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Abstract. Martensite is a major constituent of Fe-C alloys. Its metastable body-centered tetragonal
structure provides high tensile strength to martensitic steels. Recent experiments highlighted the benefit
of large solute carbon content to the strength and ductility of the so-called virgin martensite obtained by
sub-zero quench. The results suggest a significant contribution of the elastic and anelastic deformation
of the martensite crystals to the rheology of these alloys. In order to shed light on the influence of
carbon content on the anelastic response, we investigated theoretically the behavior of solute carbon
during Snoek relaxation. Thanks to a linear-response approach, we obtained analytical formulae of the
atomic mobilities and the thermodynamic affinities, from which the relaxation strength and time were
derived. We unravel the unexpected decrease of the relaxation strength and time when solute carbon
content is increased. Relaxation kinetics is explained at the atomic scale by an indirect mechanism of
carbon migration in martensite, at variance with ferrite. We emphasize the onset of non-linear effects
when the applied stress is high.

Keywords: anelastic behavior · strain relaxation · long-range ordering · mean-field modeling · carbon
steels.

1 Introduction

Iron-carbon martensite is the metastable body-centered tetragonal (bct) solid solution of the Fe-C system,
wherein carbon atoms are supersaturated in the host lattice. As a microstructural constituent, martensite
confers additional hardness to high-strength steels. Plasticity of martensite is well documented [2]. However,
the anelastic properties of martensite crystals, i.e. their delayed strain response to an applied stress are
less known. These properties are expected to stem from the high amount of carbon soluted in the iron
host lattice of martensite. Hence, the stress–strain characteristic of highly carbon-supersaturated ”virgin
martensite” exhibits high levels of ultimate tensile strength [1], possibly associated to a large anelastic
deformation. In the low-carbon ferrite phase, which is also body-centered but cubic, applied stress incites
the carbon atoms to redistribute over the interstitial sites. This phenomenon is referred to as Snoek relaxation
[31]. It is responsible for delayed deformation and internal friction of low-carbon steels [3]. The relaxation
strength in ferrite is proportional to the carbon content is solid solution. Hence, the high amount of carbon
soluted in martensite might be expected to provide a high relaxation strength. However, carbon atoms
supersaturated in bct-martensite are Zener ordered [37,12,6], i.e. they sit preferentially in one subset of
interstitial positions, causing tetragonal distortion of the unit cell. Zener ordering is known to affect carbon
migration [8,5,32], which must modify the relaxation time. It may also affect the relaxation strength. The
effects of an applied stress on carbon ordering [29,30,15,17] and carbon diffusion [13,19,22] in martensite
have been studied theoretically. However, except for the pioneering work of Shtremel in the 70’s [27,28], the
influence of Zener ordering on the anelastic response of martensite has not been investigated in details so
far.

The mechanism of anelasticity in ferrite and martensite involves the alloy thermodynamics of the Fe-
C system and the migration properties of the carbon atoms. Previous investigations showed that these
properties are controlled by the carbon–strain interaction that arises from the long-range elastic field of the
interstitial carbon atoms [15,19]. It results that carbon migration is rendered anisotropic by the Zener ordering
[13]: diffusion in directions perpendicular to the axis of tetragonality is accelerated, while parallel diffusion
is slowed down [19]. In addition, the response of a martensite crystal to an alternate stress —the internal
friction— depends on the direction of the stress: longitudinal or transversal to the axis of tetragonality [9,24].
Furthermore, traction and compression along the tetragonal axis have opposite effects on carbon diffusion
[19], from which we expect different relaxation times depending on the sign of the applied stress. Also, the
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relaxation time in ferrite is sensitive to the carbon content [18], but the effect in martensite is not known.
Furthermore, bct crystals in a martensitic microstructure are subjected to very high internal stresses [7],
possibly leading to non-linear effects. In the present study, the above-mentioned effects of Zener order and
applied stress have been investigated by means of simulated relaxation experiments where the relaxation
time and relaxation strength were retrieved as function of carbon content and stress magnitude.

The thermo-kinetic (TK) model of body-centered Fe-C crystals relies on a mean-field description of
the carbon–strain interaction for carbon atoms sitting in stable and in saddle-point position of migration
[23]. It describes the time evolution of a carbon-supersaturated solid solution, before segregation to defects
and/or precipitation reduces the solute content. It was used in the present study to compute numerically
the relaxation kinetics in case of a constant stress applied at time t = 0 and then released after the full
relaxation is reached. The TK model also served as a starting point for building an analytical theory of
Snoek relaxation in martensite crystals, based on the linear-response approximation (LR). Comparison of
the LR theory with the TK model highlights the limits of the linear model when high stresses are applied.

2 Model

2.1 The thermo-kinetic model

The thermo-kinetic model (TK) describes the thermodynamics of carbon long-range ordering and the dynam-
ics of carbon migration via a mean-field approximation of the long-range elastic carbon–strain interactions.
The model provides the rate equations of the site fractions of carbon on the interstitial sublattices. By
means of a first-order development, the linearized rate equations can be obtained (Section 2.2), from which
the linear-response approximation is derived (Section 2.3). The TK model is briefly presented in this section,
details can be found in Ref. [23].

The material parameters used in our computations are gathered in Table 1. They are described below.
This set of parameters provides a good agreement with the Snoek peak measured by Weller in ferrite [35]
(see Ref. [23]).

