view, it is important to distribute the fishing fleet over the58

different fishing areas to maximize his benefice which is constituted by the catch multiplied59

by the price of the resource on the market, which is usually called the landed value. The net60

income is obtained by subtracting from it the various operating costs of the fishery, such61

as the price of fuel necessary for the boats, the various taxes to be paid to the government,62

the wages of the fishermen, the maintenance of the vessels and again the minimum profit63

desired which corresponds to a threshold below which the shipowner considers that the64

fishing operation is not sufficiently profitable. The operating costs of the fishery therefore65

constitute an important parameter and it is legitimate to seek the cost per unit of fishing66

effort allowing the overall catch of a multisite fishery to be optimized.67

To deal with this question it is necessary to introduce the economy in Schaefer’s model.68

A widespread way of doing this is to consider fishing effort as a system variable whose rate69

of change is proportional to the benefit, i.e., the difference between revenue and cost. We70

use Gordon’s model of an open access fishery together with Schaefer’s model to approach71

the analysis that we propose in this work. We want to study the conditions for a network72

of discrete fishing sites, connected to each other by fast displacements, to obtain a higher73

or lower fishing yield than if the sites were isolated.74

We highlight the importance of the cost per unit of fishing effort by choosing it as75

the parameter to calculate the MSY. The Gordon-Schaefer model, if benefit is positive76

when the stock is at its carrying capacity, has a positive equilibrium to which all positive77

solutions tend. With the constant values that this equilibrium gives us for the stock and78

the fishing effort, the yield expression, that depends on all model parameters, is obtained.79

The maximum of this expression as a function of cost c is what we consider to be the MSY.80

We assume that the fishing sites are relatively close to each other allowing fast move-81

ments of the stock and the fishing fleet between these various fishing areas. When the sites82

4
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are close enough, it makes sense to consider that the operating costs are the same in all83

fishing areas, same wages, taxes, fuel and maintenance costs as well as minimum profit84

required. The government or the national fisheries management institution has no reason85

to impose different taxes on fishing sites close to each other.86

Starting from the previous hypotheses, in this work, for a multisite fishery, we develop87

a comparison between the MSY with connected sites and with isolated sites. For it, in88

Section 2 we recall the basic Gordon-Schaefer model results including the optimization of89

the sustainable yield in terms of the cost. Section 3 considers a multisite fishery with two90

fishing sites and compares the MSY in the case where the sites are connected by movements91

of the stock and the fishing effort to the case where the sites are isolated in the absence of92

migrations. Section 4 extends the previous results to a multisite fishery with any number93

of sites. The manuscript ends with a discussion of the results, a conclusion and application94

perspectives.95

2. A single-site harvested population model96

As said in the introduction, the influence of economics on harvesting of renewable97

resources can be described with the help of the Gordon model of an open-access fishery,98

that is one in which anyone can harvest the resource. In its simplest form it is assumed99

a constant price p per unit of harvested biomass, so that the total revenue is obtained as100

pY (E), where Y (E) is the yield resulting from the effort E. The total cost is expressed101

as cE where c is a constant representing the cost per effort unit. Finally, the effort is102

considered variable with its rate of change being equal to the benefit pY (E)−cE. Equation103

(1) together with the effort equation give the following simple model that it is at the base104

of all the models that we are presenting.105

dN

dt
= rN

(
1− N

K

)
− qEN

dE

dt
= pqEN − cE

(3)

We refer to (3) as the basic Gordon-Schaefer model. It has the same form as the Lotka-106

Volterra predator-prey model with prey logistic growth (Iannelli and Pugliese , 2014). The107

5
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asymptotic behaviour of its solutions is simply expressed. If c < pqK, i.e., the benefit is108

positive when the stock is at the carrying capacity, then all positive solutions of the system109

tend to the so-called bionomic equilibrium:110

N∗ =
c

pq
, E∗ =

r

q

(
1− c

pqK

)
, (4)

with an associated yield111

Y ∗ =
rc

pq

(
1− c

pqK

)
. (5)

In the open-access fishery, Gordon-Schaefer model, the fishery effort and the stock tend to112

reach an equilibrium at the level at which the benefit vanishes (Clark , 1990), as the E113

equation imposes.114

In the models that we are presenting, we consider the cost per unit of effort as a115

parameter that the manager can change, by providing the fishers with subventions to116

decrease it or by setting up some taxes to increase it. We thus look for a maximum117

sustainable yield considering the yield so far obtained as a function of the cost c.118

In model (3), the value of c that maximizes the equilibrium yield (5) is119

copt =
1

2
pqK, (6)

obtaining120

Yopt =
1

4
rK, with Nopt =

1

2
K and Eopt =

r

2q
.

