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Abstract

A numerical solution procedure using the mesh-superposition approach, known
as the Chimera method, together with the OpenFOAM toolbox environment
is used to compute the forces generated by large amplitude heaving and pitch-
ing foil. The possibility of fitting thrust prediction laws, based on classical
potential flow theories, with the numerically computed forces is explored, for
a Reynolds number of 5 104. It is shown, first for a pure heaving motion and
subsequently by adding a harmonic pitching motion, that theoretical scaling
may be fitted to numerical time-averaged thrust data, even in the case of
large amplitude motions. The thrust-prediction law is shown to still apply
to pitching-rotating motions, such as those of blades in cycloidal propulsion
devices, the mean pressure correction due to the additional surging motion
being small. The synchronized rotation-pitching of three foils typical of a
cross-flow propeller configuration is addressed as well. The numerical global
thrust results are shown to be in general agreement with the theoretical pre-
diction, but also with blade-embedded load cell measurements for an exper-
imental device developed by the French Naval Academy Research Institute.

Keywords: Pitching and heaving foil; Thrust; Chimera method; Cycloidal
propulsion

1. Introduction

Oscillating bodies in moving fluids are intimately related to swimming
and flying and the question of thrust performance in this context has received
considerable attention in the literature [1]. Pitching and heaving motions are
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often considered as archetypes of aquatic locomotion and it is the reason why
they have widely been considered for thrust scaling investigations. It has
been recognized that flapping wings’ performance may be inferred from the
wake structure of the wings, which exhibits in the case of thrust production
jet-like average velocity profiles, associated with a reversed Kármán vortex
street [2]. Applying for instance the integral momentum theory to a control
volume in which the oscillating body is embedded, the generated thrust can
be predicted by velocity measurements in the wake [3, 4], the reliability of
this approach having been recently addressed in [5, 6], comparing measure-
ments with numerical simulation results.
Theoretical models for thrust prediction based on potential flow theory have
been proposed since the seminal work by Garrick [7], for swimming plates
in [8] and more recently for example in [9, 10]. The formulas derived in
[7] have been compared with numerical thrust force results, see for example
[11–13], as well as with direct measurements (e.g. [14]). Scaling laws for
pitching and heaving foils have also been compared with experimental data
in [15, 16], among others. But despite the numerous numerical and exper-
imental investigations on the hydrodynamics of flapping foils available (see
[17] for a recent review), there is no general consensus about thrust models,
in particular when moderate or large flapping amplitudes are required, as for
example in the field of renewable power generation [18] and naval propul-
sion [19]. Indeed, large-amplitude oscillations of foils appear to be necessary
to achieve efficient thrust magnitudes (e.g. [20]). The blades of a cycloidal
propeller for instance undergo large-amplitude pitching-rotating motions and
the associate performance of such devices has been addressed numerically in
[21], while a low-order hydrodynamic model has been proposed and experi-
mentally validated in [22]. Cycloidal fluid flow engines are also designed for
tidal energy conversion and a Darrieu-type cross flow turbine has for instance
been addressed in [23].
Concerning scaling laws, there have been attempts (see e.g. [24]) to extent
the linear potential theory to foils undergoing large amplitude oscillations,
experimental results having been compared with linear and nonlinear theory
[15]. In [25], scaling relations have been proposed in particular for heaving
amplitudes of the order of magnitude of the foil’s chord.
When addressing numerically large amplitude oscillations of a foil, a key issue
is to efficiently update the computational mesh. An alternative which has
become widely used is to immerse the moving geometry on a simple Cartesian
grid using more or less ad hoc momentum sources to model the kinematic
condition at the interface between the velocity field and the body’s moving
boundary. This approach is known as the immersed boundary method and
goes back to Peskin’s seminal work [26]. Even though this approach may be
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used for different Navier-Stokes discretization procedures as well as all types
of structures (see e.g. [27, 28]), a difficulty associated with this method is
however to accurately resolve the very vicinity of the body surface, in par-
ticular in the case of thin structures [29].
When large amplitude motions are addressed, the so-called overset grid ap-
proach, also known as the Chimera method, appears to be particularly appro-
priate as a body-fitted discretization procedure. The idea is to superimpose
moving subdomains to a fixed meshed background global computational do-
main. The independently moving domains contain the structures in motion
and the communication with the fixed mesh is achieved through interpolation
within transmission zones. This method has first been documented in [30]
and more recent analyses are given in [31–34], for instance. The open-source
OpenFOAM toolbox has become very popular in academic research [35–37]
as well as industrial flow simulations [38, 39], the Chimera-type approach
having been implemented in several version of this numerical simulation en-
vironment and in particular in [40] (for a description of the overset-option,
see for instance [41]).
The OpenFOAM toolbox and the overset-option is used in the present in-
vestigation, addressing the question of thrust-scaling for a large amplitude
heaving foil as well as for a heaving-pitching foil. Heaving, pitching and
surging are the three motions into which the displacement of pitching foils in
cross-flow propellers can be decomposed. Considering such a propeller, which
is part of an academic experimental project at the French Naval Academy
Research Institute (IRENav) [42], simulations are performed for rotating-
pitching foils for parameters close to those in the experiment.
The paper is organized as follows. A heaving foil is addressed in Section
2 using the OpenFOAM simulation environment, the numerical procedure
using the overset-approach being presented and the numerical convergence
is assessed as well. The forces generated by the foil’s motion are computed
for a large set of heaving parameters, allowing a successful fit with a thrust
scaling law. Subsequently in Section 3 a pitching motion is added to heaving,
the aim being again to propose a thrust prediction law, as function of the
parameters. In Section 4 the foil’s motion is made more complex adding a
surging back-and-forth movement, such as to mimic motions in cross-flow
propeller devices. In particular, the reliability of a mere heaving-pitching
thrust law in this context is examined. Finally, dynamic force computations
are compared with experimental measurements for the cycloidal propulsion
device described in [42]. The results are discussed in the concluding Section
5.
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2. Heaving foil

We consider a foil with chord L in a two-dimensional domain (x, y) im-
mersed in an incoming incompressible flow of velocity U∞, heaving in the
direction normal to the incoming flow direction, the heaving motion being

h = h0L sin(2πft) (1)

with h0 the (dimensionless) ratio between the heaving amplitude and the
chord, f being the heaving frequency. The heaving velocity is written ḣ and
the forces exerted on the foil are equivalent to those that would experience
a fixed foil immersed in a flow with an angle of attack α and relative flow
velocity U such that (see also [25])

α = arctan( −ḣ
U∞

) , U =
√
U2∞ + ḣ2. (2)

