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Identifying the mechanisms of interstitial diffusion in iron is important to understanding the low-

temperature ageing of Fe-C ferritic and martensitic alloys. In spite of the low solubility of carbon

in ferrite at equilibrium, carbon-rich areas are often found at segregated grain boundaries and in

Cottrell atmospheres around dislocations. Carbon-rich areas also form by spinodal decomposition

in martensite. In all these cases carbon atoms experience short-range interactions, susceptible to

modify their migration behaviour. We performed first-principles calculations to study the influence

of these C–C interactions on the migration of interstitial carbon in body-centred iron. The ab initio

energy database is introduced in kinetic Monte Carlo simulations to compute the thermodynamic

and kinetic parameters. We found that the migration energies of carbon are largely affected by the

presence of a neighbouring carbon atom. We explain the evolution of these energies by the relative

stability of the C–C configurations corresponding to stable and transition-state positions. The

C–C pair interactions slightly modify the ferrite/martensite transition conditions and significantly

change the carbon atomic migration path. The latter leads to an increase of the diffusivity up to 10

times and an important kinetic correlation at low temperature (< 300 K) and high carbon contents

(> 1 at.%).

I. INTRODUCTION

Many important phenomena involve impurity diffusion in solids [1]. Diffusion of small chemical elements (H, B,

C, N and O) in metals typically occurs via an interstitial mechanism [2]. Among these elements, carbon occupies

a special place in iron alloys as it is a most effective addition to ferritic, bainitic and martensitic steels. Through

bulk diffusion, solute carbon often controls the kinetics of phase transitions: it has therefore a direct influence on

the final microstructure of steels [3]. Due to the low solubility of carbon in body-centered structures, its diffusion
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is usually not affected by the carbon–carbon interactions. However, carbon-rich regions are commonly observed in

out-of-equilibrium structures such as supersaturated bainite or as-quenched martensite, with solute carbon fractions

up to a few at% [4]. Carbon segregation at structural defects (grain boundaries and dislocations) can also raise the

solute fraction up to ∼8 at% [5]. Lastly, low-temperature spinodal decomposition of martensite leads to carbon-rich

body-centered regions ranging from 10 to 14 at% C [6–10].

By itself the phenomenon of carbon diffusion is important in many ways. Technological processes such as surface

hardening by carburizing or nitriding are realized by interstitial diffusion [11]. Molecule-surface interactions, such as

those in corrosion and heterogeneous catalysis, can also involve diffusion of adsorbed atoms into subsurface layers with

further diffusion into the bulk of the material. The local stress field has a strong effect on the interstitial diffusion

in iron, due to the induced deformation of the interstitial sites [12, 13]. Furthermore, interstitial diffusion causes

phenomena such as internal friction [14], strain ageing [15], embrittlement [16] and steel erosion [17]. Finally, a better

understanding of the interstitial diffusion mechanisms in iron will aid controlling phase transformations in steel and

modelling microstructure formation in the material.

The classical measurement of carbon diffusion in ferrite was done in 1950 by Wert [18]. He showed that in the

temperature range of 238–473 K, the data agree very well with a linear Arrhenius plot, which yields a diffusion barrier of

0.87 eV. After Wert, carbon diffusion in ferrite was measured with various methods and in different temperature ranges

[19]. For the low-temperature linear Arrhenius regime, the assumed atomic mechanism involves carbon migration from

an octahedral O-site to a nearest-neighbour O-site via a saddle point (S) (i.e., the tetrahedral T-site for an isolated

carbon atom) [19–24]. Those measurements are however limited to very dilute alloys. Diffusion measurements

in carbon-supersaturated alloys are difficult, owing to the instability of the solid solution, this is why results in the

literature are only indirect [9, 25]. They nevertheless evidence a significant decrease in carbon diffusivity in martensite

when the carbon content is increased. Theoretical analyses showed that C–C long-range elastic interactions are

responsible for this decrease, via an increase of the migration barriers [12, 26].

In more carbon-rich regions, short-range C–C interactions cannot be neglected. There, migration of a C atom is

expected to be affected by the presence of neighbouring C atoms. This short-range interaction is difficult to study by

experimental techniques and thus theoretical studies at the atomic level are necessary. In 2003, Jiang et al. studied

by density functional theory (DFT) the diffusion of C in ferrite [27]. Their results on single carbon atom migration

correspond well to the experimental data in dilute alloys [18, 24]. This is also true for recent DFT [28] and embedded

atom method (EAM) approaches [29]. However, those studies do not take into account the effects of short-range C–C

interactions on diffusion. There are several theoretical works on C–C interactions when both atoms sit on octahedral

interstitial sites (OO-configurations) [27, 30–32]. There is no similar study of transition-state OS-configurations,

although they are essential to computing diffusion migration energies.
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This article provides a multi-scale approach to study the influence of short-range C–C interactions on C migration

in body-centered iron by combining ab initio calculations and kinetic Monte Carlo (KMC) simulations. We discuss

the energetic properties of pair configurations with C–C distances up to 6 Å. One of the C atoms (called the static

atom) occupies an O-site. The other C atom (the migrating atom) is positioned in an O-site (stable state) or a S-site

(saddle-point state). We propose a shell-nomenclature to classify all the C–C configurations. The migration paths of

a carbon atom in the presence of a neighbouring static atom are discussed and compared to the case of an isolated

migrating atom. The obtained migration data are used to compute carbon order parameter and diffusion coefficients

in concentrated alloys by KMC simulations.

II. METHODOLOGY

A. DFT computational techniques

In the present work, all calculations have been carried out using the Vienna Ab-initio Simulation Package (VASP)

[33] based on the density functional theory (DFT). To resolve the self-consistent Kohn-Sham equations, the projected-

augmented wave (PAW) method was employed [34]. The PAW method is a generalization of the pseudo-potential and

linear augmented-plane-wave methods (within the frozen-core approximation) with the computational efficiency of

pseudo-potential DFT algorithms. The atomic basis for PAW were 2s22p2 and 4s13d7 for C and Fe atoms respectively.

