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Abstract. Solid solutions in Fe–C, Fe–N, Nb–O, Ta–O or W–C systems consist of a body-centered lat-
tice containing C, N or O interstitials in octahedral sites. Among these systems, carbon-supersaturated
iron has a major industrial interest. At low temperature, it can be found in the form of ferrite (bcc-Fe)
or martensite (bct-Fe and bco-Fe). Based on a mean-field elasto-chemical model of the interstitial–strain
interaction, we investigated numerically the thermodynamic stability of the three possible crystal forms.
The phase stability depends not only on temperature and solute carbon content but also on the me-
chanical stress state of the crystal. We computed phase diagrams mapping the equilibrium phase and
orientational variant as function of the components of the stress tensor. These maps are intended to
help understanding the spatial distribution of orientational variants in martensite nano-crystals and in
Cottrell atmospheres around dislocations.

Keywords: elasticity · long-range ordering · carbon steels · mean-field modeling.

1 Introduction

C, N and O atoms in group VB (V, Nb, Ta), group VIB (Cr, Mo, W) and in α-Fe solid solutions are located
in octahedral interstices of the body-centered metal lattice. In the crystal lattice, the two metallic atoms
nearest to an interstitial atom are displaced along direction-1, 2 or 3 of the crystal cell, depending on the type
of the interstice (1, 2 or 3). This displacement sets up a local distortion of the crystal in the form of a strain
field of tetragonal symmetry. The elastic interaction energy between the strain fields is minimized when all
interstitial atoms occupy the same type of site. This results in the Zener ordering phenomenon [37,14]: (i)
at low temperature, most interstitials sit in a single type of site, and the phase is tetragonal bct-martensite;
(ii) at high temperature, the interstitials occupy evenly the three types of sites, and the phase is cubic bcc-
ferrite. Through interaction with the interstitial-induced strain field, an applied stress field can modify the
site-energies: uniaxial tension along direction-3, for instance, favors sites-3, while compression favors sites
1 and 2 [29,17]. As a consequence, the occupation probabilities at equilibrium depend on the magnitude
of the axial stress. This is the origin of the well known Snoek relaxation phenomenon [30]. Applied stress
may also lead to uneven distribution of interstitials over the sites, i.e. the beyond-Zener ordering, stabilizing
the orthorhombic bco-martensite phase [18,19]. More generally, one would expect that all components of
an applied stress tensor affect the site occupancy, depending on interstitial content and temperature. The
temperature–composition phase diagram is thus expected to depend on the applied stress tensor, and ordering
transitions may occur upon changing the stress.

The purpose of the present work was to build a general theory of ordering transitions caused by C, N or
O atoms in body-centered metals, and to explore the effect of applied stress on the temperature–stress phase
diagrams related to the solid solutions. Such an investigation is needed for a better understanding of the role
of stresses on the onset of martensitic nano-structures. Indeed, martensite nano-structures consist of three
types of ordered domains, called orientational variants α1, α2 and α3, delimited by antiphase boundaries
[15,36]. The spatial distribution of these variants is likely to be affected by the internal stresses in cases of
Cottrell atmospheres [34,7], white etching areas [26], highly-drawn perlite [8,17] or expanded martensite [5],
etc.

In this work, we relied on the elasto-chemical model of the thermodynamics of body-centered solid
solutions developed by Maugis [18]. We built the Gibbs energy function of ordering, and computed a series
of temperature–stress 3D diagrams, isotherms, temperature–stress 2D sections and related temperature–
strain diagrams. The theory is summarized in Section 2, and the results are presented in Section 3.
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2 The elasto-chemical model

The elasto-chemical model is a mean-field thermodynamic description of long-range ordering in body-centered
crystals. It accounts for the strain-induced long-range interactions, neglecting short-range interactions and
magnetic effects. The model accounts for Zener ordering [22,24], carbon diffusion [21] and thermo-elasticity
in bcc-ferrite and bct-martensite [18,19]. It renders quantitatively the Snoek peak of ferrite [20,23] and
martensite [25]. The main features of the model are described below, details can be found in Ref. [18].

2.1 The stressed crystal

Thermodynamic equilibrium of a mechanically stressed crystal corresponds to the minimum of the Gibbs
energy function G = H−TS, where T is the temperature, S the entropy and H the enthalpy. Under uniform
mechanical stress described by tensor σ, the enthalpy is written H = U − V σ · ε, where U is the internal
energy, V is the crystal volume and ε is the homogeneous strain as reference to the stress-free state. In the
absence of plasticity, phase transition or chemical reactions, the crystal strain is a linear function of the
stress (Hooke’s law), viz. ε = Sσ, with S the mechanical compliance tensor of the crystal.

Compared to a pure crystal, solute atoms are also known to induce lattice strains. The magnitude of the
strain depends on the volume concentration of the solutes and on their distribution over the lattice sites. In
the simplest case, the strain is a dilation or a contraction, which follows Vegard’s law. More generally, the
strain is described by a tensor comprising isotropic and deviatoric components. Within the theory of linear
elasticity of point defects [2,1], a solute is considered as a point source of stress, described by a force dipole
tensor P . In a deformed crystal, the elastic interaction energy between the defect and the strain field ε is
written −Pε. A collection of solute atoms induce the anelastic strain Sp, where p is the volume density of
force dipole tensors. Under applied stress σ the total relaxed strain of a solid solution is then ε = S (σ + p).
From this relationship, we see that the dipole density tensor acts as an internal stress of magnitude p. The
contribution of elasticity to the enthalpy of the crystal can then be expressed as [21]

H = −1

2
V S(σ+ p) · (σ+ p). (1)

In the following, we establish the symmetrized Hooke’s law by taking advantage of the cubic symmetry
of the host lattice. We define the long-range structural order parameters and the force dipole tensors. After
that, the enthalpy is written as a function of the symmetrized stress components and the order parameters.
Introduction of the configurational entropy leads to the expression of the Gibbs energy function.