The foil therefore is subject to a lift force fl as well as a form drag fd re-
spectively in the direction el and ed, forming en angle α with the streamwise
x-direction, as sketched in figure 1. In the forthcoming analysis the flow
quantities are made dimensionless with the foil’s chord L and the incoming
uniform flow velocity U∞. Also, the convention will be used that thrust is
positive and drag negative.
In the following, we consider what is known as the reduced frequency

k = πfL
U∞

(3)

as dimensionless quantity and accordingly the dimensionless heaving law is

h∗ = h/L = h0 sin(2kt∗) and ḣ/U∞ = 2kh0 cos(2kt∗). (4)

with t∗ = tU∞/L the time made dimensionless. Accordingly, the angle of
attack due to the heaving velocity can be written

α = arctan (−2kh0 cos(2kt∗)) . (5)

Here dimensionless frequencies and heaving amplitudes up to the order of
one are to be considered which means that the time-varying angle of attack
as experienced by the foil may be as large as ±60○. Reliable lift formula
are however only known for relatively small angles of attack in the limit of
inviscid flow, the lift force for a slender symmetrical body being known to
be approximately π sin(α)U2Lρ ([43]) with U the incoming flow. Of course,
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Figure 1: Sketch of the heaving foil immersed in an incoming flow: lower figure shows U
as seen in the foil’s coordinate system as well as the sketch of the lift fl and the form drag
fd.

there is no reason that such a formula quantitatively applies to the present
heaving foil at large amplitudes. Considering nevertheless tentatively this
formula (which would correspond to instantaneous lift fl for varying α in the
el direction as sketched in figure 1), its projection on the x-axis yields (with
the convention that thrust is positive) π sin2(α)U2Lρ, U being given by (2).
According to (5)

sin2(α) = 4k2h20 cos2(2kt∗)
1 + 4k2h20 cos2(2kt∗) while U2/U2

∞ = 1 + 4k2h20 cos2(2kt∗) (6)

and introducing a hypothetical proportionality factor C, a possible lift-induced
dynamic thrust formula could be

f∗thrust = C 4πk2h20 cos2(2kt∗). (7)

While uncountable data are of course available for drag coefficients as func-
tion of angles of attack for NACA foils, it seems however that general analytic
drag laws are not available, besides the evidence that pressure drag increases
with the angle of attack. Making the ad-hoc assumption in the present case
that the time-dependent drag is qualitatively proportional to ∣ sin(α)∣U2Lρ,
then the (dimensionless) drag in the ed direction (see figure 1) would vary as

D 2k h0 ∣ cos(2kt∗) ∣
√

1 + 4k2h20 cos2(2kt∗),

given (6), D being a hypothetical factor of proportionality. Projection on
the x-axis (multiplying by cos(α) with the convention that drag is negative)
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leads to the formula

f∗drag = −D 2k h0 ∣ cos(2kt∗)∣ (8)

and adding this negative force to (7) would yield a theoretical total force
f∗thrust + f∗drag in the streamwise x direction.
The flow motion is governed by the Navier–Stokes equations

∇ ⋅ u = 0 , ρ
∂u

∂t
+ ρ(u ⋅ ∇)u = −∇p + µ∇2u , (9)

where u = (u, v) is the velocity field and p is the pressure, ρ and µ being the
constant density and dynamic viscosity. The dimensionless (written with an
asterisk) time-dependent pressure force (per unit span) in the fixed coordi-
nate system (x, y) along the heaving foil is

f∗ = (f∗x , f∗y ) = −
1

ρU2∞L
∮ (−p)n ds (10)

where n = (nx, ny) is the outward unit vector normal to the foil, the integra-
tion being performed along the foil’s upper and lower face (the minus sign
being applied such that a propulsive force is positive, which is the convention
generally used). Also, the streamwise component f∗x will be the key quantity
in the forthcoming analysis. At the flow conditions considered, the viscous
drag

f∗µ,x = −
1

ρU2∞
∮ µ(2

∂u

∂x
nx + (∂u

∂y
+ ∂v
∂y

)ny) ds (11)

(with the minus sign for the drag to be negative) will not contribute signifi-
cantly to the overall force balance.
In the following, the question will be addressed to which extend the thrust
formula (7) and the drag prediction (8) are retrieved in the numerical pressure
force data for a heaving foil. Prior to this we summarize in the nest paragraph
the numerical environment used for the simulations and we briefly address
the numerical convergence issue.

2.1. Numerical procedure and convergence
Direct numerical simulations of equations (9) are performed using the

OpenFOAM toolbox (the v1906-version [40]); the solver is inherently three-
dimensional and only one void cell is used in the z direction for the present
two-dimensional flow setting. The methodology used in OpenFOAM is based
on a finite volume discretization of the differential operators together with a
mesh-handling using structured or unstructured grids.
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Figure 2: Zoom on the mesh structure, showing the moving overset mesh with dimensions
(Lx,2, Ly,2) superimposed to the background mesh with dimensions (Lx, Ly).

The main features of the discretization, based on Gauss’ theorem applied to
the volume integrals, are briefly summarized. For the approximation of the
resulting integrals over the control volume boundaries, the values of the flow
quantities at the volume’s faces have to be interpolated from the values at the
computational nodes. Interpolation practices for finite volume methods are
described for instance in [44]. In the forthcoming simulations, for the convec-
tive term an upwind interpolation known as upwind differencing scheme is
used, where the direction of the flow determines which node provides the cell
face value. For the diffusive term a linear interpolation between the faces’
two nearest nodes is performed, which is of second order. Linear interpola-
tion is also used for the computation of the gradients normal to the surfaces.
Time discretization is based on the first order implicit Euler scheme. In or-
der to deal with the quadratic non-linearity in the Navier-Stokes system, the
equations to be solved at each time step are linearized about the result at the
previous time step, in the way that the neglected terms are of second order
in time, that is smaller than the error of the time discretization. The time
step is adapted during the time integration via the Courant number, well
known in computational fluid dynamics. All linear systems are solved using
the built-in pimpleFoam predictor-corrector solver, that merges the PISO and
SIMPLE algorithms widely used in computational fluid dynamics [44].
In the present analysis we address large amplitude motions of foils and the
so-called overset grid approach (also called Chimera approach) appears to
be particularly suitable in this context. This approach consists of meshed
subdomains into which the objects are embedded, these meshes being free
to move independently one to each other. These subdomains are superim-
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Figure 3: Snapshot of the streamwise velocity component (a) and the corresponding pres-
sure distribution along the upper face and lower face of the foil as function r/L from the
leading edge (b). The foil is in the upward motion at approximately the highest heaving
velocity. The heaving parameters are k = 0.5 and h0 = 0.8, the Reynolds number being
Re = 5 104.