So, we recuperate the situation of MSY (1) of the constant effort case.121

Notice that copt is one half of the maximum cost yielding positive benefit. It leads the122

stock Nopt to one half of the environment carrying capacity K, that is the population size123

with the largest growth rate. Both, the optimal cost copt and the stock Nopt, as well as124

the optimal yield Yopt are proportional to K. Nevertheless, the corresponding effort Eopt125

depends on the ratio intrinsic growth rate to catchability and it is independent of K. A126

consequence of this can be considered through the following example. A zone with carrying127

capacity K is managed in two different forms, as a whole and divided into two equal and128

6
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independent zones with carrying capacities K/2. In both cases the management follows129

the dynamics of open-access fishery with chosen optimal cost. The global result is that at130

equilibrium the yield and the stock are equal in the two strategies, whereas the optimal131

cost is double in the first one and the effort is double in the second one.132

3. A two-site harvested population model133

We consider a harvested population in a multisite environment. The objective is show-134

ing that the maximum sustainable yield can be larger in a heterogeneous environment where135

stock and effort can move than it would be in the same environment without movements.136

We begin by limiting the multisite environment to two sites. We will extend this for an137

arbitrary number of sites later on. In each site, the stock-effort dynamics is ruled by a local138

basic Gordon-Schaefer model (3). The movements between sites are described by constant139

rates and in a first approach, are considered fast in comparison to the local dynamics.140

Thus, let us consider the following model:141

dN1

dτ
= m2N2 −m1N1 + ε

(
r1N1(1−

N1

K1

)− qE1N1

)
dN2

dτ
= m1N1 −m2N2 + ε

(
r2N2(1−

N2

K2

)− qE2N2

)
dE1

dτ
= µ2E2 − µ1E1 + ε

(
pqE1N1 − cE1

)
dE2

dτ
= µ1E1 − µ2E2 + ε

(
pqE2N2 − cE2

)
(7)

where, for i = 1, 2, Ni and Ei are the population density and the fishing effort on site142

i. Parameters ri and Ki represent the intrinsic growth rate and the carrying capacity,143

respectively, on site i. The catchability q, the price per harvest unit p and the cost per144

unit effort c are assumed equal in both sites. The movement rates for the stock, mi, and145

the effort, µi, are constant and site dependent. Time scales are included in the model by146

using the fast time variable τ together with the positive parameter ε that represents their147

ratio.148

We proceed now to compare the maximum sustainable yield in two different cases. In149

the first one, that we call connected sites case, stock and effort movements are allowed150

7
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so that the dynamics is defined through system (7). In the second one, unconnected sites151

case, there is no stock and effort movements and, therefore, the dynamics is represented152

by the following independent systems, both with the form of (3), for i = 1, 2:153

dNi

dt
= riNi

(
1− Ni

Ki

)
− qEiNi

dEi
dt

= pqEiNi − cEi
(8)

System (7) is not of the form of system (3) but it can be reduced to one of this form.154

The fact that it includes two time scales allows us to apply the reduction method developed155

in (Auger et al. , 2008a,b). It consists in a sort of decoupling the fast and the slow parts of156

the system. The fast part of the system corresponds to the movements dynamics and let157

invariant the total stock N = N1 +N2 and the total fishing effort E = E1 +E2. Moreover,158

it makes the proportions of stock and effort in each site rapidly tend to an equilibrium.159

The equilibrium proportions for the stock are160

u1 =
m2

m1 +m2

and u2 =
m1

m1 +m2

,

and for the effort161

v1 =
µ2

µ1 + µ2

and v2 =
µ1

µ1 + µ2

.

Assuming that movements have attained their equilibrium proportions, we can write a162

reduced system for the total stock and effort in terms of the slow time variable t = ετ . We163

add the two stock equations and the two effort equations, and substitute each of the state164

variables by the corresponding total variable times the associated site proportion, i.e., for165

i = 1, 2, Ni = Nui and Ei = Evi. The result is the following basic Gordon-Schaefer model:166

dN

dt
= r̄N(1− N

K̄
)− q̄EN

dE

dt
= pq̄EN − cE

(9)

whose parameters, r̄ = r1u1+r2u2, K̄ =
(r1u1 + r2u2)K1K2

r2u22K1 + r1u21K2

and q̄ = q(u1v1+u2v2), include167

the local parameters and the equilibrium stock and effort proportions on sites. The so-168

8
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called aggregated model (9) possesses a positive globally asymptotically stable equilibrium169

provided that K̄ >
c

pq̄
. It is given by170

(N̄ , Ē) =
( c
pq̄
,
r̄

q̄

(
1− N̄

K̄

))
.

The yield at equilibrium is thus171

Y =
r̄c

pq̄
(1− c

pq̄K̄
).

Thanks to the aggregated model, all these calculations are very simple and provide us with172

results concerning the complete model. Figure (1) illustrates that the above mentioned173

results work perfectly.174

To compare the maximum sustainable yield in the connected and unconnected sites175

cases, we now consider the yield at equilibrium maximized as a function of a single cost.176

In the first case using system (9) and in the second case with the help of systems (8).177

3.1. Connected sites178

The maximum sustainable yield as a function of the cost, in the case with fast move-179

ments of the stock and the efforts can be obtained by using (6) in system (9). For the180

cost181

copt =
1

2
pq̄K̄ =

1

2

pq(u1v1 + u2v2)(r1u1 + r2u2)K1K2

r2u22K1 + r1u21K2

the maximum yield is182

Yopt =
1

4
r̄K̄ =

1

4

(r1u1 + r2u2)
2K1K2

r2u22K1 + r1u21K2

. (10)

This expression does not depend on either the price, the catchability or the efforts move-183

ments rates. On the other hand, copt does depend on all of these quantities. The stock and184

effort at equilibrium are185

Nopt =
1

2
K̄ =

1

2

(r1u1 + r2u2)K1K2

K1r2u22 +K2r1u21
, Eopt =

r̄

2q̄
=

(r1u1 + r2u2)

2q(u1v1 + u2v2)
.