2.2 Symmetrized Hooke’s law

In this section, we establish a simple, decoupled, constitutive law of crystals of cubic symmetry. We assume
that the elastic constants of the interstitial solid solution are not strongly dependent on the interstitial
content. This is true for carbon contents up to 12.5 at% in iron [31,12]. Hence, a relatively accurate description
of the elastic response of body-centered interstitial crystals can be achieved by using the elasticity coefficients
of the host lattice. On account of its crystal symmetry, the bcc lattice has three independent compliance
components: S11, S12 and S44. Indices 1, 2 and 3 refer to the crystal directions of the cubic cell. To take
further advantage of the cubic symmetry, one introduces the symmetrized stresses and strains defined as [27] p = − 1

3 (σ11 + σ22 + σ33)
σ = σ33 − 1

2 (σ11 + σ22)
τ = 1

2 (σ22 − σ11)
(2)

and 
∆V
V = ε11 + ε22 + ε33

ε = ε33 − 1
2 (ε11 + ε22)

γ = ε22 − ε11

(3)

p is the hydrostatic pressure; σ is the ’longitudinal’ stress along direction-3 counter-balanced by the ’transver-
sal’ stresses along directions 1 and 2. It will be referred to as the tetragonal stress; τ is the shear stress in
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the plane rotated by 45◦ around direction 3. ∆V
V is the relative volume change; ε quantifies the tetragonal

distortion along direction-3; finally, γ is the shear strain in the plane rotated by 45◦ around direction-3.
The advantage of the symmetrized stresses and strains is that they are decoupled. Indeed, the anisotropic
Hooke’s law ε = Sσ translates into a simple, diagonal relationship between symmetrized variables:

∆V
V = −3(S11 + 2S12)p
ε = (S11 − S12)σ
γ = 2(S11 − S12)τ

2ε23 = S44σ23

2ε13 = S44σ13

2ε12 = S44σ12

(4)

Notice that each symmetrized strain is directly proportional to its corresponding symmetrized stress. The
proportionality coefficients involve the symmetrized compliances, defined as S = S44

S′ = 2(S11 − S12)
S′′ = S11 + 2S12

(5)

From Equation 4, we see that 3S′′ is the bulk compressibility of the crystal, and S′ is the shear compliance
at 45◦ around direction-3.

2.3 The body-centered crystal

In the body-centered solid solutions under consideration, soluted interstitial atoms occupy the three sub-
lattices of octahedral sites (Fig. 1, left). Partial occupancy of the sublattices is described in the mean-field
approach by the interstitial/substitutional fractions ci, i = 1, 2, 3. For a given total fraction c, a distribution
of interstitial atoms over the sublattices is quantified by two non-conservative structural order parameters,
η and ζ such that  c = c1 + c2 + c3

cη = c3 − 1
2 (c1 + c2)

cζ = c2 − c1
(6)

Notice that the relationship defining the three parameters c, η and ζ follows the same scheme as the sym-
metrized stresses and strains. Parameter η quantifies the degree of Zener order along crystal direction [001],
while ζ quantifies the unequal occupancy of the sites in directions [100] and [010].

The state of order of a distribution of interstitials is characterized by the pair of parameters (η, ζ). In the
case (1, 0), for instance, all interstitial atoms sit on sublattice-3. This configuration represents a tetragonal,
fully ordered orientational variant, whose tetragonality axis is along [001]; it is labeled Z3. Couples (−0.5,−1)
and (−0.5, 1) represent the Z1 and Z2 variants, fully ordered along directions [100] and [010] respectively,
see Fig. 1, right. Couple (0, 0) is the fully disordered cubic structure, with equal occupancy of the three
sublattices. Intermediate values of (η, ζ) are partially ordered orthorhombic structures, of which there are
six variants [3].

Highly ordered variants are instances of the martensite phase. They can be grouped into three couples,
according to the most occupied sublattice (major ordering), labeled α1, α2 and α3. Sub-variants can be
defined by the second most occupied sublattice (minor ordering). For instance, major variant α3 has two
minor variants α31

and α32
. Notice that tetragonal bct-martensite is a particular case of orthorhombic bco-

martensite. Low-order variants are instances of the ferrite phase, labeled α. Cubic bcc-ferrite is a particular
case of orthorhombic bco-ferrite.

2.4 Force dipole tensors

Each interstitial atom produces an elastic field characterized by its force dipole tensor P (i), where i = 1, 2, 3
labels the sublattice. As the octahedral sites are tetragonal in symmetry, the dipole tensors consist of a
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Fig. 1. Left: Body-centered crystal cell. Substitutional atoms are represented by gray spheres, octahedral sites by
colored spheres. Sites of type 1, 2, 3 are respectively in color red, green, blue. Right: Schematics of ferrite α and
martensite variants α1, α2 and α3.

singlet value Pc in the direction of the dipole, and a doublet value Pa in the transverse directions:

P (1) =

Pc 0 0
0 Pa 0
0 0 Pa

 P (2) =

Pa 0 0
0 Pc 0
0 0 Pa

 P (3) =

Pa 0 0
0 Pa 0
0 0 Pc

 (7)

The tensor components verify Pc > Pa > 0, such that an interstitial atom induces a prolate tetragonal
distortion to the crystal. The volume density of force dipole tensor is expressed as p = 1

V0

∑
ciP

(i), where
V0 is the atomic volume of the host lattice. As mentioned in Section 2.1, interstitial atoms contribute by the
strain Sp to the total deformation of the crystal, as reference to the cubic interstitial-free state: ε = S (σ + p).
Introducing the symmetrized stress components and the order parameters, the total relaxed strain is written

∆V
V = −3S′′p+ VC

V0
c

ε = 1
2S
′σ + VΣ

V0
cη

γ = S′τ + VΣ

V0
cζ

(8)

and 2εij = Sσij , i 6= j. We see that the tetragonal distortion ε is related to the order parameter η, while the
shear strain γ is related to the order parameter ζ. Thus, a change in the order parameters produces a change
in crystal shape, but no change in crystal volume. The volume change is controlled by the total interstitial
content, irrespective of the distribution of the atoms over the sublattices. As an example, if all interstitial
atoms are distributed in sublattice-3 (η = 1, ζ = 0), the crystal is tetragonally strained along direction-3.
On the other hand, if interstitial atoms are evenly distributed over the three sublattices (η = 0, ζ = 0), the
crystal remains cube-shaped, but expanded. In the general case, the crystal shape is orthorhombic, since
each crystal direction is differently expanded (positively or negatively).

