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Abstract

In pharmaceutical studies, the Quality by Design (QbD) approach is increasingly being implemented to improve product development. Product quality is tested 
at each step of the manufacturing process, allowing a better process understanding and a better risk management, thus avoiding manufacturing defects. A key 
element of QbD is the construction of a Design Space (DS), i.e., a region in which the specifications on the output parameters should be met. Among the 
various possible construction methods, Designs of Experiments (DoE), and more precisely Response Surface Methodology, represent a perfectly adapted 
tool. The DS obtained may have any geometrical shape; consequently, the acceptable variation range of an input may depend on the value of other inputs. 
However, the experimenters would like to directly know the variation range of each input so that their variation domains are independent. In this context, we 
developed a method to determine the “Proven Acceptable Independent Range” (PAIR). It consists of looking for all the hyper polyhedra included in the 
multidimensional DS and selecting a hyper polyhedron according to various strategies. We will illustrate the performance of our method on different DoE cases.   

1. Introduction

Since the early 2000s, the Quality by Design (QbD) approach in the
pharmaceutical industry has been encouraged by the Food and Drug 
Administration [1]. The guideline ICH Q8 explains that the quality of a 
product must be tested at each step of the manufacturing process [2]. 
This concept consists of different elements (Fig. 1). 

The first element is the definition of a Quality Target Product Profile 
that sets the objectives of the development [3]. The second element is 
the list establishment of properties regarding the product quality, called 
Critical Quality Attributes (CQA) [4]. The third element is a crucial step. 
On the one hand, the risk assessment identifies critical inputs variables 
of a process or a formula that could impact the CQA. On the other hand, 
a relationship between inputs and CQA is then determined [5]. The last 
element of QbD is the control strategy that leads to continuous quality 
improvement [6]. 

The implementation of QbD in the pharmaceutical industry improves 
product development by increasing process understanding [7] and 

providing better risk management in order to deliver a product of good 
quality [8]. 

The risk assessment step is a crucial step in identifying critical input 
parameters of the process that may impact on CQA. Different approaches 
can be used [9,10] and among these, Design of Experiments (DoE), and 
more precisely modelling studies (Response Surface Methodology, RSM 
[11]) are an essential tool [12]. It is used to predict the variation of the 
CQA studied over the whole variation range of the input parameters. 
When there are many inputs and CQA, it is necessary to find a 
“compromise zone” in which all CQA will comply with the specifications 
and for this purpose, multi-criteria optimisation methods, such as the 
desirability function [13], are used. With this method, an optimum point 
i.e. the point that has the highest overall desirability value can be
calculated. This optimum point gives the conditions of the factors that
best meet the specifications, i.e. the experimental conditions for which
the CQA tend towards their target values. The position of this optimum
point will depend on the specifications and the weight attributed to each
CQA. In addition, Food and Drug Administration recommends the
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establishment of a Design Space (DS), defined in the ICHQ8 guideline as 
“the multidimensional combination and interaction of input variables 
and process parameters that have been demonstrated to provide assur-
ance of quality” [2]. In other words, it means that DS is a region in which 
all input parameters can be varied without altering the quality of the 
product. Different methods can be used to define this DS and we have 
opted for probabilistic approaches. In a previous work, we proposed a 
comparison of four DS construction methods from the DoE results in the 
QbD context to highlight their advantages and their limits [14]. The 
difficulty in constructing the DS is that any geometric shape will be 
obtained, which means when we look for the variation range of a 
parameter, we have to set the values for the other parameters. This 
variation range is called Proven Acceptable Range (PAR) [2]. According 
to the guideline ICH Q8, PAR is defined as “a characterised range of a 
process parameter for which operation within this range, while keeping 
other parameters constant, will result in producing a material meeting 
relevant quality criteria” [2]. For example, if a first parameter (pH) is 
maintained at 5, the second parameter (temperature) can be varied 
between 15 and 25 ◦C. However, if another pH value is selected, the 
temperature variation range will be different. 

