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SUMMARY
The disruption of cortical assembly activity has been associated with anesthesia-induced loss of conscious-
ness. However, the relationship between cortical assembly activity and the variations in consciousness
associated with natural vigilance states remains unclear. Here, we address this by performing vigilance
state-specific clustering analysis on 2-photon calcium imaging data from the sensorimotor cortex in combi-
nation with global electroencephalogram (EEG) microstate analysis derived frommulti-EEG signals obtained
over widespread cortical locations. We report no difference in the structure of assembly activity during quiet
wakefulness (QW), non-rapid eye movement sleep (NREMs), or REMs, despite the latter two vigilance states
being associated with significantly reduced levels of consciousness relative to QW. However, we describe a
significant coordination between global EEGmicrostate dynamics and general local cortical assembly activ-
ity during periods of QW, but not sleep. These results suggest that the coordination of cortical assembly ac-
tivity with global brain dynamics could be a key factor of sustained conscious experience.
INTRODUCTION

Neural assemblies, groups of neurons that coactivate together,

have longbeensuggested toplayan important role in cognition.1–5

Several decades ago, the presence and proposed importance of

assemblies in brain function began to findmore experimental sup-

port due to advances in electrode recording techniques that

enableddata tobeobtained from largenumbersofneuronsspread

over relatively localized brain regions.6 Such experiments were

able to detect statistical features indicative of the presence of as-

sembly organization.7–9 More recently, the development of genet-

ically encoded calcium indicators and optogenetic techniques in

combination with 2-photon imaging platforms has allowed for

the observation and manipulation of cortical neurons with a more

optimal spatial resolution. Resulting experiments have enabled

the direct visualization of localized microcircuit-level cortical as-

sembly activity inmice in vivo,10 confirmed long-theorized proper-

ties attributed to microcircuit-level cortical assemblies such as

pattern completion,11 and demonstrated their importance in

various cortical regions to associated learning behaviors.12,13

The above results have cumulatively helped to establish local

microcircuit-level cortical assemblies as critical units involved in

cognitive tasks such as learning. However, the more general

question of their relationship with consciousness remains un-

clear. Using 2-photon imaging of layer 2/3 sensorimotor cortex

in a head-fixed mouse model, a recent study was able to gain

insight into local microcircuit-level cortical assembly dynamics

in the awake vs. anesthetized unconscious state.14 The authors

reported that the onset of general anesthesia was associated

with a reversible reduction and fragmenting of assemblies, sug-
This is an open access article under the CC BY-N
gesting their potential role in maintaining consciousness and,

more generally, supporting the hypothesis that cortical assem-

blies are unitary components of cognition.2,3 However, there is

currently a lack of information about local microcircuit-level

cortical assembly dynamics across the full range of natural vigi-

lance states, including sleep (non-rapid eye movement sleep

[NREMs] and REMs), when consciousness is significantly

reduced relative to waking behaviors.15 If intact local microcir-

cuit-level cortical assembly activity is a key component of con-

sciousness, then this structured activity might also be expected

to be altered to some extent during sleep.

To help improve our understanding of the potential role of local

microcircuit-level cortical assemblies in consciousness, we have

performed 2-photon calcium imaging of the sensorimotor cortex

in combination with multi-electroencephalogram (EEG) record-

ings across the full sleep-wake cycle in fully habituated head-

fixed mice. Our initial aim was to compare and contrast the

characteristics of local microcircuit-level assemblies occurring

during each vigilance state in order to gain greater insight into

their potential role in conscious experience.

