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Abstract: This short review summarizes the improvements on biological fuel cells (BioFCs) with
or without ionomer separation membrane. After a general introduction about the main challenges
of modern energy management, BioFCs are presented including microbial fuel cells (MFCs) and
enzymatic fuel cells (EFCs). The benefits of BioFCs include the capability to derive energy from
waste-water and organic matter, the possibility to use bacteria or enzymes to replace expensive
catalysts such as platinum, the high selectivity of the electrode reactions that allow working with less
complicated systems, without the need for high purification, and the lower environmental impact.
In comparison with classical FCs and given their lower electrochemical performances, BioFCs have,
up to now, only found niche applications with low power needs, but they could become a green
solution in the perspective of sustainable development and the circular economy. Ion exchange
membranes for utilization in BioFCs are discussed in the final section of the review: they include
perfluorinated proton exchange membranes but also aromatic polymers grafted with proton or anion
exchange groups.

Keywords: biological fuel cell; enzymatic fuel cell; microbial fuel cell; proton exchange membranes;
anion exchange membranes; electrochemical performance

1. Introduction

The inexorably increasing energy demand is a strong motivation to develop sustainable
and clean energy systems with the perspective of a circular economy. The world energy
demand should increase by almost 30% in the next two decades, with still a lingering
dependency on oil and gas (about 50% of the total energy demand). Consequently, a
sustained growth of new forms of energy is necessary with the increasing exploitation
of renewable energy (wind, solar, and tides). The peak power capacity of these sources
is steadily increasing and the need for energy storage and conversion becomes essential,
above all for electrical grid stability (due to intermittent renewable energy sources and
accidental threats), but also to reduce energy price fluctuations during peak demand and
economic losses due to power outages.

Electrochemical energy storage and conversion (EESC) devices are very promising for
their flexibility of utilization and high efficiency [1–4]. Even if the cost of EESC implemen-
tation is relatively high, it is considered essential for the future intelligent network, which
should integrate a significant amount of renewable energy resources and provide electricity
to hybrid and electric facilities including vehicles [5,6]. EESC presents new opportunities
for the protection of the natural and human environment but also challenges involving the
materials and conditions to implement them.

Fuel cells (FCs) using fuel sources such as hydrogen, biomass, and biofuels are among
the most promising green energy technologies available [2–4,7–11].
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Biofuel cells (BioFCs) are an alternative to classical FCs by reducing the dependence
on expensive and critical raw materials (such as Pt), by reducing the cost of the overall
process when wastewater is used, and to realize ecofriendly systems that can be utilized in
a biological environment. BioFCs can convert the chemical energy of organic or inorganic
compounds using biocatalysts, alternatively microorganisms or enzymes, instead of the
traditional inorganic catalyzers in an attempt to reduce the environmental impact [12,13].

BioFC technologies are developed for many applications [12], including the treat-
ment of wastewater [14], water desalination [15], energy production [13], and remote
biosensors [16].

The literature described in this short review focuses on the two main BioFCs categories:
microbial fuel cells (MFCs) [17–20] and enzymatic fuel cells (EFCs) [21]. This classification
is not exhaustive even if a lot of BioFC technologies can be included in these two categories.