9
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Figure 1: Comparison between the complete model (7) and the aggregated model (9) for the following

parameters values: m1 = 2, m2 = 1, µ1 = 2, µ2 = 3, r1 = 1, r2 = 2, K1 = 5, K2 = 5, q = 1, p = 1, and

c = 1 . ε = 0.1 is chosen.

Top panel shows the total population density simulated with the complete (blue) and aggregated (dashed

red) models. The centre panel shows the effort obtained with the complete (blue) and aggregated (dashed

red) models. The bottom panel corresponds to the simulation of the yield. In blue and dashed red

respectively are the yields obtained with the complete and aggregated models with the same parameter

values as previously. In orange is the yield obtained with the complete model for a cost chosen in a such

way that the yield becomes maximal at equilibrium. The dashed black horizontal line is the yield level

obtained from the relation Yopt = rK/4.

The maximum yield (10) is strongly dependent on the equilibrium distribution of the186

stock to which the movements give rise. Let us show this with the help of a simple case. If187

we assume two biologically identical sites, r1 = r2 = r and K1 = K2 = K/2, then we have188

Yopt =
rK

4
· 1

2(u21 + u22)

If the stock is homogeneously distributed, u1 = 1/2 = u2, then Yopt = rK/4, that corre-189
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sponds to the MSY considering a single stock with biological parameters r and K. Nev-190

ertheless, if u1 approaches 1 and, thus, u2 approaches 0 (or vice versa), i.e., the stock is191

mainly established in the first site (or the second one), then Yopt tends to rK/8. Uneven192

stock distribution could almost halve the maximum yield.193

Let us see which is the equilibrium stock distribution that maximizes Yopt in a general194

situation. For this, we consider Yopt as a function of u1, making u2 = 1− u1:195

Yopt(u1) =
1

4

(r1u1 + r2(1− u1))2K1K2

r2(1− u1)2K1 + r1u21K2

.

Its derivative can be expressed as196

Y ′opt(u1) =
r1r2K1K2

(
r1u1 + r2(1− u1)

)
2
(
r2(1− u1)2K1 + r1u21K2

)2 (K1 − (K1 +K2)u1
)
,

and, therefore, its sign just depends on expression K1 − (K1 + K2)u1. The maximum is197

attained for u1 =
K1

K1 +K2

, that implies u2 =
K2

K1 +K2

. This stock distribution, propor-198

tional to the sites carrying capacities, is known in ecological literature as the Ideal Free199

Distribution (IFD) Fretwell and Lucas (1970). The corresponding yield is200

Yopt

(
K1

K1 +K2

)
=

1

4

(
r1K1 + r2K2

)
,

that it is associated to a cost copt = 1
2
pq(K1v1 +K2v2) at an equilibrium201

Nopt =
1

2
(K1 +K2) and Eopt =

1

2

r1K1 + r2K2

q(K1v1 +K2v2)
.

The yield Yopt(u1) grows from 1
4
r2K2, for u1 = 0 (the whole stock living in site 2), to202

its maximum, at the IFD, and then decreases to 1
4
r1K1, for u1 = 0 (the whole stock living203

in site 1).204

The closer the stock distribution is to the IFD, the larger is the MSY obtained.205

In the unconnected case, this question does not apply because, as there are no stock206

movements, its distribution is constant.207

11
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3.2. Unconnected sites208

Now, let us assume that there is no movement. The sites are independent of each other209

from the point of view of stock and effort, though they share the catchability q, the price210

p, and the cost c.211

In this case, the yield of the system is the sum of the yields on each separate site. Using212

expression (5) in both systems (8), one gets:213

YS =
r1c

pq

(
1− c

pqK1

)
+
r2c

pq

(
1− c

pqK2

)
As a function of c, YS has a maximum for the cost cS,opt =

(r1 + r2)pqK1K2

2(r1K2 + r2K1)
equal to214

YS,opt =
(r1 + r2)

2K1K2

4(r1K2 + r2K1)
. (11)

The equilibria attained by the stock are the same in both sites:215

N1
S,opt =

cS,opt
pq

=
(r1 + r2)K1K2

2(r1K2 + r2K1)
= N2

S,opt.

Due to different biological parameters in the two sites, the equilibrium attained by the216

effort in each site is different217

E1
S,opt =

r1
q

(
1− cS,opt

pqK1

)
=
r1
q

(
1− (r1 + r2)K2

2(r1K2 + r2K1)

)
, E2

S,opt =
r2
q

(
1− (r1 + r2)K1

2(r1K2 + r2K1)

)
.