posed to a fixed meshed background domain. For each independent mesh
the discretized Navier-Stokes system is advanced in time and at each time
step the coupling with the overall solution domain and the background mesh
is achieved by transmitting, using interpolation techniques, flow conditions,
that is fluxes in the finite volume context used in OpenFOAM. General con-
siderations concerning the coupling of the subdomains can be found in [32]
and the use of the Chimera approach in the OpenFOAM-v1906 environment
is explained in [41] and [45], for instance. The trajectory of the moving mesh
(or independently moving meshes when several moving objects are consid-
ered) is prescribed via a text file which is generated prior to the numerical
integration of the system. The coordinates in time, with respect to its initial
position, of a specific point of the object is to be provided together with the
possibility of rotating the object around the axis normal to the computational
domain, allowing the combination of translational and pitching motions. The
discrete time subdivision of the prescribed motion is to be chosen as small
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Options OpenFOAM v1906, overset, cellVolumeWeight,
pimpleFoam

Reynolds numbers 5 104 (2.8 105 for comparison with experiments)
Velocity boundary

and initial
conditions

inlet: u = U∞ex
other boundaries: zero normal gradient
initial condition: u0 = U∞ex

Pressure boundary
conditions

inlet: zero normal gradient
other boundaries: zero pressure

Table 1: Main numerical simulation options.

as (or smaller than) the time-step, the value of which being automatically
adapted via the Courant number of the Navier-Stokes time integration. In
the forthcoming simulations this latter time step is generally of the order of
10−3 and the the prescribed motion has been discretized with time-intervals
as small as 10−4.
The moving object is here a NACA0018 foil (which is considered in all the
simulations) and figure 2 is a zoom showing the overset mesh superimposed to
the background mesh (here the position is associated with combined heaving-
pitching motion which will be addressed later in this paper). The transmis-
sion from the background mesh to the moving mesh is achieved by interpo-
lation (the cellVolumeWeight option [41] is used) on the outer border cells of
the overset mesh, whereas in return the transmission from the moving mesh
back to the background mesh uses the background mesh cells immediately
adjacent to the foil’s boundary.
For the convergence analysis the Reynolds number Re = ρU∞L/µ has been
set to 5 104. As heaving parameters, the reduced frequency k = 0.5 and the
heaving amplitude h0 = 0.8 have been chosen, these values being representa-
tive of the forthcoming heaving parameter exploration. Uniform free-stream
u = U∞ex is prescribed at inflow, whereas at the upper and lower bound-
ary zero normal-gradient conditions are imposed for the two components of
the flow velocity. A zero pressure is imposed on the boundaries, except at
inflow where zero normal-gradient pressure applies. When starting a new
computation, uniform free-stream velocity is imposed in the domain as ini-
tial condition. The table 1 briefly summarizes the OpenFOAM options and
boundary conditions used.
In figure 3 a typical snapshot of the streamwise velocity in the vicinity of the
foil is shown, together with the pressure distribution along the upper and
lower faces. The foil is in upward motion at a position where the heaving
velocity is approximately the maximum, that is the associated angle of attack
(see figure 1) is at its maximum, which explains the large separation region
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M1 M2 M3 M+
1 M++

1

Lx [−3L,7L] [−3L,7L] [−3L,7L] [−4.2L,10L] [−6L,14L]
Ly [−3L,3L] [−3L,3L] [−3L,3L] [−4.2L,4.2L] [−6L,6L]
Lx,2 [−0.7L,1.7L] [−0.7L,1.7L] [−0.7L,1.7L] [−1L,2.4L] [−1.4L,3.4L]
Ly,2 [−0.5L,0.5L] [−0.5L,0.5L] [−0.5L,0.5L] [−0.7L,0.7L] [−1L,1L]
∆x 0.01L 0.0083L 0.0067L 0.01L 0.01L

∆y 0.01L 0.0083L 0.0067L 0.01L 0.01L

∆x,2 0.016L 0.0125L 0.01L 0.016L 0.018L

∆y,2 0.016L 0.0125L 0.01L 0.016L 0.018L

max(f∗x ) 0.436 0.408 (-6.4%) 0.427 (4.7%) 0.458 (5%) 0.383 (-12%)

Table 2: Mesh parameters for the computational domain sketched in figure 2. Note that
∆x,2, ∆y,2 are the values in the coarse mesh region of the moving mesh. The last line gives
the maximum values of the periodic pressure force f∗x (taken at t∗ = 3π) for each mesh,
the percentage values in parentheses being those of the differences between the value of
the finer to the coarser mesh (M2 to M1 and M3 to M2) and the difference of the values
for the larger domains M+

1 and M++

1 with respect to M1.

at the lower side.
Table 2 lists the parameters for different meshes considered. Here Lx and Ly
provide the dimension of the global computational domain with the back-
ground mesh. A specific point on the foil at one quarter of the chord from
the leading is chosen, which in the forthcoming pitching-heaving motion will
be the pitch-pivot point, set at (x0, y0) = (0,0) in the computational domain
for the foil at its initial position. For instance Lx = [−3L,7L] means that the
overall length is ten times the foil’s chord L, with 3L the distance from the
inflow boundary to x0 and 7L the distance from x0 to the outflow boundary.
The vertical dimension Ly = [−3L,3L] means a domain’s height of 6L with
a distance 3L from the foil’s chord line to the bottom as well as to the top.
The dimensions of the moving overset-mesh are given by Lx,2 and Ly,2 re-
spectively (see figure 2). Furthermore ∆x,∆y (respectively ∆x,2,∆y,2) are the
grid sizes in both directions, for the background and moving mesh, respec-
tively. While for each domain the background mesh has a constant grid size,
on the moving mesh, when approaching the foil, two successive refinements
are performed in a transient zone, dividing the grid size by 4. At last, in
the very vicinity of the foil and inside the boundary layer three additional
refinements are performed, dividing again the grid size by 8.
The meshes labeled M1, M2, M3 correspond to the same domain size, but to
successive grid-size refinements by an almost constant factor (as advocated
for instance in [46]), the grid size being divided here two times by ≈ 1.25.
The meshes labeledM1,M+

1 andM++
1 in table 2 have the same density of dis-
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cretization (besides a somewhat coarser grid in the moving domain for mesh
M++

1 ), the domain sizes being successively increased by a factor of ≈
√

2.
Considering for instance the mesh labeled M2, the grid size of the back-
ground mesh is (∆x,∆y) = (0.0083L,0.0083L). In the coarse mesh region
of the moving mesh the values are (∆x,2,∆y,2) = (0.0125L,0.0125L) which is
refined to (∆x,2/32,∆y,2/32), yielding a grid size as small as 0.0004L in the
boundary layer region. Concerning the numerical resolution in the vicinity of
the foil, the Blasius formula 5L