Table 1. Material parameters used in this study: lattice parameter a0, elastic compliances Sij , force dipole moments
Pa and Pc for octahedral (O) and tetrahedral (T) positions, migration enthalpy Hm

0 and attempt frequency ν0.

a0 (nm) S11 (GPa−1) S12 (GPa−1) S44 (GPa−1) PO
c (eV) PO

a (eV) PT
c (eV) PT

a (eV) Hm
0 (eV) ν0 (THz)

0.2855 0.00615 −0.00218 0.0104 17.0 10.0 5.37 14.8 0.872 159

In a body-centered iron crystal, solute carbon atoms occupy three types of octahedral interstitial sites,
labeled i = 1, 2, 3 according to the crystal axis (Figure 1, left). The total carbon fraction C is distributed
over the site fractions ci, such that C = c1 + c2 + c3. If the carbon fraction is below the Zener order–
disorder transition value, bcc-ferrite is thermodynamically stable, and the three types of sites are equally
occupied. Above the transition carbon fraction, one type of site is energetically favored by the carbon–
strain interaction (sites labeled ’c’), while the two others are energetically disfavored (sites labeled ’a’). The
resulting uneven site occupancy creates a tetragonal distortion of the lattice in direction 1, 2 or 3, depending
on the martensite variant Z1, Z2 or Z3. The degree of Zener ordering along crystal direction [001] is be
quantified by the structural order parameter η =

(
c3 − 1

2 (c1 + c2)
)
/C, while the unequal occupancy of the

sites in directions [100] and [010] is quantified by ζ = (c2 − c1) /C. In this mean-field description, a variant
of martensite is characterized by the couple of values (ζ, η).

To study the relaxation of martensite variants, we considered a pure shear stress tensor applied to the
crystal, such that σ22 = −σ11 = σ. Under this stress system, variant Z3 is submitted to a loading ’transversal’
to the axis of Zener ordering; Conversely, variants Z1 and Z2 are submitted to a ’longitudinal’ loading, where
one of the stress components applies in the direction of Zener ordering (Figure 1, right).

Carbon atoms soluted in the octahedral sites of the bcc lattice (labeled i = 1, 2, 3) migrate via the saddle-
point tetrahedral sites (labeled j = 1, 2, 3). In our approach, the interstitial sites are characterized by their
force dipole tensor POi or PTj characterizing the elastic field induced by a carbon atom in octahedral or
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Fig. 1. Left: Crystal cell of body centered iron. Iron atoms are represented by gray spheres, octahedral sites by colored
spheres. Sites of type 1, 2, 3 are respectively in color red, green, blue. Right: Schematics of martensite variants Z2
and Z3 submitted to the same shear stress (gray arrows). The loading is said ”transversal” for variant Z3, and
”longitudinal” for variants Z1 and Z2.

tetrahedral position. Each carbon atom interacts with the homogeneous strain induced by the applied stress
and by the other carbon atoms. In the mean-field approximation, this interaction results in the enthalpy
function

H = −1

2
V0S(σ+ p) · (σ+ p) (1)

and the homogeneous strain tensor
ε = S (σ + p) . (2)

In the above equations, σ is the applied stress tensor, p is the force dipole density tensor, S is the elastic
compliance tensor of the crystal. The force dipole density tensor is defined as p = 1

V0

∑
ciP

Oi , where

V0 = 1
2a

3
0 is the atomic volume of the lattice. From Equation 2, p can be regarded as the internal stress

created by the solute carbon atoms. On account of the high magnitude of tensors POi , the internal stress
components can reach very high values in martensite: p33 = 2340 MPa per atom percent of carbon in the
direction of tetragonality and p11 = p22 = 1380 MPa/at%C in the perpendicular direction.

When studying relaxation in crystals, it is usual to introduce the strain dipole tensors λ = SP /V0. Due
to the tetragonal symmetry of the interstitial sites, these tensors have a singlet component λ1 = 0.838 along
the tetragonal axis and a doublet component λ2 = 0.035 in perpendicular directions. Making use of the
strain dipole tensors, the migration enthalpy from site i via the transition site j is written

Hm
i/j = Hm

0 − V0

(
λTj − λOi

)
· (σ+ p), (3)

where Hm
0 is the migration enthalpy in the stress-free carbon-free crystal. We see from this equation that both

the applied stress and the carbon distribution contribute to modifying the migration enthalpy. According to
the rate theory in the mean-field approximation, the jump frequency is written, in the dilute approximation:

Γi/j = ν0 ci exp
(
−Hm

i/j/kBT
)

. The net flux from i to k is Ji→k = Γi/j − Γk/j . Then the matter balance at

site i implies the rate equations

dci
dt

= 2 (Jk→i + Jk′→i) , i = 1, 2, 3. (4)

2.2 Linearized rate equations

Starting from the rate equations (Eqs. 4) we look for linearized equations relating the rate of change of the
order parameters ζ and η to the corresponding affinities Aζ and Aη. The first step of the calculation is to
establish the non-linear equations that express the flux as a product of a driving force by an atomic mobility.
Then the equations are linearized in an Onsager-like form. Introducing the affinities and applying the matter
balance produces the linearized rate equations.
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We first notice that the flux Ji→k between sites i and k, as defined in Section 2.1, is a difference in the

form p− q. Then, following Martin [14], we use Polkowicz’s identity p− q =
√
pq
(√

p/q − q/p
)

to write the

flux as a product of the driving force

kBT

√
p

q
− q

p
= 2kBT sinh

µi − µk
2kBT

(5)

and the atomic mobility √
pq

kBT
= Mik. (6)

Function µi = ∂G/∂ci is the chemical potential of sites i. Equation 5 shows that the flux between sites i and
k results form the bias in chemical potential µi − µk. At equilibrium, all fluxes vanish, i.e. J1→2 = J2→3 =
J3→1 = 0, which, according to Equation 5 implies the equality of the chemical potentials: µ1 = µ2 = µ3.
Hence, the flux equations of our model are compatible with the model’s thermodynamics. This ensures that
a relaxing system will converge towards the proper thermodynamic equilibrium.

