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Modeling the Snoek peak in bct-martensite

Philippe Maugis, Liangzhao Huang

Aix Marseille University, CNRS, IM2NP, Marseille, France

Abstract

Snoek relaxation in bcc crystals is the delayed strain response to an applied stress resulting from the interaction of the
interstitial atoms with the stress field. It is responsible for the Snoek peak observed in internal friction measurements
of ferrite. However, although martensite is carbon supersaturated, several authors denied the possibility of Snoek
relaxation in bct-martensite. We investigated this matter by means of Monte Carlo simulations and mean-field thermo-
kinetic modeling. Our results show that Snoek relaxation does occur in bct-martensite. The computed Snoek profiles
of temperature-dependent and frequency-dependent internal friction exhibit unexpected features: both peak height
and peak temperature decrease when the carbon content is increased. We explain this behavior in the frame of the
linear-response approximation. Our theoretical predictions are in qualitative agreement with experiments.

Keywords: anelastic behavior, internal friction, long-range ordering, carbon steels, mean-field modeling, Monte
Carlo simulation

1. Introduction

The internal friction response of carbon steel depends on whether the crystal phase is ferrite or martensite: Fe-C
ferrite exhibits the so-called Snoek peak at a temperature of ∼ 310 K for an excitation frequency of 1 Hz. The peak
height is found proportional to the carbon content [1, 2]. On the other side, martensite reveals a complex landscape.
Various peaks are reported in the literature, and their origin is a subject of debate [2, 3]. Around room temperature
under low frequency excitation, four types of thermally activated peaks were identified: (1) ∼ 260 K (−10◦C) [4–11],
(2) ∼ 310 K (40◦C) [12–16], (3) ∼ 350 K (80◦C) [17–20] and (4) ∼ 430 K (160◦C) [21–24]. Among them, the peaks
of type (1) or (2) are sometimes described as Snoek or Snoek-like peaks [12–16, 21, 24].

The term ”martensite” is somehow confusing in this context. Some authors define martensite as the microstructure
resulting from the quench of a parent high-temperature austenite phase, whatever the crystal structure of the daughter
phase (bcc or bct). We will refer to that microstructural component as ”martensitic microstructure”. Conversely,
martensite can be defined more restrictively as the tetragonal crystal structure wherein carbon atoms occupy prefer-
entially one type of octahedral site. We will refer to that phase as ”bct-martensite”. Yet, due to auto-tempering during
the quench, to tempering or to aging phenomena, a martensitic microstructure may consist of a mixture of bcc-ferrite
grains and transition carbides. Thus, the low levels of solute carbon in the ferrite grains of the microstructure produce
a Snoek peak [12–16]. True bct-martensite is usually obtained by cryogenic quench of plain Fe-C steel with carbon
content greater than ∼ 0.2 wt% (fresh martensite), or of alloyed Fe-Ni-C steel with sub-zero Ms temperature (virgin
martensite). In these cases, the usual ∼ 310 K Snoek peak is not observed, but a near 260 K peak is sometimes
apparent [5–11].

The origin of the Snoek peak in ferrite is well understood. The peak results from the relaxation of carbon atoms
over the interstitial sublattices [25]: an applied mechanical stress creates biases in carbon chemical potential between
the three sets of octahedral sites. Fluxes of carbon atoms set up between the sublattices, generating the anelastic
strain. The time lag between the applied stress and the anelastic response produces a measurable energy loss. When
the excitation frequency is close to the frequency of the carbon jumps, the energy loss rises and the internal friction
signal peaks.

On the other hand, the possibility of a Snoek peak in bct-martensite was denied by several authors [10, 15, 22,
26, 27]. Their argument is the following: in martensite, the carbon atoms are ”trapped” in the so-called favored
sites of the bct lattice. Unless a very high stress is applied, the carbon atoms cannot jump out of their sites towards
disfavored sites. In response to that reasoning, we put forward the following argument: actually, no carbon atom is
indefinitely trapped in the structure. Indeed, migration enthalpies in martensite differ from ferrite, but they remain
finite [28–30]. Consequently, an applied stress creating a bias in chemical potential will induce a net flux of carbon
atoms from one set to the others, i.e. a Snoek relaxation. On account of the tetragonal symmetry of the crystal, carbon
diffusion in bct-martensite is known to be anisotropic (parallel and perpendicular components differ [28–30]), so that
two characteristic times are expected. For the same symmetry reason, Snoek relaxation will depend on whether the
axis of the shear stress excitation is parallel or perpendicular to the axis of tetragonality. Last, since carbon ordering
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in deformed bct-martensite is described by two order parameters [31, 32], two relaxation modes are expected (parallel
and perpendicular modes) [25].

In this article, we report our theoretical investigation of Snoek relaxation in bct-martensite. The underlying the-
ory based on the elasto-chemical model is presented. The thermo-kinetic model is used to compute the influence of
composition, temperature and frequency on relaxation. The results are compared to atomic-scale Monte Carlo simu-
lations. The approximate linear-response theory allows rationalizing our results. Striking features of the Snoek peak
in bct-martensite are highlighted. Our findings are discussed and compared to the experimental literature. Finally,
specific experimental investigations are suggested to test our predictions quantitatively.

2. The thermo-kinetic model

The thermo-kinetic model describes the thermodynamics of carbon long-range ordering together with the dynam-
ics of carbon atomic jumps in body-centered crystals. It is based on a mean-field approximation of the long-range
carbon–carbon elastic interaction. The model accounts for Zener ordering [32, 33], carbon diffusion [30] and thermo-
elasticity of both bcc-ferrite and bct-martensite [31, 34]. It renders quantitatively the Snoek peak of ferrite [35, 36]. It
was used in this study to compute the energy loss of a martensite variant submitted to an oscillatory shear stress. The
main features of the model are described below, details can be found in Ref. [34].