√
r/L

√
1/Re for the boundary-layer thickness

(r/L being the dimensionless distance from the leading edge) could provide
an idea about the number of grid points inside the boundary-layer region.
This formula yields 0.022L

√
r/L and given the grid size 0.0004L close to the

foil, one may estimate that roughly 55
√
r/L points are inside the boundary

layer (that is still 10 points at a dimensionless distance r/L as small as 0.033
from the leading edge). It should also be mentioned that the background
mesh has to be chosen sufficiently fine to ensure a reliable transmission of
the flow conditions from the moving mesh. Indeed, the discrete contour as-
sociated with the background mesh cells the closest to the foil must fit in the
best possible way with the foil’s contour.
The pressure forces generated by the foil’s motion is at the heart of the inves-
tigation and we focus on this quantity for numerical validation. The dynamic
force (10) computed for different meshes are superimposed in figure 4(a) and
the curves are seen to be very close one to each other, besides slight differences
at the peak values. The viscous drag (11) has been computed as well and is
depicted in figure 4(b) (for two meshes only, the curves being close) and it
is interesting to note that (after a short transient) at t∗ = π,2π... the viscous
force peak is positive, given that the heaving velocity ḣ∗ = 2kh0 cos(t∗) (for
k = 0.5) undergoes a minimum or maximum, leading to large separation of
the flow field alternately on the upper face and lower face. Note that the
drag force is almost two orders of magnitude smaller than the pressure force,
what justifies to only consider the pressure force for thrust calculations, at
least for this range of Reynolds numbers.
After a short transient regime the dynamic pressure becomes periodic with
peaks at t∗ = π,2π... (see figure 4(a)) and for the convergence analysis, ta-
ble 2 provides the maximum value of f∗x (taken at t∗ = 3π) for each mesh.
The differences, expressed in percentage, between these values when per-
forming successive grid refinement, that is for M2 compared to M1 and M3

compared to M2, are provided as well. The differences slightly decrease and
change sign, which indicates oscillatory convergence (see for instance [46] for
general considerations on validation and verification of numerical simulation
results). Concerning the influence of the computational domain size, the val-
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Figure 4: Streamwise component f∗x of the pressure force (a) and viscous drag (b) as
function of time t∗ and for different meshes (for the mesh-labels M1,M2,M3,M

++

1 see
table 2), for a heaving amplitude h0 = 0.8 and frequency k = 0.5, at Re = 5 104.

ues for M+
1 and to M++

1 are compared to the value for M1, the pressure peak
being higher for M+

1 and lower for M++
1 . It is not surprising that finite-size

effects are observed, the differences remaining however relatively small. It
has to be emphasized that a definite mesh convergence evidence is hardly
to be achieved, for this unsteady flow field. Indeed, as mentioned earlier for
instance the time step is automatically adapted via the Courant number and
it hence changes when refining the grid. Also, when enlarging the domains’
dimensions, the relative size between the moving domain and the background
domain has been kept constant, which modifies however the distance from
the foil to the domains’ interpolation region.
Note that the background mesh for theM2 discretization contains a bit more
than 8.7 105 points and the moving mesh about 2 104 points (due to the refin-
ing close to the foil) which yields a total number of almost 9 105 points. This
M2 mesh has been chosen in all the forthcoming simulations, as a compromise
between precision and computational cost.
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2.2. Thrust scaling
The formula (7) for lift-induced thrust has been derived according to

classical fluid mechanics, the underlying hypotheses being slender body and
potential flow theory as well as small angles of attack. When considering
for instance cycloidal propulsion, the foils’ rotation can be decomposed into
heaving and surging, the heaving and surging amplitude being likely of the
same order than the foils’ chord length (in such devices the foils undergo in
general also additional pitching motions). For instance, the Voith Schneider
propulsion addressed in [47] would correspond to h0 = 0.75 whereas the re-
duced frequency k is of order one and the angle of attack (2) experienced
by the heaving foil takes values during a heaving period as large as 50○.
The question is whether a formula such as (7) is meaningful for the heaving
NACA0018 foil considered here.
Numerical data have been generated for frequencies k = 0.25,0.5,0.75,1, the
heaving amplitudes being h0 = 0.4,0.6,0.8,1, that is 16 (k, h0) parameter
combinations have been considered, the Reynolds number being Re = 5 104.
Of course, the Reynolds number associated with real propulsion in water
would at least be one or two orders of magnitude higher. The value consid-
ered is however likely to be large enough for the pressure stress computations
to provide significant thrust results, viscous effects being negligible for the
force outcome at this Reynolds number.
The oscillatory pressure force f∗x can be decomposed as

f∗x = f∗l,x + f∗d,x (12)

with f∗l,x the lift force and f∗d,x the drag force, both projected on the x-axis.
For the comparison with the formula (7) and (8), the factors of proportion-
ality C and D have to be estimated. The choice has been made that the
time-averaged values ⟨f∗l,x⟩ and ⟨f∗d,x⟩ (⟨⋅⟩ being the average over one heaving
period) coincide with those of the formula and given that ⟨cos2(2kt∗)⟩ = 1/2
and ⟨∣ cos(2kt∗)∣⟩ = 2/π, C and D have been chosen such that

⟨f∗l,x⟩ = C 2πk2h20, ⟨f∗d,x⟩ = −D
4

π
kh0, (13)

C and D having been computed for all the heaving parameter combinations.
The figures 5 and 6 show the computed thrust and drag contributions to the
pressure force over several heaving periods, for the heaving parameter k =
0.5, h0 = 0.8 as well as k = 0.75, h0 = 0.6, respectively. The theoretical formula
(7) and (8) are superimposed. The corresponding proportionality factors
are C = 0.477,D = 0.728 and C = 0.419,D = 0.637, respectively, computed
according to (13). It is seen that the formulas are representative of the
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Figure 5: Dimensionless lift-induced thrust f∗l,x (a) and pressure drag f∗d,x (b) as function
of time t∗, for a heaving amplitude h0 = 0.8 and frequency k = 0.5, at Re = 5 104. The
theoretical formulas f∗thrust = C 4πk2h20 cos2(2kt∗) and f∗drag = −D 2kh0∣ cos(2kt∗)∣ are
superimposed as the broken lines, for C = 0.477,D = 0.728.

computed dynamic thrust and drag, but it has to be emphasized that different
C,D values are retrieved. Considering the 16 parameter combinations, it
appears that C varies between 0.3 and 0.6, whereas the D coefficients are in
an even larger range from 0.3 to 1.2.
Assuming a linear dependence of these coefficients with respect to k and h0,
writing