Let us assume that the system remains close to the equilibrium state. Under this condition the flux Ji→k
linearizes into an Onsager-type of equation:

Ji→k = Mik (µi − µk) , (7)

i.e. the flux between two types of sites is proportional to the difference in chemical potential between the
sites. The intensity of the flux depends on the magnitude of the mobility Mik. From Equation 6 the mobility
expands into

Mik =
ν0
√
cick

kBT
exp

(
−H

m
0 + V0∆λik · (σ + p)

kBT

)
. (8)

∆λik is a symmetric rank-2 tensor, function of the elastic properties of stable sites i and k, and transition
site j:

∆λik = −λTj +
λOi + λOk

2
. (9)

The second term in the exponential of Equation 8 expresses the effect of both the applied stress (via σ)
and the carbon atom distribution (via p) on the activation energy of the atomic mobility. The site fractions
ci entering the expression of Mik in the square root and in the dipole density p are the equilibrium values
under stress σ. Site fractions ci and ck in the pre-exponential factor represent the amount of carbon atoms
susceptible to participate to matter exchange between sites i and k.

Following Nowick and Berry [25], we establish the kinetic equations of relaxation. Introducing the Onsager
relationship (Eq. 7) into the set of rate equations (Eqs. 4) yields the differential equations of the order
parameters: 

dζ

dt
=

2

C2

(
(4M12 +M13 +M23)Aζ +

3

2
(M13 −M23)Aη

)
dη

dt
=

3

C2

(
(M13 −M23)Aζ +

3

2
(M13 +M23)Aη

) (10)

These equations are linear in the affinities Aζ = −∂G/∂ζ and Aη = −∂G/∂η related to parameters ζ and
η respectively. Deviation from zero of the affinities appears as the driving force for the time evolution of
the order parameters. Such a deviation can be induced by an applied stress in a relaxation experiment. The
resulting relaxation kinetics will depend on the values of the three independent mobilities M12, M13 and M23.
The relaxed state ζ̇ = η̇ = 0 is reached when the affinities both equal zero, which defines thermodynamic
equilibrium. Here, a singularity of martensite as compared to ferrite resides in the relaxation of two order
parameters in martensite rather than a unique parameter in ferrite [18].

2.3 The linear-response approximation

When the system is close to stress-free thermodynamic equilibrium, an analytical solution to the kinetic
equations (Eqs. 10) can be found by linearizing the affinities with respect to the order parameters ζ, η and to
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the shear stress σ. This approach was used to investigate the giant Snoek peak in disordered Fe-C ferrite by
linearizing around the equilibrium disordered state [18]. Conversely to ferrite, linearization in martensite has
to be performed in the vicinity of the ordered equilibrium state. An analytical expression of the equilibrium
order parameters is then required.

Using the enthalpy function H (Eq. 1) and the regular entropy S in the dilute approximation, the Gibbs
energy G = H − TS is written as function of the external variables C, T , σ and the internal variables ζ, η
[18]. Performing partial derivation with respect to ζ and η yields the expression of the affinities:

Aζ =
3

2
hΣC

2ζ + VΣCσ −
1

2
kBTC ln

(
1 + 3

2ζ − η
1− 3

2ζ − η

)
Aη = 2hΣC

2η − 1

3
kBTC ln

(
(1 + 2η)2(

1 + 3
2ζ − η

) (
1− 3

2ζ − η
)) (11)

Notice that, thanks to a proper choice of the order parameters, the effect of applied stress σ on the affinities
is carried by Aζ alone. In these equations, we introduced the strain-energy parameter

hΣ =
2V0(λ1 − λ2)2

3S′
(12)

and the strain-stress parameter
VΣ = V0(λ1 − λ2). (13)

These parameters characterize respectively the magnitude of the carbon–carbon and carbon–stress elastic
interactions in the mean-field approximation. S′ = 2(S11 − S12) is the shear compliance. Numerically, hΣ =
1.87 eV and VΣ = 0.803V0.

When no stress is applied, the system undergoes an order–disorder transition at carbon content C0 =(
4
3 ln 2

)
kBT/hΣ [15]. If carbon content is lower than C0, the unique solution to the equilibrium equations

is ζ = η = 0, which corresponds to disordered ferrite. If carbon content is higher than C0, three pairs of
degenerate solutions (ζ, η) correspond to the three ordered orientational variants of martensite. Variant Z3,
for instance, bears a tetragonal axis along crystal direction 3, and its equilibrium order parameters write
ζ = 0 and η = η0. Function η0(C) is presented in Figure 2, where the carbon content C∗ is expressed in units
of kBT/hΣ. The order–disorder transition occurs at C∗0 ' 0.924. The ordering curves of variants Z1 and Z2
are defined by ζ = −η0 and ζ = η0 respectively, and η = − 1

2ζ.
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Fig. 2. Left: longitudinal order parameter as function of unitless carbon content. The dashed line is the high-carbon
approximation (Eq. 14). Right: equilibrium site occupancies Fi = ci/C in variant Z3. The ferrite–martensite ordering
transition occurs at unitless carbon content C∗

0 ' 0.924. When carbon content increases in martensite, the favored
sites (site-3) enrich in carbon at the expense of the disfavored ones (site-1 and 2).