2.1. Crystal geometry

Carbon atoms soluted in body-centered iron can sit on three types of octahedral lattice site, with respective molar
fractions ci (i = 1, 2, 3) (Figure 1, left). Above the temperature of Zener [37] order–disorder transition, bcc-ferrite is
thermodynamically stable, wherein the three types of sites are equally occupied. Below the transition temperature,
three orientational variants of bct-martensite are stable, labeled Z1, Z2 and Z3 according to the direction of the tetrag-
onality axis. In variant Z3, for instance, the sites of type-3 are energetically favored by the carbon–carbon elastic
interactions, such that these sites are preferentially occupied relative to disfavored sites of type-1 and 2. In each vari-
ant, favored sites are noted ’c’ and disfavored sites are noted ’a’. Under a given total fraction C =

∑
ci, the distribution

of carbon atoms over the octahedral sites is described by the long-range order parameters η =
(
c3 −

1
2 (c1 + c2)

)
/C and

ζ = (c2 − c1) /C. Parameter η quantifies the degree of Zener order along crystal direction [001], while ζ quantifies the
unequal occupancy of the sites in directions [100] and [010]. In the mean-field approximation, a variant of martensite
is characterized by the couple of values (ζ, η).

Figure 1: Left: Crystal sites in body centered iron. Iron atoms are represented by gray spheres, octahedral sites by large colored spheres and
tetrahedral sites by small colored spheres. Sites of type 1, 2, 3 are respectively in color red, green, blue. Right: Under applied stress with shear
axis along [001] direction (gray arrows), the excitation is transversal for variant Z3 and longitudinal for variants Z1 and Z2.

To study the elastic response of a martensite variant, we considered a crystal submitted to pure (11̄0)[110] shear
stress such that σ22 = −σ11 = σ(t). The anelastic response depends on the crystal orientation relative to the stress.
Given the tetragonal symmetry of martensite variants, two types of mechanical excitation were defined (Figure 1,
right):

1. Transversal excitation when the shear axis is parallel to the tetragonality axis. It is the case of variant Z3;
2



2. Longitudinal excitation when the shear axis is perpendicular to the tetragonality axis. It is the case of variants
Z1 and Z2.

2.2. Alloy thermodynamics
Carbon atoms migrate via three types of tetrahedral sites, labeled j = 1, 2, 3. The far-end elastic field induced by

a carbon atom is characterized by the force dipole tensor of the site: POi in octahedral site or PT j in tetrahedral site.
In our mean-field approach, each carbon atom interacts with the elastic field created by both the applied stress and the
other carbon atoms. The resulting homogeneous strain tensor ε is expressed as a function of the stress tensor σ and
of the force dipole density tensor p as:

ε = S (σ + p) , (1)

where S is the elastic compliance tensor of the crystal. Force dipole density p depends on the distribution of the
carbon atoms over the sites. If all carbon atoms lie on octahedral sites, p is written

p =
1

V0

∑
ci POi , (2)

where V0 is the atomic volume of the lattice. In stress-free martensite, the tetragonal lattice distortion is accounted for
by the deviatoric part of the density tensor p. When a stress σ is applied, the stress-induced carbon jumps modify the
distribution of the carbon atoms over the sites, which reflects in a change of the density tensor (Eq. 2). This relaxation
results in the anelastic strain Sp (Eq. 1). For a given distribution of the carbon atoms over the interstitial sites, the
elastic contribution to the enthalpy is written, per iron atom,

H = −
1
2

V0S(σ + p) · (σ + p). (3)

We introduce the strain dipole tensor λ = SP/V0, which quantifies the tetragonal distortion induced by a carbon
atom. The strain dipole tensors have a singlet component λ1 representing the strain along the tetragonality axis, and a
doublet component λ2 representing the strain in perpendicular directions.

2.3. The rate equations
The migration enthalpy of a carbon atom jumping from site i through transition site j is written [38]

Hm
i/ j = Hm

0 − V0

(
λT j − λOi

)
· (σ + p), (4)

where Hm
0 is the migration enthalpy in cubic low-carbon ferrite. In tetragonal martensite, the migration enthalpy splits

into three independent values. For instance, in variant-3, the migration enthalpies write Hm
1/2, Hm

1/3 and Hm
3/1. The

jump probability for a carbon atom is written, according to the jump rate theory,

pi/ j = ν0 exp
(
−Hm

i/ j/kBT
)
, (5)

where ν0 is a constant attempt frequency. From the probability function Equation 5, the time evolution of a set of
carbon atoms we can simulated by on-lattice atomic kinetic Monte Carlo (AKMC [30, 34, 35, 38]). Alternatively,
a mean-field approximation can be used (thermo-kinetic model [36]). In the latter approach, the jump frequency is
written

Γi/ j = ci pi/ j. (6)

The net atom flux from stable position i to stable position k via saddle position j is

Ji→k = Γi/ j − Γk/ j. (7)

Matter balance at site i implies the rate equations

ċi = 2 (Jk→i + Jk′→i) , i = 1, 2, 3. (8)

Integrating Equations (8) provides the time evolution of the site fractions ci(t) under given applied stress. The resulting
strain response is given by Equations 1 and 2.

3. Results: internal friction profiles

The thermo-kinetic model was first benchmarked versus Monte Carlo simulations. It was then employed to com-
pute temperature-dependent and frequency-dependent internal friction profiles for various carbon contents in bcc-
ferrite and bct-martensite.
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Table 1: Material parameters used for the computations: lattice parameter a0 (in nm), elastic compliances S i j (in GPa−1), force dipole components
Pa and Pc for octahedral (O) and tetrahedral (T) positions (in eV), migration enthalpy Hm

0 (in eV) and attempt frequency ν0 (in THz).

a0 S 11 S 12 S 44 PO
c PO

a PT
c PT

a Hm
0 ν0

0.2855 0.00615 −0.00218 0.0104 17.0 10.0 5.37 14.8 0.872 159

3.1. Model parameters and computational set up
Our computations used no fitting parameter: the material parameters were computed previously by density func-

tional theory (DFT), except for ν0 and Hm
0 , which were extracted from the diffusion data of da Silva [39]. The values

are gathered in Table 1. The corresponding components of the λ-tensor are λ1 = 0.838 and λ2 = 0.035. Our set of
parameters offers a good agreement with the Snoek peak measured by Weller in ferrite [40] (see Ref. [36]).