The above equations are the constitutive law of the bcc solid solution. They involve two characteristic
volumes quantifying the interstitial-induced strain:{

VC = (S11 + 2S12)(Pc + 2Pa)
VΣ = (S11 − S12)(Pc − Pa)

(9)

VC (positive) is the relaxation volume of an interstitial atom. VΣ (also positive) quantifies the interstitial-
induced tetragonality. These volumes are related to the strain-concentration parameters λ1 and λ2 by VC =
(λ1 + 2λ2)V0 and VΣ = (λ1 − λ2)V0.

Each interstitial atom on sublattice i interacts elastically with the strain ε, with an interaction energy
−P (i) · ε [2,1]. Via this interaction, the total strain favors one (or two) sublattice(s) at the expense of the
others. Upon applying an external stress, a net flux of solutes sets up from one sublattice to the others, thus
modifying the interstitial distribution and consequently changing the crystal strain. That is the origin of
the anelastic behavior of Fe-C ferrite, manifested by an internal friction signal [27,4,20,23,18]. In addition,
interstitial atoms interact elastically with one another via the interstitial-induced strain. At high solute
content or low temperature, this stabilizes the Zener-ordered bct crystal, i.e. the martensite phase, where
the solute atoms tend to occupy the same sublattice [37,14,24]. This coupling between strain and solute
distribution is the driving force for phase transitions under applied stress, as will be shown in the following
sections.
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2.5 Alloy thermodynamics

For a given distribution of solute atoms over the interstitial sites, the enthalpy per substitutional atom is
the sum of three contributions (Eq. 1): H = − 1

2V0S(σ · σ + 2σ · p + p · p). The first term is the elastic
enthalpy Hσσ, the second term is the interstitial–stress interaction enthalpy Hσp and the third term is the
interstitial–interstitial interaction energy Hpp. Introducing the symmetrized stresses p, σ and τ , and the
order parameters η and ζ, we find the analytical forms

Hσσ = −V0

[
3

2
S′′p2 +

1

2
S′
(
σ2

3
+ τ2

)
+

1

2
S(σ2

23 + σ2
13 + σ2

12)

]
(10)

Hσp = −c
[
−VCp+ 2VΣ

(
ση

3
+
τζ

2

)]
(11)

Hpp = −c2
[
hC + 3hΣ

(
η2

3
+
ζ2

4

)]
(12)

The above expressions involve the strain-energy parameters quantifying the interstitial–interstitial elastic
interaction: {

hC = 1
6V0

(S11 + 2S12)(Pc + 2Pa)2

hΣ = 1
3V0

(S11 − S12)(Pc − Pa)2 (13)

We see that the elastic enthalpy Hσσ is independent of the fraction of interstitials c. It expands into a
quadratic form of the symmetrized stresses. The interstitial–stress interaction enthalpy Hσp, however, is
proportional to the solute fraction. It shows three independent stress–interstitial couplings: the total solute
fraction c couples with the pressure p, such that an increase in pressure favors a decrease in solute fraction.
This results from the positive sign of the relaxation volume of the interstitial, VC, which renders the increase
in crystal volume with solute addition. Notice that the hydrostatic pressure does not couple with the order
parameters, such that pressure has no effect on ordering. The tetragonal stress σ couples with order parameter
η, such that a tensile stress along direction 3 favors Zener ordering in the same direction, i.e. it favors variant
α3. Last, the shear stress τ couples with order parameter ζ, such that a positive shear stress favors variant
α2, while a negative shear stress favors variant α1. Finally, the interstitial–interstitial interaction enthalpy
Hpp is proportional to the square of the solute fraction. It decreases quadratically with the order parameters,
favoring the fully ordered states as compared to partially ordered or disordered states [24]. From the above
expressions, the ordering enthalpy function is written

∆H = −2VΣc

(
ση

3
+
τζ

2

)
− 3hΣc

2

(
η2

3
+
ζ2

4

)
. (14)

We introduce the configurational entropy of as the sum of contributions of each sublattice considered as
disordered. For solute contents up to ∼ 10%, the dilute approximation S = −kB[c1 ln c1 + c2 ln c2 + c3 ln c3]
is accurate enough [22]. From this expression, the ordering entropy function writes in full

∆S = −1

3
kBc

[(
1− η − 3

2
ζ

)
ln

(
1− η − 3

2
ζ

)
+

(
1− η +

3

2
ζ

)
ln

(
1− η +

3

2
ζ

)
+ (1 + 2η) ln(1 + 2η)

]
.

(15)
Function ∆S is proportional to the solute fraction, and is stress independent. Predictably, the entropy is
maximum in the fully disordered state (η = ζ = 0) and minimum for fully ordered variants Z1, Z2 and Z3.
From the expressions of ∆H and ∆S we conclude that, although the stress tensor contains 6 independent
components, the ordering Gibbs energy function ∆G = ∆H − T∆S depends on two symmetrized stresses
only, namely σ = σ33 − 1

2 (σ11 + σ22) and τ = 1
2 (σ22 − σ11). Pressure plays no role on interstitial ordering,

no more so than the shear stresses σ12, σ23 and σ13. Thus, iso-concentration phase diagrams, as presented
in the following sections, will be three-dimensional T–σ–τ graphs.

3 Results

Let us recall that our investigation is focused on the solid solution, i.e. the interstitial atoms are assumed to
remain dissolved in the matrix, such that no unmixing or precipitation is accounted for. However, due to the
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existence of three interstitial sublattices, upon changing solute content, temperature or applied stress, the
distribution of solute atoms over the sublattices evolves, resulting eventually in ferrite–martensite phase tran-
sition or martensite variant flip. Such changes are reflected by changes in the internal variables, accompanied
by crystal strains.

In the following sections, we report 3D temperature–stress phase diagrams, isotherms and iso-stress phase
diagrams. The temperature and stress dependence of the internal variables is also analyzed.