2. Microbial Fuel Cells (MFCs)

Recently, MFCs have attracted great attention for the possibility of using different
biodegradable substrates as fuel [21–24]. They can be efficiently applied for energy pro-
duction and wastewater treatment [14,25–30], biosensors for oxygen [16,31], or pollutant
removal [22,32]. There are many different kinds of MFCs: for example, mediated, mediator-
free, soil-based, etc. The advantages of MFCs include (i) the direct conversion of the fuel
into electric energy with a high conversion efficiency; (ii) the efficient operation at room
temperature, different from other bioenergy treatments; (iii) MFCs do not need the waste
gas treatment step because the main product of the reaction is carbon dioxide, which does
not have reusable energy; (iv) the possibility to operate at the cathode only by ventilation
without high-pressure gases; and (v) the possibility to be used in areas lacking power
infrastructure (construction of MFCs that consume a fuel available in a specific area). Their
design, similar to classical FCs, includes an anaerobic anodic chamber and a cathodic cham-
ber, which is usually separated by a membrane ensuring the ion exchange and avoiding the
presence of oxygen at the anode that can drastically affect the performances. The anodic
chamber, where the microbial metabolism is used to oxidize the substrates, provides the
necessary conditions for the growth and electron transfer of microorganisms. MFCs work
thus by exploiting the bacterial respiration as a redox reaction where electrons are extracted
from bacterial food sources and feed into an electrical circuit to generate power [17,33–36].
The power generated by MFCs depends on both biological and electrochemical processes.
The main influencing factors include the rate of substrate conversion and the anode and
cathode hyperpolarization.

A complete list of Microbial Electrochemical Technologies (MET) has been given by
Logan et al. [17].

As an example, the cell potential when using acetate with the following conditions:
[CH3COO−] = [HCO3

−] = 4.5 mM, pH = 7, T = 25 ◦C, pO2 = 0.2 bar is Ecell = 1.101 V [37].

Anodic reaction: CH3COO− + 4H2O→ 2HCO3
− + 9H+ + 8e− (1)

Cathodic reaction: O2 + 4H+ + 4e− → 2H2O (2)

Although there is great perspective for MFCs, extensive optimizations are required to
exploit the maximum microbial potential [38–40].

Kim et al. [41] reported the main limiting factors of MFCs in working conditions,
including proton transfer, poor oxygen reduction kinetics, and the influence of various
parameters (anodic catalytic activity, fuel diffusion, etc.) on the rate of fuel oxidation
(Figure 1).
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Figure 1. Schematic working of a microbial fuel cell and factors limiting the performance. (1) Anodic
catalytic activity, (2) microorganism to electrode electron transfer, (3) load resistance, (4) proton
transfer through the membrane to the cathode, and (5) dissolved oxygen concentration and reduction
rate at the cathode. Reproduced with permission from Ref. [39].

Pandey et al. [26] studied MFCs operated under a range of conditions including
temperature, electron acceptor, electrode surface area, reactor size, and operation time.
Gil et al. identified a series of limiting factors for the current generation in MFC including
the pH, the load resistance, the electrolyte, and the dissolved oxygen concentration in the
cathode compartment [39]. The pH affects the microbial activity; moreover, if the pH is
around 9 (in the example of the cited article), it can result in poor proton transfer across
the membrane. For the same reason, the choice of the electrolyte is important to avoid
any variation of pH in working conditions. A higher load resistance results in a lower
Coulombic yield, which is attributed to “electrons that are consumed in the anode to reduce
other electron acceptors, such as sulfate and nitrate, or oxygen diffused through the membrane”. The
dissolved oxygen concentration determines the maximum amount of electricity generation.
Moreover, a high flow of oxygen can result in lower performances, because the microbe
immobilization at the cathode can be disturbed. With a low resistance, the proton transfer
and the oxygen supply limited the cathode reaction. A mitigation strategy can be the use of
a high-strength buffer to reduce the proton limitation [39]. A further limiting factor of MFCs
is that they cannot operate at extremely low temperatures because microbial reactions are
slow [33]. The output power of an MFC is generally low; it is not sufficient to continuously
supply a little device (sensor, transmitter etc.) [31]. A modification of the electrodes, a
power management program, or the use of ultracapacitors are the main solutions proposed.