Internal friction is defined as the fractional energy loss Q−1 = (1/2π) δW/Wel. Wel is the maximum elastically
stored energy per unit volume during a cycle, i.e Wel = 1

2 JUσ
2
0, where JU = 2(S 11 − S 12) is the unrelaxed compliance

and σ0 is the stress amplitude; δW is computed as the integral of σ ·dε along a cycle. The relative storage compliance
is defined as J1/JU = W/Wel where the stored energy W is the integral of σ · dε along one fourth of a cycle. The
stress amplitude was set to σ0 = 1 MPa for the thermo-kinetic computations and to 100 MPa for the Monte Carlo
simulations. To simulate internal friction measurements upon heating of the martensite phase, the initial state of the
crystal before cycling was Zener ordered along a chosen direction.

To build the temperature–dependent internal friction profiles, the energy loss was computed at successive temper-
atures in the range of 250 to 450 K, at the oscillation frequency f = 1 Hz, for carbon contents ranging from 0.85
to 4.7 at%. Alternatively, frequency–dependent profiles were computed in the frequency range of 10−3 to 103 Hz at
temperature T = 300 K. In martensite, both transversal and longitudinal orientations were considered. As a rough
estimate, the average energy loss was defined as Q−1 = 1

3 Q−1
trans + 2

3 Q−1
longi.

3.2. Comparison with kinetic Monte Carlo
The kinetic Monte Carlo model was developed to investigate the thermodynamic, thermo-elastic and kinetic prop-

erties of Fe-C crystals. It is described in details in Ref. [30]. It uses the residence time algorithm to simulate ther-
mally activated migration of carbon atoms in body-centered lattices. It modeled with success the Snoek peak in ferrite
[36] and in martensite [41]. To check the accuracy of the thermo-kinetic (TK) equations in the case of martensite,
we compared the results of the thermo-kinetic model with atomic kinetic Monte Carlo (AKMC) simulations. Both
computations ran with the same set of material parameters (Table 1). The internal friction profiles computed for a
martensite crystal of carbon content C = 3 at% under an oscillation frequency of f = 1 Hz are in agreement with one
another (Figure 2). This test confirms that the thermo-kinetic model adequately describes the diffusion mechanisms
at the origin of internal friction in martensite.
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Figure 2: Comparison between the thermo-kinetic model (TK) and Monte Carlo simulations (AKMC). Snoek peaks in martensite for carbon
fraction C = 3 at% and oscillation frequency f = 1 Hz. Longitudinal (violet) and transversal (green) excitations.

3.3. Temperature-dependent Snoek profiles
We computed a series of Snoek profiles upon heating in the temperature range of 250 to 450 K for various carbon

contents. Previous theoretical investigations evidenced that the height, position and shape of the Snoek peak in ferrite
depend on the proximity of the bcc crystal to the ferrite–martensite phase transition [35, 36]. According to the elasto-
chemical model [33], the transition temperature of martensite upon heating is proportional to the carbon content
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in solid solution: with our parameters, the transition temperature is numerically T + = 238 C (C in at%). Hence,
by varying the carbon content from 0.85 to 3.7 at%, the transition temperature can be varied from 202 to 880 K.
Consequently, during a temperature-dependent internal friction computation in the range of temperature 250–450 K,
the crystal can be ferritic, martensitic or undergo a transition from martensite to ferrite, depending on the carbon
content. To illustrate the consequences on the energy loss profiles, our computation results are gathered in Figure 3.
We see that the magnitude, position and shape of the peaks depend strongly on the carbon content.
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Figure 3: Snoek peaks computed with the thermo-kinetic model for various carbon contents. In the case C = 1.70 at% (bottom left) the martensite–
ferrite transition peaks are visible at temperature T = 404 K. Frequency f = 1 Hz.

At C = 0.85 at%, the crystal is ferritic over the whole temperature range. Because of the high carbon content in
solid solution, the magnitude of the Snoek profile is very high (Fig. 3, top left). The peak position is slightly shifted
towards high temperatures (Tm = 320 K) compared to low-carbon ferrite (Tm = 310 K) on account of sluggish carbon
diffusivity at high carbon content (see Refs. [30, 36]).

On the other hand, the high-carbon crystal (C = 3.7 at%) is martensitic in the whole temperature range. It does
exhibit a Snoek peak (Fig. 3, bottom right). Notice that the peak magnitude is reduced compared to ferrite, although
the carbon content is higher. The peak position is shifted towards low temperatures. Comparing transversal and
longitudinal excitations, the magnitude of the longitudinal peak is 2.5 times that of the transversal peak, but the peak
positions appear equal. Contrary to ferrite, where the profiles are almost symmetric, the peaks in martensite are
skewed.

The case of medium-carbon martensite (C = 1.7 at%) is similar to high-carbon martensite, except that the peak
magnitude is much higher and the peak temperature is higher (Fig. 3, bottom left). Notice that the peak temperatures
of the transversal and longitudinal profiles differ by 2 degrees. Also, an additional peak appears in the temperature
range under investigation. Its maximum is positioned at T = 404 K, which identifies with the transition temperature
T +. This peak originates from the martensite → ferrite transition, which induces a high energy loss in a narrow
temperature range [25]. We checked that the transition peak is athermal: its temperature does not vary with the
oscillation frequency, but only with the solute carbon content.

In the case of C = 1.37 at%, the transition temperature T + = 327 K lies in the Snoek profile (Fig. 3, top right). We
observe a ”giant” Snoek peak (Q−1

m = 4.03). The profile consists of the contribution of martensite when T < 327 K
followed by the contribution of ferrite when T > 327 K. Figure 4 shows the time evolution of the site fractions ci
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during stress cycles applied at 320 K. A stress amplitude of 10 MPa was chosen here to enhance the variations in
site fractions. The occupancies of favored (most occupied) and disfavored (least occupied) sites oscillate periodically
around their stress-free equilibrium value. Under transversal excitation (Fig. 4, left) c1 and c2 vary in mutual phase
opposition, which reflects the carbon exchanges between site-1 and site-2. Under longitudinal excitation (Fig. 4, right)
the carbon exchanges occur between the favored (c2) and the disfavored (c1, c3) sites.
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3.4. Frequency-dependent Snoek profiles