RESULTS

Imaging sensorimotor cortex across the full sleep-wake
cycle
To facilitate stable long-term imaging of cortical neural activity,

we injected an adeno-associated viral vector encoding the cal-

cium indicator GCaMP6s driven under the hSyn promoter into

the left ventricle of neonatal mice. The resulting brain-wide

expression of GCaMP6s was stable well into adulthood
Cell Reports 42, 112053, February 28, 2023 ª 2023 The Authors. 1
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(at least 6 months post-injection) (Figures 1A and 1B, top right),

as previously reported.16,17

We next habituated previously injected adult mice to sleep

on a head-fixed, non-motorized treadmill setup (Figures 1A,

1B, S1A, S1B, S2, method details). Layer 2/3 of the sensori-

motor cortex was subsequently imaged through a window

placed on the overlying dura in head-fixed mice during

recording sessions in order to determine the characteristics

of cortical assemblies across different vigilance states.

Because 2-photon microscopy imaging produced noise and

necessarily took place in a dark and open-concept space,

the sleep-wake structure was altered (sleep activity reduced)

relative to established baseline norms (i.e., in a quiet home

cage during the light cycle18); however, we were still able to

detect clear wake and sleep states.

Detection of vigilance state-specific local microcircuit-
level assembly activity in sensorimotor cortex
Calcium trace-derived activity raster plots for a total of 1,290

neurons from 6 mice (average = 215 ± 34 neurons/mouse)

were extracted from the imaged movies (Figure 2A). For use

in all subsequent analysis, we isolated equal amounts of data

for each of 4 vigilance states: active wakefulness (AW), quiet

wakefulness (QW), NREMs (N), and REMs (R). Our first analysis

focused on the activity of individual neurons. The proportion of

cells active during periods of AW was significantly higher

than for all other states, with the majority of all cells being

active for at least 1 frame during the analysis period (AW =

84% ± 3%; QW = 36.4% ± 10.3%; N = 41.5% ± 11.7%; R =

43.8% ± 11.5%). Similarly, basic activity rates, measured as

the number of active frames/second, were generally higher dur-

ing periods of AW relative to all other states, with a significant

difference in mean activity rate at the group level being found

between AW and QW (AW = 0.65 ± 0.18; QW = 0.10 ± 0.01;

N = 0.15 ± 0.03; R = 0.20 ± 0.05, AW vs. QW p < 0.01;

Kruskall-Wallis test with Dunn’s multiple comparisons test;

Figures 2Ci-ii). Neither of the above measures were significantly

different between periods of QW, N, and R, in line with prior

work.19

We next analyzed the activity of vigilance state-specific local

microcircuit-level cortical assemblies, defined here as groups

of local cortical neurons that coactivate together, using a hier-

archical clustering method (method details). We were able to

identify significant assembly activity in data from every vigi-

lance state of each experiment (Figure 2B). There was no differ-

ence between vigilance states in the number of assemblies

identified (Figures 2Ciii); however, there were significantly

more neurons/assembly during AW relative to QW, N, and R

periods, which were indifferent from one another

(Figures 2Civ). We then measured assembly activity during

the different vigilance states (method details), with no signifi-

cant difference found in the number of assembly activations

between any of the vigilance states tested (Figures 2Cv).

Assessment of the relationship between constituent neurons

of assemblies (i.e., assembly similarity) identified during

different vigilance states within experiments revealed no

consistent indication of similarity above chance levels for any

vigilance state pair (Figures S3B and S3C).
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Identification of global EEGmicrostates frommulti-EEG
recordings during different vigilance states
While our result of having found no clear consistent differences

in the structural characteristics of local microcircuit-level

cortical assembly activity between QW, N, and R behaviors

could be inconsistent with the idea that they are critically

involved in consciousness, we hypothesized that there might

be a difference in the coordination of assembly activity with

global brain dynamics. Indeed, recent evidence has indicated

that while local patterns of general network activity are pre-

served,20,21 disrupted functional connectivity and coordination

between distant cortical regions is a hallmark of the anesthe-

tized brain.21–23 An established approach that has provided

much insight into macroscale brain dynamics involves

analyzing how the relationship between EEG recordings ob-

tained simultaneously from widespread cortical locations

changes over time.24–27 Specifically, this procedure involves

clustering topographical EEG potential profiles during moments

of peak variability between the EEG signals and has consis-

tently demonstrated that global EEG activity dynamically shifts

between a relatively small number of quasi-stable configura-

tions. Termed ‘‘EEG microstates,’’ such dynamics on the global

EEG scale have attracted significant interest in recent years

due to their potential involvement in general cognition and

conscious experience.28–31 We therefore next sought to inves-

tigate the coordination of local microcircuit-level cortical as-

sembly activity with global brain dynamics in a subset of 3

mice that had been implanted with multi-EEGs (Figure 3A).