Many studies in the literature are investigating potential solutions to improve the per-
formance of MFCs [34,36,42–47]. Kim et al. studied various techniques to enrich electrochem-
ically active bacteria on the electrode: a methanogen inhibitor (2-bromoethanesulfonate)
was demonstrated to be able to increase the Coulombic efficiency to 70% [40]. Jang et al.
developed a membrane-less MFC, where it was possible to enrich the microbial catalyst by
inoculation of an activated sludge [48]. Mitropoulos et al. compared three different genera-
tions of MFCs with distinct electron transfer mechanisms. They concluded that the natural
mediation properties of sulfate/sulfide species with the reduction in sulfate Desulfovibrio
desulfuricans is the best solution for the substrate-to-energy conversion efficiency and thus
for the power maximization of the device [49].

Recently, the electron storage during the intermittent operation of electroactive biofilms
(EAB) has been shown to play an important role in power output and efficiency. Yasri et al. [50]
reported the catalytic activity of biofilms grown on the surface of electrodes in aqueous media,
which was exploited for the simultaneous remediation of environmental pollutants and energy
generation. Ter Heijne et al. [51] investigated the two main mechanisms for electron storage
in EAB, namely the storage in the form of polymers and in the form of reduced redox-active
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compounds. However, it is still unknown how these storage mechanisms contribute to the
total storage and what is their dependency on the electrode polarization.

Looking forward to the miniaturization of these devices, Mink et al. [52] devel-
oped a mobile and inexpensive micro-sized device that can be fueled with human saliva
(Figure 2). The MFC was fabricated with inexpensive rubber support structures, a multi-
layer graphene anode grown on top of copper foil for an efficient current generation, and a
sustainable air cathode. The use of a graphene anode generated 40 times more power than
using a carbon cloth anode, allowing to produce higher current densities than any previous
micro-sized MFC with air cathode.
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Figure 2. Micro-sized MFC (a) schematic and (b) digital photograph. Reproduced with permission
from Ref. [52].

With the aim to exploit renewable sources of energy, Zaman et al. [53] studied the
Microbial Solar Cell (MSC) and the Plant Microbial Fuel Cell (P-MFC), as shown in Figure 3.
The P-MFC makes use of natural processes around the roots of plants to directly generate
electricity. In this example, three plant species were tested, and especially with Spartina
anglica and Arundinella anomala, it was possible to produce simultaneously bioelectricity
and biomass.

The transfer of electrons from microbes to the electrode is a matter of concern for the
power optimization. Das et al. [54] and Guo et al. [35] reported a detailed list of microbes
used in MFC. Their operation requires exogenous mediators [42] (for example, in the case
of Actinobacillus succinogenes, Proteus mirabilis, Pseudomonas aeruginosa, Streptococcus lac-
tis, etc.) [55–59] or they can work mediator-less (in the case of Aeromonas hydrophila, Geobacter
metallireducens, Rhodoferax ferrireducens, Klebsiella pneumonia, etc.) [60–62]. Mediator-less
MFC have more commercial potential because the mediators are sometimes toxic (such
as thionine [43], methyl viologen, humic acid) and are expensive. Metal-reducing and
anodophilic microorganisms seems to be the most promising for mediator-less devices [54].
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3. Enzymatic Fuel Cells (EFCs)

Enzymatic fuel cells (EFCs) are promising sustainable power generation systems for
various applications [63–65]. Their particularity is the replacement of non-selective metal
catalysts, which are currently used in low-temperature FCs, or bacteria with redox enzyme
catalysts. Mazurenko et al. [66] discussed the role of redox enzymes and the numerous
attempts to convert enzymes into heterogeneous catalysts.

The availability of isolated enzymes has presented the possibility to eliminate the
microorganisms from the MFCs and to substitute with individual enzymes with a consid-
erable gain in volumetric catalytic activity but at a substantially higher cost [21]. Isolated
enzymes are specific to substrates offering high catalytic turnovers and low overvoltage,
but they generally have short lifetimes, even in their natural ambiance. An enzyme is gen-
erally capable of catalyzing one specific reaction and theoretically, different enzymes can
be associated to create cascade systems. In this last example, continuous or simultaneous
reactions are catalyzed by multiple enzymes immobilized on the same electrode: thus, the
disposable fuels range is expanded with significant improvements of the output current or
voltage and performances. However, structuring this association between enzymes to have
specific reactions in the proper order is very challenging [67].