In the previous case of connected sites we showed that the MSY (10) is strongly depen-218

dent on equilibrium stock distribution. We found that to maximize MSY this distribution219

must be the IFD. In this case of unconnected sites the equilibrium stock distribution does220

not apply because they are independent. Nevertheless, we are showing that how the total221

carrying capacity of the system, K = K1 + K2, is distributed between the sites does play222

a relevant role.223

We start approaching the question in a simple case. Let us assume r1 = r2 = r, and224

represent the total carrying capacity distribution by means of the fraction α ∈ (0, 1) of K225

12
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in the first site, i.e., K1 = αK and K2 = (1 − α)K. Substituting these values in (11) we226

get227

YS,opt = α(1− α)rK,

which attains the well known maximum 1
4
rK for α = 1

2
, that is, when there is half of the228

total carrying capacity in each site. On the other hand, if K tends to be mostly in one of229

the sites the MSY approaches zero.230

In the general case, r1 6= r2, the MSY as a function of α is231

YS,opt(α) =
(r1 + r2)

2Kα(1− α)

4(r1(1− α) + r2α)
.

This function also tends to zero when α tends to zero or one. Its maximum is attained for232

α =

√
r1√

r1 +
√
r2
,

that is, when the carrying capacities of the sites are proportional to the square roots of233

the corresponding intrinsic growth rates. If this is the case, the maximum yield is234

YS,opt

( √
r1√

r1 +
√
r2

)
=

1

4

(
r1 + r2√
r1 +

√
r2

)2

K.

where

(
r1 + r2√
r1 +

√
r2

)2

is in between r1 and r2.235

Uniform costs in separated sites seem reasonable if the carrying capacities ratio is close236

to the ratio of the square roots of the intrinsic growth rates.237

3.3. Comparison of the MSY for connected and unconnected sites238

To compare the MSY obtained in the two cases, connected and unconnected sites, we239

define the ratio ρY of Yopt (10) to YS,opt (11),240

ρY =
Yopt
YS,opt

=
(r1K2 + r2K1)(r1u1 + r2u2)

2

(r1 + r2)2(r2u22K1 + r1u21K2)
. (12)

If ρY > 1 then we can conclude that the movements increase the MSY whereas ρY < 1241

indicates that the movements reduce the MSY.242

13
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We can remark that ρY depends only on the biological parameters, ri and Ki, and the243

equilibrium stock distribution given by frequencies u1 and u2 = 1−u1. On the other hand,244

it does not depend on the efforts frequencies vi, that is, changing the efforts movements245

rates will not change ρY .246

As we pointed out in Section 3.1, the MSY in the case of connected sites attains its247

maximum when the equilibrium stock distribution coincides with IFD. The value of ρY in248

this case (u1 = K1/(K1 +K2)) can be expressed in the following form:249

ρIFDY =
(r1 + r2)

2K1K2 + r1r2(K1 −K2)
2

(r1 + r2)2K1K2

,

therefore, ρIFDY > 1 except in the case of equal carrying capacities, K1 = K2, in which it250

is equal to 1.251

If the stock movements tend to IFD, the system with connected sites gives a larger MSY252

than the one with unconnected sites. If IFD is not the equilibrium of stock movements253

then this is not always the case.254

Considering ρY as a function of u1 it is straightforward to find the conditions for ρY > 1255

to hold. Solving the equation ρY (u1) = 1 we obtain two solutions256

1

2
and ū1 :=

(r1 + 2r2)K1 − r2K2

2(r2K1 + r1K2)
.

Depending on K1 > K2, or K1 < K2, the second root satisfies ū1 > 1/2, or ū1 < 1/2, and257

we have then258

ρY > 1 if and only if one of the next two conditions is met259

K1 > K2 and u1 ∈
(1

2
,min{ū1, 1}

)
(13)

K1 < K2 and u1 ∈
(

max{ū1, 0},
1

2

)
(14)

We illustrate the results obtained with Figure 2.260

To do it, we first express ρY in terms of the ratio between K1 and K2, ρK = K1/K2,261

and the ratio between r1 and r2, ρr = r1/r2, getting262

ρY =

(
ρru1 + u2
ρr + 1

)2
ρr + ρK

ρru21 + ρKu22
. (15)

14
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(a) ρK = 1 (b) ρK = 2

(c) ρK = 5 (d) ρK = 10

Figure 2: Graphs of ρY as a function of u1 for different values of ρK : 1, 2, 5, and 10; and different values

of ρr: 0.1, 0.5, 1, 2, and 10.

If both sites have equal carrying capacities, K1 = K2, i.e., ρK = 1, we have263

ρY =

(
ρru1 + u2
ρr + 1

)2
ρr + 1

ρru21 + u22
=

(ρru1 + u2)
2

(ρru1 + u2)2 + ρr(u1 − u2)2
,

then ρY = 1 for u1 = 1/2 = u2 and is less than 1 for any other value of u1. Figure 2a shows264

the value of ρY as a function of u1 (u2 = 1− u1) for ρK = 1 and different values of ρr.265

The rest of the figures in Figure 2 make this same representation for three increasing266

values of ρK . In them you can clearly see the range of values of u1 (13), the fraction of267