The exchange-correlation functional PBE [35] was used to calculate the electronic structure within the generalized

gradient approximation (GGA). All calculations are presented with spin polarization. The plane-wave energy cut-off

was established at 400 eV for all studied systems. The supercells were Fe128Cn, 0 ≤ n ≤ 2. A 4×4×4 Monkhorst and

Pack grid [36] of k-points has been used for integration in the irreducible part of the Brillouin zone. These parameters

were sufficient to converge the total energies down to 50 meV per supercell for studied systems.

All systems have been fully relaxed with respect to the atomic positions with constant parameters of the supercell.

The atomic relaxations were performed with a conjugate-gradient algorithm. The computed cell parameter of iron

(a0 =2.825 Å) corresponds well to the other theoretical works [32, 37–40]. The computed magnetic moment of the Fe

bulk is 2.16 µB/at which in a good agreement with experimental data 2.12µB/at [41].

To determine the migration minimum energy paths (MEPs), the nudged elastic band (NEB) method was used

[42, 43]. The transition-state searches were carried out with the convergence criteria of 10−5 eV for total energies of

ionic step iterations and 0.01 eV/Å for forces acting on the atoms. We used 3 images in these NEB analyses (1/4,

1/2 and 3/4 points on reaction coordinate). Then, all energy landscapes were fitted with polynomials of degree 6.
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FIG. 1: The 7th shell of OT-configurations contain 20 sites distributed in 3 subshells (7a, 7b and 7c) (a) and the 7th shell of

OO-configurations contain 12 sites distributed in 2 subshells (7A and 7B). In these figures, the static carbon atom is in the

center of the polyhedron, in a Oz site. For OT-configurations each subshell includes the geometrically equivalent T -sites for

carbon atoms: 8 sites for 7a, 4 sites for 7b and 8 sites for 7c and for OO-configurations each subshell includes the geometrically

equivalent O-sites for carbon atoms: 4 sites for 7A and 8 sites for 7B

B. Stable and saddle-point configurations

To study the atomic jump of a migrating carbon atom located in the vicinity of another carbon atom, we defined

two types of C–C pair configurations: an OO-configuration consists of two carbon atoms in octahedral interstitial

sites, while an OT-configuration consists of one carbon atom in the octahedral site and the other in the tetrahedral

site. The OO-configurations are stable and correspond to initial and final states of an elementary carbon jump. In

OT-configurations, the migrating atom is located between the initial and final sites (OO-configurations). In most

cases, this T site corresponds to a saddle point (S) as for single C atom migration in iron. We ranked the OO- and

OT-configurations according to the distance between the carbon atoms, represented by the vector 1
2a0[u, v, w]. Notice

that for a given C–C distance, several non-equivalent configurations exist. The set of all configurations sharing the

same distance is referred to as a shell (first, second, third...). The equivalent configurations in the same shell form a

subshell. The subshells are labelled with small letters (a, b, c...) for OT-configurations and capital letters (A, B, C...)

for OO-configurations. For example, the 7th shell of OT-configuration has three subshells: 7a, 7b and 7c (see Figure

1); the 7th shell of OO-configuration has only two subshells: 7A and 7B.

In our model we studied the configurations up to the 14th shell, which represents a reasonable limit for our

cubic supercell of 128 Fe atoms. The shell number N is directly related to the distance vector 1
2a0[u, v, w]: For

OT-configurations the shell number is equal to

NOT = u2 + v2 + w2 +
3

4
. (1)

In the case of OO-configuration the shell number is

NOO = u2 + v2 + w2 −A, (2)

where A = 0 for u2 + v2 + w2 ≤ 6, A = 1 for 8 ≤ u2 + v2 + w2 ≤ 15 and A = 2 for 16 ≤ u2 + v2 + w2 ≤ 23.

The ranking of subshells is based also on the vector 1
2a0[u, v, w]. Let us take the same 7th OT-shell as an example
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(NOT = 7). This shell has 3 subshells defined by the vectors 1
2a0[2, 1.5, 0], 1

2a0[0, 1.5, 2] and 1
2a0[2.5, 0, 0]. We attribute

the labels a, b and c in order of increase of |w|. Thus, the subshell with the vector 1
2a0[0, 1.5, 2] is 7c. If |w| is the

same for several subshells, as we have in this example, we rank them by increasing the sum |u|+ |v|. In the present

case, the labels are as follows: 1
2a0[2.5, 0, 0] is 7a and 1

2a0[2, 1.5, 0] is 7b (see Table I).

In our work we label OT-configurations as OS-configurations taking into account that our interest consists specifi-

cally in the finding of saddle-points, however for some topological discussions when we will discuss precisely the mid

position between initial and final state we will return to using OT-configurations.

We also need to introduce sublattice information for the interstitial atoms of the same shell. A carbon atom on an

octahedral site can be of three types (Ox, Oy or Oz) depending in which sublattice (x, y or z) is located this atom.

Mechanically, the presence of a carbon atom creates a prolate tetragonal distortion along the direction corresponding

to its sublattice.

A carbon atom on a tetrahedral site creates an oblate tetragonal distortion and can be of three types (Tx, Ty or Tz)

depending on direction of the oblate effect [12]. Figure 2a illustrates a carbon jump starting from an octahedral site of

type z, through a tetrahedral site of type x, and ending at an octahedral site of type y, i.e. a “z−x−y” jump. During

this path, the bcc lattice is successively tetragonally distorted along directions z, x and y. For any kind of jump,

the lattice is distorted in three successive directions [28]. Each octahedral interstitial site has 4 nearest-neighbour

octahedral sites. Thus any carbon atom can migrate towards 4 possible directions (Figure 2b). The 5 sites involved

(central site and its 4 neighbours) are located in the same plane, which is perpendicular to the axis of the central site.

FIG. 2: (a) Tetragonal distortion effect during carbon migration from an O-site to a nearest-neighbour O-site. In the case

shown, the migration path is Oz − Tx − Oy. (b) A carbon atom in a Oz-site has four possible jumps: two towards Ox-sites

through Ty-sites, and two towards Oy-sites through Tx-sites.