One can resume the advantages offered by the use of enzymes as biocatalysts as
follows [65]:

1. Wide possibility of enzymes production based on sustainable biological processes:
a huge variety of living organisms can be used as a source to extract enzymes in a
renewable way [63].

2. Versatility of catalysts produced for oxidation/reduction in a wide range of substrates,
such as sugars, organic acids, alcohols, hydrogen, and others [23,63].

3. Specificity of catalytic redox reactions for their natural substrates that enables in some
cases to work in a single chamber cell (i.e., without separation membrane), and make
preliminary fuel purification steps unnecessary [65].

4. Possibility to efficiently catalyze reactions under mild and safe conditions at physio-
logical pH, ambient temperature and pressure [63].

5. Reduced cost in comparison with precious metal catalysts [23,68].
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The design of EFCs can differ from the traditional design of FCs, depending on the
application and on the technical choices, but the key constituent elements and the oper-
ational mechanism remain the same. Most EFCs are single-chamber designed (Figure 4),
but some examples of double-chamber (with an ion-conducting membrane) appeared
recently and will be discussed in Section 4. Single-chamber EFCs simplify the design and
construction of the cell. Microelectrode materials and electrode preparation technology can
be utilized to prepare micro-EFCs with small volume obtaining a potential energy source
for electronic devices implanted in the human body. However, as discussed later in the text,
some limitations have to be addressed [69].

Aquino et al. [70] summarized the operation of an EFC: appropriate enzymes oxidize
the feed fuel on the bioanode and reduce oxidants (usually oxygen or peroxides) to water
on the biocathode [63]. An oxidoreductase enzyme can oxidize carbohydrates, alcohols, or
even amino acids.
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The early EFCs focused on obtaining electrical energy mainly through the oxidation of
saccharides, especially glucose and fructose, or other organic fuels such as pyruvate, lactate,
methanol and ethanol. The first EFC introduced in 1964 by Yahiro et al. [72] was glucose
fueled and utilized glucose oxidase as the anode catalyst [73]. Advantages of this fuel are
associated with its wide availability and presence in physiological fluids (for instance in
blood or interstitial fluids) and sustainable production by the metabolic processes, which
are the most substantial source of energy in many living organisms [67]. Moreover, the
interest in glucose as a fuel in EFCs is due to its absence of volatility and toxicity, and its low
price combined with a relatively high energy density. More evoluted EFC systems use lactic
acid and ethanol as fuel exploiting enzyme electrodes containing auxiliary NADP+, such as
enzyme electrodes of lactate dehydrogenase [74] and ethanol dehydrogenase [75,76].

Afterwards, the intensive research on the mechanistic understanding of hydrogenases,
the key enzyme for H2 oxidation in many microorganisms, has made the concept of green
energy production through H2/O2 EFCs possible [70,77]. Hydrogen is significantly smaller
than glucose or various other redox mediators, which gives a major advantage in the size
of H2/O2 EFCs [78]. However, in contrast to glucose, which is safe, abundant and easy to
handle, the use of hydrogen for EFCs raises problems of H2 storage and transport.

More recently, great effort has been put into the improvement of the interfacial electron
transfer process between the enzymes and high surface area conductive materials, and to
the stability of the enzymes in the typical working conditions, to shift from the proof-of-
concept to usable power devices [63,65,66,70,72,77,79–89].