When the carbon content is much higher than C0, the equilibrium order parameter η0 is close to 1:
the favored sites contain the large majority of carbon atoms, while the disfavored sites are almost carbon-
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depleted, as shown in Figure 2, right. In this case, the equilibrium order parameter can approximated by the
formula

η0 ' 1− 3 exp

(
−3hΣC

kBT

)
, (14)

where H ′ = 3hΣC expresses the difference in site energy between favored and disfavored sites.
In order to get rate equations linearized in stress, the mobilities are evaluated at σ = 0. Then, on account

of the crystal symmetry, the number of independent mobilities reduces to two: Mac is the mobility between
disfavored sites (type a) and favored sites (type c), while Maa is the mobility between two disfavored sites.
For instance, in variant Z3 the favored sites are of type 3, and we have Mac = M13 = M23 and Maa = M12.
From Equation 8 applied to the equilibrium site fractions ci, we find the zeroth-order expression of the
mobilities: 

Mac =
ν0C

kBT
exp

(
−H

m
0

kBT

)
exp

(
−

∆λ13 · PO3C + 3
2hΣC

kBT

)
Maa =

ν0C

kBT
exp

(
−H

m
0

kBT

)
exp

(
−∆λ12 · PO3C + 3hΣC

kBT

) (15)

In these expressions, the mobilities Mac and Maa between pairs of sites differ by two carbon-dependent terms
in the activation enthalpy: 1) The term containing the strain-energy parameter hΣ accounts for the difference
in energy between favored and disfavored sites. Each disfavored site of the pair contributes by 3

2hΣC to the
activation enthalpy. Consequently, the contribution to Maa is twice the contribution to Mac; 2) The term
∆λ·PC renders the effect of the tetragonal distortion of the crystal on the saddle-point energy for migration.
This effect depends on the direction of the jump (perpendicular a↔ c or parallel a↔ a to the tetragonality
axis).

On account of the tetragonal symmetry of bct-martensite, the anelastic response of the crystal depends
on the orientation of the stress relative to the axis of Zener order. We considered the transversal loading with
variant Z3, and the longitudinal loading with variant Z2 (see Figure 1, right). In the longitudinal case, one
component of the stress tensor applies along the tetragonality axis, thus modifying Zener ordering. Hence,
we expect a higher relaxation strength in the longitudinal case than in the transversal case.

Case of transversal loading We consider variant Z3 submitted to as transversal shear stress. The applied
stress induces deviations of the order parameters from the stress-free situation, noted ∆ζ(σ) = ζ and ∆η =
η(σ) − η0. Using the approximation of Equation 14, a first-order development in ∆ζ and ∆η gives the
linearized affinities as functions of ζ, ∆η, C, T and σ:

Aζ = −1

2
A0Cζ + VΣCσ

Aη = −2

9
A0C∆η

(16)

Function A0 is defined as

A0(C, T ) = kBT exp

(
3hΣC

kBT

)
. (17)

The exponential factor in A0 originates from the C and T dependency of the equilibrium order parameters
of tetragonal martensite (Eq. 14).

Equations 16 are decoupled, such that the equilibrium value of ∆η is not affected by the applied stress.
Then, to the first order, η remains constantly equal to its stress-free equilibrium value during relaxation:
the relaxed value ∆ηR = 0 and the affinity Aη = 0 at all times. The applied stress only affects the order
parameter ζ, i.e. relaxation occurs by carbon exchanges between sites 1 and 2, not involving the carbon
atoms located in sites 3. From the condition Aζ = 0 and using the definitions of A0 and VΣ we find the
relaxed value of ζ:

ζR = 2
V0(λ1 − λ2)

kBT
exp

(
−3hΣC

kBT

)
σ. (18)

We see that ζR in martensite differs by an exponential factor from its expression in ferrite [25,18]: ζR =
ζferr
R × 3 exp(−3hΣC/kBT ). On account of this exponential factor, the relaxed value in martensite decreases
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when the carbon content in solution is increased. The reason for this surprising behavior is as follows: contrary
to ferrite, in variant Z3 under transversal loading, only the carbon atoms located in sites 1 and 2 contribute
to the anelastic response. The proportion of these atoms is precisely (c1 + c2) /C = 3 exp(−3hΣC/kBT ).
When the carbon content is increased, this proportion decreases in relation with the increased Zener order
(see Figure 2). As a consequence, the relaxed order parameter ζR decreases.

Making use of the relaxed value ζR (Eq. 18), the affinities are simply written as function of the deviation
form the relaxed state: Aζ = −1

2
A0C (ζ − ζR)

Aη = 0
(19)

Following an equivalent approach to Nowick and Berry [25], we look for the relaxation of the strain when
a constant stress is applied or suppressed at time t = 0. From the time dependency of the strain, the time
relaxation τ and the relaxation strength ∆ can be extracted. Introducing the affinities of Equation 19 into
the linearized rate equations 10, we find the relaxation equation of ζ:

dζ

dt
= − 2

C
(2Maa +Mac)A0(ζ − ζR). (20)

From the stress–strain relationship (Eq. 2), the shear strain, defined as reference to stress-free martensite, is

ε = S′σ +
VΣC

V0
ζ. (21)

The first term in the right-hand side is the elastic response εU while the second term is the anelastic response
εan. Solving Equation 20 and using Equation 21, we find

εan(t)

εU
= ∆trans exp

(
− t

τ trans

)
(22)

in case of relaxation after suppressing a stress at time t = 0, and

εan(t)

εU
= ∆trans

[
1− exp

(
− t

τ trans

)]
(23)

in case of relaxation after applying a stress at t = 0. The relaxation strength ∆trans quantifies the magnitude
of the anelastic relaxation. In our linear-response approximation, it is stress-independent, and is expressed
as

∆trans =

(
3hΣC

kBT

)
exp

(
−3hΣC

kBT

)
. (24)

Compared to ferrite [18], the relaxation strength in martensite is reduced by the factor 3 exp(−3hΣC/kBT ),
on account of the depletion of the disfavored sites to the benefit of the favored sites. The higher the solute
carbon content of martensite, the lower is the magnitude of the relaxation strength.