Without loss of generality, the static atom was positioned on the z sublattice (Oz type of site). The migrating

atom, for its part, can occupy any of the three sublattices x, y, z, which causes tetragonal distortions in one of three

possible directions. Notice that these distortions do not generate additional shells because each shell is made of the

same type of interstitial carbon atoms: z-type, or x- with y-type (x and y are equivalent in this respect).
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C. Carbon migration barrier

For an isolated carbon atom, the migration path is symmetric since initial and final states are geometrically identical,

and the saddle point is at mid-path. For this case, there is only one migration energy Em0, since the direct and reverse

jumps are equivalent (Figure 3a ).

In the case of a pair of carbon atoms with 128 iron atoms per supercell, we used as reference energy the state of two

isolated carbon atoms positioned on octahedral interstitial sites. The reference energy is therefore twice the insertion

energy of carbon in O-site. The interaction energy EC−C of a carbon–carbon pair is calculated as

EC−C = Eins(C− C)− 2Eins(C) (3)

where Eins(C) is the insertion energy of one carbon atom in octahedral site and Eins(C− C) is the insertion energy

of two neighbouring carbon atoms. EC−C > 0 means repulsion. The insertion energies are calculated as

Eins(C) = E(Fe128C1)− E(Fe128)− E(C)

Eins(C− C) = E(Fe128C2)− E(Fe128)− 2E(C)
(4)

where E(Fe128C2), E(Fe128C1) and E(Fe128) are the energies of the Fe128Cn systems with n =2, 1, 0 in correspondence.

In this work we are interested in three energetic parameters: C–C interaction energy EC−C mentioned above and

the direct and reverse migration energies Em1 and Em2 (Figure 3b). The direct jump is defined as the case of C–C

pair dissociation (i.e. the C–C distance increases), while the reverse jump corresponds to the pair association (the

C–C distance decreases).

Let us define EC−C(OS) as the interaction energy in the transition state, i.e. when the migrating atom is at the

saddle point. EC−C(OOinit) and EC−C(OOfin) are the interaction energies at the initial and the final state respectively.

Then the migration energies are simply expressed as

Em1 = EC−C(OS)− EC−C(OOinit)

Em2 = EC−C(OS)− EC−C(OOfin)
(5)

At variance to the case of an isolated carbon atom, presence of the static carbon atom breaks the symmetry of the

direct and reverse jumps. Thus, as long as the interaction between the two carbon atoms exists, we expect that:

(a) The energies of the initial, transition and final states will be modified;

(b) The interaction energies EC−C(OOinit) and EC−C(OOfin) will be different from zero.

In the following, we will use the energetic quantities EC−C, Em1 and Em2 to discuss the influence of the geometric

parameters of various C–C pair configurations on the interaction and migration energies.
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FIG. 3: (a) Migration of C atom in ferrite. The two values over the saddle point (0.87, 0.87) are right and left migration energies

Em1 and Em2 (0.87 eV each). The interstitial energy of C in O-site is the energy reference. (b) An example of migration path

of C atom in presence of static C atom. Here the initial and final state are different and as a consequence migration energies

Em1 and Em2 are different also, the saddle point is slightly shifted from mid-path.

D. Mean-field elastic model

Zener ordering of carbon leads to a stress-strain field that affects carbon migration. Using a mean-field elastic

model [9, 12], we can express the strain components as a function of the carbon content. First, we define the atom

fractions ci = ni/n, where ni is the number of carbon atoms on the octahedral sites of type i = x, y, z, and n is

the total number of iron atoms. The total fraction c =
∑

i ci is the number of carbon atoms per iron atom in the

crystal. In the case of Zener ordering along the z-direction, the order parameter is defined as η = (cz − cx or y)/c. In

the mean-field approximation, the volume density of dipole tensor p is given by

p =
1

V0

∑
i

ciP
Oi , (6)

where POi is the dipole tensor of a carbon atom on an octahedral site of type i and V0 is the atomic volume of iron.

The carbon-induced strain tensor ε at equilibrium writes

ε = S p, (7)

where S is the compliance tensor of iron.

E. Kinetic Monte Carlo simulations

Kinetic Monte Carlo (KMC) simulations based on the residence-time algorithm are performed on the body-centered

cubic (bcc) lattice with the octahedral sites. Periodic boundary conditions are applied to the simulation box. About
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1000 carbon atoms are inserted. The size of the simulation box is adjusted by the atomic fraction of carbon atoms.

They are allowed to jump during the simulation. The C-C pairwise interactions that are given by the DFT calculations

are included in the carbon jump frequency:

Γ = ν0 exp

(
−
Em0 + (ES

pair − EO
pair)− (P S − PO) : ε

kBT

)
, (8)

with

ES
pair =

∑
k∈S

zkE
k
C−C(OS), EO

pair =
∑
k∈O

zkE
k
C−C(OOinit), (9)

where P S (resp. PO ) denotes dipole tensor associated to carbon atom in the saddle-point state (resp. octahedral

site) and ν0 is the attempt frequency that is assumed to be strain-independent. The values of these parameters

can be found in [12]. S and O are respectively the collections of all the investigated tetrahedral and octahedral

shells, and zk is the number of carbon atoms at the k-th shell of the considered carbon atom. In order to estimate

the order parameters, the occupancies of the carbon atoms are measured after each atomic jump. After the system

reaches equilibrium, 100 measurements of the mean squared displacement (MSD) of the carbon atoms after 3 × 105

atomic jumps (i.e., a total of 3× 107 carbon jumps for each simulation) are performed to compute the tracer diffusion

coefficients. The relative convergence of the obtained carbon diffusivities is within ±1% with these settings. The

tracer diffusivities Di (i = x, y, z) are related to the MSD 〈R2
i 〉 along the x, y, z directions during a period of time τ

via the Einstein-Smoluchowski equation: 〈R2
i 〉 = 2Diτ . The MSD is given by

〈R2
i 〉 =

〈(
N∑

n=1

Rn,i

)2〉
= fi

〈(
N∑

n=1

R2
n,i

)〉
, (10)

where N is the total number of jumps in the period of time τ and Rn,i is the displacement of a carbon atom along the

i-direction due to the n-th jumps.
〈(∑N

n=1R
2
n,i

)〉
is the uncorrelated MSD corresponding to the random diffusion

path, and fi is the correlation factor characterizing the deviation between the tracer diffusion and a random walk.