Concerning the electron transfer process and consequently the enzyme immobiliza-
tion on electrodes, there are still major issues that have to be solved for high energy
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production [90]. Electrode materials play a crucial role in the electron transfer requiring
high conductivity and sufficient porosity to increase the surface where enzymes can be
attached. Gold and carbon seem to be the most suitable electrode materials and even
simple adsorption on them has often allowed addressing electrochemically many redox
enzymes. Nevertheless, an additional functionalization is often needed to manage the
enzyme immobilization and exploit the potentiality of the enzymatic catalysts [65,72,80–89].
Nanostructured carbon-based materials, such as single- or multi-wall carbon nanotubes,
carbon nanoparticles, graphene, mesoporous carbon foams, etc., are the most widely used,
because they are biocompatible, inexpensive, and capable of boosting the adsorption
of enzymes [67]. Recent electrodes, based on hydrogenase enzymes, exhibit promising
characteristics such as long-term stability, mW power densities, tolerance to O2, and fuel
impurities such as sulfides and CO. These properties make hydrogenase electrodes compet-
itive with the Pt catalyst [78,91]. Active research has thus concentrated in recent decades
toward the decrease in loading or even the replacement of Pt in FCs [77].

A wide range of strategies exists regarding the enzyme immobilization on the electrode
surface to provide stable bioelectrodes by avoiding the detachment of biocatalyst and
cofactors during operation. The free “in solution” biocatalyst option does not guarantee a
proper electron exchange and stability to the system [92]. On the contrary, properly attached
enzymes to the electrode by adsorption, covalent bonding, crosslinking, entrapment in
polymeric gels, encapsulation (Figure 5), use of nanoparticles, or the combination of these
techniques have generally shown improved lifetime of the catalyst and thus of the overall
device [93].

Membranes 2022, 12, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. Enzyme immobilization methods. Reproduced with permission from Ref. [94]. 

An important concern about EFC performance is the polymeric film used for the 
enzyme immobilization. The polymer matrix should be electronically conductive and 
should contain functional groups in order to chemically immobilize the enzyme. Many 
reports show the use of polythiophenes and their derivatives in chemical enzyme 
immobilization. For example, Korkut et al. have enhanced the power density of the EFC 
by the improvement of conductivity of poly(3-thiophene acetic acid) (PTAA) by 
copolymerization with alkyl thiophenes, which is followed by modification with a 
ferrocene mediator for electron transfer rate improvement [95]. Therefore, polythiophenes 
can be good candidates as a polymeric matrix in enzyme immobilization because of the 
presence of carboxylic functional groups and their good conductivity. Recent advances 
made in the field of bio-nanotechnology (such as different nanostructured materials with 
a large surface area) allow improving the enzymatic stability and hence the performances 
[96]. Another technique is the immobilization of the enzymes by micellar polymer 
encapsulation [92], using modified Nafion ionomer [97,98], Nafion and glutaraldehyde 
[99], or modified chitosan [100,101]. 

Concerning the stability of enzymes in working condition, great attention has to be 
addressed to the EFC operation parameters that should be controlled carefully, since 
enzymes require strict conditions in terms of temperature and pH, due to their sensitivity 
and specificity. The working parameters vary from enzyme to enzyme: many enzymes 
lose their activity at low temperatures, 3–5 °C, or high temperatures, 50–80 °C. For 
instance, laccase that originates from Trametes versicolor and catalyzes the oxygen 
reduction reaction (ORR) is most active and stable at 30 °C and degrades beyond 50 °C. 
Glucose oxidase is known to be the most efficient at around 25–30 °C and to deactivate 
completely at 60 °C. While implantable EFCs operate at temperatures that may be 
assumed constant, other cells that are used in variable atmospheric applications may 
suffer from the difficulty of maintaining the operating temperature, leading to the 
fluctuation in current and power densities [67]. Concerning the acidic or basic 
environment inside the cell, many studies have reported that physiological pH at around 
7.4 is the most appropriate condition for enzymatic performance, since enzymes mainly 
function in living organisms. However, fluids with natural acidic properties such as fruit 
juices or gastric fluid can also be utilized in EFCs. EFCs whose operation is based on 
multicopper oxidase and laccase demonstrated good performance and stability in acidic 
conditions; in particular, the glucose oxidase–laccase EFC was studied at a pH value of 

Figure 5. Enzyme immobilization methods. Reproduced with permission from Ref. [94].