We first clustered topographical EEG potential profiles from

data corresponding to periods of peak variation between

EEGs during the same time periods used for imaging-derived

assembly analysis in the sensorimotor cortex for QW, N, and

R. AW periods were not analyzed due to the strong possibility

of contamination of EEG signals by movement-related artifacts.

Significant clustering of EEG topographies was found for all

vigilance states tested in each experiment, with an optimal

cluster number of 4 being consistently indicated for all vigilance

states in each experiment (Figures S4A and S4B). The ordered

sets of EEG potential profile maps (microstate maps 1–4)

derived from the optimal cluster definitions were similar be-

tween different vigilance states within an experiment (mean

Pearson r values: QW-N = 0.79 ± 0.08; QW-R = 0.91 ± 0.01;

N-R = 0.83 ± 0.07; Figures S5A and S5B; Table S1). Microstate

maps were also positively correlated between experiments

(mean inter-experiment Pearson r values: QW = 0.80 ± 0.07;

N = 0.68 ± 0.10; R = 0.41 ± 0.10; Figures S5A and S5B;

Table S2). To gain insight into the dynamics of EEG micro-

states, we next correlated each microstate map with instanta-

neous EEG potentials at each time point of the data segments

(Figure 3B). Microstates were found to cycle dynamically during

all states; however, spectral analysis revealed that the main fre-

quencies at which this cycling occurred differed depending on

vigilance state (Figure 3C). Spectra for both QW and N were

dominated by peaks in the delta (1–4 Hz) frequency range

(mean dominant frequency: QW = 3 ± 0.4 Hz; N = 3.6 ±

0.3 Hz), although transient spindle oscillation-associated

(9–15 Hz) higher-frequency dynamics during select N data

were sometimes observed (Figure S6). In contrast, spectra for
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Figure 1. Imaging sensorimotor cortex across the full sleep-wake cycle

(A) Experimental timeline. Left: an adeno-associated viral vector encoding the calcium indicator GCaMP6s driven under the hSyn promoter was injected into the left

ventricle of neonatal mice (P0). Center:�3 months later, mice were implanted with an imaging window and EEG and EMG electrodes used to assess sleep activity.

Right: following recovery fromsurgery,micewere trained tosleeponanon-motorized treadmill inorder to imagesensorimotorcortexacross the full sleep-wakecycle.

(B) Top: example hypnogram showing the general imaging procedure in habituated mice. GCaMP6s expression resulting from P0 injection was widespread and

stable long term throughout the cortex, allowing for high-quality imaging data acquisition from sensorimotor cortex months after the initial injection. Imaging data

acquisition was completed during the second half of each experimental session when sleep activity was highest. Middle: example EEG and electromyogram

(EMG) traces frommajor vigilance states analyzed in this study. Bottom: spectral analysis derived from 5 s time epochs centered around the example EEG traces

above. Analysis of the EEG spectrum, EMG activity, and behavioral observation were used to determine vigilance states throughout the entire course of ex-

periments (method details).
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R data peaked in the theta (4–10 Hz) range (mean dominant fre-

quency: R = 6.3 ± 0.2 Hz). Correlation analysis between micro-

state dynamics and each individual EEG channel indicated that

no single EEG exerted disproportionate influence over micro-

state dynamics (Table S3). We also correlated microstate

dynamics vs. the average complex wavelet transform across

all EEGs at each time point and found that microstate dynamics

were not influenced by changes in global oscillation strength for

any of the standard frequency bands tested (Table S4). Thus,

our results are in general agreement with those described

previously.24–28

Microcircuit-level assembly activity in sensorimotor
cortex is coordinated with global EEG microstates
during QW
To investigate the potential relationship between EEG micro-