To overcome this problem, we seek to determine the variation range 

of each input, so that their respective variation domains are indepen-
dent, inside the DS. The problem then turns out to be the number of 
dimensions, i.e. the number of input parameters. For example, for a 
number of dimensions equal to 2, we look for the largest rectangle inside 
the DS, which may seem quite easy, but when working with many inputs 
and many CQA, the challenge is to find the largest hyper polyhedron in 
the multidimensional space of the DS, whose faces will be parallel to the 
input axis, which is much more complicated. We called this concept 
“Proven Acceptable Independent Range”. To summarise, Fig. 2 shows 
the different concepts we have just detailed for a two-dimensional (2D) 
case. 

In this article, we present an algorithm which looks for all possible 
hyper polyhedra within the DS, and determines the PAIR using various 
strategies and considering different selection criteria. We apply this 
method on different DoE cases to compare these different strategies and 
to show that the proposed approach might be useful and it is flexible 
enough to satisfy different needs of the user in pharmaceutical and 
chemical studies. 

Fig. 1. Elements of QbD approach.  

Fig. 2. Illustration of QbD concepts in experimental domain - 2D representation.  
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2. Methods

Different approaches, based on robust setpoint and using Monte-
Carlo simulations, can be used to determine the PAR of inputs [15]. 
These approaches consider in general a limited number of inputs and are 
time-consuming mainly when the variation step is small. 

Our objective is to propose a novel approach to determine the PAIR 
that can be used even in high dimension. Our methodology is based on 
two main stages:  

- Retrieving the set of all possible hyper polyhedra included in the DS
- Selecting a hyper polyhedron based on a user specified criterion

We now describe these stages in detail.

2.1. Retrieving the set of all eligible hyper polyhedra 

Our objective at this stage is to look for all possible hyper polyhedra 
that are inscribed inside the DS. 

2.1.1. Principle 
This is done in four steps illustrated in Fig. 3. 
The first step consists of constructing a DS using a suitable method 

described in a previous work [14]. The second step creates a regular grid 
covering this DS which will facilitate the search for hyper polyhedra. 
The discretization step of the grid is set by the user. Depending on the 

shape of the DS, and after many 2D tests, we found that “isolated” points 
cannot lead to interesting inscribed hyper plans and should be elimi-
nated. To exclude these points, we proceeded in two steps. First, we 
detect the contour of the DS using the notion of close neighbours and 
then, we identify and remove the isolated points from the DS. These 
intermediate steps constitute the third step of the method. The fourth 
step consists in searching, from each point of the DS, among all the hyper 
polyhedra in the grid, those which are inscribed in the DS. 

Fig. 3 presents a simple 2D case. The major complexity of this 
approach lies in the exploration of the DS when the dimension k, cor-
responding to the number of factors in the study, is high. 

2.1.2. Description of the different steps of the algorithm 
After fixing the inputs, our algorithm consists of three parts (con-

struction of a grid point, removal of isolated points and search for the 
hyper polyhedra included in the DS) which will be detailed below. 

2.1.2.1. Inputs of the algorithm. The algorithm takes as input two ele-
ments: a table of dimension n × k where n corresponds to the number of 
points in the DS, k represents the number of factors (dimension) and a 
variation step, defined during the construction of the DS. 

2.1.2.2. Grid choice. The regular grid is determined using the empirical 
range (max - min) in each dimension together with the fixed step. In 
order to have the same scale in all dimensions, we recoded the DS to 

Fig. 3. Search method of hyper polyhedra included in the DS.  
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Fig. 4. Detection of isolated points – 2D example.  

Fig. 5. Algorithm – Exploring all the hyper polyhedra inscribed within the DS.  
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Fig. 6. Strategy 1 - A: a possible rectangle, B: the largest area rectangle.  

Fig. 7. Strategy 1 - A: Optimum in blue, B: the rectangle with the largest area including the optimum. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 8. Strategy 2.  