An important concern about EFC performance is the polymeric film used for the
enzyme immobilization. The polymer matrix should be electronically conductive and
should contain functional groups in order to chemically immobilize the enzyme. Many
reports show the use of polythiophenes and their derivatives in chemical enzyme immobi-
lization. For example, Korkut et al. have enhanced the power density of the EFC by the
improvement of conductivity of poly(3-thiophene acetic acid) (PTAA) by copolymerization
with alkyl thiophenes, which is followed by modification with a ferrocene mediator for
electron transfer rate improvement [95]. Therefore, polythiophenes can be good candidates
as a polymeric matrix in enzyme immobilization because of the presence of carboxylic
functional groups and their good conductivity. Recent advances made in the field of bio-
nanotechnology (such as different nanostructured materials with a large surface area) allow
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improving the enzymatic stability and hence the performances [96]. Another technique is
the immobilization of the enzymes by micellar polymer encapsulation [92], using modified
Nafion ionomer [97,98], Nafion and glutaraldehyde [99], or modified chitosan [100,101].

Concerning the stability of enzymes in working condition, great attention has to
be addressed to the EFC operation parameters that should be controlled carefully, since
enzymes require strict conditions in terms of temperature and pH, due to their sensitivity
and specificity. The working parameters vary from enzyme to enzyme: many enzymes lose
their activity at low temperatures, 3–5 ◦C, or high temperatures, 50–80 ◦C. For instance,
laccase that originates from Trametes versicolor and catalyzes the oxygen reduction reaction
(ORR) is most active and stable at 30 ◦C and degrades beyond 50 ◦C. Glucose oxidase is
known to be the most efficient at around 25–30 ◦C and to deactivate completely at 60 ◦C.
While implantable EFCs operate at temperatures that may be assumed constant, other
cells that are used in variable atmospheric applications may suffer from the difficulty of
maintaining the operating temperature, leading to the fluctuation in current and power
densities [67]. Concerning the acidic or basic environment inside the cell, many studies
have reported that physiological pH at around 7.4 is the most appropriate condition for
enzymatic performance, since enzymes mainly function in living organisms. However,
fluids with natural acidic properties such as fruit juices or gastric fluid can also be utilized
in EFCs. EFCs whose operation is based on multicopper oxidase and laccase demonstrated
good performance and stability in acidic conditions; in particular, the glucose oxidase–
laccase EFC was studied at a pH value of 4.5. Therefore, optimal pH conditions can be
achieved by introducing a buffer solution into the EFC chamber [67].

Xiao et al. [63] investigated EFCs considered as disposable systems, because the compo-
nents can potentially be biologically degraded. These properties demonstrate the potential
of EFCs in next-generation green power sources for a circular economy. They reported a
detailed list of EFCs with a maximum power density greater than 1 mW cm−2 [66].

Finally, to improve the performance of EFCs, the main problems to be solved are to
enhance the output power and the service life. The output current of EFCs can be improved
by adding conductive materials, connecting electrodes with enzyme active centers by cova-
lent or non-covalent bonds, and using various natural or artificial enzymes and electronic
mediators [64]. The service life, at present the major obstacle restricting the application
of EFCs, can be improved by the biotechnological preparation of artificial enzymes, the
synthesis of materials and electrodes with better biocompatibility by biomimetic technology,
and by improved electrode preparation methods.