3.1 Methods

Under fixed solute interstitial content c, temperature T and stresses σ and τ , the equilibrium state of the solid
solution corresponds to the minimum of the Gibbs energy function G. In a single phase, internal equilibrium
is reached when the internal variables η and ζ verify the set of equations

Gη = Gζ = 0, (16)

where the subscripts denote partial derivation. The analytical forms of the partial derivatives of G can be
found in Appendix A. Equations 16 are the implicit equations defining the equilibrium state of order as
function of the external variables C, T , σ and τ .

Coexistence of two phases, labeled 1 and 2 for instance, occurs when the external variables are such
that G(η1, ζ1) = G(η2, ζ2). This equality, together with the conditions of internal equilibrium Gη(η1, ζ1) =
Gζ(η1, ζ1) = Gη(η2, ζ2) = Gζ(η2, ζ2) = 0, determine the phase boundary. In a three-dimensional T–σ–τ
graph at given solute content c, the phase boundaries consist of 2D surfaces. These surfaces meet at triple
lines, along which three phases coexist. Triple lines may eventually meet at quadruple points, where four
phases coexist.

A single phase is stable with respect to small variations of the order parameters as long as Gζζ ≥ 0 and
L ≥ 0. Definition of function L involves the second derivatives of G [11,6]:

L = GηηGζζ −G2
ηζ . (17)

Notice that condition Gζζ ≥ 0 is verified when L ≥ 0 is true [6]. Therefore, when crossing the co-existence
surface from phase-1 to phase-2, phase-1 remains metastable as long as L ≥ 0. Equation L = 0, together
with Equations 16, thus define a spinodal surface in the T–σ–τ graph.

Two spinodal surfaces associated to a given phase boundary join and tangent one another along critical
lines. Critical lines verify Equations 16 together with L = 0 and M = 0. Function M, involving second and
third derivatives of G, is defined as [11]:

M = GηηηG
2
ζζ − 3GηηζGζζGηζ + 3GηζζG

2
ηζ −GζζζGηηGηζ . (18)

Critical lines imply the existence of supercritical regions: a critical line between phases 1 and 2 is the rim of
the co-existence surface, beyond which the first-order phase transition 1↔ 2 becomes continuous.

Critical lines may eventually meet and tangent one another at critical points. These points were system-
atically sought in this study.

3.2 The Gibbs energy function

From the analytical expression of the Gibbs energy function, reduced variables can be defined, such that
the properties of all bcc systems with octahedral interstitials follow a unified description, independent of
the material parameters. As far as ordering is concerned, the pertinent material parameters are hΣ and
VΣ defined in Sections 2.4 and 2.5. For the reduced variables, the units of temperature, stress and energy
are respectively: hΣc/kB, hΣc/VΣ and hΣc

2, where kB is Boltzmann’s constant. Among the latter, units of
temperature and stress are proportional to the interstitial fraction c. Hence, temperature–stress diagrams,
when drawn with variables T/c, σ/c and τ/c are valid for any interstitial fraction. In the specific case of
Fe–C system, we adopted the parameters computed by density functional theory calculations [9], from which
hΣ = 2.91 eV and VΣ = 6.79× 10−5 eV/MPa. Then, for a solute carbon content of c = 1 at% (0.215 wt%C),
the units of temperature, stress and energy are respectively 338 K, 428 MPa and 0.291 meV. In the following,
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reduced variables will be noted with a star ‘∗‘ superscript. Hence, reduced variables convert to normal ones
via the following relationships: T = 338cT ∗ (in K), σ = 428cσ∗ (in MPa) and H = 0.291c2H∗ (in meV),
with c in at%. With the reduced variables, the reduced Gibbs energy of ordering is written:

∆G∗ = −2

(
σ∗η

3
+
τ∗ζ

2

)
− 3

(
η2

3
+
ζ2

4

)
+

1

3
T ∗
[(

1− η − 3

2
ζ

)
ln

(
1− η − 3

2
ζ

)
+

(
1− η +

3

2
ζ

)
ln

(
1− η +

3

2
ζ

)
+ (1 + 2η) ln(1 + 2η)

] (19)

From this equation, contour maps in the (η, ζ) plane can be computed at fixed c and T (which sets
the value of T ∗), and for various stresses σ∗ and τ∗. Examples are presented in Fig. 2 at high reduced
temperature (T ∗ = 1.5, top row), which correspond to high temperature or low solute content, and at low
reduced temperature (T ∗ = 0.9, bottom row), which corresponds to low temperature or high solute content.
At T ∗ = 1.5, the low-order α-ferrite phase is stable; Under positive tetragonal stress the equilibrium state
is shifted towards positive values of η (Fig. 2b); Under positive shear stress, the equilibrium state is shifted
towards positive values of ζ (Fig. 2c). At T ∗ = 0.9, high-order αi-martensite variants are stabilized; If no
stress is applied, the three variants α1, α2 and α3 are equally stable (Fig. 2d). Under positive tetragonal
stress the stable variant is α3, while variants α1 and α2 are metastable (Fig. 2e). The opposite occurs, i.e.
variants α1 and α2 are stabilized, under negative tetragonal stress (Fig. 2f); Under positive shear stress the
stable variant is α2 (Fig. 2g); Symmetrically, the stable variant is α1 under negative shear stress (Fig. 2h).

3.3 Temperature–stress 3D phase diagrams

We have established that the stress tensor enters the ordering Gibbs energy function via the two symmetrized
stresses σ and τ . Besides, the effect of interstitial content is contained in the reduced intensive variables T ∗,
σ∗ and τ∗. Hence, a single master T ∗–σ∗–τ∗ phase diagram can inform on the effect of interstitial content,
temperature and stress on the equilibrium state of the solid solution. The variables T , σ and τ are potentials,
since they are intensive variables that must be uniform at equilibrium [11]. Therefore, in the T–σ–τ phase
diagram, co-existence of two phases occurs along surfaces, which eventually end along critical lines, and
critical lines join at critical points. Spinodals are surfaces, which join along critical lines.