From the relaxation Equation 20, we see that the relaxation time is related to mobilities Maa and Mac.
It combines two characteristic times:

1

τ trans
=

1

τac
+

1

τaa
. (25)

τac is proportional to the reciprocal mobility M−1
ac . It is characteristic of the carbon exchanges between

favored and disfavored sites. τaa, proportional to the reciprocal mobility M−1
aa , is characteristic of the carbon

exchanges between the disfavored sites. These two mechanisms contribute in parallel to the atom transfer
between sites 1 and sites 2 when a shear stress is applied. The characteristic times are expressed as:

1

τac
= 2ν0 exp

(
−H

m
0 + ∆HacC

kBT

)
1

τaa
= 4ν0 exp

(
−H

m
0 + ∆HaaC

kBT

) (26)
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They are carbon-content dependent via the activation enthalpies:∆Hac = ∆λ13 · PO3 − 3

2
hΣ

∆Haa = ∆λ12 · PO3

(27)

The numerical values of ∆Hac = −3.79 eV and ∆Haa = 3.78 eV show that the disfavored-favored exchanges
are accelerated by the carbon–strain interaction, while the disfavored-disfavored ones are slowed down. At
room temperature Equation 26 implies τaa � τac. Hence, according to the additivity rule of Equation 25, the
kinetics of relaxation is controlled by the fastest mechanism —the a ↔ c exchanges—, and the relaxation
time is approximately τ trans ' τac.

Case of longitudinal loading We now consider variant Z2, whose tetragonal axis is in line with component
σ22 of the stress tensor (see Figure 1, right). At stress-free equilibrium the order parameters are ζ = η0(C, T )
and η = − 1

2η0(C, T ). An applied shear stress modifies the Zener order of this variant by inducing a net flux
of atoms between favored and disfavored sites. It also modifies the balance between the disfavored sites 1
and 3, because direction 1 is stressed (σ11 6= 0) while direction 3 is not (σ33 = 0). The resulting deviations
of order parameters from stress-free equilibrium are noted ∆ζ = ζ(σ)− η0 and ∆η = η(σ) + 1

2η0. Using the
approximation of Equation 14, the linearized affinities are written:

Aζ = −1

4
A0C(∆ζ −∆ζR)− 1

6
A0C(∆η −∆ηR)

Aη = −1

6
A0C(∆ζ −∆ζR)− 5

9
A0C(∆η −∆ηR)

(28)

with the relaxed values: 
∆ζR = 5

V0(λ1 − λ2)

kBT
exp

(
−3hΣC

kBT

)
σ

∆ηR = −3

2

V0(λ1 − λ2)

kBT
exp

(
−3hΣC

kBT

)
σ

(29)

Contrary to the transversal case, the affinities are coupled in the longitudinal case, i.e. both Aζ and Aη
functions depend on the deviations from stressed equilibrium expressed by ∆ζ −∆ζR and ∆η −∆ηR. As a
consequence, the rate equations of ∆ζ and ∆η are coupled:

d∆ζ

dt
= −

(
1

τac
+

1

4τaa

)
(∆ζ −∆ζR)− 1

2τaa
(∆η −∆ηR)

d∆η

dt
= − 3

8τaa
(∆ζ −∆ζR)−

(
1

τac
+

3

4τaa

)
(∆η −∆ηR)

(30)

This system of linear differential equations admits two eigen states (‖ and ⊥), related to the following eigen
values: 

1

τ‖
=

1

τac

1

τ⊥
=

1

τac
+

1

τaa

(31)

Eigen value 1/τ‖ is associated to the order parameter η′ = 3
4 (ζ − 2

3η), which quantifies Zener order along

direction 2: η′ =
(
c2 − 1

2 (c1 + c3)
)
/C. Eigen value 1/τ⊥ is associated to the order parameter ζ ′ = 1

2 (ζ+2η) =
(c3 − c1) /C, which quantifies the degree of orthorhombicity, or ”beyond Zener” ordering [17]. Notice that
τ⊥ identifies with the relaxation time under transversal loading τ trans (Eq. 25). Numerically, the relaxation
times τ‖ and τ⊥ are very close to one another since τaa � τac, as discussed above. The corresponding eigen
states ‖ and ⊥ represent respectively parallel and perpendicular modes of relaxation relative to the crystal
direction of the Zener ordering. The solution to Equations 30 in case of relaxation from stressed equilibrium
is 

∆ζ(t) = ∆ζR

[
9

10
exp

(
− t

τ‖

)
+

1

10
exp

(
− t

τ⊥

)]
∆η(t) = ∆ηR

[
3

2
exp

(
− t

τ‖

)
− 1

2
exp

(
− t

τ⊥

)] (32)
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Using the expression of the strain Equation 21, we find the time evolution of the anelastic strain:

εan(t)

εU
= ∆‖ exp

(
− t

τ‖

)
+∆⊥ exp

(
− t

τ⊥

)
, (33)

with the relaxation strengths of the ‖ and ⊥ modes:
∆‖ =

9

4

(
3hΣC

kBT

)
exp

(
−3hΣC

kBT

)
∆⊥ =

1

4

(
3hΣC

kBT

)
exp

(
−3hΣC

kBT

) (34)

We see that the relaxation strength of the parallel mode (∆‖) is 9 times higher than that of the perpendicular
mode (∆⊥): as expected, relaxation of the Zener ordering provides most of the relaxation strength. Similarly
to the transversal case, the relaxation strengths in the longitudinal case decrease exponentially with the
carbon content.

2.4 The single-relaxation approximation

We recall that the characteristic times are very different in magnitude, such that τaa � τac. In the single-
relaxation approximation, we neglect τ−1

aa as regards to τ−1
ac in the expressions of the relaxation times (Eqs.