4. Ion Exchange Membranes for BioFCs

BioFCs can also be subdivided according to the use or not of a membrane separa-
tor. Pure hydrogen cannot be used in membrane-less BioFCs given the risk of explosions
without a separator between cathode and anode compartments. Furthermore, anaerobic
conditions in the anodic compartment cannot be established, and the use of a single elec-
trolyte without a separator increases the risk of parasitic electrochemical reactions. Current
separators include foremost perfluorinated proton exchange membranes (PEMs), such as
Nafion [102–105], Aquivion [106,107], and 3M [108]. Nafion and Aquivion exhibit a good
endurance even under rigorous operating conditions [109,110]. The chemical structures
of Nafion and Aquivion are shown in Figure 6a. The perfluorosulfonic polymers possess
a poly(tetrafluoroethene) (PTFE) backbone and regularly spaced pendant perfluorovinyl
ether side chains terminated by sulfonic acid groups. The side chain is longer in Nafion
and shorter in Aquivion. The hydrophobic PTFE backbone provides excellent thermal and
chemical stability, whereas the hydrophilic perfluorinated side chains act as proton sources.
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The separator must also avoid the transfer of other redox-active species, such as
sulfate, ammonia, ferricyanide, hydrogen peroxide, nitrate, and perchlorate, which de-
grade the Coulombic efficiency of the BioFCs, and some heavy metals that can alter the
anodic microbes or enzymes and favor the proliferation of electrochemically inactive mi-
croorganisms [111]. The ion permeability and selectivity are thus important properties of
separator membranes that can sensitively influence the power output of BioFCs: whereas
cation-conducting separators such as Nafion and Aquivion block the passage of anions,
anion-conducting separators impede the transfer of cations.

Ramirez-Nava et al. [111] summarized the role and the most utilized membranes
for BioFCs and in particular for MFCs. For dual chamber BioFCs, where the membrane
introduces a challenge of cell configuration scaling up [68], expensive Nafion 117 is mostly
utilized. The highly acidic sulfonic groups and fluorinated species can however be harmful
for the biocatalysts and decrease their activity and lifetime [112]. In an attempt to solve the
acidity problem, Schrenk et al. [113] mixed Nafion with quaternary ammonium bromide
salts; the composite membrane exhibited similar mass transport properties compared to
the pristine Nafion but showed a better selectivity to protons while becoming less selective
against anions. In addition, Akers et al. [83] reported that modified Nafion helps to maintain
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the pH of the medium, thus becoming more compatible with biocatalysts. However, Nafion
with tetrabutylammonium bromide salts remains expensive and non-biodegradable [114].

Recent studies about Nafion membranes in BioFCs demonstrate an important current
density decay due to the interference of other cations, for example in phosphate buffers
(e.g., K, Na, Mg) [115]. Along with protons, other high concentrated cations are transferred
through the membrane. Nafion exhibits a selectivity and affinity to cations in the following
order: Cs+ > Rb+ > Ba2+ > K+ > Mg2+ > Na+ > H+ > Li+ resulting in an increased conduction
of most other cations rather than protons [116], leading to a reduction in conductivity and
consequently an increased Ohmic drop and power density losses [117,118]. Furthermore,
Gil et al. [39] demonstrated an increase in pH in the cathodic and decrease in pH in the
anodic parts of the dual chamber cell separated by a Nafion membrane. They related
this phenomenon to the slower rate of proton transfer through Nafion compared to the
proton generation rate on the anode and proton expenditure rate on the cathode. In these
conditions, the authors reported a constant anode potential, whereas the cathode potential
decreased, resulting in an overall decreased power [118]. A pH stabilization is required by
buffer solutions to guarantee the optimal enzymatic activity [117].

Anyway, perfluorinated ionomers present a relatively large permeability to gases
(crossover) allowing oxygen to enter the anodic chamber, and they emit fluorinated prod-
ucts during use, which can denaturate enzymes and poison living organisms. Efforts
have therefore been made to develop less expensive and toxic PEM with simpler synthetic
processes, lower reactant permeability and without fluorine, especially sulfonated aromatic
polymers (SAPs) [119–122]. SAPs (Figure 6b) include sulfonated poly(ether ether ketone)
(SPEEK) [123,124], sulfonated poly(ethersulfone) (SPES) [125], sulfonated poly(phenyl sul-
fone) (SPPSU) [126], and sulfonated polysulfone (SPSU) [127]. However, SAPs suffer from
poor hydrolytic stability under usual operative conditions, leading to a progressive deterio-
ration of mechanical properties. Cross-linking treatments can improve their performance
significantly [128,129].