Note that the displacements of about 1000 C atoms are simultaneously measured during the simulation. Therefore,

the final MSD results from the average of all carbon atoms.

III. RESULTS AND DISCUSSION

A. Isolated carbon migration

To test our methodology, we calculated the migration energy of carbon in pure iron and compared it with experi-

mental and theoretical literature. The experimental migration energy values are 0.86 eV [18] by Wert and 0.874 eV

by Da Silva et al. [24]. These results were obtained by study of lnD evolution as 1/T function.
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Theoretically, by EAM (Embedded Atom Method) calculations the migration energy of 0.81 eV was found by

Garruchet et al. [44]. The DFT calculations give results in the range of 0.85 to 0.94 eV: Fors et al. 0.85 eV [45],

Jiang et al. 0.87 eV [27], Souissi et al. 0.865 eV [46], Domain et al. 0.90 eV [32] and Bialon et al. 0.94 eV [47]. These

results are based on NEB approaches as our or on a simple comparison of energy difference between interstitial T and

O sites. Domain et al. demonstrated that smaller supercells give higher activation energies (0.92 eV for 54 atoms vs

0.90 eV for 128 atoms). We observe that generally theoretical results could precisely simulate experimental data by

ab initio NEB approach which is more precise than EAM calculations. In the case of Domain [32] and Bialon [47]

the overestimation of migration energy to the small underestimation of T-site energy stability because of symmetry

imposed in their methodology.

We obtained a migration energy Em0 = 0.869 eV, which agrees precisely with experimental literature and most

theoretical works. Our value, obtained from volume-fixed calculations, is close to 0.875 eV calculated with cell

relaxation [28]. These results allow us to conclude once more that, for 128 iron atoms per supercell, cell relaxation

has a negligible effect on the migration energy.

B. OO-interactions

DFT studies of some OO-configurations have been published by Ruban [31] and by Chentouf [30] under constant

supercell volume. In the present study, we recalculated a full set of OO-configurations, as they constitute input

data for our NEB calculations. We also re-adapted the shell nomenclature for OO-configurations and complemented

published energetic results with some extra data. In his work, Ruban computed the same configurations as ours, but

the exact values for energies were given only for a few structures. We extracted approximate values out of his paper,

when possible. In Chentouf’s work, the precise values of energies are given, but some configurations are missing. Our

energetic results correspond well to these two works [30, 31].

Our configuration nomenclature introduces shells and subshells: each shell corresponds to a specific distance between

the carbon atoms while a subshell represents equivalent configurations for the same distance. In the case of OO-

configurations the maximum number of subshells is two (labeled A and B), except for the 15th shell, which has 3

subshells (A, B and C).

We studied 24 configurations, which represent 14 shells plus configuration 15C (Table I and Figure 4). Most

configurations have a C–C interaction energy close to zero (|EC−C| < 0.05 eV), which means that the carbon atoms

can be considered as isolated. The other configurations are all repulsive. Eight configurations (1A, 2A, 3A, 4B, 7B,

8B, 10B and 14B) have energies larger than 0.15 eV, ranging from 0.16 to 2.00 eV. The most significant are presented

in Figure 5. Their interaction energy is not a simple function of the bond length. For instance, configurations 4A

and 4B share the same shell (dC−C = a0), but the interaction energy in close to zero for 4A (0.01 eV) and is highly
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FIG. 4: The first 14 shells for OO-configurations, drawn at the same scale and the same space orientation. Different subshells

inside a shell are represented by different colors and labelled in case if there is more than one subshell per shell.

repulsive for 4B (2.00 eV). This tendency is observed also for the 7th, 8th, 10th and 14th shells, where subshells A

and B have quite different interaction energies, even for long bonds: e.g. 10th (4.7 Å) and 14th (5.6 Å) shells. For

the cited shells, one bond is weak (|EC−C| ≤ 0.06 eV) while the other is repulsive (EC−C ≥ 0.17 eV). The two most

repulsive configurations (1A and 4B) have interaction energies of 1.96 and 2.00 eV respectively, which corresponds to

chemical repulsion. The second group of most repulsive configurations are 2A and 14B (0.83 eV). A third group of

configurations (3A and 10B) has repulsive interaction energies of 0.26 and 0.30 eV.

The repulsive character of configurations 3A, 4B, 7B, 8B, 10B and 14B can be interpreted in terms of elastically

interacting pairs of Fe–C–Fe dipoles. In those configurations, the two carbon atoms sit in the same Oz sublattice,

such that both dipoles are parallel to the z-axis. This creates cumulative tetragonal distortions along the z-axis.

Furthermore, this may shift neighbouring iron atoms in either identical or opposite directions (see Figure 6). Several

cases can be distinguished. The least stable configuration 4B shows an iron atom ”compressed” between 2 carbon

atoms. In configuration 14B, the strong interaction corresponds to two dipoles in line. Interestingly, repulsion is

not present in configuration 4A despite the proximity of the dipoles, because the shifts of neighbouring Fe atoms
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are synchronized and the system comports similar to two isolated carbon atoms. Conversely, configuration 7B shows

antisynchronized iron atom shifts. Compared to configuration 4A, the antisynchronized shift in configuration 7B

destabilizes the structure and creates a repulsion. This is also true for configurations 3A and 10B. Notice that

configuration 14B is similar to that existing in the α′′ − Fe16C2 phase (labeled 2NN’ in Refs. [40, 48]).

FIG. 5: Key OO-configurations illustrating the elastic dipole–dipole interaction. Static carbon atom (green), carbon atoms in

the same plane (brown), carbon atoms out-of-plane in configurations 3A and 10B (violet). Each OO-configuration is labelled

(in blue) and the C–C interaction energy in eV is given (in pink). The iron atoms are represented by large golden spheres.