C(k, h0) = c1 + c2k + c3h0, D(k, h0) = d1 + d2k + d3h0, (14)

the coefficients

(c1, c2, c3) = (0.745,−0.277,−0.150), (d1, d2, d3) = (−0.387,0.640,0.923)
(15)

have been obtained performing a least-square fit with the 16 values of C and
D as given by the computations for the 16 parameter configurations consid-
ered. Note that C(k, h0) and D(k, h0) are always positive in the parameter
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Figure 6: Dimensionless lift-induced thrust f∗l,x (a) and pressure drag f∗d,x (b) as function
of time t∗, for a heaving amplitude h0 = 0.6 and frequency k = 0.75, at Re = 5 104. The
theoretical formulas f∗thrust = C 4πk2h20 cos2(2kt∗) and f∗drag = −D 2kh0∣ cos(2kt∗)∣ are
superimposed as the broken line, for C = 0.419,D = 0.637.

range. The theoretical model for the mean pressure force is accordingly

F ∗
theory = 2πC(k, h0)k2h20 −

4

π
D(k, h0)kh0 (16)

(with C(k, h0) and D(k, h0) given by 14). The time-average F ∗
x of the os-

cillatory pressure force (12) has been computed and the values are shown
in figure (7) against its model counterpart; it is seen that the theoretical
thrust prediction is close to the computed values. Note that classical thrust
coefficient formula have been derived in [7] for small heaving amplitudes,
based on potential flow formulas [48], for an idealized airfoil represented as
a straight line, that is without pressure form drag. This theory yields a
formula 2πk2h20(F 2 + G2), known as Garrick’s theory where F and G are
function of the reduced frequency tabulated in [7]. The corresponding thrust
values have for instance been compared in [11] with numerical values (ob-
tained with a two-dimensional panel code) for plunging NACA foils, however
for h0 values smaller than 0.4 which is the lowest value considered here.
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Figure 7: Time averaged pressure force F ∗

x against its model counterpart (16), the symbols
representing the values for the 16 parameter values (k, h0), with k = 0.25,0.5,0.75,1 and
h0 = 0.4,0.6,0.8,1, the solid line being the bisector of the first quadrant angle.

It is interesting to note that the thrust part in the model (16) is at least
roughly of the order of magnitude with what one gets with Garrick’s for-
mula: it has been checked that for the (k, h0) combinations considered, the
latter formula would however provide values about 20% to 40% higher. Large
amplitude oscillations have also been experimentally addressed in [25], con-
sidering the Strouhal number formed with the maximum foil excursion 2Lh0,
that is St = 2fLh0/U∞, as dimensionless frequency. It is easily seen that
St = 2kh0/π and in [25] some evidence is provided for a thrust dependence
on St2 (that is ∼ k2h20). The present investigation however suggests that such
a simplified law only provides a rough estimate of the thrust performance.

3. Heaving-pitching foil

In order to put a step forward towards the modeling of propulsion devices,
a pitching motion is superimposed to the heaving motion considered so far.
The pitching motion considered has the same period as the heaving motion,
introducing a phase-shift φ such that the pitching angle is

θ(t∗) = α0 sin(2kt∗ + φ), (17)

(the heaving motion being h∗(t) = h0 sin(2kt∗)). The pitch-pivot point is set
at one quarter of the foil’s chord from the leading edge, that is the chord-
line from the pivot point to the trailing edge forms an angle θ(t∗) with the
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Figure 8: Sketch (left) of the heaving-pitching foil, in its upward motion (solid contour)
and downward motion (broken contour). The snapshot (right) is the vorticity field for the
parameters (k, h0, α0) = (0.5,0.8,20○), the foil being in its upward motion at θ(t) ≈ −0.5α0

and h∗(t) ≈ 0.866h0.

horizontal inflow direction. The phase-shift φ = −π/2 has been chosen and
accordingly θ(t∗) = −α0 cos(2kt∗)), which corresponds to the foil’s motion in
an experimental device to be discussed in the next section.
Simulations have been performed for three values of the maximum pitching
angle, that is α0 = 10○, 20○, 30○, again at Re = 5 104. The left picture in
figure 8 shows a sketch of the foils position during the upward and downward
heaving motion. An instantaneous flow vorticity field for the pitching angle
α0 = 20○, the heaving amplitude h0 = 0.8 and the reduced frequency k = 0.5
is shown as well, the foil being in its upward heaving motion at the instant
such that θ(t) ≈ −0.5α0 and h∗(t) ≈ 0.866h0. For the same heaving ampli-
tude h0 = 0.8 and frequency k = 0.5, the oscillatory pressure force f∗x is shown
for the three pitching angles in figure 9(a). As can be seen, the maximum
peak is for α0 = 10○, the result for α0 = 20○ is close to the values for pure
heaving, whereas the thrust performance is the lowest for the highest pitch-
ing angle α0 = 30○. For these parameter values the viscous force f∗µ,x in the
x-direction associated with the viscous stress has been computed as well and
it is shown in figure 9(b). It is interesting to note that while for α = 0,10○ the
peak at t∗ = π,2π... is positive, for higher pitching angles however it is nega-
tive. This can be explained by the fact, that when the foil is pitching with a
phase shift −π/2 with respect to the heaving motion, the apparent incoming
flow direction sketched in figure 1 forms, when pitching is added, an angle
α(t)−θ(t) with the chord line. This means that the pitching lowers the angle
of attack experienced by the foil and hence the intensity of separation. In
all cases the mean viscous force is of course negative, contributing as drag.
Note gain that the magnitude of viscous drag is negligible with regard to the
thrust. In the previous section it has been attempted to scale the dynamic
force in terms of the reduced frequency k and the heaving amplitude h0 and
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Figure 9: Oscillatory pressure force f∗x (a) and viscous force f∗µ,x (b) for the foil undergoing
heaving-pitching motion, for the frequency k = 0.5, heaving amplitude h0 = 0.8 and four
different pitching angles α0 = 0,10○,20○,30○.

the model (16) proved to fit to some degree the time-dependent thrust force
as well as its time-averaged values. Adding pitching to the heaving motion,
it may be conjectured that the induced force is a combination of a contribu-
tion due to heaving as well as one associated with pitching, together with a
coupling component.
Pure pitching motions for a plate with vanishing thickness has been consid-
ered in [13] for relatively small pitching angles and it could be shown that
in terms of reduced frequency and maximum pitching angle α0 the time-
averaged thrust scales scales as

a α2
0k

2 + b α2
0k, (18)

a and b being coefficients depending on the pitch-pivot point location. Note
that a similar scaling has been proposed for instance in [16]. When adding
the pitching to the heaving motion, the outward unit vector normal to the
foil rotates with respect to the vertical axis ey by the pitching angle θ. The
resulting acceleration of the fluid in the x-direction may hence be estimated
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to be ḧ sin(θ). Note that L
U2
∞