Anion exchange membranes (AEMs) are now a fashionable alternative to PEMs, given
the possibility to use non-noble metal electrocatalysts, including microbes and enzymes, as
a result of the inherently faster kinetics of the ORR at higher pH [130,131]. Major interest in
AEMFCs was generated by early reports of Varcoe and Slade [130–133] and commercial
advances in materials and devices pursued by the Tokuyama Corporation [134]. There are
now many groups investigating AEMFCs technology to break the constraints posed by
acidic perfluorinated polymers and precious metal catalysts [134–149]. Various commercial
aryl ether-based polymer backbones, such as poly(ether-ether ketone) (PEEK) [150,151] and
poly(phenylene oxide) (PPO), were proposed [152–154] (Figure 6c), and some AEMs from
the Holdcroft, Yan, and Bae groups were recently commercialized [155–157].

Many strategies were proposed to decrease the degradation of AEMs, which were re-
lated to the attack of positive ionic groups and labile bonds on the polymer backbone, such
as ether links, by hydroxide ions [158] and to increase the long-term performance [142], in-
cluding (i) change of the polymer backbone, especially without ether bonds [159–161], (ii) in-
troduction of long side chains to separate the positive charge from the matrix [162–164],
(iii) delocalization of the positive charge [149,165], (iv) cross-linking to improve the hy-
drolytic and mechanical stability [166–168], (v) formation of composite ionomers, generally
obtained by mixing nanoparticles such as layered double hydroxides (LDH), SiO2, and
TiO2 or forming nanoparticles via sol–gel routes [169–174]. Despite performances similar to
PEMs, sometimes obtained with unrealistic testing conditions, the durability issues remain
a primary challenge for the commercialization of AEMs [140], but some very encouraging
results were reported recently [175].

Ex situ tests in important buffer solutions (phosphate, acetate, citrate) demonstrated
that aromatic polymers functionalized with proton exchange or anion exchange moieties
can be utilized assuring a higher conductivity than Nafion and good dimensional stabil-
ity [79,112]. Amphoteric ionomers and bipolar membranes might be an interesting choice
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for use at intermediate pH values [176], but only very preliminary works in BioFCs were
published [177].

5. Conclusions

In this short review, we summarized advancements of BioFCs without or with an
ionomer separator. BioFCs, which can be further subdivided into microbial and enzymatic
fuel cells, represent a long-term, affordable, accessible, and eco-friendly approach. Benefits
of using BioFCs include the ability to derive sustainable energy from renewable sources. A
second benefit is that they avoid the use of expensive catalysts and critical raw materials.
Bacteria or enzymes are relatively inexpensive and easy to produce. For these reasons, their
overall impact in terms of greenhouse gas emissions is low.

Although there have been major technological developments in this area, there is still a
long way to go for their complete maturity. BioFCs are a nascent technology and compared
to traditional FCs have lower electrochemical performances and power densities. Indeed,
for the moment, they have only found application in powering remote monitoring devices
that have low power needs. In the future, BioFCs could be a possible green solution from
the perspective of sustainable development and the circular economy, but some challenging
problems remain for their use on a global industrial scale with low cost.

Some advances in PEMs and AEMs development used as separators in BioFCs are
presented at the end of the review. Membrane-less BioFCs suffer generally from a lower
open circuit voltage because anaerobic conditions in the anodic compartment are difficult
to provide, and the risk of parasitic electrochemical reactions is enhanced. Although
perfluorinated membranes are mostly used, PEMs and AEMs based in aromatic polymers
have recently been evaluated positively. The membrane durability is a however a tricky
point that was recently improved quite a bit.
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