FIG. 6: Interacting pairs of Fe–C–Fe dipoles and their impact on the stability of OO-configurations. The shift of the iron

atoms of a dipole along axis z is represented by a red arrow. Two dipoles exert maximum repulsion when they are in line (4B

and 14B configurations). When out-of-line, two dipoles can create low-energy synchronized distortion (4A) or higher-energy

antisynchronized distortion (7B and 10B). For each configuration, the label is written in blue and the interaction energy in

pink.

C. OS-interactions

Using the same method, we studied the OT-configurations, which correspond to the transition states for carbon

migration. The first 14 shells, corresponding to 29 configurations, are gathered in Figure 7 and Table II. The 1st shell

was not considered, since its very small C–C distance ( 1
4a0 ' 0.7 Å) is more than twice smaller than the C–C distance
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TABLE I: DFT results for octahedral–octahedral carbon–carbon configurations (OO-configurations): configuration label, num-

ber of equivalent configurations (# config.), interaction energy EC−C compared to literature (in eV), vector components [u v w]

(values in parentheses can be permuted) and bond length dC−C (in a0 units).

Configuration # config. EC−C ref. [30] ref. [31] Vectors dC−C

1A 4 1.96 1.95 2.0 [(±1 0) 0]
√

4/4

2A 8 0.83 0.83 0.8 [(±1 0) ±1]
√

8/4

3A 8 0.26 0.27 0.25 [±1 ±1 ±1]
√

12/4

4A 4 0.01 0.02 0.0 [(±2 0) 0]
√

16/4

4B 2 2.00 1.96 2.0 [0 0 ±2]
√

16/4

5A 8 0.04 0.05 0.0 [(±2 ±1) 0]
√

20/4

5B 8 0.04 – 0.0 [(±1 0) ±2]
√

20/4

6A 16 0.07 0.07 0.0 [(±2 ±1) ±1]
√

24/4

7A 4 0.03 0.03 0.0 [±2 ±2 0]
√

32/4

7B 8 0.16 0.15 0.1 [(±2 0) ±2]
√

32/4

8A 4 0.06 0.06 0.0 [(±3 0) 0]
√

36/4

8B 16 0.17 0.17 0.1 [(±2 ±1) ±2]
√

36/4

9A 8 0.07 – 0.0 [(±3 0) ±1]
√

40/4

9B 8 0.07 0.07 0.0 [(±1 0) ±3]
√

40/4

10A 16 0.02 0.02 0.0 [(±3 ±1) ±1]
√

44/4

10B 8 0.30 0.30 0.3 [±1 ±1 ±3]
√

44/4

11A 8 0.04 0.03 0.0 [±2 ±2 ±2]
√

48/4

12A 8 0.00 0.00 0.0 [(±3 ±2) 0]
√

52/4

12B 8 -0.01 – 0.0 [(±3 0) ±2]
√

52/4

13A 16 0.00 – 0.0 [(±3 ±2) ±1]
√

56/4

13B 16 0.01 0.00 0.0 [(±2 ±1) ±3]
√

56/4

14A 4 -0.02 -0.02 0.0 [(±4 0) 0]
√

64/4

14B 2 0.83 0.83 0.8 [0 0 ±4]
√

64/4

15C 16 -0.04 – – [(±1 0) ±4]
√

68/4

in graphite (1.42 Å) or diamond (1.54 Å). It is thus highly improbable in the bcc structure.

For OS-configurations, the shells can contain up to 5 subshells (labelled a, b, c, d and e). Since OS-configurations

are not stable because one of the carbon atoms occupies a saddle point, it is not possible to obtain the C–C interaction

energies for this type of configurations by a standard total energy minimization procedure. Therefore, we used the

NEB method to compute the C–C interaction energy evolution during migration paths, to obtain the energies for all

OS-configurations.
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FIG. 7: The first 14 shells for OS-configurations, drawn at the same scale and the same space orientation. Different subshells

inside a shell are represented by different colors and labelled in case if there is more than one subshell per shell.

We remind that for two isolated OS carbon atoms the EC−C energy is 0.87 eV and thus if OS-interaction energy is

higher than 0.87 eV it is considered as repulsive interaction (Figure 3a). The results (Table II) show us that mostly

all interactions are repulsive in this way. We could see a group of interactions highly repulsive with energies from

1.38 eV up to 1.74 eV. These configurations correspond to small distances between 2 carbon atoms (2a, 3a, 3b, 5c)

and also repulsive configuration 8b which will be discussed further. Other configurations have energies in range 0.86

- 1.04 eV showing small repulsion effect. And only one configuration (14b) is clearly attractive with 0.76 eV energy.

The results on OS EC−C energies would be most efficient from the discussion of migration paths.

As it was shown in the section IIC, the migration energy of dissociation (Em1) is the difference between the energy of

OS-configuration and OO-configuration of initial state and the migration energy of association (Em2) is the difference

between the energy of OS-configuration and OO-configuration of final state. Thus, the migration energies (Em1 and

Em2) depend on the relative stability of corresponding OO- and OS-configurations.

The static carbon atom (which is located in z-site) influences the energy path of the migrating carbon atom via the

initial OO-site, the transition OS-site and the final OO-site together. Since these three atomic positions occupy three
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TABLE II: DFT results for octahedral–saddle carbon–carbon configurations (OS-configurations): configuration label, number

of equivalent configurations (# config.), interaction energy EC−C (in eV), migration path, dissociative and associative migration

energies Em1 and Em2, vector components [u v w] and bond length dC−C (in a0 units).