15
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the stock that stabilizes in site 1, for which ρY > 1, i.e., for which the optimal yield is268

higher if the sites are connected. It can be seen that in all cases the maximum of ρY is269

approximately reached when u1 represents the IFD, that is, for u1 = ρK/(1 + ρK). We270

note that to obtain ρY > 1 it is necessary for the equilibrium stock distribution to have271

more weight in the site with the highest carrying capacity. In Figure 2 we see that for any272

u1 < 1/2 the site connection does not improve the maximum yield, i.e., ρY < 1. Concerning273

the role of the intrinsic growth ratio, ρr, we observe that the maximum value of ρY , for274

fixed ρK , is obtained for ρr = 1, that is, when r1 = r2.275

4. An L-site harvested population model (L > 2)276

In this section we extend the analysis carried out in section 3 to a general multisite277

environment encompassing L different sites.278

We continue to consider a harvested population and are interested in comparing the279

maximum sustainable yield between the case with connected sites and the case with isolated280

sites.281

In each site, the stock-effort dynamics is ruled by a local basic Gordon-Schaefer model282

(3).283

In the case of connected sites, we assume that movements between sites are fast com-284

pared to local dynamics. They are described by constant rates. Let us denote mij and µij,285

i 6= j and i, j ∈ {1, . . . , L}, the transition rates from site j to site i, for stock and effort286

respectively. To lighten the model writing, let us define, for i ∈ {1, . . . , L},287

mii = −
L∑

j = 1

j 6= i

mji , µii = −
L∑

j = 1

j 6= i

µji.

They represent the rate at which stock or effort leave site i to go to the rest of sites.288
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The extension of model (7) to an L-site environment reads as follows:289

dNi

dτ
=

L∑
j=1

mijNj + ε
(
riNi

(
1− Ni

Ki

)
− qEiNi

)
,

dEi
dτ

=
L∑
j=1

µijEj + ε
(
pqEiNi − cEi

)
, i = 1, . . . , L.

(16)

where, Ni and Ei are the population density and the fishing effort on site i. Parameters ri290

and Ki represent the intrinsic growth rate and the carrying capacity, respectively, on site291

i. The catchability q, the price per harvest unit p and the cost per unit effort c are still292

assumed to be equal in all sites. The fast time variable is τ and positive parameter ε� 1293

represents the time scales ratio.294

In the case of unconnected sites, as there is no stock and effort movements, the dynamics295

is represented by the following independent systems, for i = 1, . . . , L:296

dNi

dt
= riNi

(
1− Ni

Ki

)
− qEiNi

dEi
dt

= pqEiNi − cEi
(17)

Assuming that matrices M1 = (mij) and M2 = (µij) are irreducible, the same method297

we used to reduce system (7), (Auger et al. , 2008a,b), apply to system (16). The inter-298

pretation of the irreducibility of a matrix in this context is that the connections between299

sites allow to establish a path joining any site to any other. The movements dynamics let300

invariant the total stock N = N1 + · · ·+NL and the total fishing effort E = E1 + · · ·+EL.301

Moreover, it makes the proportions of stock and effort in each site rapidly tend to an equi-302

librium. Let ū = (u1, . . . , uL) and v̄ = (v1, . . . , vL) be these equilibrium proportions for303

stock and effort respectively. Vectors ū and v̄ are the right eigenvectors of matrices M1 and304

M2 associated to eigenvalue 0 and whose entries sum up to 1, see Section A.5. in Smith305

and Thieme (2011) for details on this kind of matrices called quasipositive irreducible.306

The associated reduced system for the total stock and effort in terms of the slow time307
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variable t = ετ is the following basic Gordon-Schaefer model:308

dN

dt
=

L∑
i=1

(
riuiN

(
1− uiN

Ki

)
− qviEuiN

)
= r̄N

(
1− N

K̄

)
− q̄EN

dE

dt
=

L∑
i=1

(
pqviEuiN − cviEi

)
= pq̄EN − cE

(18)

where309

r̄ =
L∑
i=1

uiri , K̄ =
r̄

L∑
i=1

(u2i
ri
Ki

)

, q̄ =
( L∑
i=1

(uivi)
)
q. (19)

To compare the maximum sustainable yield in the cases of connected and unconnected310

sites, we now consider the yield at equilibrium maximized as a function of a single cost. In311

the first case using system (18) and in the second case with the help of systems (17).312

4.1. Connected sites313

In the case of connected sites, we apply (6), the value of the cost that maximizes the314

equilibrium yield in the basic Gordon-Schaefer model, to system (18), obtaining315

copt =
1

2
pq̄K̄,

and the maximum equilibrium yield316

Yopt =
1

4
r̄K̄ =

1

4

( L∑
i=1

uiri

)2
L∑
i=1

(u2i ri/Ki)

. (20)

It does not depend on either the price, the catchability or the efforts movements rates. On317

the other hand, it is strongly dependent on the equilibrium stock distribution. Let us show318

this through a simple extreme case as we did in the case of two sites. Assuming biologically319

identical sites, ri = r and Ki = K/L, for i = 1, . . . , L, then we have320

Yopt =
rK

4
· 1

L

L∑
i=1

u2i

.
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If the stock is homogeneously distributed, ui = 1/L, then Yopt = rK/4, that corresponds321

to the MSY considering a single stock with biological parameters r and K. Nevertheless,322

if the stock tends to concentrate in a single site, let us think that u1 approaches 1 and323

ui approaches 0 for i = 2, . . . , L, then Yopt tends to rK/(4L), i.e., the previous maximum324

yield is divided by the number of sites.325

If we now consider Yopt as a function of variables ui (i = 1, . . . , L) we can prove that326

the maximum of Yopt is obtained for a distribution that corresponds to IFD, i.e., ui =327