We computed the T ∗–σ∗–τ∗ phase diagram from the equations of internal equilibrium, of co-existence
surfaces, of spinodal surfaces and of critical lines, as described in Section 3.1. A large-scale view of the diagram
is presented in Fig. 3, top left. Its shape sketches a three-fold lamppost. The three-fold aspect arises from the
symmetry of the cubic crystal around direction [111]. Four domains appear: (α1), (α2) and (α3) martensite
variants at low temperature, and ferrite (α) at high temperature. As expected, high temperature favors
the low-order ferrite phase, whereas low temperature favors the high-order martensite phase. Martensite
variants are separated by three planar vertical co-existence surfaces (traces on the box faces are figured by
dashed lines). The co-existence surfaces join along a triple line on the zero-stress vertical axis. The upper
rim of each co-existence surface is a critical line. Transitions across a co-existence surfaces are first-order.
Conversely, a transformation path going over a critical line transits through the supercritical region, such
that the transition is continuous.

A close view to the diagram reveals the ferrite–martensite co-existence surfaces (Fig. 3, top right and
bottom left). This lily-flower-shaped region consists of three slightly curved triangular-shaped co-existence
surfaces, each of them bounded by two triple lines and a critical line. All four triple lines of the diagram
join on the zero-stress axis at quadruple point Q, at temperature T ∗Q = 3

4 ln 2 ' 1.082. Pairs of critical lines
join and tangent at critical points K12, K23 and K13 where they merge with a critical line of variant-variant
transition. Transitions across the α–αi co-existence surfaces are first-order, whereas α↔ αi transitions over
the critical lines are continuous. Since the ferrite and martensite domains are all topologically connected, we
can assess that ferrite and the three martensite variants are actually the same phase.

The symmetry of the T–σ–τ phase diagram reflects the cubic symmetry of the host lattice. Indeed,
ordering transitions must remain similar when the normal stresses σ11, σ22 and σ33 are permuted. It follows
that any point of coordinates (τ, σ, T ) has a correspondence at coordinates

(
1
2 (−σ ± τ), 1

2 (−σ ∓ 3τ), T
)

and(
1
2 (σ ± τ), 1

2 (−σ ± 3τ), T
)
. Hence, the graph is three-fold and has the τ ↔ −τ mirror symmetry.

The mirror symmetry of the state diagram implies that the boundary between martensite variants α1

and α2, and the associated critical line, are located in the plane τ = 0 corresponding to ζ = 0. This remark
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Fig. 2. Contour maps of the Gibbs energy function, for two reduced temperatures T ∗ and various stresses σ∗ and τ∗,
as function of order parameters η and ζ. The arrows point to the positions of absolute minima. Low-order ferrite (α)
is stable at high temperature (top row); high-order martensite variants (αi) are stable at low temperature (middle
and bottom rows). The nature of the stable martensite variant, α1, α2 or α3, depends on the applied stress.

allows for an analytical analysis of the boundary. Solving the set of equations Gη = Gζ = L = M = 0, we
find the equation of the critical line:

σ∗(T ∗) = −3 + (3 + ln 2)T ∗ + T ∗ ln

( 3
2 − T

∗

T ∗

)
. (20)

The branch between temperature T ∗K = 7
6 at point K12 and the asymptotic value T ∗∞ = 3

2 is the upper rim
of the α1–α2 co-existence surface. Hence, stress-induced change of variant may occur discontinuously when
T ∗ < 1.5, but is necessarily continuous when T ∗ > 1.5. Critical point K12 is located at coordinates τ∗K12

= 0,

σ∗K12
= 1

2 + 7
6 ln 4

7 ' −0.153 and T ∗K = 7
6 ' 1.167. The other critical points are also at temperature T ∗K and

stresses τ∗K23,13
= ± 1

2σ
∗
K12
' ±0.076 and σ∗K23,13

= − 1
2σ
∗
K12
' 0.076.

The branch of Equation 20 located between T ∗− = 1 at point K− and T ∗K = 7
6 is not a critical line. It

verifies the set of equations Gη = Gζ = L = 0 for τ = 0, but notM = 0. It is the intersection of two spinodal
surfaces that limit the domain of metastability of α-ferrite, i.e. an edge of this domain. The three edges are
colored in orange in Fig. 3, bottom left. Together with the critical lines in orange in the figure, they draw
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Fig. 3. Temperature–stress 3D diagrams. Top left: large-scale view (the three-fold lamppost). Top right: close view
of the central zone (the three-fold lily flower). Bottom left: close view showing the edges of the spinodal surfaces
related to α-ferrite, in orange. K12, K23, K13 and K− are the critical points, Q is the quadruple point. Bottom right:
polytherm projection, dashed lines are traces of the iso-stress sections presented in Figs. 6 and 7.

the spinodal surface associated to ferrite. The low-temperature point of this domain is the critical point K−
located on the zero-stress axis at temperature T ∗− = 1.

The polytherm projection of the diagram is presented in Fig. 3, bottom right. We define points K1, K2

and K3 situated at the minima of the α–αi critical lines. Their common temperature is T ∗Ki
= 9

8 = 1.125.

Point K3 is at stress τ∗K3
= 0, σ∗K3

= − 3
4 + 9

8 ln 2 ' 0.0298. Iso-stress sections described later in Sections 3.5
and 3.5 are indicated as dashed lines.

3.4 Isothermal σ–τ sections

In a two-dimensional section, the phases boundaries are lines, which eventually end at critical points. The
limits of metastability are also lines, ending at critical points. We computed a series of isothermal sections
of the equilibrium phase diagram. At the same temperatures, ordering maps were computed by minimizing
the Gibbs energy function. The results are described below.



10 P. Maugis

Isothermal σ–τ ordering maps. Isotherms presented in Fig. 4 map the equilibrium state of order as a
function of the stresses σ and τ , for a set of selected temperatures. The red, green and blue intensities were set
proportional to the site fractions c1, c2 and c3 respectively. Hence, martensite domains are red, green or blue
depending on the variant, while ferrite domain is gray. The couples of order parameters (η,ζ) were computed
by minimizing the Gibbs energy function, starting from the fully disordered state (0,0). As a consequence,
the map reveals the limits of metastability of ferrite. We see that ferrite (α) is stable or metastable at high
temperature. Upon cooling, it is destabilized to the benefit of one of the martensite variants (αi). Below
T ∗ = 1, ferrite is unstable, whatever the stress.