To study the influence of oscillation frequency on internal friction, we computed a series of Snoek profiles in the
frequency range of 10−3 to 103 Hz at fixed temperature T = 300 K for various carbon contents. In Figure 5, the energy
loss and storage compliance are reported as function of frequency in ferrite phase (C = 0.85 at%) and martensite
phase (C = 1.70 at%), close to the ordering transition (C+ = 1.26 at%). Both energy loss profiles follow a Debye
curve, with a relative accuracy better than 0.1%. As a consequence, the frequency dispersion is such that the energy
loss Q−1 varies as ω+1 (resp. ω−1) in the low (resp. high) frequency regime. The fitted relaxation strength and time in
the case of martensite are respectively: ∆trans = 0.142, ∆longi = 0.433, τtrans = 0.186 s and τlongi = 0.233 s. The peak
frequency in martensite is located around 1 Hz, i.e. one decade higher than in ferrite (∼ 0.1 Hz). This is consistent
with a higher peak temperature in ferrite (Tm = 320 K) than in martensite (Tm = 305 K), see Figure 3.
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Figure 5: Frequency-dependent energy loss and storage compliance computed with the thermo-kinetic model. Left: highly supersaturated ferrite,
C = 0.85 at%. Right: martensite, C = 1.70 at%. Debye fits are shown in dashed lines. Temperature T = 300 K.

The relative storage compliance J1/JU reaches the asymptotic value of 1 at high frequencies and the relaxed value
JR/JU at low frequencies, as expected for a standard anelastic solid [25]. However, when the carbon content is close
to the ferrite–martensite transition, the storage compliance shows an unusual peak in the vicinity of the energy loss
peak. This is probably due to the high magnitude of both the storage compliance and the energy loss in the ferrite–
martensite transition region. Under this circumstance, the usual assumption tan(φ) � 1 no longer holds and deviations
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from the standard behavior are expected. Such deviations were not observed in our computations of low-carbon ferrite
or high-carbon martensite.

3.5. Effect of solute carbon content

Figure 6 summarizes the effect of carbon content on the Snoek profiles of martensite. Several striking features
appear: (i) The peak height varies over several orders of magnitude (10−5–10−1) although the range of composition is
relatively narrow (1.7–4.7 at%); (ii) The peak height decreases with increasing carbon content; (iii) The peak position
is shifted towards lower temperatures and higher frequencies when the carbon content is increased. These features are
summarized in Figure 7 where the peak height and temperature are plotted as a function of carbon content. At first
sight, the peak height decreases exponentially and the peak temperature decreases linearly with the carbon content.
This behavior strongly differs from that of ferrite. Both peak height and peak magnitude in martensite are lower than
extrapolation from ferrite would predict.
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4. The linear-response approximation

Our computations assess the existence of a Snoek peak in martensite. However, several features of the calculated
energy loss profiles are unexpected, and raise a series of questions. First, the peak height decreases when the carbon
content increases, while the opposite in reported in ferrite [2]. Second, the peak temperature is significantly lower in
martensite than in ferrite, and it decreases with the carbon content. Third, the peak shape is not symmetric but skewed.
Last, one would expect two peaks in martensite, given the two degrees of freedom —associated with the two order
parameters— whereas a unique peak is observed. To rationalize these results, we developed a linear-response theory
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providing an approximate analytical form of the Snoek profiles. A further simplification termed ”single-relaxation
approximation” gave analytical expressions of the profile features.

We found an analytical solution to the kinetic equations (Eq. 8) under the linear-response approximation. This
approximation consists in linearizing the rate equations with respect to the order parameters ζ, η and the shear stress
σ. The approximation is valid in the vicinity of stress-free thermodynamic equilibrium. In their general treatment
of the effect of order-disorder transition on relaxation, Nowick and Berry [25] linearized the Gibbs energy function
in the vicinity of the disordered equilibrium state. This approach was used by the present author to investigate the
giant Snoek effect in ferrite [35]. However, as martensite is an ordered alloy, linearization in the vicinity of the
ordered equilibrium state is needed in the present study. The first step of our resolution was thus to write an analytical
expression of the order parameters of martensite at equilibrium.

4.1. Equilibrium order parameters

Starting from the enthalpy function H (Eq. 3) and the regular entropy S in the dilute approximation, the Gibbs
energy G = H − TS was written as a function of the external variables C, T and σ, and the internal variables ζ
and η [35]. The condition for thermodynamic equilibrium under fixed solute carbon content, temperature and no
applied stress is found by minimizing function G with respect to the internal variables ζ and η. Above the order–
disorder transition, i.e. at low carbon content or high temperature, the unique solution to the equilibrium equations
is ζ = η = 0, which corresponds to disordered ferrite. Below the order–disorder transition, there are three couples
of degenerate solutions (ζ, η) corresponding to the three ordered orientational variants of martensite. Considering in
the first instance the orientational variant-3, whose tetragonal axis lies along crystal direction 3, the solution to these
equations is ζ = 0 and η = η0(C,T ). This solution is presented as a function of T in Figure 8 (left), for a carbon
content of C = 1.7 at%. The ordering curves of variants-1 and 2 verify ζ = −η0(C,T ) and ζ = η0(C,T ) respectively.

The equilibrium transition temperature in the absence of stress, T0, is defined by the relationship kBT0 = 1.082 hΣC.
T0 increases linearly with carbon content. The proportionality coefficient contains the strain-energy parameter hΣ,
which characterizes the carbon–strain interaction responsible for ordering. Parameter hΣ is related to the elastic prop-
erties of the octahedral defect:

hΣ =
2V0(λ1 − λ2)2

3S ′
(9)

where S ′ = 2(S 11 − S 12) = 0.0167 GPa−1 is the shear compliance. Numerically hΣ = 1.87 eV and T0 = 235 C (C in
at%). On account of hysteresis, the order-disorder transition occurs at a temperature T + slightly higher than T0 when
martensite is heated [33]: T + = 238 C. At C = 1.7 at% corresponding to Figure 8 (left) we have T0 = 400 K and
T + = 404 K.
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Figure 8: Left: Equilibrium ordering curve as function of temperature for C = 1.7 at%. The martensite–ferrite order–disorder transition temperature
is T0 = 400 K. The dashed line is the high-carbon low-temperature approximation (Eq. 10). Right: Equilibrium site fractions in variant-3 as function
of carbon content at T = 300 K. In martensite, fraction c1 (= c2) decreases towards zero when the total carbon fraction increases.