Ki/
∑L

j=1Kj. To see it, let us consider function Yopt(u1, . . . , uL) with the constraint u1 +328

· · ·+ uL = 1, ui > 0, and use a Lagrange multiplier λ. For j = 1, . . . , L,329

λ =
∂Yopt
∂uj

=
1

4
r̄K̄ =

1

2
rjK̄ −

1

2
K̄2ujrj

Kj

,

multiplying each equality by uj and summing up all of them yields330

λ =
L∑
j=1

uj

(
1

2
rjK̄ −

1

2
K̄2ujrj

Kj

)
=

1

2
r̄K̄ − 1

2
K̄2 r̄

K̄
= 0,

substituting λ = 0 in the first equality gives331

uj =
Kj

K̄
,

and, as u1 + · · · + uL = 1, K̄ = K1 + · · · + KL. So, as we wanted to prove, the stock332

distribution that maximizes Yopt is the IFD. This yield value is333

Y IFD
opt = Yopt(K1/K̄, . . . , KL/K̄) =

1

4

L∑
i=1

riKi,

and it is associated to a cost copt =
1

2
pq

L∑
i=1

riKi at an equilibrium334

Nopt =
1

2

L∑
i=1

Ki and Eopt =
( L∑
i=1

riKi

)
/
(

2q
L∑
i=1

viKi

)
.
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4.2. Unconnected sites335

When the sites are not connected we must consider them independently. Thus, the336

yield of the system is just the sum of the yields on each separate site. Using expression (5)337

in all the L systems (17), one gets:338

YS =
L∑
i=1

ric

pq

(
1− c

pqKi

)
=

c

pq

L∑
i=1

ri −
c2

p2q2

L∑
i=1

ri
Ki

We look for a common value of c that optimizes YS. Considering YS as a function of c, the339

maximum is attained at340

cS,opt =
1

2
pq
( L∑
i=1

ri

)
/
( L∑
i=1

ri/Ki

)
,

and the maximum yield is equal to341

YS,opt =
( L∑
i=1

ri

)2
/
(

4
L∑
i=1

ri
Ki

)
. (21)

The equilibria attained by the stock is the same in every site j = 1, . . . , L342

N j
S,opt =

1

2

( L∑
i=1

ri

)
/
( L∑
i=1

ri/Ki

)
,

but this need not be the case concerning the effort equilibria343

Ej
S,opt =

rj
q

(
1−

( L∑
i=1

ri

)
/
(

2Kj

L∑
i=1

ri/Ki

))
.

In the previous case of connected sites we showed that the MSY (20) is strongly de-344

pendent on equilibrium stock distribution associated to stock fast movements. When this345

distribution is the IFD the maximum equilibrium yield attains its maximum. In the case of346

unconnected sites movements are not considered and, therefore, it does not make sense to347

speak about the equilibrium stock distribution they lead to. Nevertheless, we can consider348

the distribution among sites of the total carrying capacity of the system, K =
∑L

i=1Ki,349

and show that it does play a relevant role by treating a simple case.350
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Assuming, equal intrinsic growth rates in all sites, ri = r for i = 1, . . . , L, and setting351

Ki = αiK, with αi ∈ (0, 1), we have352

YS,opt =
( L∑
i=1

r
)2)

/
(

4
L∑
i=1

r

αiK

)
=

1

4
rKL

L∑L
i=1 1/αi

,

where the term L/
∑L

i=1 1/αi is the harmonic mean of the constants αi. As the harmonic353

mean is always less than or equal to the arithmetic mean we have that354

YS,opt ≤
1

4
rK,

with the equality obtained if all sites share the same carrying capacity, i.e., αi = 1/L for355

all i = 1, . . . , L. On the other hand, it can be noted that if one of the constants αi tends356

to zero then the harmonic mean of all of them too, what entails the YS,opt also tending to357

zero.358

Uniform cost in separated sites with very different carrying capacities would lead to359

small YS,opt.360

If we treat the general case with possibly different local intrinsic growth rates ri, we361

obtain analogous results to those found in the model with two sites. Let us set, as above,362

Ki = αiK, with αi ∈ (0, 1), and consider YS,opt as a function of variables αi (i = 1, . . . , L).363

To calculate its maximum we can use function YS,opt(α1, . . . , αL) with the constraint α1 +364

· · ·+ αL = 1, αi > 0, and use a Lagrange multiplier λ. For j = 1, . . . , L,365

λ =
∂YS,opt
∂αj

=
K

4
·

(∑L
i=1 ri

)2(∑L
i=1(ri/αi)

)2 · rjα2
j

,

which implies that αj is proportional to
√
rj366

αj =
1

2

√
K

λ
·

∑L
i=1 ri∑L

i=1(ri/αi)

√
rj

and, therefore, for j = 1, . . . , L,367

αj =

√
rj∑L

i=1

√
ri
.
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If the carrying capacities Ki of the sites are proportional to the square roots of the corre-368

sponding intrinsic growth rates
√
ri then YS,opt attains its maximum369

YS,opt

( √
r1∑L

i=1

√
ri
, · · · ,

√
rL∑L

i=1

√
ri

)
=

1

4
K

( ∑L
i=1 ri∑L
i=1

√
ri

)2

.