Fig. 4. Isothermal σ–τ ordering maps computed by Gibbs energy minimization. The RGB intensities were set pro-
portional to the site fractions ci. Martensite domains appear red, green or blue according to the major variant, while
ferrite is gray. At high temperature, the ferrite–martensite domain boundaries are diffuse, indicating continuous ferrite
↔ martensite ordering transitions.
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At a given temperature, first-order transitions between martensite variants are visualized by abrupt
change in color at domain boundaries. At T ∗ = 1.11, the ferrite–martensite boundaries are also abrupt,
indicating first-order stress-induced transitions. However, at T ∗ = 1.17 the ferrite–martensite boundaries are
diffuse, which is the sign of continuous transitions. T ∗ = 1.13 is an intermediate temperature, where the
ferrite–martensite boundaries are abrupt in the corners of the ferrite domain, but diffuse elsewhere.

Isothermal σ–τ sections of phase diagram. The ordering maps of Fig. 4 can be matched with the
isothermal sections of the phase diagram, Fig. 5. Four temperature intervals were distinguished:

Fig. 5. Isothermal σ–τ sections of the phase diagram. Co-existence lines are solid lines, spinodal lines of ferrite are
dashed lines, and critical points are black circles. The states of order corresponding to these diagrams are presented
in Fig. 4.
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T < T−. Temperature T ∗ = 0.99 is below the temperature of the quadruple point, T ∗Q ' 1.082. Con-
sequently, the isothermal section only contains the three martensite variants. T ∗ = 0.99 is also below the
temperature under which ferrite is unstable, T ∗− = 1. Thus, ferrite does not appear in the ordering map
(Fig. 4). The martensite variants are distributed over three sectors. The sector boundaries correspond to
the equality of two normal stresses. This provides a simple rule for martensite variant selection: the stable
variant αi has its major axis i oriented along the direction of the highest normal stress σii. For instance, the
upper sector of the isotherm, defined by σ33 > σ11, σ22, delineates variant α3. More, for each major variant,
the minor variant is selected by the second highest normal stress: in the upper sector, the right-hand zone
corresponds to α32

and the left-hand zone to α31
, and so on for the other sectors. Computation of the order

parameters (not shown here) proves that the transition between minor variants (e.g. α31
↔ α32

) is neither
first-order nor second-order, but is continuous. The change of major variant, however, is first-order since it
is accompanied by a discontinuity in order parameters η and ζ, which corresponds to a discontinuity in the
crystal strain.

TQ < T < TKi . The section at temperature T ∗ = 1.11 is above the quadruple point, T ∗Q ' 1.082, but
below the critical line that borders the ferrite–martensite coexistence surface. In fact, the minima along the
critical line are located at T ∗Ki

= 1.125. The triangular-shaped ferrite domain lies in the low-stress central
region. In this section, all ferrite ↔ martensite transitions are first-order. Ferrite is metastable beyond the
co-existence line, in the region delineated by the spinodal line (dashed line): this latter line coincides with
the boundary of the gray domain in the ordering map (Fig. 4).

TKi < T < TK. The section at T ∗ = 1.13 is above T ∗Ki
= 1.125 but below the critical points, T ∗K ' 1.167.

Consequently, the section intersects the ferrite–martensite critical line on 6 locations, which are the critical
points of the section (black points in Fig. 5). Intersection with the co-existence surface generates Y-shaped
co-existence lines. In the present range of temperature, the ferrite ↔ martensite transition is continuous
everywhere, except in the corners of the Y’s, where is it first-order. Correspondingly, the contrast is abrupt
in the corners of the ordering map (Fig. 4) and diffuse elsewhere. Two spinodal lines of ferrite are presented
in the enlargement. They end at critical points, tangentially to the co-existence line.

TK < T . Temperature T ∗ = 1.17 of this section is above the critical points, T ∗K ' 1.167. The section
intersects the variant–variant critical lines at three points. In the central part of the section, where the stress
is low, ferrite↔ martensite and variant↔ variant transitions are continuous. The corresponding boundaries
in the ordering map are diffuse. The transitions are first-order in the outer part of the section, where the
stress magnitude is high.

3.5 Iso-stress sections of phase diagram

In the following section, equilibria and phase transitions under specific stress states are examined, based
on iso-stress sections of the phase diagram. Temperature–shear stress diagrams were computed in reduced
units (T ∗–τ∗) for higher generality. Temperature–shear strain diagrams (T–γ) were computed in the case of
a Fe–C solid solution.

Iso-stress T–τ sections. Fig. 6 presents a series of sections of the phase diagram computed at specific
values of the tetragonal stress σ∗. Traces of the sections are shown as dashed lines in the polytherm projection
(Fig. 3). Values of σ∗ were selected in relation to the characteristic points of the 3D phase diagram, which
we recall here: σ∗K12

' −0.153 at the critical point K12 on the ”compressive” part of the diagram; σ∗ = 0;
σ∗K3
' 0.0298 at the minimum of the K13–K23 critical line; and σ∗K23,13

' 0.0765 at the critical points K23,13

on the ”tensile” part of the diagram. All iso-σ diagrams are symmetrical about the τ∗ = 0 axis. These
diagrams consist of co-existence lines (solid lines), eventually ending at critical points, and spinodal lines
(dashed lines). The dashed lines colored in red, green, blue and gray are the limits of metastability of the
phases α1, α2, α3 and α respectively.
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Fig. 6. T–τ sections at various tetragonal stress σ∗ (refer to Fig. 3 for locations in the polytherm projection). The
dashed lines colored in red, green, blue and gray are the spinodal lines of the phases α1, α2, α3 and α respectively.