Configuration # config. EC−C Migration path Em1 Em2 Vectors dC−C

1a 4 – – – – [(±0.5 0) 0]
√

1/4

2a 8 2.12 1A→ 2a → 2A 0.27 1.30 [(±1 0) ±0.5]
√

5/4

3a 4 2.09 1A → 3a → 4A 0.17 2.12 [(±1.5 0) 0]
√

9/4

3b 16 1.38 2A → 3b → 3A 0.55 1.12 [(±0.5 ±1) ±1]
√

9/4

4a 8 1.03 2A→ 4a → 5B 0.23 1.02 [(±1 0) ±1.5]
√

13/4

5a 8 0.81 4A → 5a → 5A 0.79 0.76 [(±0.5 ±2) 0]
√

17/4

5b 16 0.88 3A → 5b → 6A 0.62 0.80 [(±1.5 ±1) ±1]
√

17/4

5c 8 2.14 4B → 5c → 5B 0.14 2.10 [(±0.5 0) ±2]
√

17/4

6a 16 0.90 5A → 6a → 6A 0.86 0.83 [ (±2 ±1) ±0.5]
√

21/4

7a 4 0.81 4A → 7a → 8A 0.81 0.75 [(±2.5 0) 0]
√

25/4

7b 8 0.96 5A → 7b → 7A 0.80 0.80 [(±1.5 ±2) 0]
√

25/4

7c 8 0.84 5B → 7c → 7B 0.90 0.83 [(±1.5 0) ±2]
√

25/4

8a 16 1.00 6A → 8a → 8B 0.93 0.83 [(±2 ±1) ±1.5]
√

29/4

8b 8 1.37 5B → 8b → 9B 1.33 1.30 [(±1 0) ±2.5]
√

29/4

9a 16 0.92 6A → 9a → 10A 0.85 0.90 [(±2.5 ±1) ±1]
√

33/4

9b 16 1.04 7B → 9b → 8B 0.89 0.88 [(±0.5 ±2) ±2]
√

33/4

10a 8 0.95 8A → 10a → 9A 0.89 0.88 [(±3 0) ±0.5]
√

37/4

11a 8 0.89 7A → 11a → 12A 0.86 0.90 [(±2.5 ±2) 0]
√

41/4

11b 16 0.91 9A → 11b → 10A 0.84 0.89 [(±0.5 ±3) ±1]
√

41/4

11c 8 0.94 7B → 11c → 12B 0.77 0.93 [(±2.5 0) ±2]
√

41/4

11d 16 0.99 8B → 11d → 11A 0.81 0.95 [(±1.5 ±2) ±2]
√

41/4

11e 16 1.09 9B → 11e → 10B 1.02 0.78 [(±0.5 ±1) ±3]
√

41/4

12a 8 0.87 9A → 12a → 12B 0.81 0.88 [(±3 0) ±1.5]
√

45/4

12b 16 0.95 8B → 12b → 13B 0.78 0.94 [(±2 ±1) ±2.5]
√

45/4

13a 4 0.90 8A → 13a → 14A 0.83 0.91 [(±3.5 0) 0]
√

49/4

13b 16 0.87 10A → 13b → 13A 0.85 0.86 [(±1.5 ±3) ±1]
√

49/4

13c 16 1.03 10B → 13c → 13B 0.73 1.03 [(±1.5 ±1) ±3]
√

49/4

14a 16 0.86 12A → 14a → 13A 0.86 0.85 [(±3 ±2) ±0.5]
√

53/4

14b 8 0.76 9B → 14b → 15C 0.69 0.79 [(±1 0) ±3.5]
√

53/4

different sublattices, the effect is contrasted. As mentioned before, a C atom in O-site creates a prolate distortion
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whereas in S-site it creates an oblate distortion. The prolate and oblate distortions may compensate each other when

they act in the same direction. In this case, the OS-configuration is ”stabilized” and the interaction energy is smaller

than 0.87 eV. Conversely, if the oblate and prolate distortions act in opposite directions, the OS-configuration is

destabilized and the C–C interaction energy is larger than 0.87 eV.

D. Analysis of migration paths

We present our results of the migration path in the dissociation way, i.e. the C–C distance is closer in the initial state

than in the final state. During an elementary migration path, the initial and final states are always OO-configurations,

even if a given OO-configuration is by itself very repulsive (such as configurations 1A or 4B). All elementary migration

paths were arranged by axes. Figures 8 and 9 present 4 migrations paths along z axis (we recall that the migrating

atom initially sits on a z-site). Figure 10 presents 7 migration paths in the x − y plane. These 11 paths cover all

possible migration scenarios within a 2a0 radius around the static carbon atom.

It is to be noted that the transition-state OS-configuration is in most cases located at the mid transition path, i.e.

at a crystallographic T-site. However, for the most repulsive configurations (2a, 3a, 4a and 5c) the saddle point is

shifted towards the initial state. The migration paths 1A→ 2a→ 2A (Figure 8), 1A→ 3a→ 4A and 4B → 5c→ 5B

(Figure 10) have their maximum at 1/4 migration path, i.e. in the middle between initial OO-configuration and

OT-configuration. For the migration path 2A → 4a → 5B the maximum is at 1/3 migration path. All 4 migration

energies are very small: 0.14–0.27 eV which is related first of all to a large repulsion of two carbon atoms in the

initial OO-configuration, and second, to the displacement of Fe atoms around which perturbs the topology of O- and

S-sites in corresponding OO- and OS-configurations. Note that even very repulsive OO-configurations such as 1A,

2A, 3A have an activation barrier towards dissociation. In details, the migration paths will be discussed in the next

subsection.

We might expect that during a migration path, when the migrating C atom is moving away from the static carbon

atom along a linear path O− S−O− S−O, the OO-configuration energy should gradually decrease down to 0 eV

as the C–C repulsion decreases. For its part, the OS-configuration energy should gradually decrease down to 0.87 eV.

Our results reveal a more complex behaviour.

Let’s analyse the migration in [1 0 k] direction (Figure 8b). If we look at the evolution of OO-configuration energy

along the migration path, we have the expected picture: the energy decreases gradually as 1.96→ 0.83→ 0.04→ 0.07

→−0.04 eV. However, during this path the energy of OT-configurations doesn’t decrease, but it oscillates: 1.60→ 1.06

→ 1.33→ 0.76 eV. In this case we need to discuss the OT-configurations to have the moving atom topologically in the

T site to discuss energy trend variation. For the last two migrations in [1 0 k] direction the OT-configuration coincides

with OS-configuration, but for the first two configurations they are different because of high repulsion between the
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carbon atoms. This particular difference between OS and OT-sites exists only for 2a, 3a, 4a and 5c configurations.