4.3. Comparison of Yopt and YS,opt370

To compare the maximum yield as obtained in the two studied cases, connected and371

unconnected sites, we define the ratio ρY of Yopt (20) to YS,opt (21),372

ρY =
Yopt
YS,opt

=

( L∑
i=1

uiri

)2 L∑
i=1

(
ri/Ki

)
( L∑
i=1

ri

)2 L∑
i=1

(
u2i ri/Ki

) . (22)

If ρY > 1, fast movements increase the maximum yield whereas ρY < 1 indicates that373

movements reduce it.374

As it was remarked in the model with two sites, ρY depends only on the biological375

parameters, ri and Ki, and on the stock movements through the equilibrium stock dis-376

tribution ui, but it does not depend on the efforts frequencies vi. Changing the efforts377

movements rates will not change the value of ρY .378

As we pointed out in Section 4.1, the maximum yield in the case of connected sites is379

obtained when the equilibrium stock distribution coincides with IFD. The value of ρY in380

this case (ui = Ki/
∑L

i=1Ki, i = 1, . . . , L) is the following:381

ρIFDY =

∑L
i=1(riKi)

∑L
i=1(ri/Ki)(∑L

i=1 ri
)2 .

Using that function f(x) = x+ 1/x satisfies f(x) > 2 for x ∈ (0, 1)∪ (1,∞) and f(1) = 2,382

we have, for any i, j = 1, . . . , L,383

Ki

Kj

rirj +
Kj

Ki

rjri > rirj + rjri if Ki 6= Kj, (23)

and the equality of both expressions holds if Ki = Kj. Now, as we can write ρIFDY in the384

following form385
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ρIFDY =

∑L
i=1

∑L
j=i+1(

Ki

Kj

rirj +
Kj

Ki

rjri) +
∑L

i=1 r
2
i∑L

i=1

∑L
j=i+1(rirj + rjri) +

∑L
i=1 r

2
i

,

we obtain that ρIFDY > 1 except in the case of equal carrying capacities, Ki = Kj for all386

i, j ∈ {1, . . . , L}, in which it is equal to 1.387

If the stock movements tend to IFD, the system with connected sites gives a larger388

maximum yield than the one obtained with unconnected sites. If IFD is not the equilibrium389

of stock movements then this is not always the case. It does not seem straightforward to390

find necessary and sufficient conditions for ρY being bigger or less than 1. To show that391

unconnected sites can also lead to a larger maximum yield, let us calculate ρY in the simple392

case with equal intrinsic growth rates and equal carrying capacities (ECC) in all sites. Let393

ri = r and Ki = K/L for i = 1, . . . , L, where K represents the total carrying capacity.394

The ρY , in this case, is readily calculated to be395

ρECCY =
1

L
∑L

i=1 u
2
i

.

As ui ≥ 0 and
∑L

i=1 ui = 1, it is straightforward to find that 1/L ≤
∑L

i=1 u
2
i ≤ 1 and, thus,396

1

L
≤ ρECCY ≤ 1.

In this case, equal intrinsic growth rates and equal carrying capacities, the system with397

unconnected sites gives a larger maximum yield than the one obtained with connected398

sites. If stock movements tend to IFD, then ρY approaches 1, but it can be much less than399

1 if stock movements equilibrium distribution gets away from IFD.400

5. Conclusion401

In the early contribution (Freedman and Waltman , 1977), it was shown that the global402

carrying capacity of two sites connected by fast migrations where each sub-population grows403

logistically could be globally greater than the sum of the carrying capacities of the two404

isolated sites. This result has received a lot of attention recently and has been discussed405
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in several other articles, (Holt , 1985; Poggiale et al. , 2005; DeAngelis and Zhang , 2014;406

DeAngelis et al , 2016; Arditi et al. , 2015, 2018; Zhang et al. , 2021). A condition for407

obtaining higher productivity from the system of two connected sites compared to the408

system of two isolated sites is to consider a heterogeneous environment, that is to say with409

two sites having different environmental properties, in particular having different growth410

rates and carrying capacities, (Poggiale et al. , 2005).411

412

In this work we have analyzed a similar problem. We have treated a population that413

grows according to the logistic model but that, in addition, is harvested. The actual system414

we have in mind is a fishery. The environment of the population can be considered divided415

into different sites, that is, we are dealing with the case of a multisite fishery. Finally, what416

we seek to compare between the system of connected and unconnected sites is not the417

total carrying capacity of the system, as in the works mentioned above, but the maximum418

sustainable yield.419

420

This problem, as we mentioned in the introduction, has already been dealt with in421

(Auger et al. , 2022). As can be seen in system (2), the population is harvested at a422

rate proportional to its size following the classical Schaefer’s model. Yield optimization is423

performed with respect to the fishing effort parameter E. The analysis of the model offers424

a result that we could describe as negative. Regardless of the movement rates chosen and425

whether or not the sites are environmentally homogeneous, connecting the sites does not426

allow increasing the sum of the MSY of the unconnected sites. Equality occurs when the427

exploited species is distributed over the two sites according to the ideal free distribution.428