Iso-stress T–γ sections. The relationship τ = (1/V )∂G/∂γ shows that the shear strain γ is the conjugate
variable of the shear stress τ . Temperature–strain (T–γ) phase diagrams were constructed as conjugate of the
temperature–stress (T–τ) diagrams by using the expression of the relaxed strain (Eq. 8): γ = S′τ + VΣ

V0
Cζ,

where ζ is the order parameter at equilibrium. The first term of this sum is the elastic unrelaxed strain,
while the second term is the anelastic strain induced by the unequal distribution of the solute atoms over
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sublattice-1 and -2. In the low-order state, the anelastic strain is weak, but it is predominant in the high-order
state. Parameters S′ and VΣ/V0 entering the equation are specific to a given system, such that no universal
diagram can be drawn. In this study, we focused on the Fe–C system, whose parameters were computed
from density functional theory [9]: S′ = 1.49× 10−5 MPa−1 and VΣ/V0 = 0.959. With these parameters, the
anelastic shear strain in fully ordered martensite variants is about 1% per atomic percent of solute carbon.

On account of the discontinuity of order parameter ζ at first-order transitions, the shear strain γ is
discontinuous at the transitions. Hence, each co-existence line in the T–τ diagram corresponds to a gap
in the T–γ diagram. The shear strains on both sides of the gap are the equilibrium strains of the phases
situated on both sides of the co-existence line. The T–γ phase diagrams in Fe-1 at%C are presented in Fig.
7. They correspond to the T–τ phase diagrams of Fig. 6. On the strain axis, the reference γ = 0 is stress-free
ferrite. For the alloy under consideration, conversion from reduced to real values follows the relationships
T = 338T ∗ (in K), σ = 428σ∗ and τ = 428 τ∗ (in MPa). Hence, the characteristic stresses in the phase
diagrams are of the order of a few tens of MPa.

σ < σK12 . When σ∗ is negative and less than σK12
, the T–τ section has the form of a unique co-existence

line in the plane τ∗ = 0, see Fig. 6a. The upper part of the co-existence line ends at a critical point, which
is the trace of the critical line passing through point K12 in the 3D diagram. On the left-hand side of the
co-existence line, variant α1 is stabilized by the negative shear stress, whereas variant α2 is stabilized by the
positive shear stress on the right-hand side. α-ferrite is stable at high temperature. The α1 ↔ α2 transition is
first-order below the critical temperature, but continuous if the transformation path goes around the critical
point, through the supercritical region. The spinodal lines join and tangent at the critical point, as a rule
in a potential diagram [33]. Such a diagram is similar to what was observed in Fe-31.2%Pd alloy [35] and in
fcc-cerium metal [16]. The conjugate T–γ diagram has the classical form of a miscibility gap (Fig. 7a). The
critical point in T–τ space corresponds to the maximum in T–γ space, where co-existence lines and spinodal
lines tangent one another. The miscibility gap corresponds to the discontinuity in shear strain during an
α1 ↔ α2 transition. Notice that, from Eq. 8, this discontinuity in strain has the peculiarity of producing
no volume change (∆V = 0). Furthermore, the enthalpy change is null at the transition (∆H = 0). This
is because, along the co-existence line, both variants are symmetrical with reference to the stress tensor,
such that the enthalpy contribution of the strain-stress interaction, −pε, is the same for both variants. On
account of the Clapeyron relationship, we have dτ/dT = 0, i.e. the co-existence line is vertical [19]. From
this, we can identify the whole co-existence line as a Kauzmann line [32,13].

σK12 < σ ≤ 0. In this range of stress, T–τ sections have a characteristic Y-shape resulting from the
intersection of the section plane with the ferrite–martensite co-existence surfaces, in addition to the α1–α2

co-existence plane, see Fig. 6b and c. The ferrite → martensite first-order transitions through the upper
branches of the ”Y” are associated with two spinodal lines (in gray), which join on the α1 ↔ α2 co-existence
line. The corresponding T–γ diagram presents a two-peak miscibility gap (Fig. 7b). This type of phase
diagram was predicted theoretically by Landau [16], and defined as ”homotectoid” by Okamoto [28]. The
two maxima in T–γ space correspond to the two critical points in T–τ space; the triple line along which
α, α1 and α2 phases co-exist corresponds to the triple point. The section at σ∗ = 0 is singular. In fact,
at σ∗ = τ∗ = 0, stress-free martensite is tetragonal and stress-free ferrite is cubic; the tetragonal ↔ cubic
transition occurs at the triple point upon temperature change (as a contrast, all other transitions in the phase
diagram occur between orthorhombic structures). In addition, variant α3 is also part of the section at σ = 0,
but only along the τ = 0 line, which is the trace of the triple line of the T–σ–τ phase diagram (Fig. 3). Such a
situation corresponds to the contour plot of function G drawn in Fig. 2d, where the three martensite variants
are degenerate. The spinodal lines of the three martensite variants cross at temperature T ∗+ = 1.0926, which
is the limit of metastability of stress-free martensite upon heating (Fig. 6c). As a complement, a discussion
of the thermo-elastic response of the Fe–C solid solution at σ = 0, based on the present iso-stress section,
can be found in Ref. [23].

0 < σ < σK3 . When the tetragonal stress σ is positive, the iso-σ plane passes through three variant
domains and crosses two variant–variant co-existence surfaces. If in addition, σ is less that σK3

, the plane
also crosses a portion of the ferrite–martensite co-existence surface. The T–τ section then consists of two
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Fig. 7. T–γ sections for the alloy Fe-1 at%C. These sections are conjugate to the T ∗–τ∗ sections of Fig. 6. The colored
dashed lines (red, green, blue and gray) are the spinodal lines of the corresponding phases (α1, α2, α3 and α).

interconnected Y’s, and a close stability domain of α3 appears (Figs. 6d and 7d). At low temperature, one
of the three martensite variants is stable, depending on the shear stress. If the shear stress is close to zero,
variant α3, whose major axis is along direction-3, is stabilized by the tetragonal tensile stress σ. Beyond its
domain of stability, α3 is metastable until its spinodal line is reached (blue dashed line in Figs. 6d and 7d).
Upon applying a shear stress, the α3 → α2 or α3 → α1 transition occurs, depending on whether τ is positive
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or negative. The diagram exhibits a congruent transformation at τ = 0: at the congruent point, both α3

and α are tetragonal, such that the order–disorder transition occurs with no change of shear strain. The
tetragonal strain ε, however, undergoes a discontinuity.