5



6

have a discretization step equal to 1 so as to simplify the calculations. 
This second part is illustrated in step 2 of Fig. 3. 

2.1.2.3. Removal of isolated points. The detection of isolated points in a 
DS goes through an intermediate step which consists of calculating the 
contour of this DS. To do this, we use the notion of close neighbours of a 
point. We consider that a point belongs to the contour if and only if its 
number of close neighbours is less than 3k − 1. Thus, a point A in 
dimension k belonging to the DS is isolated, if its k-distance, e.g. the 
number of points on the DS which are at a distance from A less than or 

equal to k, is strictly less than k + 1 points. The detection of an isolated 
point is shown in Fig. 4. 

The DS is represented by the pink zone. We consider the point A (in 
grey), and we calculate the k-distance from this point to the other points. 
The value of the k-distance is noted next the dotted lines. We remark that 
one dot, in black, has a k-distance of 2, therefore point A is an isolated 
point and will be removed from the DS. This process is repeated until all 
isolated points are completely removed from the DS. 

2.1.2.4. Search for the possible hyper polyhedra included in the DS. 
Exploring a multidimensional grid for a fixed dimension k, may be 
naturally done using k nested loops. These nested loops are created 
dynamically. Therefore, our algorithm and the corresponding code can 
be used for any dimension without modification. This allows us to 
reduce the complexity of a k-dimensional space exploration. 

For each point (called IPI) from the DS, all points whose k co-
ordinates are higher than those of IPI are tested. Each of these points 
(called IPF) together with IPI, define a different polyhedron. If the actual 
IPF is outside the DS, then it is ignored, as well as any point whose at 

Inputs Outputs and its specifications 

X1 = Liquid (g) Y1 : 20% < Granulometry < 45% 
[2500; 3000] Y2: Friability < 0.5 
X2 = Mixing time (s) Y3: Hardness > 11 
[180; 360] Y4: Transmission ratio > 80%  

Y5: Cohesion index > 600  

Fig. 9. Projection plans. 
A: Y1 - Granulometry, B: Y2 - Friability, C: Y3 - Hardness, D: Y4 - Transmission ratio, E: Y5 - Cohesion index. 

Table 1 
Studied parameters – 2D case study.  
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least one coordinate is higher than that of IPF. Else, all the points inside 
the polyhedron (IPI–IPF) are tested to ensure that the corresponding 
polyhedron is entirely within the DS. Fig. 5 describes the algorithm. 

Alternatively, we can use in step 6 the WSP algorithm [16]. This 
algorithm is generally used to construct Space-Filling Designs whose 
points will be uniformly distributed in space [16]. In our study, we use 
WSP algorithm to select N points from an initial set of n candidate points 
(DS), so that the selected points are at least one dmin away from each 
other. Thus, we can reduce the number of points contained in the DS, 
which will reduce the calculation time. 

2.2. Strategies for selecting a hyper polyhedron 

Once all the hyper polyhedra inscribed within the DS are deter-
mined, we need to select one. Different strategies may be used 
depending mainly on the desired criterion. 

2.2.1. Strategy 1: volume criterion 
The volume of all the hyper polyhedra included in the DS is calcu-

lated and the one with the largest volume is retained (Fig. 6). 
Fig. 6A shows a first possible rectangle (which is a square in this 

example) and Fig. 6B shows the rectangle with the largest volume (in 
purple) in this DS. 

In some cases, we may choose the largest hyper polyhedron that 
contains a specific optimum point. However, it is possible that the vol-
ume of this hyper polyhedron is smaller. Fig. 7 shows the above 
example. 

Considering the blue point as optimum, we find the largest rectangle 
that contains this optimum. 

By applying this strategy, it may happen that several hyper poly-
hedra have the same largest volume, especially in two dimensions. This 
is less probable in higher dimensions. In this case, we may choose among 
the optimal hyper polyhedra one randomly, or consider another strategy 
detailed in the next section. 