25 and 31). Under this approximation, all relaxation times are equal and have the same carbon-content
dependency:

τ (SR) = (2ν0)−1 exp

(
Hm

0 + ∆HacC

kBT

)
. (35)

From Equations 24 and 34, the total longitudinal strength ∆‖ +∆⊥ is written

∆longi(SR) =
5

2

(
3hΣC

kBT

)
exp

(
−3hΣC

kBT

)
. (36)

In the single-relaxation approximation, transversal and longitudinal responses share the same relaxation
time, but longitudinal relaxation ∆longi(SR) is 2.5 times stronger than transversal relaxation ∆trans (Eq. 24).

3 Results

3.1 Numerical test

Our thermo-kinetic model (TK) describes the relaxation kinetics of body-centered Fe-C by a set of mean-field
rate equations (Eq. 4). These equations are non-linear in the order parameters and in the applied stress. When
linearized, the rate equations give rise to the linear-response approximation (LR) of the relaxation kinetics
of martensite, from which the relaxation time and strength under transversal and longitudinal shear stress
were derived (Eqs. 24, 25, 31 and 34). The linear-response approximation is a priori valid in the vicinity of
thermodynamic equilibrium, i.e. for low applied stress. In order to test the limits of the LR approximation, we
compared its predictions with the TK model for various stress magnitudes. Figure 3 presents the relaxation
kinetics of the 3 at% C alloy at 300 K under shear stress of 1, 10 and 100 MPa. Time evolution of the anelastic
strain εan scaled by the elastic strain εU has a typical shape: the relaxation time is defined as the time interval
after which the strain amplitude has increased by a factor of 1 − e−1 ' 63.2%; the relaxation strength is
the asymptotic value. In the case of transversal loading, we see that the relaxation kinetics is insensitive
to the magnitude of the stress. As a consequence, the LR model is a good approximation of the relaxation
kinetics. In the case of longitudinal loading however, the relaxation time and strength appear to depend on
the magnitude of the stress, and the agreement between LR and TK models is poorer.

A second limit to the linear-response approximation is that is it restricted to carbon content large enough
compared to the transition value C0. At temperature T = 300 K the transition occurs when C0 = 1.28 at%.
The next sections investigate the effect of carbon content and stress magnitude on the relaxation kinetics
and compare the TK and LR predictions.
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3.2 Kinetics of relaxation: effect of carbon content

Relaxation kinetics computed with the TK model for various carbon contents and an applied stress of
100 MPa are gathered in Figure 4. As expected from the linear approximation, relaxation is about 2.5 times
higher in case of longitudinal loading compared to transversal loading. In both cases, the relaxed strain
decreases when the carbon content is increased, as does the relaxation time.
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Fig. 4. Effect of carbon content on the kinetics of relaxation computed at T = 300 K under shear stress σ = 100 MPa
with the thermo-kinetic model. Transversal (left) and longitudinal (right) loading.

The effect of carbon content is summarized in Figure 5. We see that both the relaxation strength and
relaxation time decrease when the carbon content is increased. This fact is in accordance with the linear-
response approximation (circles in Figure 5). The agreement between TK and LR models is very good for
the transversal case, at least when the carbon content is higher than ∼ 3 at%. A discrepancy is visible in the
longitudinal case, related to the influence of stress magnitude on relaxation.
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approximation (LR). The discrepancy at high carbon content evidences the non-linear effect of longitudinal stress.

3.3 Kinetics of relaxation: effect of stress magnitude

Section 3.1 evidenced that the relaxation time depends on the magnitude of the applied stress. Under
this circumstance, we must distinguish two types of relaxation: (1) loading, where a stress is applied during
relaxation; and (2) unloading, where no stress is applied during relaxation. Indeed, during loading the applied
stress modifies carbon mobilities according to Equation 8, hence modifying the relaxation time compared to
unloading. Figure 6 gathers a series of relaxation kinetics during loading followed by unloading, under various
applied stress. We checked that the response to a transversal solicitation is proportional to the applied stress,
such that the relaxation strength is not affected by the magnitude of the stress, whether positive or negative.
In addition, the relaxation time is also stress-independent. On the other hand, for a longitudinal solicitation,
the stress–strain relationship is not linear: the higher the stress, the lower is the relaxation strength (see
Figure 7, left). The relaxation time also varies with the applied stress. Its stress-sensitivity depends on the
type of relaxation: it decreases by a factor of ∼ 10 between -100 MPa and 500 MPa in the case of loading
and by a smaller factor in the case of unloading (see Figure 7, right).
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300 K and carbon content C = 1.7 at%. In case of longitudinal solicitation (right figure), the relaxation time decreases
when the stress is increased.
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4 Discussion

4.1 Influence of short-range carbon–carbon interactions

From Section 2.3, we see that the relaxation strengths in martensite depend on the key parameter hΣ, which
characterizes carbon–carbon interactions in bcc-iron. The accuracy of our predictions relies on the accuracy
of hΣ.

Parameter hΣ corresponds to the strain-energy parameter λ0 = 3hΣ, as defined by Khachaturyan in
relation to the order–disorder transition temperature T0 = 0.361λ0C/kB [21,11]. Our value λ0 = 5.62
eV was derived from ab initio calculations of the force dipole tensor of carbon and of the elastic stiffness
coefficients of bcc iron. It is informative to compare this value with the literature. Recent studies used various
computational and experimental techniques from which λ0 could be extracted. The techniques fall into three
categories: (i) direct computation of pair interactions by embedded atom potential (EAM) [34] or density
functional theory (DFT) [33,26]; (ii) indirect evaluation from molecular dynamics simulations [29,4]; and
(iii) indirect evaluation from x-ray diffraction data (XRD) [36]. The values are gathered in Table 2. They
are very scattered, and range from 3.15 to 10.8 eV. Our value of 5.62 eV lies in the middle of the range.