state dynamics and local microcircuit-level assembly activity

in the sensorimotor cortex, we next calculated the locations

of estimated cortical assembly activation start points during

QW and N separately for each experiment (Figures 4A and

4B; method details). Values for R were not calculated because

the dominant frequency of microstate dynamics during this

vigilance state was not less than the Nyquist frequency of

imaging data (1/2 the imaging frame rate [8 Hz]), which would

have been susceptible to under sampling as a result. The cor-

relation coefficient r values calculated for each EEG microstate

map corresponding to the 125 ms (�imaging frame rate)

periods before and after the estimated start point were then

determined for each assembly activation and average values

calculated for each vigilance state tested. We found that r

values corresponding to EEG microstate maps 1 and 2, associ-

ated with relatively increased potentials in frontal and posterior

EEGs, in the 125 ms period following estimated assembly acti-

vations were significantly higher relative to the preceding

125 ms time window during QW. In contrast, no such differ-

ences were found for assembly activations during N periods

(Figures 4B, 4C, and S7, top middle). To ensure that this result

was not due to under sampling of imaging data during transient

spindle-associated periods of increased frequency EEG micro-

state dynamics during N periods, we next automatically de-

tected spindle activity in all EEGs (Figure S6). Spindle activity

coincidence, defined as significant spindle activity being de-

tected in at least 1 EEG channel during the �125:+125 ms

peri-assembly activation period, was only found to occur in a

minority (11%) of assembly activations; the removal of these

data points did not significantly alter our results (Figure S7,

bottom).
Figure 2. Detection of vigilance state-specific local microcircuit-level

(A) Example activity raster from an imaging experiment (black = active). The hyp

right: imaging frame taken from the experiment showing the field of view in the sen

(B) Sample vigilance state-specific hierarchical clustering results obtained from

significant assemblies identified have had their constituent neurons reindexed

clustered into a significant assembly. Bottom: vigilance state-specific neuron co

(Ci–Cv) Group-level analyses of basic cortical neuron and assembly activity fro

distributions for all neurons pooled across experiments. (ii) Mean proportion of ce

significant assemblies identified. (iv) Mean number of constituent cells/assembly. (

values included due to large SEM) (n = 6; n.s., not significant, *p < 0.05, **p < 0.01,

hoc test, ii–iv/Kruskal-Wallis test with Dunn’s multiple comparisons post-hoc tes
DISCUSSION