Far from the order–disorder transition, i.e. in the high-carbon or low-temperature case, the equilibrium order
parameter η0 is close to one. As shown in Figure 8 (left), it is well approximated by the expression

η0(C,T ) ' 1 − 3 exp
(
−

3hΣC
kBT

)
. (10)

The activation enthalpy entering this equation is the enthalpy of ordering H′ = 3hΣC.
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Figure 8 (right) shows the equilibrium site fractions in variant-3 as function of carbon content at temperature
T = 300 K. The order–disorder transition occurs at carbon fraction C0 = 1.28 at% verifying the relationship kBT =

1.082 hΣC0. In martensite, the Zener order increases with carbon content. Consequently, carbon fractions at the
disfavored sites (c1, c2) decrease towards zero to the benefit of the favored sites (c3) when the total carbon fraction
increases. From Equation 10 the decrease is nearly an exponential function of C:

c1 = c2 ' C exp
(
−

3hΣC
kBT

)
. (11)

4.2. Characteristic times

By linearizing the rate equations (Eq. 8) and introducing the approximate order parameter (Eq. 10) we obtained the
linear differential equations of the order parameters describing the crystal response to either transversal or longitudinal
excitation. As will be shown in the next sections, these equations involve two characteristic times of short-range
carbon diffusion: (i) τaa is the characteristic time of carbon exchanges between disfavored sites (a ↔ a); (ii) τac is
the characteristic time of carbon exchanges between disfavored and favored sites (a ↔ c). These two mechanisms
of carbon exchange contribute in parallel to the atom transfer from sites-1 to sites-2 when the shear stress is applied.
The characteristic times write in full 

1
τaa

= 4ν0 exp
(
−

Hm
0 + ∆HaaC

kBT

)
1
τac

= 2ν0 exp
(
−

Hm
0 + ∆HacC

kBT

) (12)

They are thermally activated and depend on the carbon content via the activation enthalpies, with
∆Haa = ∆λ12 · PO3

∆Hac = ∆λ13 · PO3 −
3
2

hΣ

(13)

where ∆λik is the rank-2 tensor

∆λik = −λT j +
λOi + λOk

2
. (14)

The two characteristic times differ by their pre-exponential factors and by their activation enthalpies. The terms
in the form ∆λ · P in Equations 13 render the effect of the tetragonal distortion of the crystal on the activation barriers.
The strain-energy parameter hΣ in ∆Hac renders the difference in occupancy of sites of type a and c, i.e. the effect of
carbon ordering. Incorporating the three migration barriers Ha→a, Ha→c and Hc→a between the various sites, we find

∆Haa = Ha→a

∆Hac =
1
2

(Ha→c + Hc→a) −
3
2

hΣ

(15)

Thus, the characteristic time τaa is that of the disfavored→ disfavored atomic jumps. On the other hand, the activation
enthalpy ∆Hac is related to the average of forward and backward migration barriers between disfavored and favored
sites. Taking into account that the energy of sites c is lowered by the quantity H′ = 3hΣC in the high-carbon approxi-
mation, we have Hc→a = Ha→c +3hΣC. The term 3

2 hΣ in Equation 15 cancels out, such that finally ∆Hac = Ha→c. Thus,
the characteristic time τac identifies with the disfavored→ favored atomic jumps. As will be shown in a next section,
the disfavored↔ disfavored exchanges are much slower than the disfavored↔ favored ones, such that τaa � τac.

A singularity of martensite as compared to ferrite resides in the relaxation of two order parameters in martensite
rather than a unique parameter in ferrite [35]. The consequences of this are examined in the following sections.

4.3. Case of transversal excitation

To study the effect of a transversal applied stress, we considered variant-3, whose tetragonality axis is parallel to
the shear axis (see Figure 1, right). At stress-free equilibrium, disfavored sites-1 and 2 are equally occupied. A positive
shear stress exerts tension along axis-2 and compression along axis-1, thus creating a bias in chemical potential to the
advantage of sites-2, at the expense of sites-1. As a consequence, sites-1 deplete to the benefit of sites-2. The opposite
occurs when the stress is reversed (see Fig. 4, left). This stress-induced atom transfer is the origin of Snoek relaxation
under transversal excitation. It is reflected by the time evolution of order parameter ζ.

The stress-induced deviations from stress-free equilibrium order are defined as ∆ζ = ζ(σ) and ∆η = η(σ) − η0.
The relaxed state, corresponding to the conditions ζ̇ = η̇ = 0, was determined analytically from the linearized rate
equations. It appears that the relaxed value of ∆η is not affected by the applied stress. Then, to the first order, η
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remains equal to its stress-free equilibrium value during an internal friction measurement or a relaxation test: the
relaxed value ∆ηR = 0. The applied stress only affects the order parameter ζ. Its relaxed value is expressed as

ζR = 2
V0(λ1 − λ2)

kBT
exp

(
−

3hΣC
kBT

)
σ, (16)

valid for C � C0. The exponential factor in ζR originates from the C and T dependence of the equilibrium order
parameters of tetragonal martensite (Eq. 10). This expression of ζR in martensite differs by an exponential factor from
the classical expression for low-carbon ferrite, valid when C � C0:

ζferr
R =

2
3

V0(λ1 − λ2)
kBT

σ. (17)

Whereas the relaxed value is composition independent in ferrite, it has the striking feature of decreasing with the
solute carbon content in martensite. Notice that the ratio ζR/ζ

ferr
R = 3 exp(−3hΣC/kBT ) decreases exponentially with

C. The reason is as follows: in ferrite, all solute carbon atoms can participate to the anelastic response. Conversely, in
variant-3 martensite most carbon atoms occupy sites-3, such that the number of carbon atoms located in sites-1 and 2
is reduced by a factor of 3 exp(−3hΣC/kBT ) compared to ferrite (see Eq. 11). Under transversal excitation, only this
small proportion of atoms participates to the anelastic response. The proportion decreases with the carbon content on
account of the increase in Zener ordering (see Section 4.1).