In the initial stage, this energy (1.60 eV) is almost twice larger than 0.87 eV, due to the large C–C repulsion.

The energy of the second OS-configuration is 1.06 eV (i.e. the energy is decreased 1.5 times), but for the 3rd OS-

configuration the energy increases up to 1.33 eV. It finally reaches the value of 0.76 eV, smaller than the expected

final value (0.87 eV).

FIG. 8: Prolate-oblate interaction and its influence on the C–C interaction energy of OS-configurations. Complete migration

path along [1 0 k] vector with indication of OO- and OS-configurations along the path (b). The couple of migration energies

(Em1, Em2) are indicated under the saddle points. Top: the atomic configurations corresponding to the tetragonal positions

k = 0.5, 1.5, 2.5 and 3.5 (a). Blue arrows corresponds to Fe atom displacement by static C atom and red arrows - to displacement

by dynamic C atom.

This oscillation can be explained by ”prolate-oblate” effect, see Figure 8a. In fact, during the 9B → 14b → 15C

migration path, the static and migration carbon atoms create forces acting in the same direction in nearby iron atoms,

diminishing the migration energies. The opposite occurs for the 5B → 8b→ 9B migration path. If we analyse other

parallel axes [1 2 k], [3 0 k] and [3 2 k], we observe that this effect is not present and the activation migration energy

remains close to 0.87 eV.

Let’s analyse carbon migration in the x− y plane. The energy path along axes [k 0 0], [k 1 1], [k 2 2], [k 0 2], [k 2 0],

[k 3 1] and [k 1 3] are presented in Figure 10. When the migrating C atom is moving away along the [k 0 0] direction, the

C–C energy at position [1.5 0 0] is high due to the strong C–C repulsion. This insures a small migration energy Em1

for dissociation. Then for the next OS-configurations the C–C energy converges to the value of isolated carbon atoms

(Em = 0.87± 0.1 eV). Along [k 1 1] axis we observe two small migration energies 0.55 eV and 0.62 eV corresponding

to high OO-configuration energies.
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FIG. 9: Three migration paths parallel to the z-axis: [1 2 k], [3 0 k] and [3 2 k].

For [k 2 2] axis we see that the energies of configurations 7B, 9b, 8B and 11d are shifted by +0.15 eV with respect

to isolated systems, thus the migration energy remains close to 0.87 eV. Only the association of 11A to 8B has

larger activation energy (0.95 eV) as the configuration 11A is completely isolated. For [k 2 0] which is more close to

the static carbon atom than the previous axis [k 2 2]. We observe for the first migration smaller migration energies

0.79/0.76 eV for dissociation/association and the next two migrations have the behaviour of isolated C atom. The

smaller migration energies for the first migration corresponds to the fact that OS-configuration 5a is more stable than

isolated S- with O-configurations as synchronized “prolate-oblate” effect is present. Along axis [k 0 2] we observe that

4B is very repulsive but then stabilization the system is similar to isolated. Migration along the remaining axes [k 3 1]

and [k 1 3] proceeds as if C atoms were isolated except for the repulsive 10B configuration, which produces slight

decrease in migration energies 0.73/0.78 eV for dissociation of 10B to 13B and association 10B to 9B.

E. Order parameter at equilibrium

The KMC simulation results of the Zener order parameter at different carbon contents are plotted in Fig. 11. Note

that if the C-C pair interactions are neglected, the order parameter can be given by the mean-field elastic model

presented in [12]. The good agreement between the analytical results and the KMC simulation results neglecting the

C-C pair interactions validates the KMC approach. The mean-field approach predicts an order/disorder transition at

c = 1.27 at% and T = 300 K. This transition carbon content is slightly modified due to the introduction of C-C pair

interactions. According to the KMC simulations, the transition content should be between 1.27 at% and 1.30 at% at

300 K.
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We investigated as well the carbon order parameter at different temperatures (cf. Fig. 12). We set the total fraction

of carbon atoms to 2.50 at%. Here again, KMC simulation results neglecting the C-C pair interactions correspond

well to the analytical results from the mean-field approach. Following the KMC simulation results, the order/disorder

transition temperature is affected by the C-C pair interactions: the predicted transition temperature is about 590 K

if the interactions between carbon atoms are neglected and about 570 K if not.

F. Tracer diffusion in ferrite and martensite

We present in Fig. 13 the KMC simulation results of the carbon tracer diffusion coefficients and the correlation

factors at different carbon contents. Here again, if the C-C pair interactions are neglected, the diffusion coefficients

can be given by an analytical approach presented in [12]. We have a good agreement between the analytical results

and the KMC simulation results neglecting the C-C pair interactions. As predicted in previous studies [12], carbon

diffusion is highly anisotropic due to carbon ordering. The carbon diffusivity along the z-axis (i.e., the Zener ordering

direction) is much lower than that along x and y directions (perpendicular to the ordering direction). Comparison

between the KMC simulation results with and without considering the C-C pair interactions highlights the effect of

these interactions on the kinetic properties. The carbon diffusivity along the z-axis is significantly increased by the

C-C repulsive interactions (up to 10 times at high carbon contents). The increase in carbon diffusivity along x and y

directions are less important (e.g., about 20% when c = 4.0 at% at 300 K). Moreover, the interactions between carbon

atoms lead to important kinetic correlations: the correlation factors are smaller than 0.2 when c > 3.0 at% at 300 K.

Also, we studied the effect of C-C pair interactions on the kinetic properties at different temperatures (cf. Fig. 14).

According to the simulation results, the increase of the carbon diffusivity is significant at low temperatures. For

example, the acceleration of the carbon diffusivity along the z direction is over 10 times at T < 300 K. A relevant

kinetic correlation occurs at low temperatures: the correlation factors are smaller than 0.4 at T < 400 K.