2.2.2. Strategy 2: volume and range variation criteria 
In some cases, volume optimisation may not be satisfactory. Indeed, 

several hyper polyhedra may have the same largest volume (Fig. 8) or 
the factors do not have the same importance from a control process point 
of view. It is up to the experimenter to choose the most suitable one 
according to its knowledge of the process. To answer this problem, one 
idea is to account for the length of the edges of the hyper polyhedron 
which determines the variation range of the different factors. We can 
then use the weighted variance of the lengths of the edges: 

σL
2 =

∑k

i=1
(wiLi − L)2 with L=

∑k

i=1
wiLi

wi
(Eq. 1)  

Where wi is the weight of dimension i, Li is the edge length and L is the 

Fig. 10. Compromise zone.  

Table 2 
Coordinates of maximum desirability and response pre-
dictions at this point.  

Parameters Optimum 

Liquid (g) 2637.5 
Time (s) 303.75 
Granulometry (%) 26.79 
Friability 0.41 
Hardness 12.45 
Transmission ratio (%) 84.30 
Cohesion index 789.27  

Fig. 11. Design Space constructed by the reliability method (α = 5%).  

Table 3 
PAIR_2D with the largest area (Strategy 1).  

Liquid (g) [2618.75; 2668.75] 
Mixing time (s) [285.75; 324] 

Nb points 533 
Nb rectangles 17,235 
Time T 
Area 1912.5  

Table 4 
PAIR_2D containing the optimum or another point and with the largest area 
(Strategy 1).   

Liquid (g) [2618.75; 2668.75] [2762.5; 2812.5] 
Mixing time (s) [285.75; 324] [191.25; 207] 

Nb points 533 533 
Nb rectangles 3287 1013 
Time T T 
Area 1912.5 787.5  
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weighted average of edge lengths. Weights are fixed by the user. 
If the experimenter cannot precisely control a factor and prefers to 

have a larger variation range on one of the factors, we will assign a 
greater weight to that factor and maximise the weighted variance of the 
edge lengths (rectangle on the left-hand graph). On the other hand, if the 
experimenter prefers to have a homogeneous variation range on these 
factors because it has good control over them, then we will minimize the 
variance of the edge lengths by assigning identical weights (square on 
the right-hand graph). Fig. 8 illustrates this strategy in a simple two- 
dimensional representation. 

One can minimize this weighted variance over all the admissible 
rectangles. In the case of uniform weights, squares will have zero vari-
ance even if they have small edges. To avoid such bias, we explore 
among all the admissible rectangles, only those having large volume, for 

Liquid (g) [2618.75; 2668.75] [2618.75; 2662.5] [2612.5; 2668.75] [2618.75; 2668.75] 
Mixing time (s) [285.75; 324] [292.5; 328.5] [290.25; 319.5] [285.75; 324] 

Nb points 264 (50%) 134 (25%) 36 (less than 10%) 265 (50%) + optimum 
Nb rectangles 8738 4148 1240 8650 
Time t/2 t/4 t/8 t/2 
Area 1912.5 1575 1645.3 1912.5  

Fig. 12. Edges variance versus area for the top 1% of the largest rectangles.  

Table 6 
PAIR_2D obtained with strategy 2.  

Liquid (g) [2612.5; 2675] [2612.5; 2675] 
Mixing time (s) [288; 312.75] [290.25; 315] 

Nb points 533 
Nb rectangles 162 
Time T 
Area 1546.88  

Table 5 
PAIR_2D obtained using the WSP algorithm (Strategy 1).   
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instance the 1% largest rectangles. Indeed, this strategy would consider 
not only the volume but also the length of factor variation range. 

In the next section, we will apply this PAIR construction method on 
different DoE cases. 