Following an equivalent approach to Nowick and Berry [25], we now look for the relaxation of the strain when a
prior constant stress σ is suppressed at time t = 0. From the time dependence of the strain, the relaxation time τ and
the relaxation strength ∆ can be extracted. The linearized rate equations are written, in case of transversal excitation,

dζ
dt

= −

(
1
τac

+
1
τaa

)
(ζ − ζR)

dη
dt

= 0
(18)

From Equation 1, the shear strain as reference to stress-free martensite is

ε = S ′σ + (λ1 − λ2)Cζ. (19)

The first term in the right-hand side is the elastic response εU while the second term is the anelastic response εan.
Solving Eq. 18 and using Eq. 19, we find a typical time evolution of the anelastic strain:

εan(t)
εU

= ∆trans exp
(
−

t
τtrans

)
. (20)

The relaxation time τtrans entering Equation 20 combines both characteristic times τac and τaa:

1
τtrans =

1
τac

+
1
τaa

. (21)

Interpretation of this result is as follows: when a positive shear stress σ is applied, the site occupancy is slightly
biased is favor of type-2 sites. When the stress is suppressed, relaxation occurs by two mechanisms in parallel: (i)
direct exchange 2 → 1 between disfavored sites, associated to the characteristic time τaa; and (ii) indirect exchange
along the path 2→ 3→ 1 via favored type-3 sites, associated to the characteristic time τac. Since τaa � τac, we have
τtrans ' τac, i.e. relaxation is provided mostly by indirect exchange. This finding is coherent with the anisotropy of
diffusivity evidenced in martensite [30]: diffusion is fast in the x − y plane thanks to a → c → a chains, and slow
along the z direction by a↔ a exchanges.

The relaxation strength entering Equation 20 is expressed as

∆trans =

(
3hΣC
kBT

)
exp

(
−

3hΣC
kBT

)
. (22)

Compared to the relaxation strength in ferrite ∆ferr = hΣC/kBT [35], the relaxation strength in martensite is reduced
by the factor 3 exp(−3hΣC/kBT ), which expresses depletion of the disfavored sites to the benefit of the favored ones.
Furthermore, conversely to ferrite, the higher the solute carbon content of martensite, the lower is the magnitude of
the relaxation strength.

From the above calculation, we conclude that during an internal friction measurement producing a transversal
excitation at angular frequency ω, the energy loss will follow a Debye curve associated to the relaxation strength
∆trans and the relaxation time τtrans:

Q−1
trans = ∆trans ωτtrans

1 + (ωτtrans)2 (23)

This formula and Equations 21–22 constitute the linear-response approximation of the energy loss of martensite under
transversal excitation.
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4.4. Case of longitudinal excitation

In the case of longitudinal excitation, the tetragonality axis of the crystal is oriented along direction 2 (see Fig. 1,
right). Favored sites-2 are largely more occupied than disfavored sites-1 and 3. However, at stress-free equilibrium,
favored and disfavored sites share the same value of the chemical potential. A positive shear stress creates a bias
in chemical potential to the advantage of sites-2, at the expense of sites-1 and 3. As a result, a small proportion of
carbon atoms leave the disfavored sites to the benefit of the favored ones. An opposite flux sets up if the stress is
reversed, i.e. the favored sites deplete to the benefit of the disfavored ones (see Fig. 4, right). This stress-induced atom
transfer is the origin of Snoek relaxation under longitudinal excitation. It is reflected by the time evolution of both
order parameters ζ and η.

At stress-free equilibrium the order parameters are ζ = η0(C,T ) and η = − 1
2η0(C,T ). Introducing the deviations

from stress-free equilibrium as ∆ζ = ζ(σ)− η0 and ∆η = η(σ) + 1
2η0, and using the approximation of Equation 10, we

find the relaxed values 
∆ζR = 5

V0(λ1 − λ2)
kBT

exp
(
−

3hΣC
kBT

)
σ

∆ηR = −
3
2

V0(λ1 − λ2)
kBT

exp
(
−

3hΣC
kBT

)
σ

(24)

Contrary to the transversal case, the rate equations of ∆ζ and ∆η are now coupled:
d∆ζ

dt
= −

(
1
τac

+
1

4τaa

)
(∆ζ − ∆ζR) −

1
2τaa

(∆η − ∆ηR)

d∆η

dt
= −

3
8τaa

(∆ζ − ∆ζR) −
(

1
τac

+
3

4τaa

)
(∆η − ∆ηR)

(25)

This system of linear differential equations admits two eigen modes of relaxation, labeled parallel (‖) and perpendic-
ular (⊥). The associated eigen values are defined by

1
τ‖

=
1
τac

1
τ⊥

=
1
τac

+
1
τaa

(26)

τ‖ is the relaxation time of variable η′ =
(
c2 −

1
2 (c1 + c3)

)
/C, which quantifies Zener ordering along direction-2. τ⊥

is the relaxation time of variable ζ′ = (c3 − c1)/C, which quantifies the degree of orthorhombicity, or ”beyond Zener”
ordering [31]. As discussed above, τaa � τac, such that the relaxation times τ‖ and τ⊥ are very close to one another.
Notice that τ⊥ is identical to the relaxation time under transversal excitation τtrans (Eq. 21). The solution to Equations
25 together with the strain Equation 19, yield the time evolution of the anelastic strain during relaxation:

εan(t)
εU

= ∆‖ exp
(
−

t
τ‖

)
+ ∆⊥ exp

(
−

t
τ⊥

)
, (27)

with the relaxation strengths of the ‖ and ⊥ modes:
∆‖ =

9
4

(
3hΣC
kBT

)
exp

(
−

3hΣC
kBT

)
∆⊥ =

1
4

(
3hΣC
kBT

)
exp

(
−

3hΣC
kBT

) (28)

Relaxation strength of the parallel mode (∆‖) happens to be 9 times more intense than that of the perpendicular mode
(∆⊥).

From Equation 27 we conclude that the energy loss under longitudinal excitation is the sum of two Debye curves
corresponding to the parallel and the perpendicular modes of relaxation, respectively:

Q−1
longi = ∆‖

ωτ‖

1 + (ωτ‖)2 + ∆⊥
ωτ⊥

1 + (ωτ⊥)2 (29)

4.5. Comparison with the thermo-kinetic model

To test our analytical approach, we compared numerically the linear-response approximation (Eqs. 23 and 29) to
the thermo-kinetic model. Figure 9 presents the energy losses in case of transversal (left) and longitudinal (right)
excitations when C is set to 3 at%. In the longitudinal case, contributions of the parallel and perpendicular modes
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Figure 9: Comparison between the thermo-kinetic model and the linear-response approximation. Snoek peaks computed under transversal (left)
and longitudinal (right) excitations. Carbon content C = 3 at%, frequency f = 1 Hz.

are presented. The agreement between both approaches is within 5% at the peak maximum, which validates the
linear-response approximation.