Table 2. Strain-interaction parameter λ0 (in eV). Comparison with literature.

Ref. Technique λ0 (eV)

This work DFT 5.62
Udyansky et al. [34] EAM 10.8
Udyansky et al. [33] DFT 6.34
Ruban [26] DFT 9.5
Sinclair et al. [29] EAM 3.15
Chirkov et al. [4] EAM 5.55
Xiao et al. [36] XRD 8.53

A more meaningful comparison can be obtained from the tetragonality parameter λ1−λ2, which quantifies
the carbon-induced strain field. In fact, (λ1−λ2)2 is proportional to the magnitude of the Snoek relaxation.
Now, the internal friction profile predicted in ferrite from our value λ1−λ2 = 0.803 is close to the experimental
profile within 10% [18,23]. We may conclude that our prediction of the Snoek relaxation in martensite is
also within these 10% of accuracy. However, the short-range carbon–carbon interactions are not taken into
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account in the present study, although they are expected to have a larger influence in high-carbon martensite
than in low-carbon ferrite. They may thus modify the relaxation strength of martensite.

Kinetic Monte Carlo simulations allowed to investigate the effect of carbon–carbon short-range inter-
actions on the relaxation of martensite. Actually, internal friction profiles computed by Huang et al. [9]
show that short-range interactions have almost no influence on the Snoek peak of martensite, except for a
minor additional peak at temperature ∼ 330 K. From this, we conclude that short-range interactions can be
neglected, as a first approach, in the present study of Snoek relaxation.

The present theory applies to a single crystal of martensite containing a unique orientational variant.
Elaboration of such a crystal is out of reach nowadays, so direct confrontation with experiment is not feasible.
However, indirect verification may be achieved with polycrystals: this would necessitate prior measure of the
sample texture, and modeling the polycrystal response via the Reuss averaging method [25,10].

4.2 Origins of non-linear relaxation

In case of transversal solicitation, we have seen that the relaxation kinetics is insensitive to the magnitude
of the stress. This is because transversal stress has little effect on Zener ordering. As a consequence, the
LR model is a good approximation of the relaxation kinetics under transversal loading/unloading. In case
of longitudinal loading/unloading however, the relaxation time and strengths depend on stress because
longitudinal stress affects the Zener order, thus modifying both the site occupancies and the migration
barriers.

The linear-response approximation can be used to understand the effect of stress on mobility. When a
stress is applied, both the equilibrium site fractions and the activation enthalpies are modified. This affects the
mobility via two factors (see Equation 8): (i) the pre-exponential factor

√
cick, which varies with time during

relaxation; and (ii) the activation enthalpy, which is affected by both the stress σ and the time variations
in dipole density p. In case of transversal loading/unloading, these effects cancel out for symmetry reasons,
such that the relaxation time τ trans does not depend on stress magnitude, at least to the first order. In case
of longitudinal loading/unloading, the components of the stress tensor act both along the tetragonality axis
and perpendicular to it. Their effects on the equilibrium site fractions and on the activation enthalpies differ,
resulting in a net change in the relaxation time τ longi. In addition, because of the change in site fractions
induced by the stress, the mobility is no longer time-independent under high applied stress.

The effect of stress on the relaxation strength results from the non-linearity of the affinity Aζ as function
of order parameter ζ (Eq. 11), from which the relationship between the relaxed strain and the stress is non
linear. Figure 8 presents stress–strain curves computed under very low stress rate (< 1 MPa/s), such that
the system remains close to equilibrium along the test. We see that the mechanical compliance increases
when carbon content is reduced. The compliance is higher in the longitudinal case than in the transversal
case, in relation to the higher longitudinal relaxation strength. Non-linearity of the stress–strain relationship
is apparent at carbon content of 1.70 at%. Notice that in the longitudinal case, positive and negative shear
stress produce non symmetrical effects: martensite is more compliant under negative shear stress (i.e. when
compression is applied along the tetragonal axis) than under positive shear stress (i.e. when tension is applied
along the tetragonal axis). This is coherent with the tensile/compressive stress–strain relationship computed
by kinetic Monte Carlo simulations [16].

4.3 Link with carbon diffusivity

It has been reported that carbon diffusivity in bct-martensite is slower than in bcc-ferrite [5,20]. Hillert
suggested that Zener ordering of the carbon atoms in martensite increases the activation barrier for their
migration, thus limiting long-range diffusion [8]. This idea was partly confirmed by molecular dynamic
simulations of Perez et al. [29] and by Monte Carlo simulations of Maugis et al. [19]: the simulations showed
that some of the activation barriers are indeed increased by the Zener order, such that long-range diffusion is
slowed down when the carbon content increases. However, one of the activation barriers is decreased when the
carbon content is increased, providing easy migration paths. As the relaxation mechanism involves short-
range diffusion rather than long-range diffusion, one may expect that the ”easy jumps” accelerate Snoek
relaxation in martensite, as compared to ferrite. This point is discussed below.



14 P. Maugis

-300

-200

-100

 0

 100

 200

 300

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

S
he
ar

 
st
re
ss

 
σ

 
[M
P
a]

Shear strain ε [%]

 1.70%

 2.33%

 3.00%

 4.70%

Transversal

-100

 0

 100

 200

 300

 400

 500

-0.5 -0.25  0  0.25  0.5  0.75  1

S
he
ar

 
st
re
ss

 
σ

 
[M
P
a]

Shear strain ε [%]

 1.70%

 2.33%

 3.00%

 4.70%

Longitudinal

Fig. 8. Shear mechanical test computed at T = 300 K for various carbon contents. The stress rate is kept lower than
1 MPa/s. Reducing the carbon content in martensite increases the compliance and induces a non-linear response.