3. Experiments

We apply our construction method described in the previous section
on different DoE cases. First, we use a 2D case study for easier graphical 
representation and then, we use different DoE cases (3D and 4D) from 
the literature. To select a polyhedron, we apply and compare the 

different strategies described in the previous section. 
For all cases, we work on a HP personal computer with Intel® Core™ 

i5-4300 M CPU processor and 4Go of RAM. All experiments were real-
ized with the RStudio interface [17]. In the presentation of results, the 
units of areas and volumes are ignored. 

3.1. Case study in two-dimensional space 

We use here a case study introduced in our previous work [14] with 2 
inputs and 5 outputs (Table 1). In this study, a second order polynomial 
model was postulated and a Doehlert design with 12 experiments was 

Case 3D18 

Inputs Amount of kaolinite in % - X1 = [5; 15] 
Sintering temperature in ◦C - X2 = [900; 1000] 
Sintering time in h - X3 = [2; 4]  

Outputs and its specifications Y1: Mechanical strength >22.5 MPa 
Y2: Porosity >33.7% 
Y3: Permeability >800 L h− 1 m− 2.bar− 1 

Response surfaces 

Optimum point Amount of kaolinite in % 5 
Sintering temperature in ◦C 1000 
Sintering time in h 4 
Mechanical strength in MPa 40.59 
Porosity in % 40.86 
Permeability in L.h− 1.m− 2.bar− 1 1034.88 

Design space 

Table 7 
Studied parameters and DS - 3D case study.  
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performed. 
From the results of the DoE, the models were used to predict re-

sponses throughout the experimental domain. The response surfaces are 
represented in projections plans (Fig. 9). 

In order to satisfy all response specifications, we use desirability 
function to determine a compromise zone (Fig. 10). 

The white zone represents the compromise region in which all the 
outputs comply with the specifications. 

We also determined the optimum point (Table 2) that is represented 
in blue on Fig. 10. 

Then, we constructed a DS by an approach considering the prediction 
quality, called reliability method with a fixed α risk of 5% (Fig. 11). This 
method consists of constructing a confidence interval for each response 
and for each point in the compromise zone. It considers the accuracy of 
the predicted values taking into account the variance function of the 
predicted response in each point [14]. If these confidence interval 
comply with the specifications for all responses, the point will be kept in 
the DS. 

It has 533 points and is divided into two distinct zones. The fixed 
discretization step is 0.025 and it has 2 isolated points. The calculation 
time depends on the computer used. In this case study, we found 17,235 
rectangles included in the DS in 8.4 min. Let us note t, this reference time 
for the first phase of our methodology. 

We then applied the different strategies, detailed in section 2.2. 

3.1.1. Strategy 1: volume criterion 
We look for the rectangle with the largest area included in the DS. 

The results are presented in Table 3. 
We can notice that, for this case study, the optimum point, corre-

sponding to a liquid of 2645 g and a mixing time of 306 s, belongs to 
PAIR. Among the 17,235 rectangles included in the DS, we are looking 
for the largest area rectangle that contains the optimum. 

Table 4 presents the results for two different points, the optimum 
maximising the desirability and another point, corresponding to a liquid 
of 2693.75 g and a mixing time of 195.75 s chosen for various reasons, 
such as feasibility. 

We then use the WSP algorithm to create 3 subsets of points corre-
sponding to 50%, 25% and about 10% of the total number of points 
present in the DS after removing the isolated points. We also tested a 
subset of points (50% of the total number of DS points) including the 
optimum. Table 5 presents the results. 

If we consider 50% of the total number of points, we notice that the 
calculation time is divided by 2. We obtain the same PAIR than that with 
all DS points. Then, the fewer points in the DS, the shorter the calcula-
tion time, but the area of the rectangle is also smaller. 

Including the optimum point, we obtain the same PAIR than that 
with all DS points. 

In this first case, we notice that, using the WSP algorithm, the 
calculation time is shorter than by considering all the points of the DS. 
Using 50% of the DS points, we find the same PAIR. 