From the linear-response approximation (Eqs. 12, 13 and 14) the activation enthalpies of the characteristic times
write numerically (in eV): Haa = 0.872 + 378 C and Hac = 0.872 − 379 C (C in at%). For the 3 at% carbon alloy
under consideration, this gives Haa = 0.985 eV and Hac = 0.758 eV. As a result, the characteristic time of the a ↔ a
exchanges is much larger than that of the a↔ c exchanges. For instance at 300 K, τaa = 60.2 s while τac = 0.0184 s.
As a consequence the relaxation times of all modes are nearly equal: τ‖ ' τ⊥ ' τtrans = 0.0184 s. They are much
reduced compared to ferrite (τferr = 0.499 s [35]), which explains the downward shift of the peak temperature in
martensite.

4.6. The single-relaxation approximation
The linear-response approximation provides analytic expressions of the internal friction temperature profiles.

From these expressions, analytical formulae of the peak temperature Tm and the peak height Q−1
m could be approxi-

mated.
We recall that the characteristic time τaa is very long compared to τac. In the single-relaxation approximation, we

neglect τ−1
aa as regards to τ−1

ac in the expressions of the relaxation times (Eqs. 21 and 26). Under this approximation, all
relaxation times are equal, and will be denoted τ. τ has the universal form τ = τ0 exp(H/kBT ), with a constant pre-
exponential factor τ0 = (2ν0)−1 and a carbon-dependent activation energy H = Hm

0 + ∆HacC. Because all modes share
the same relaxation time, they have the same temperature dependence, but their amplitudes differ. From Equations
22 and 28 of the relaxation strengths, the longitudinal modes sum to ∆longi = 5

2 ∆trans. Then, the average relaxation
strength amounts to ∆ = 2∆trans.

It is noteworthy that, contrary to ferrite, the relaxation strength in martensite is highly temperature dependent via
the enthalpy of ordering H′ = 3hΣC. In full, the average energy loss in the single-relaxation approximation writes as
a function of temperature

Q−1(T ) = 2
(

H′

kBT

)
exp

(
−

H′

kBT

)
ωτ0 exp

(
H

kBT

)
1 +

(
ωτ0 exp

(
H

kBT

))2 (30)

The frequency dependence of Q−1 has the form of a Debye curve with a temperature-dependent relaxation strength
∆(T ). If the relaxation strength was temperature independent, the temperature profile would have the form of an
inverse cosh function of 1/T , and the energy loss would peak at temperature kBT 0

m = −H/ ln(ωτ0). In view of
Equation 30, this is not the case here. Performing a first-order development of Q−1(T ) around T 0

m gives an approximate
expression of the actual peak temperature Tm:

kBTm = −
H

ln(ωτ0)
+

2H′

(ln(ωτ0))2 (31)

We see that the peak temperature is higher than T 0
m on account of carbon ordering (H′ = 562 C > 0). Numerically, the

difference is of the order of a few degrees. Tm decreases linearly with the carbon content mostly by the composition
dependence of the relaxation time (H = 0.872 − 379 C). Thus, the enhancement of the carbon exchanges between
disfavored and favored sites induced by the Zener ordering is the origin of the downward shift of the peak temperature
when the carbon content is increased.
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The zeroth-order approximation of the peak height is ∆(T 0
m)/2, i.e.

Q−1
m = −

H′

H
ln(ωτ0) exp

(
H′

H
ln(ωτ0)

)
. (32)

Q−1
m is composition-dependent via both the thermodynamic effect (H′) and the kinetic effect (H) of solute carbon.

Since function H′
H ln(ωτ0) in Equation 32 is negative and decreases with C, the peak height is a decreasing function of

the carbon content. The peak height is also frequency-dependent: it increases with the oscillation frequency.
Formulae 31 and 32 provide an excellent estimate of the peak characteristics of martensite in the composition

range of 2 to 5 at% (Figure 7). A slight discrepancy is observed at lower carbon content, where the approximation
C � C0 is no longer valid. Numerically, at the oscillation frequency of 1 Hz, the peak temperature equals 296 K
at 2 at%C and decreases by 12.7 degrees per atomic percent of carbon: Tm = 321 − 12.7 C (at%). The peak height
roughly loses one decade per atomic percent of carbon.

5. Discussion

5.1. Martensite vs ferrite

Our theoretical investigation shows that bct-martensite does present Snoek relaxation via short-range diffusion of
solute carbon atoms. This relaxation differs in many ways from Snoek relaxation in ferrite:

1. Due to the tetragonal symmetry of martensite, the three {100} planes are not all equivalent, and the relaxation
kinetics depends on whether the applied shear stress is longitudinal or transversal with reference to the tetrago-
nality axis;

2. Short-range diffusion of carbon is anisotropic and involves two characteristic times, instead of a single one in
ferrite;

3. Carbon content has an effect on the relaxation kinetics: indirect exchanges in the perpendicular plane are
accelerated when the carbon content is increased;

4. Carbon ordering in martensite has two degrees of freedom —associated with two order parameters—, which
generates two modes of relaxation (parallel and perpendicular).

As a consequence, the temperature-dependent Snoek profiles show original features, opposite to what is observed in
ferrite:

1. The peak height decreases when the carbon content increases;
2. The peak temperature decreases when the carbon content increases;
3. The peak shape is skewed.

Our analysis shows that point (1) is due to the depletion of the disfavored interstitial sites when the carbon content
is increased. Point (2) is due to accelerated carbon jumps in the plane perpendicular to the tetragonal axis when the
carbon content increases. Point (3) is due to the temperature-dependent depletion of the disfavored sites.

5.2. On the occurrence of Snoek peak in martensite

It has been alleged in the literature that Snoek relaxation in tetragonal martensite is impossible. Two arguments
were put forward by some authors:

1. Ward and Capus [15], cited later by Tkalcec et al. [10] wrote: ”In fact, the tetragonality of the martensite
precludes the presence of equivalent octahedral sites in the lattice cell that is needed for the point defects to
give rise to anelastic relaxation.” This symmetry argument is rebuttable: Indeed, favored site-1 and 2 of variant-
3 are equivalent sites. Hence, the bias created by a transversal excitation leads to relaxation by carbon exchanges
between these sites.