ḧ = −4k2h0 sin(2kt∗), given the expression (1) of
the heaving motion, and the pressure force in dimensionless form associated
with this acceleration is proportional to

k2h0 sin(2kt∗) sin(α0 sin(2kt∗ + φ)), (19)

given the expression (17). Even though the pitching’s maximum angle α0 is
not particularly small, one is nevertheless tempted to consider the expression
above at the leading order in α0 which would yield by taking the time-average
an expression proportional to k2h0α0. While the proportionality factor will
probably depend on the the phase shift φ of the pitching motion with respect
to heaving, there is however no reason that it may be inferred from the time
average of the product sin(2kt∗) sin(2kt∗ + φ) (which would be zero for in-
stance for φ = −π/2 considered here). Indeed, the fluid-foil dynamics by itself
is likely to introduce phase shifts between the periodic foil motion and the
induced flow acceleration.
In the previous section, the time-dependent pressure induced by the pure
heaving motion could be reasonably fitted for the set of parameter values
considered and the law (16) could be derived for the time-averaged force as
the sum of lift-induced thrust and drag, with however non constant coeffi-
cients given by (14). At leading order in the parameters, the lift-induced
thrust is proportional to k2h20, whereas the drag is proportional to kh0. Re-
taining these leading order terms, adding terms proportional to α2

0k
2 and

α2
0k (associated with the pitching law (18)) as well as a term proportional to
k2h0α0 which stands for the force component due to the coupling between
pitching and the heaving acceleration, the following time averaged pressure
force expression

F ∗
theory = B1α

2
0k

2 +B2α
2
0k +B3k

2h20 +B4kh0 +B5α0k
2h0 (20)

is proposed.
The coefficients Bj, j = 1,⋯,5 have been computed by a least-square fit for
the 36 parameter values considered, that is all the (α0, k, h0) combinations
(with α0 = 10○,20○,30○, k = 0.25,0.5,0.75,1 and h0 = 0.6,0.8,1). The values
found are

B1 = −0.9165,B2 = −1.5409,B3 = 0.6431,B4 = 0.0496,B5 = 2.4108 (21)

and the computed force F ∗
x against its model counterpart (20) is shown in

figure 10. It is seen that the model fits well for the range of parameter
values considered, where small heaving amplitudes or large frequencies are
discarded. As already mentioned, the parameter values are however in the
range of an experimental cycloidal propulsion device discussed in the next
section.

19



B1α
2
0k

2 +B2α
2
0k +B3k

2
h
2
0 +B4kh0 +B5α0k

2
h0

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
∗ x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 10: Time averaged pressure force F ∗

x against its model counterpart (20), with co-
efficients (21), the symbols representing the values for the 36 parameter values (α0, k, h0),
with α0 = 10○,20○,30○, k = 0.25,0.5,0.75,1 and h0 = 0.6,0.8,1; the solid line is the bisector
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Figure 11: Sketch of the experimental cycloidal propulsion device designed by the Naval
Academy Research Institute in France. Three NACA0018 foils labeled 1,2,3 rotate in a
circular motion around an axis. The foils’ trajectory is marked as the circle, the angle
between two foils being 120○. The foils sketched with solid contours are at their positions
at t0 (when foil 1 has the highest pitching amplitude α0) and the hatched contours indicate
their positions T /6 later, T being the period of rotation.

4. Application to cycloidal propulsion

The most widely known cycloidal propulsion device is the Voith-Schneider
propeller the performance of which has for instance been numerically ad-
dressed in [47]. These type of propellers consist of several blades rotating
around a vertical axis, the individual plates themselves undergoing pitching
motions around their own pivot points. These propulsion devices are capa-
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Figure 12: Snapshot of the vorticity field for three rotating and pitching foils, for the
parameter values h0 = 1.143, k = 0.6 and α0 = 22○. This configuration corresponds to that
sketched in figure 11, the Reynolds number being Re = 5 104.

ble to generate thrust forces in all directions. They are very efficient when
maneuverability is required and are hence frequently used for the propul-
sion of tugs and ferries, for instance. A cross-flow propeller has recently
been subject of experimental investigations at the Naval Academy Research
Institute (IRENav) in France, where such a device has been designed, the
pitching motions being controlled electrically by servo-motors enslaved by
the main motor ([42]), numerical simulations having been performed for this
configuration too [49]. The device with three foils is sketched in figure 11,
where the solid foils’ contours are at their positions at t0 when foil labeled 1
has the highest pitching amplitude α0. The circle drawn corresponds to the
trajectory of the foil and the hatched foils’ contours stand for their respective
positions at t0 + T /6. The angle between two foils is 120○. The pitch-pivot
point is at L/4 from the leading edge, the incoming flow arriving from the
left.
The configuration, for which measurements have been performed using Ifre-
mer facilities at Boulogne-sur-Mer, is that of a NACA0018 foil with chord
length L = 0.35 m, whereas the radius of the circle of motion is R = 0.4 m.
The period of circular rotation and pitching is the same for each foil and the
motion can be decomposed into heaving, pitching and a surge motion parallel
to the x-direction of incoming flow. The motions are synchronizes such that
the dimensionless heaving motion h∗ and surge motion s∗ are

h∗ = h0 sin(2kt∗), s∗ = h0 cos(2kt∗) (22)
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Figure 13: Comparison between the pressure force for one pitching-rotating foil and the
pressure force around one foil pitching and rotating together with two others. Component
in the x-direction (a) and in the y-direction (b), as function of angle β (by convention,
β = 0○,360○, ... is the highest vertical position for the successive periods of rotation, see
figure 11). The parameters are k = 0.6, h0 = 1.143, α0 = 22○.

(h∗ being the distance from the axis’s center in the vertical direction y and
s∗ the distance in the horizontal direction x). The pitching angle around the
individual pivot points is

θ(t) = −α0 cos(2kt∗). (23)

that is the phase shift with the heaving motion is −π/2 as in the previous sec-
tion. The position of foil labeled 1 in figure 11 would correspond to t∗ = nπ/k
(with n an integer).
In the experimental investigation the incoming flow velocity is of the order
of 1 m/s in the Ifremer water tank which yields a Reynolds number (based
on the foil’s chord) of the order of 3.5 105. The dimensionless heaving ampli-
tude is h0 = R/L = 1.143, the reduced frequencies considered varying between
k = 0.25 and k = 0.45. The pitching angle α0 range is between 10○ and 40○.
Besides the Reynolds number, which in the present simulations is Re = 5 104,
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Figure 14: Comparison between the pressure force for one pitching-heaving foil and for
a pitching-rotating foil. Component in the x-direction (a) and in the y-direction (b), as
function of angle β (by convention, β = 0○,360○, ... is the highest vertical position for the
successive periods of rotation, see figure 11). The parameters are k = 0.5, h0 = 1, α0 = 10○.