3.1.2. Strategy 2: volume and variation range criteria 
For this case study, strategy 1 showed that the rectangle with the 

largest area had a greater variation range for the mixing time (input X2) 
than the liquid (input X1). We can imagine that the experimenter would 
like to have homogeneous variation range for the factors. For that, we 
selected 1% of the largest rectangles and considered those having the 
minimal edges variance by assigning an identical weight to each factor. 
Fig. 12 shows for the top 1% area rectangles, their edges variance versus 
their area. 

Several rectangles achieve a minimum variance of 0.0003125 (blue 
points in Fig. 12) and among these, the largest area corresponds to 
0.06875 and is achieved by two rectangles shown in Table 6. 

The areas are smaller than that with strategy 1 but we obtain more 
homogeneous variation range on the input parameters, as expected. The 
choice of the best variation range for input parameters is left to the 
experimenter. 

3.2. DoE cases from the literature 

We have chosen to work on two case studies, one three-dimensional 
(3D) and the other four-dimensional (4D). 

For each case study, we first present the studied parameters. Then, 
we construct a DS with the reliability method (α = 5%) and apply the 
different strategies to determine the PAIR. 

3.2.1. 3D case study 
The 3D case study concerns the optimisation of phosphate/kaolinite 

microfiltration membrane for treatment of industrial wastewater [18]. 
For this case, a second order polynomial model was postulated and a 
Box-Behnken design with 15 experiments was performed. The studied 
parameters and the DS constructed by the reliability method with a fixed 
α risk of 5% are presented in Table 7. 

This DS has 746 points. The fixed discretization step is 0.1 and it has 
112 isolated points. Table 8 presents the results of the PAIR determi-
nation with the different strategies. For this case, we found 12,788 hyper 
polyhedra included in the DS in 14.24 min, noted t as reference time. 

In strategy 1, we notice that when we work with all points, the PAIR 
found include the optimum point. When we include the optimum point 
in the search for the hyper polyhedron with the largest volume, we find 

Strategy 1 Strategy 2 

All points Optimum 
Kao = 5% 
Temp = 1000 ◦C 
Time = 4 h 

WSP algorithm   

Kao (%) [5; 7] [5; 7] [5; 8] [5; 6.5] [5; 7] [5; 6] 
Temp (◦C) [980; 1000] [980; 1000] [985; 1000] [970; 1000] [980; 1000] [940; 1000] 
Time (h) [3.3; 4] [3.3; 4] [3.4; 4] [3.4; 4] [3.3; 4] [3.7; 4] 

Nb points 746 746 317 (50%) 158 (25%) 66 (10%) 746 
Nb HP 12,788 351 6181 3856 1449 124 
Time t t t/2 t/4 t/8 t 
Volume 0.112 0.112 0.108 0.108 0.112 0.072 

Kao: Amount of kaolinite, Temp: sintering temperature, Time: sintering time, HP: hyper polyhedra. 

Table 8 
Determination of the PAIR with the two strategies – 3D case study.   

10



Table 9 
Studied parameters and DS - 4D case study.  

Case 4D19 

Inputs Cement content in kg/m3 – X1 = [270; 330] 
Fly ash content in kg/m3 - X2 = [50; 100] 
Deflocculant dosage in % - X3 = [0.2; 0.6] 
Water dosage in l/m3 - X4 = [160; 180] 

Outputs and its specifications Y1: 100 mm < Abrams Cone Subsidence < 150 mm 
Y2: Short-term mechanical strength > 5 MPa 
Y3: Long-term mechanical strength > 28 MPa 
Y4: Cost price < 465 F/m3 

Response surfaces 
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the same hyper polyhedron than the one found with all DS points. 
When we consider a subset of DS points (using WSP algorithm), we 

notice that the calculation times are shorter than those with all DS 
points. With 50% and 25% of the DS points, we find almost the same 
hyper polyhedron as when considering all DS points (the volume is 
slightly smaller). Then, when we considered 10% of the DS points, the 
hyper polyhedron found is the same than the one found with all DS 
points. 