σK3 < σ < σK13,23 . In this range of tetragonal stress, the iso-stress plane crosses two portions of the
ferrite–martensite co-existence surface. The T–τ section consists of two Y’s, and the corresponding T–γ
section is made of two homotectoids (Figs. 6e and 7e). We see that beyond the threshold value σK3

, the
stress σ has opened the α3 domain, such that the α3-martensite ↔ ferrite transition is no longer first-order.
Although it looks like second-order (cf. [11], p. 342), the transition is continuous: it is accompanied by a
continuous, however steep, change in order parameter from ordered α3 to disordered α.

σK13,23 < σ. Beyond the tetragonal stress σK13,23
, the iso-stress section shows two miscibility gaps: α1–α3

and α2–α3 (Figs. 6f and 7f). In the T–τ diagram, the co-existence lines are positioned at abscissa τ = ±σ:
the existence domain of α3 is all the more larger than σ is high. This is because variant α3 is stabilized by a
positive tetragonal stress. All phases are interconnected by continuous transitions. In the α3 domain, above
both α1 and α2 spinodals, α3 variant is stable and variants α1 and α2 are unstable (Fig. 6f). Conversely,
below both α1 and α2 spinodals, for instance at T ∗ = 0.9, variants α1 and α2 are metastable. Such a situation
corresponds to the G contour plot of Fig. 2e.

4 Discussion and conclusion

We investigated the effect of a mechanical stress tensor on the ordering of octahedral interstitials in a body-
centered lattice. In this purpose, we started from the elasto-chemical model, which describes the strain-
induced elastic interactions between the interstitials. From the expression of the Gibbs energy function G,
we found that the state of order of the solid solution is a function of two independent stresses only: the
tetragonal stress σ and the shear stress τ . The choice of these two stresses is arbitrary, but coherent with the
choice of the order parameters η and ζ describing the state of order. From function G, internal equilibrium
could be computed at given interstitial content c, temperature T and stresses σ and τ . Function G allowed
to build phase diagrams involving the reduced variables T ∗, σ∗ and τ∗ derived from the potentials T , σ and
τ . These phase diagrams are similar to T–µ1–µ2 diagrams, where µ1, µ2 are the chemical potentials of two
solutes in a ternary solution. They are valid for any bcc lattice containing octahedral interstitials, and for
any interstitial content. In that sense, they are universal. Application to a particular system (Fe–C, Fe–N,
Nb–O, W–C, etc.) relies on the determination of scaling parameters for temperature and stress, respectively.
Temperature–strain phase diagrams were built in the case of Fe–C system. These diagrams are topologically
similar to binary temperature-composition phase diagrams, involving miscibility gaps, homotectoid topology
and congruent transitions.

From the temperature–stress 3D diagram we conclude that martensite variants and ferrite are thermody-
namically the same body-centered orthorhombic phase. Martensite is the high-order instance, while ferrite
is the low-order instance. Temperature-induced and stress-induced transitions have been identified between
these instances. We found that martensite variants are stable at temperatures less than T ∗Q ' 1.082, whatever
the stress. In a stressed crystal, the martensite → ferrite transition occurs at higher temperature, i.e. stress
stabilizes the ordered state. Upon varying the temperature at constant stress, the nature of the ferrite ↔
martensite transition is stress-dependent: the transition is first-order at low stress, and continuous at high
stress. For isothermal transformations, at any temperature below T ∗∞ = 1.5, a change in stress can induce a
first-order change of martensite variant. Above T ∗∞ = 1.5, such a change of variant is always continuous. In
the temperature range between T ∗Q ' 1.082 and T ∗K ' 1.167, first-order ferrite ↔ martensite transitions can
be stress-induced. Finally, the ferrite ↔ martensite transitions are necessarily continuous above T ∗K ' 1.167.

To the author’s knowledge, no experimental investigation of orientational variant stability under applied
stress can be found in the literature. So, our predictions remain unconfirmed to date. Ideally, one would
like to identify the change in orientation of individual variants under a known applied stress. Such an
experiment is made difficult because: 1) martensite tetragonality is small (a few percent in Fe–C), such
that identification of individual variant orientation is challenging; 2) knowledge of the local mechanical
stress is almost impossible, due to high internal stresses in martensite. One might however get indirect
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indications through low-temperature tensile–compressive tests performed on virgin martensite, coupled with
in situ measurement of the crystal texture or magnetization. Indeed, both texture and magnetization are
expected to vary when variant orientation flips from one crystal direction to the other. Tensile–compressive
solicitations would inevitably induce plastic deformation, though. Plastic deformation of Fe–C martensite is
known to occur by dislocation glide. Our theoretical investigations suggest that it may also involve a part of
nano-twinning [10]. Both mechanisms are expected to interfere with carbon ordering. These phenomenons
are not taken into account in the present model, but will be addressed in future work.

From our results, we infer that variant selection during martensite formation in Fe–C alloys is influenced
by the local state of stress. This applies to the formation of martensite during quenching of austenite, but
also to the growth of nano-variants in carbon-enriched zones such as Cottrell atmospheres and segregated
grain boundaries. Future work is planed to investigate the effect of stress on the spatial distribution of
orientational variants in nano-twinned Fe–C martensite.
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A The Gibbs energy of ordering

This appendix gathers the analytic formulae related to the Gibbs energy function and its derivatives relatively
to the order parameters.

The Gibbs energy for ordering ∆G = ∆H − T∆S is a function of the external variables c, T , σ and τ ,
and of the internal variables η and ζ. It is written:

∆G = −2VΣc
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The first derivatives of ∆G express as:

Gη = −2

3
VΣcσ − 2hΣc

2η +
1

3
kBTc ln

(
(1 + 2η)2(

1− η − 3
2ζ
) (

1− η + 3
2ζ
)) (22)

Gζ = −VΣcτ −
3

2
hΣc

2ζ +
1

2
kBTc ln

(
1− η + 3

2ζ

1− η − 3
2ζ

)
(23)

The second derivatives are stress-independent:
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The third derivatives only contain the entropic contribution:
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The expressions above were used to compute the stability limits in the phase diagrams.
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