In ferrite, the activation enthalpy of the relaxation time τ identifies with the migration barrier of carbon,
noted Hm

0 = 0.872 eV. At variance, tetragonal martensite has two activation enthalpies for relaxation, related
to the characteristic times τaa and τac (see Section 2.3). The enthalpies are linearly dependent on carbon
fraction C (unitless): a high Haa = 0.872 + 3.78C for disfavored–disfavored (a ↔ a) exchanges, and a low
Hac = 0.872− 3.79C for disfavored–favored (a↔ c) exchanges. These activation enthalpies can be linked to
the migration barriers of carbon in martensite, as shown in the following.

Carbon migration in martensite was investigated by means of the elasto-chemical model by Maugis et
al. [19]. It was found that carbon–strain interaction splits the migration barrier Hm

0 into three different
values: Ha→a = 0.872 + 3.77C for parallel jumps; Ha→c = 0.872 − 3.81C and Hc→a = 0.872 + 1.82C for
perpendicular jumps (see Figure 9). The migration barriers are not independent. In particular, the barrier
Hc→a for jumping out of a favored site is higher than the barrier Ha→c for jumping into a favored site, by the
quantity H ′ = 3hΣC. H ′ is the difference in site energy that favors sites c compared to sites a. Comparing the
analytical formulae of Ref. [19] with the present study (Eq. 27) yields the simple —although not intuitive—
identification: Haa = Ha→a and Hac = Ha→c. Thus, the relatively slow a ↔ a exchanges are controlled by
the migration barrier of the a→ a jumps, whereas the a↔ c exchanges are relatively fast thanks to the easy
a→ c jumps.

Section 2.4 reported that relaxation kinetics is controlled by the shortest characteristic time, τac. Thus
the activation enthalpy for relaxation is Hac, which corresponds to carbon migration perpendicular to the
axis of tetragonality. Notice that, although Hac identifies with the activation barrier of the fast a → c
jump, the relaxation mechanism also involves the slower c → a jump. Further, in the case of perpendicular
loading/unloading, relaxation occurs via forward a1 → c→ a2 and backward a2 → c→ a1 chains of jumps,
among which a → c is fast while c → a is slow (see Figure 10). This indirect mechanism proves to be more
efficient that the direct mechanism a1 → a2 and a2 → a1 of carbon migration parallel to the tetragonality
axis.

Finally, as the enthalpy Hac decreases when the carbon content is increased, relaxation is faster when the
carbon content is high. This important result is not contradictory with slower diffusivity when increasing the
carbon content: in effect, relaxation is related to short-range diffusion, involving the low Ha→c barrier, which
decreases when the carbon content is increased. Conversely, long-range diffusion involves a combination of
migration barriers, that decreases diffusivity when the carbon content is increased [19].

5 Conclusion

To study the strain relaxation in bct-martensite, we adopted a mean-field approximation of carbon migration
in the iron host lattice deformed by the strain field of carbon atoms. By linearizing the kinetic equations in
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Fig. 9. Energy paths during relaxation by carbon exchange between disfavored sites: direct path a1 → a2 (left) and
indirect path a1 → c→ a2 (right). Relaxation by the indirect path via favored site c has a lower activation enthalpy
(Hac = 0.76 eV) than by the direct path (Haa = 0.99 eV). The carbon content was set to C = 3 at%. The lines are
polynomial interpolations between calculated points.

Fig. 10. Direct and indirect pathways for carbon exchange between two disfavored sites (red and green spheres) of
variant Z3. The indirect mechanism, across a transitory favored site (blue sphere), is faster than the direct one.

the vicinity of thermodynamic equilibrium, we built the linear response theory of Snoek relaxation in bct-
martensite. The model involves atomic mobilities and thermodynamic affinities, from which the influence of
carbon content on Snoek relaxation could be derived. Our results exhibit the major role of Zener ordering,
which reduces the relaxation strength compared to ferrite, and also reduces the relaxation time. The main
conclusions of our study are the following:

– When linearized, the kinetic equations for relaxation bring up two thermally activated atomic mobilities,
which are connected to two characteristic times. One characteristic time is related to direct carbon
exchanges between disfavored interstitial sites, which are relatively slow; the other characteristic time is
related to exchanges between favored and disfavored sites, which are relatively fast.

– Two directions of shear loading/unloading with respect to crystal orientation were distinguished: transver-
sal when the stress components are perpendicular to the tetragonality axis; longitudinal when one stress
component is along the tetragonality axis. Both cases share approximately the same relaxation time, but
the strength of longitudinal relaxation is 2.5 times the strength of transversal relaxation.

– Analysis of the relaxation times reveals that relaxation in case of transversal loading involves an indirect
mechanism of carbon migration: to perform matter exchange between disfavored sites, carbon atoms
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transit via the favored sites. This provides faster relaxation that direct exchange between disfavored
sites.

– When increasing the applied stress, two sources of non-linearity appear: 1) non-linearity of the atomic
mobility, which produces a stress-dependent relaxation time; and 2) non-linearity of the thermodynamic
affinities, which causes a non-linear stress–strain relationship.

These results are a first step to understanding the influence of the stress rate on the mechanical response
of martensite crystals.
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19. Maugis, P., Chentouf, S., Connétable, D.: Stress-controlled carbon diffusion channeling in bct-iron: A mean-field
theory. J. Alloys Compd. 769, 1121–1131 (2018)

20. Maugis, P., Danoix, F., Dumont, M., Curelea, S., Cazottes, S., Zapolsky, H., Gouné, M.: Carbon diffusivity and
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