these parameters are within the range of those considered in the previous sec-
tion for the heaving-pitching foil. In section 2, for the pure heaving motion,
the influence of the mesh as well as the size of the computational domain has
been assessed for this latter Reynolds number and the mesh labeled M2 (for
a computational domain 10L in the x-direction and 6L in the y-direction)
proved appropriate to get reliable force results.
Simulations have been performed for these mesh parameters, at Re = 5 104

and considering the complete configuration with the three rotating foils, with
h0 = 1.143, α0 = 22○ and k = 0.6. A snapshot of the flow field is shown in
figure 12. The question naturally arises to what extent the force generated
by one foil rotating with the two others differs from what one would get for
a single foil in an equivalent rotating motion. This comparison has been
performed for the same parameter values h0 = 1.143, α0 = 22○ k = 0.6 as
those corresponding to the snapshot in figure 12. The results are plotted as
function of angle β, β = 0,360○... being the maximal vertical position (see
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Figure 15: Time averaged pressure force F ∗

x are shown as the symbols for a pitching-
rotating foil against its model counterpart (20) for pitching-heaving foil with coefficients
Bj , j = 1,⋯,5 given by (21). The solid line being the bisector of the first quadrant angle.

figure 11) of the foil around which the pressure force is computed. It is seen
that when the foil’s trajectory is on the left semicircle (0 < β < 180○) the
pressure force components in the x direction almost superimpose, whether a
single rotating foil is considered or a foil in the device. As expected, when
the foil’s trajectory crosses the wake structure of the device (at the right
semicircle of the trajectory) the peaks of the pressure force are somewhat
shifted between the two configuration. On the whole however, and at least
for a rotation radius h0 close to one, the results are rather close and in partic-
ular when time-averages are considered. This supports the idea that to some
degree the thrust for one single rotating flow may be extrapolated to recover
the global thrust for a configuration like that in figure 11 (by superimposing
three times the oscillatory pressure force for one foil with shifts of 120○ in
angle β).
The rotating-pitching foil differs from the heaving-pitching foil by the addi-
tional horizontal back and forth motion and the question is to what de-
gree this latter surge motion affects the thrust results. The oscillatory
pressure force for a single heaving-pitching foil and a rotating-pitching foil
has been computed, for different parameter combinations. The result for
k = 0.5, h0 = 1, α0 = 10○ is shown in figure 14, the two force components being
depicted as function of β (it is recalled that β = 0○,360○... are the highest
vertical position for each period). The curves are close, the force in the x
direction exhibiting however a somewhat higher peak when the rotating foil
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Figure 16: Comparison between the pressure force components in the x-direction (a) and
y-direction (b), at two different Reynolds numbers Re = 5 104 and Re = 2.8 105, for one
pitching-rotating foil for the parameter values k = 0.6, h0 = 1.143, α = 22○.

moves toward the incoming flow, and a lower peak when moving in the op-
posite direction. One may wonder whether the heaving-pitching force model
(20) may still be relevant when rotation instead of heaving is considered. The
time-averaged thrust force for the rotating and pitching foil has been com-
puted for 6 parameter combinations and the values are compared with this
thrust law in figure 15. The computed values are shown as the symbols and
it is seen that the model prediction is still rather reliable, which means that
in average the additional surging motion does not contribute significantly to
the global force.
For the experimental device at IRENav, measurements have not be performed
at a Reynolds number of 5 104, but for instance at Re = 2.8 105, that is for
an incoming flow velocity of 0.8 m/s in a water tank, the blades’ chord be-
ing 0.35 m. Of course, to perform the numerical simulation at such a high
Reynolds number is questionable, even in the two-dimensional case, at least
if one aims at capturing complex flow structures. Concerning the pressure
force at the heart of the present investigation, it is however conjectured that
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Figure 17: Comparison between measurements for the cycloidal device and the simulation
results: pressure component in the x-direction (a) and in the y-direction (b), at Re =
2.8 105, with pitching angle α0 = 30○ and frequency k = 0.29. The dimensionless radius of
the circular trajectory is h0 = 1.143. The results for one period of rotation is shown, β = 0
corresponding to the instant when one of the three foils is at the top (cf. figure 11).

it is not strongly affected by the Reynolds number (the value 5 104 consid-
ered so far being already in a relatively high Reynolds number range). To
give some evidence for this assumption, for the same computational mesh
M2 as used so far, the oscillatory pressure force of one rotating-pitching foil
has been computed for Re = 2.8 105 and the comparison with the result at
Re = 5 104 is shown in figure 16, for k = 0.6 and h0 = 1.143 (this latter ampli-
tude is that of the experimental device). It is seen that the thrust values f∗x
are rather close, besides a slightly stiffer peak for the high Reynolds number
case at the most downstream position (with respect to the incoming flow) of
the foil on its circular trajectory (at β = 270○,630○...).
In the experimental thrust performance investigation at the Boulogne-sur-
Mer Ifremer facilities, the time-dependent hydrodynamic loads are measured
with a blade embedded load cell. Note that the blades have a rather large
span-to-chord aspect ratio of 2.8 and three-dimensional effects are possibly
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Figure 18: Computed individual force values f∗x (a) and f∗y (b), for each blade (labeled
1,2,3) in the device, β = 0○,360○,⋯ corresponding to the highest vertical position of the
individual blade’s trajectory (four periods of rotation are shown). The parameters are the
same as in figure 17.

limited regarding the overall thrust generated by each foil. A detailed descrip-
tion of the experimental propeller design is given in [42]. The hydrodynamic
force is measured on one blade and the total force is reconstructed by shifting
the loads by respectively 120○ and 240○, which means that the reconstructed
total force is T /3 periodic with T the period of rotation.
The flow structure generated by the rotating plates might however not exhibit
exactly this T /3-periodicity. In the numerical simulation the instantaneous
force values for each blade have been computed and added to form the total
force. Measurements for a pitching angle α0 = 30○ have been performed and
figure 17 shows the comparison with the simulation results, for both the force
components, at k = 0.29. It is seen that the results coincide fairly well, but
the T /3 periodicity, or equivalently the 120○ periodicity, is not exactly ob-
served in the numerical simulation results. Indeed, the individual force values
depicted in figure 18 for each blade do not exactly coincide at identical posi-
tions (β = 0○,360○⋯ being the highest vertical position, four rotation periods
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Figure 19: Comparison between measurements for the cycloidal device and the simulation
results: pressure component in the x-direction (a) and in the y-direction (b), at Re =
2.8 105, with pitching angle α0 = 30○ and frequency k = 0.49. The dimensionless radius of
the circular trajectory is h0 = 1.143. The results for one period of rotation is shown, β = 0
corresponding to the instant when one of the three foils is at the top (cf. figure 11).