This result is quite general as soon as the harvested population equation includes a logistic429

growth term from which the catch is subtracted. Indeed, at equilibrium, the capture is430

equal to a logistic growth term which is always maximum when the population is at half431

the carrying capacity. This always leads to the same value of the catch at MSY and,432

therefore, to the inability to increase optimal yield by connecting sites. A positive answer433

is obtained in the same work (Auger et al. , 2022) considering a prey–predator community434
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of fish in the same environment, where only the predators are harvested. It is shown that435

the total MSY of the system can be greater with connected sites. The condition leading436

to this result consist in connecting a fishing site with a large prey carrying capacity and437

an average growth rate to a site with a small prey carrying capacity but a large growth rate.438

439

The models analyzed in this paper includes economic factors, which were not consid-440

ered in (Auger et al. , 2022). The fishing effort E becomes a variable whose dynamics441

follow the hypothesis of the open access fishery. The non-spatialized model, (3), leads,442

under a certain condition, to an equilibrium of both the stock and the effort, and therefore443

also the yield. From this, we have chosen the cost c as a parameter with respect to which444

to optimize the yield. We have preferred c over other possible choices because it includes445

all the costs of operating a fishery, including the profit margin that the owner considers446

profitable. In addition, it is an element on which management can act through taxes or447

subsidies.448

449

The model (3) is used as a local model to build a multisite fishery model. The man-450

agement of the fishery is unique and the same cost and price are established in each of451

the sites. When unconnected sites are considered, the model for the fishery is made up of452

a collection of independent systems (3). When the sites are connected, with rapid move-453

ments of the stock and of the fishing effort, the model (7) is proposed for two sites and, in454

general, for any number L of sites, the model (16). Once the maximum sustainable yield455

(MSY) is obtained based on the cost c, the comparison between the fishery with connected456

and unconnected sites based on this criterion is developed. The ratio ρY between the MSY457

with connected sites, Yopt, and with unconnected sites, YS,opt, is used to decide whether to458

prefer a connected fishery, if ρY > 1, or an unconnected fishery, whenever ρY < 1.459

460

In the case of two sites the ratio ρY depends on two other ratios, that of the carrying461

capacities, ρK , and that of the intrinsic growth rates, ρr, and on the equilibrium distribu-462

tion of the stock reflected in u1. The rest of the parameters do not play any role. A first463
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general conclusion is that if the carrying capacities of the two sites are equal, ρK = 1, then464

for any values of u1 and ρr we have that ρY ≤ 1, with the equality valid only if u1 = 1/2. If465

the two sites have the same carrying capacities, it is better to keep the sites unconnected.466

Another general result but in the opposite sense follows. If the equilibrium distribution of467

the stock coincides with the IFD then it is better to use connected sites. Figure 2 shows468

that whenever the carrying capacity of site 1 is greater than that of site 2, ρK > 1, there469

is an interval of values of u1, whose left endpoint is 1/2 and, on the right, can be as high470

as 1, such that ρY > 1. If the fishery can be managed so that the equilibrium distribution471

of the stock is in this interval, connecting the sites will give a higher MSY. Note that the472

best results are obtained when the equilibrium distribution of the stock is around the IFD.473

The values of ρY obtained grow with ρK and are reached for values of ρr close to 1, i.e.474

equal intrinsic growth rates. A symmetric analysis is valid if the largest carrying capacity475

is that of site 2. Similar general conclusions can be reached in the case of L sites.476

477

This work shows the importance of maintaining corridors allowing individuals to move478

from one site to another in a network of sites. It also shows that the heterogeneity between479

the different sites is a favorable factor for the increase in the total optimal catch in the480

multisite fishery. This work makes it possible to specify the conditions favorable to this481

increase in the capture at the MSY. The manager of the multisite fishery can use certain482

devices such as artificial reefs to increase the total productivity of the multisite fishery.483

In the case of two connected fishing areas, it would be possible to increase the carrying484

capacity in only one of the two zones by installing artificial reefs there, which are known485

to increase the productivity of the halieutic resource by increasing the local carrying ca-486

pacity. Artificial reefs have a priori no effect on the growth rate of the exploited species.487

Thus it appears possible to create an asymmetry between the fishing zones by increasing488

the ratio of local carrying capacities ρK while maintaining the ratio of growth rates ρr at489

one. Figure 2 shows that it is possible as soon as ρK is equal to 2 or more to obtain ρY ≥ 1.490

491

In (Zhang et al. , 2017), the authors performed experiments with aquatic plants growing492
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logistically in containers. They simulated in real world the fast migrations by transferring493

plants from one container to another with a periodicity of a few days. They considered494

a heterogeneous environment with different growth conditions from container to container495

of different sizes. Under these conditions, they showed that the total productivity, in496

terms of carrying capacities, could be greater in heterogeneous conditions rather than in497

homogeneous conditions. An important perspective of this work is to consider carrying498

out experiments of the same type making it possible to generalize the results obtained in499

(Zhang et al. , 2017) to the case of exploited species, either a single commercial species as500

in this work with an identical operating cost in all sites or in the case of fish prey-predator501

systems with exploitation of the predator, (Auger et al. , 2022).502
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