In strategy 2, we can imagine that the sintering temperature is a 
critical factor for which the experimenter would like to have a larger 
variation range. From the 12,788 hyper polyhedra, we selected 1% of 
the largest hyper polyhedra. We maximised the weighted variance of 
edge lengths by assigning a weight of 3 to this critical factor and a 
weight of 1 for the other factors. We obtain a hyper polyhedron with a 
smaller volume, but as desired, the acceptable variation range of the 
sintering temperature is greater than that obtained with strategy 1. 

3.2.2. 4D case study 
The 4D case study deals with the formulation of hydraulic concrete 

[19]. In this study, a second order polynomial model was postulated and 
a Doehlert design with 23 experiments was performed. Table 9 presents 
the studied parameters and some sectional plans of DS constructed by 
the reliability method with a fixed α risk of 5%. 

This DS has 2426 points. The fixed discretization step is 0.1 and it has 
486 isolated points. Table 10 presents the results of the PAIR determi-
nation with the different strategies. We found a total of 9765 hyper 
polyhedra included in the DS in 38.5 min, noted t as reference time. 

In strategy 1, we notice that the optimum point does not belong to 
the found PAIR. Nevertheless, the coordinates of the optimum point do 
not allow finding a hyper polyhedron. When we consider a subset of DS 
points (using the WSP algorithm), the calculation times are shorter than 
that with all DS points. With 50% of the DS points, we found the same 
PAIR than that with all DS points. With about 10% of the DS points, we 
found a hyper polyhedron with a smaller volume than that with all DS 
points. 

In strategy 2, we can imagine that the experimenter would like to 
have more homogeneous variation range on the factors. For this, we 
have selected 1% of the larger hyper polyhedra. Then, we minimized the 
variance of the edge lengths weighted with an identical weight for each 
of the factors. We can see that the volume of this hyper polyhedron is 
smaller than that of strategy 1 but, as expected, the variation ranges on 
the factors are more homogeneous. 

4. Conclusion

The final objective of the Quality by Design approach is to define a
DS. Regardless of the construction method chosen, it has any geometric 
shape. Therefore, the acceptable variation range of an input parameter 
may depend on the value of another input parameter. To solve this issue, 
we developed a two-step algorithm that allows the determination of 
acceptable variation range on each input so that their respective varia-
tion domains are independent. The methodology consists in searching 
for all hyper polyhedra inscribed in any k-dimensional space and 
selecting one according to different strategies. 

We applied this method to different 2D, 3D and 4D case studies. The 
calculation times are very acceptable. In addition, the search for the 
hyper polyhedra inscribed in the DS can be parallelized to save even 
more calculation time. The selection of a hyper polyhedron depends on 
the experimental context. We proposed two strategies and compared 
them with each other. 

To conclude, the notion of strategy remains somewhat subjective and 
with elements that must be determined by the experimenter. 
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Table 10 
Determination of the PAIR with the two strategies – 4D case study 
CD: cement dosage, FC: fly ash content, DD: deflocculant dosage, WD: water dosage, HP: hyper polyhedra.   

Strategy 1 Strategy 2 

All points Optimum 
CD = 288 kg/m3 

FC = 80 kg/m3 

DD = 0.24% 
WD = 174 l/m3 

WSP algorithm 

CD (kg/m3) [291; 303] - [291; 303] [297; 303] [291; 297] 
FC (kg/m3) [65; 80] - [65; 80] [60; 80] [65; 75] 
DD (%) [0.28; 0.32] - [0.28; 0.32] [0.28; 0.32] [0.28; 0.32] 
WD (l/m3) [174; 175] - [174; 175] [174; 175] [173; 175] 
Nb points 2426 – 967 (50%) 237 (about 10%) 2426 
Nb HP 9765 – 4881 1111 98 
Time t – t/2.5 t/8 t 
Volume 7.2 – 7.2 4.8 4.8  
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