As presented in Table II, most of the migration barriers between the investigated configurations are smaller than

the isolated carbon migration barrier (0.87 eV). This decrease of migration barriers explains the increase of the carbon

diffusivity. We consider the migration paths along z-direction (cf. Fig. 9 and Fig. 10). As mentioned in Section III D,

the carbon migration path along [1 2 k], [3 0 k] and [3 2 k] is similar to the isolated one because the activation energy

is close to 0.87 eV. However, a “prolate-oblate” effect occurs along the [1 0 k]-migration path. The carbon atom can

be “trapped” in 5A configuration by performing forward and backward jumps connecting to 2A configurations. This

effect should be responsible for the important kinetic correlation along the z-direction. As for the migration paths

in the x-y plane, there is no important oscillation of the migration barriers as seen along the z-direction. Hence, it

is unlikely for the carbon atoms to be trapped in the x-y plane. However, the migration paths along [k 0 0], [k 1 1]

and [k 0 2] are particularly different from the isolated one (i.e., the random diffusion path) due to the important C–C
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repulsive interactions in 1A, 2A and 4B OO-configurations—very small carbon migration barriers for an “avoid” from

these configurations (0.17 eV, 0.55 eV and 0.89 eV, respectively). This difference leads to the kinetic correlations along

x- and y-directions because the carbon atoms tend to “escape” each other.

The tracer diffusion coefficients of carbon atoms in Fe-C martensite were previously calculated by Lawrence et

al. [26] by applying the molecular dynamic (MD) simulation based on an EAM potential. This simulation was limited

to high temperature (> 800 K) so that the statistic to measure the MSD was sufficient in the time scale of MD.

As predicted in their studies, our results also showed slow carbon diffusion in martensite. However, we cannot

quantitatively compare the diffusion coefficients presented in the present study with those obtained in [26] because,

on one hand, the investigated carbon concentrations and temperatures are not the same; and on the other hand, our

simulation is based on a more recent energy database of the elastic dipoles and the migration barriers given by the

DFT calculation. Therefore, the diffusion properties obtained in this paper must be different from those of Lawrence

et al. [26]. Compared with their studies, our approach based on KMC simulation allows to compute the tracer diffusion

coefficient at a wider range of temperature (> 200 K in the present study). Moreover, we provide a more complete

investigation into the anisotropy of the carbon diffusion, as well as the kinetic correlations in martensite.

IV. CONCLUSION

We studied by a DFT method short range C–C interactions in ferrite and their influence on the migration energies

of carbon. Stable octa-octa (OO) and unstable octa-saddle state (OS) configurations were investigated.

We found that the configuration stability is not always a simple function of C–C distance and there is no direct

correlation in energy between neighbours OO- and OS-configurations. The absence of correlation is related to the fact

that during a simple migration path the migrating C atom goes through 3 sublattices (x, y, z) while a static carbon

atom remains always in the same sublattice. Concerning OO-configurations, in most cases the interaction energy is

close to 0.0 eV. However, when 2 carbon atoms occupy the same sublattice the interaction energy rises to 0.10–0.30 eV.

In the case of small C–C distances the interaction energy increases up to 2.0 eV, indicating strong repulsion.

For the first time the OS-configurations were studied in detail by the NEB technique. These configurations are

unstable, being in the vicinity of tetrahedral sites. For OS-configurations we observed an interesting effect of ”oblate-

prolate” interactions: when two carbon atoms are located in the same sublattice some configurations reduce the

interaction energy (0.60–0.80 eV) while others increase it, compared to an isolated carbon atom (0.95–1.10 eV).

Finally the migration energy was studied for all configurations where C–C distance is in the limit of 2a0. We observed

a range of small migration energies (0.14–0.27 eV) and a larger range of medium migration energies (0.60–0.80 eV).

Most configurations have migration energies (0.87±0.05 eV) close to the isolated system. Some configurations have

migration energies larger than 0.92 eV.



20

Thus, this work showed that the role of static carbon atom is not negligible for the diffusion phenomena and

migration energy varies from 0.15 eV up to 2.12 eV while for the single C atom migration the energy is 0.87 eV. The

computed energy database was used to calculate the carbon order parameter and diffusion coefficients by kinetic Monte

Carlo simulations. According to our simulations, C–C pair repulsive interactions lead to (1) the modification of the

order/disorder transition conditions depending on the carbon content and temperature; (2) the increase of the carbon

diffusivity, especially along the Zener ordering direction (up to ten times); (3) the important kinetic correlations. These

results clearly show that while calculated by mean-field model diffusion coefficient Dx is not highly depend on C-C

interactions (at 4 % atomic content of C, Dx is about 10% higher when C-C interactions are included), the diffusion

coefficient Dz is highly depended of C-C interactions and the diffusion coefficient Dz is one order of magnitude higher

(at 4 % atomic content of C) when the C-C interactions are taken into account. These effects should be taken into

account for an accurate prediction of low-temperature ageing in ferritic and martensitic Fe-C alloys.
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FIG. 10: All 7 migration paths for C atom developing along x axis: [k 0 0], [k 1 1], [k 2 2], [k 2 0], [k 0 2], [k 1 3] and [k 3 1].
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FIG. 11: Order parameter as a function of the carbon contents at 300 K. The filled and unfilled points are the KMC simulation

results. The solid lines are computed using the mean-field elastic model presented in [12], in which the C-C interactions are

not considered. The inset is the zoom of the simulation results around the order/disorder transition carbon content.

FIG. 12: Order parameter as a function of temperature. The filled and unfilled points are the KMC simulation results. The

solid lines are computed using the mean-field elastic model presented in [12], in which the C-C interactions are not considered.

The total fraction of carbon is set to 2.5 at% in the simulation. The inset is the zoom of the simulation results around the

order/disorder transition temperature.
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FIG. 13: Tracer diffusion coefficients and correlation factors as a function of the carbon contents at 300 K. The filled and

unfilled points are the KMC simulation results. The solid lines are computed using the mean-field elastic model presented

in [12], in which the C-C interactions are not considered.

FIG. 14: Tracer diffusion coefficients and correlation factors as a function of temperature with the total fraction of carbon

c = 2.5 at%. The filled and unfilled points are the KMC simulation results. The solid lines are computed using the mean-field

elastic model presented in [12], in which the C-C interactions are not considered.
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