being shown), in particular in the downstream half of the circular trajectory.
This is to be attributed to slightly different flow structures encountered by
the individual plates at identical positions.
The comparison between the measurements and the simulations at the higher
frequency k = 0.49 is shown in figure 19. Now, the simulation results are not
far from exhibiting a T /3 period: for this frequency the curves differ a lit-
tle more, but the general trends are however retrieved in the simulations.
Regarding the time-averaged values, for the frequency k = 0.29 one finds
F ∗
x = −0.0094 in the experiment whereas the simulation result is F ∗

x = −0.0118.
At the higher frequency k = 0.49, one gets F ∗

x = 0.6008 and F ∗
x = 0.6359 for the

measurements and the simulations, respectively, thus the measured dynamic
forces as well as the time averaged quantities are approximately retrieved in
the numerical simulations.
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5. Concluding discussion

The present investigation has shown that the overset-option and the gen-
eral modelization capabilities of OpenFOAM are suitable for the simulation
of a rigid structure undergoing large scale motions in an incoming flow field.
The advantage of such a body-fitted mesh approach is to provide accurately
the dynamic forces generated in this system. A theoretical model, which
proved reliable for the time-dependent pressure stress as well as for the global
time averaged thrust, could be derived for a heaving foil in the form

F ∗
theory = 2πC(k, h0)k2h20 −

4

π
D(k, h0)kh0.

The first term of the right-hand side is associated with the lift-induced thrust,
the second term standing for form-drag due to a virtual angle of attack dur-
ing the heaving motion. The expressions C(k, h0) and D(k, h0) could not
reliably be taken as constants, but rather as linear functions of the heaving
amplitude h0 and the reduced frequency k. A scaling for the thrust merely
proportional to k2h20, as proposed for instance in [25], should hence be used
with caution.
The present investigation has been guided by the objective to numerically
simulate fluid-structure interactions for motions associated with cycloidal
propulsion. For pitching-heaving motions and focusing on time-averaged
thrust prediction, a theoretical scaling (20) is proposed. Besides the k2h20
and kh0 terms of heaving, the expressions α2

0k
2 and α2

0k associated to pitch-
ing (see [13, 16]) enter, as well as the coupling term α0k2h0. This law with 5
scaling parameters has been proven to fit with the numerical simulation data,
as shown in figure 10. It appears that this law is still reliable when adding a
surging motion, or equivalently, when addressing pitching-rotating foils typ-
ical for cross-flow propellers, at least for the simulation data at a Reynolds
number of 5 104. The experimental device designed at the IRENav oper-
ates however at higher Reynolds numbers, but still below those of industrial
devices. Also, this cycloidal propulsion device has a plate’s span-to-chord as-
pect ratio of 2.8 and the resulting quasi-two-dimensional measurements have
been shown to be in good agreement with the two-dimensional simulations,
for the same Reynolds number Re = 2.8 105 as in the experiment.
The values (21) for the proportional parameters B1,⋯,B5 of the thrust law
(20) have been computed by least-square fit with numerical simulation data
at Re = 5 104 and for a pitching-heaving foil. Addressing in this conclud-
ing discussion briefly the reliability of the law for pitching-rotating motions
when changing the Reynolds number, figure 20 depicts the time-averaged
pressure force at three different Reynolds numbers Re = 104,5 104,2.8 105,
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Figure 20: Time averaged pressure force F ∗

x are shown as the symbols for a pitching-
rotating foil against its model counterpart (20) for pitching-heaving foil with coefficients
Bj , j = 1,⋯,5 given by (21), at Re = 104 (∗); Re = 5 104 (△) and Re = 2.8 105 (○). The
solid line being the bisector of the first quadrant angle.
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Figure 21: Efficiency parameter η computed as the formula (24) versus thrust F ∗

x , for
different pitching-heaving parameters with h0 = 1. The symbols represent the different
pitching angles and the solid curves are line-fits through the values at the different fre-
quencies k. The Reynolds number of the computations is Re = 5 104.

for h0 = 1.143 corresponding to the experimental device and for α0 = 30○

(the three frequencies chosen being in the parameter range of the experimen-
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tal measurements). The computed force values are relatively close to the
law and they only slightly differ with the Reynolds number, at least for this
motion-parameter range.
One may conjecture that a law such as (20) might be helpful, in the sense that
typical pitching-rotation parameters may be inferred for particular thrust
regimes, such as zero thrust for a given flow velocity or maximum thrust,
for instance. It has to be emphasized that of course the proportional pa-
rameters B1,⋯,B5 in (20) will depend on the specific foils considered (here
a NACA0018 profile, which was used in the experimental device) and more
importantly on the phase-shift between the pitching and rotating motions.
Of course, the propulsive efficiency also plays an important role for the per-
formance of moving foils. This efficiency is in general measured by the ratio
of thrust power output to the power input to the foil. The time-averaged
power input for a heaving-pitching foil is Pi = ⟨fyḣ⟩ + ⟨mz θ̇⟩ (e.g. [14], [16]),
with mz the moment about the pitch-pivot point and fy the pressure force
in the direction of heaving motion. The efficiency can be written as the ratio
of dimensionless quantities and one gets the expression for the present foil’s
motion with a phase shift −π/2 between the pitching and heaving

η = F ∗
x

⟨h0 f∗y 2k cos(2kt∗)⟩ + ⟨α0m∗
z 2k sin(2kt∗)⟩ . (24)

Figure 21 shows the efficiency η as function of thrust F ∗
x , the different solid

curves being line-fits at constant k through the values for different pitching
angles (the heaving amplitude is set to h0 = 1). It is seen that for a given fre-
quency k the efficiency is the lowest for pure heaving (α0 = 0) and it increases
with the pitching angle. Efficiency of relatively large amplitude heaving and
pitching foils has been addressed for instance in [25], these authors point-
ing out discrepancies in the literature concerning efficiency measurements.
The present computations provide efficiency values in the range between 0.1
and 0.7. The issue of the present investigation was thrust-prediction and
a detailed efficiency analysis is not attempted. One may however remark
that the efficiency globally decreases with the frequency (for a fixed heaving
amplitude) which is in general line with the measurements reported in [25].
In this latter investigation the phase shift between pitching and heaving is
φ = 3π/2 which means that in this case the pitching increases the angle of
attack associated with the heaving motion. In our case however (that is for a
phase shift φ = −π/2) the angle of attack decreases with pitching (see section
3). Therefore, the fact that the efficiency in the present case increases with
the angle of pitching corresponds to the known fact that large angles of at-
tack are detrimental to efficiency (see [25]). Finally, it can be inferred from
figure 21 that while thrust globally increases with the oscillation frequency,
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there is however for each k-value an optimal (with regard to thrust) pitching
angle.
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