2. Johnson [26], cited by Klems et al. [22] assessed that ”The mechanism for such an effect in martensite involves
the application of a sufficiently great applied stress to make an Oa site energetically more favorable than an
Oc site”. The argument has been taken up by Iwasaki et al. [27]. Our answer is two-fold. First, in order to
get a relaxation response, there is no need for a massive change of carbon occupancy from previously favored
sites towards newly energetically favored sites: actually, a minute transfer of carbon atoms is sufficient to
provide a measurable signal. Hence, the internal friction signal is obtained thanks to small periodic variations
of the tetragonality, without a change of the variant orientation (see Fig. 4). Second, the driving force for
relaxation is not the bias in energy, but the bias in chemical potential between sites (either disfavored/disfavored
or disfavored/favored), which induces a carbon flux according to Onsager law [42, 43]. Experiments on ferrite
have shown that a stress magnitude as small as 1 MPa is sufficient to produce a measurable energy loss. Our
calculations show that the same applies to martensite.
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One may argue that ”trapping” of carbon atoms in favored sites prevents their jumping out towards disfavored sites.
Indeed, it was evidenced theoretically that the migration enthalpy out of favored sites is increased by the carbon
content [28, 30]. However, our analysis shows that relaxation is not controlled by this single c → a jump, but is
dominated by the fast indirect a → c → a exchange, of characteristic time τac. The resulting relaxation kinetics has
the unexpected property of being accelerated by an increase in carbon content.

5.3. Comparison with experiment

According to our results, the Snoek peak of bct-martensite is expected in the temperature range of 250–310 K for
an oscillation frequency of 1 Hz, depending on solute carbon content. Few authors have explored this temperature
domain and investigated the effect of carbon content on internal friction. Ward and Capus [15] report internal friction
of as-quenched plain carbon martensite (0.015–0.58 wt%C) measured at temperatures greater than 290 K [12–14]: a
Snoek-type profile is partly visible in the temperature range of 290–350 K. Prioul [4] interpreted a Snoek-like peak
’B’ at ∼ 255K in Fe-27Ni-0.18C and Fe-19Ni-0.51C alloyed martensite as originating from the dislocation–solute
interaction (Schoeck-Seeger theory [44]). More recently, Liu et al. [5–7] identified the ’M3’ peak in Fe-Ni-C virgin
martensite (25–28%Ni, 0.2–2.73 wt%C) at 255 K for 0.25 Hz. This peak was attributed to the interactions between
carbon atoms and dislocations. Ullakko et al. [8] also attributed their ’A4’ peak around 250 K at 0.5 Hz in Fe-Ni-C
martensite (20–30%Ni) to dislocation–solute interaction, while Hoyos et al. [11] interpreted their ’P3’ peak at 260 K
3 Hz (0.626 and 0.71 wt%C) as the generation of kink pairs in the edge dislocations.

Among the above-cited results, the internal friction profiles of Ward and Capus [15] and of Liu et al. [5] have
the original feature of a decreasing peak height when the carbon content is increased. Moreover, the activation
energy retrieved by Liu et al. [7] decreases when increasing the carbon content. These features are coherent with
our theory and suggest that the peaks identified by these authors is the Snoek peak of martensite. Beyond this
qualitative agreement, a quantitative comparison between experiment and theory is hardly reliably because (i) the
real carbon content of the solid solution remains unknown on account of carbon segregation and precipitation during
auto-tempering and room-temperature aging; (ii) the influence of nickel is not yet included in our model; and (iii) the
presence of high internal stress in martensite (coherency stress and dislocation stress field) alter the Snoek response.

5.4. Suggested experimental set up

A clear evidence of the Snoek peak in martensite is still lacking. In view of our results and the difficulties related
to temperature-dependent internal friction experiments, we suggest the following experimental set up as an attempt
to evidence the Snoek peak. To maximize the carbon content in solid solution, austenite should be quenched from a
temperature as low as possible to reduce the effect of auto-tempering, down to a cryogenic temperature, and kept in
liquid nitrogen to avoid aging. The energy loss would preferentially be measured in a low temperature range (around
200 K) such as to avoid tempering during the experiment: either by varying the temperature with a very low oscillation
frequency, or by varying the oscillation frequency at a low temperature. To test the effect of carbon content on the
profile characteristics, samples with various nominal carbon contents, higher than 0.2 wt% should be tested. The
amount of solute carbon in martensite would be measured systematically on the quenched specimens (for instance by
atom probe tomography), together with the tetragonality ratio.

6. Conclusion

We investigated theoretically the Snoek relaxation in defect-free bct-martensite crystals. The alloy thermody-
namics and the carbon migration kinetics were based on a mean-field approximation of the carbon–strain interaction.
According to our Monte Carlo simulations, thermo-kinetic modeling and analytical analysis, Snoek relaxation does
occur in bct-martensite. The Snoek peak of temperature-dependent energy loss profiles shows original features, re-
lated to the peculiarities of Zener-ordered bct-martensite:

1. The peak height decreases when the carbon content is increased, opposite to what occurs in ferrite;
2. The peak temperature depends on the carbon content, and decreases when the carbon content increases.

With an oscillation frequency of 1 Hz, we expect a Snoek peak in the range of temperature of 260 to 305 K for
carbon contents of 1.7 to 4.7 at% (0.38–1.05 wt%). This suggests that some peaks reported in the literature may be
re-interpreted as genuine Snoek peaks. Further work is planned to investigate the influence of dislocation strain fields
on the Snoek-like response of martensite.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

14



Acknowledgments

This work was supported by the Agence Nationale de la Recherche, France (contract C-TRAM ANR- 18-CE92-
0021).

References
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high alloyed steel, Solid State Commun. 195 (2014) 31–34.
[19] J. Hoyos, A. Ghilarducci, D. Mari, Evaluation of dislocation density and interstitial carbon content in quenched and tempered steel by internal

friction, Mater. Sci. Eng. A 640 (2015) 460–464.
[20] J. Hoyos, D. Mari, Comment on “Origin of low-temperature shoulder internal friction peak of Snoek–Köster peak in a medium carbon high
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