Our results suggest that the general coordination of local micro-

circuit-level cortical assembly activity with global brain dynamics

could be key for sustaining a stable state of consciousness,

whereas themere presence of cortical assemblies is necessary14

but not sufficient. Our results are also in line with prior experi-

ments which have demonstrated that while local patterns of

general network activity can be preserved20,21 (but see also),14

disrupted coordination between distant cortical regions is

observed during anesthesia-induced unconscious states.21–23

In this study, we employed EEG microstate analysis as a

method to gain insight into global brain dynamics.While this anal-

ysis is derived fromcortical EEGsignals, thebrain-wide relevance

of EEGmicrostate dynamics has been suggestedby prior studies

that associated them to resting state networks in dual EEG-fMRI

experiments,32–34 aswell as studies that used source localization

techniques to reveal multiple underlying contributors to the EEG

signal.35,36,37 Furthermore, a similar ‘‘EEG microstate’’ analysis

approach was applied to data obtained from high-density elec-

trode arrays implanted in the prefrontal cortex, striatum, and

ventral tegmental area in a recent study utilizing a rat model.38

The authors reported that each brain region produced dynamics

that were similar to those of more traditional EEG studies. Cumu-

latively, these studies suggest that EEG microstate dynamics

may directly reflect transient alterations in the functional connec-

tivity between a variety of different brain regions, although

currently, little is knownof their direct relation to underlying neural

activity.27 Thus, our study also provides important insight by

demonstrating the relationship between local microcircuit-level

cortical assembly activity and EEG microstate dynamics during

periods of restful wake. More generally, our data suggest that

EEGmicrostates could be a mechanism by which local microcir-

cuits are able to coordinate across relatively distant brain regions

in the awake brain. Our present work thus highlights a promising

direction of research with potentially significant implications

considering, aside from their potential role in general cognition

and conscious experience,28–31 the possible association be-

tween aberrantmicrostate dynamics and neuropsychiatric disor-

ders, most notably schizophrenia,39–47 among others.43,48–54

From a more general perspective, our data provides evidence

that EEGmicrostates could play an important mechanistic role in

promoting coordination and temporary binding between local

activity patterns in relatively distant and physically segregated

neural populations at the microcircuit level in the awake resting

brain, although this remains to be tested. Future work is also

required to more fully explore the possible mechanisms,
assembly activity in sensorimotor cortex

nogram at the bottom indicates the behavioral state at a given time point. Top

sorimotor cortex. Bottom right: neuron contours obtained from the field of view.

select data originating from the raster shown in (A). For each vigilance state,

and color coded for clarity. Cells plotted below the faded gray line were not

ntour plots with color coding corresponding to the raster plots above.

m select data obtained for each vigilance state. (i) Plots of inferred firing rate

lls that were active for at least 1 frame during select data. (iii) Mean number of

v)Mean number of assembly activations (gray dots representing individual data

one-way repeated measures ANOVAwith Tukey’s multiple comparisons post-

t, v). Data are represented as mean ± SEM.
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Figure 3. Identification of global EEG microstates from multi-EEG recordings during different vigilance states

(A) Schematic of EEG microstate detection procedure. Left: multi-EEG signals originating from EEG electrodes widely spread over the cortical surface were

obtained for the same select quiet wakefulness (QW), N, and R time periods used for imaging data analysis. Imaging window not included in the dorsal-view

schematic for clarity. The topographical EEG potential profiles were then clustered at specific time points, resulting in the identification of significant clusters

(Figure S4; method details). Center: example normalized topographical EEG profile ‘‘microstate maps,’’ scaled with max-min difference for eachmap individually

to enable visualization of variations in topographical potentials within each given map (method details), derived from optimal significant cluster definitions

identified in prior clustering steps for one experiment. Numerical values to the immediate top/bottom right indicate the maximum/minimum bounds (mV) of the

scale used for each individual plot. Right: a single graph with a common scale containing linear plots of the same corresponding derived EEG potential values that

were used to generate topographical maps are shown to provide direct comparison of the potential values associated with different maps.

(B) Top: expanded example of multi-EEG data plots for each vigilance state analyzed. Bottom: corresponding plots of Pearson correlation r values calculated

between momentary multi-EEG topographical profiles and microstate map templates (identified in A) used to show the relationship between multi-EEG data and

EEG microstate dynamics.

(C) Group-level spectral analyses of identified global EEG microstate dynamics (Pearson correlation r values calculated between momentary multi-EEG topo-

graphical profiles and microstate map templates at each data point). Note the different linear scales on the y axis.
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Figure 4. Microcircuit-level assembly activity in sensorimotor cortex is coordinated with global EEG microstates during QW

(A) Dorsal schematic of the implant allowing for simultaneous imaging of the sensorimotor cortex and multi-EEG recording.

(B) Example of vigilance state-specific correspondence between EEG microstate dynamics and microcircuit-level assembly activity in the sensorimotor cortex.

Top: sample normalized EEGmicrostate template maps generated for select quiet wake and NREMs data from experiment ID058 (Figure S5B). Numerical values

to the immediate top/bottom right indicate themaximum/minimum bounds (mV) of the scale used for each individual plot. Middle: color-coded contour maps and

corresponding spike rasters obtained from the same select data periods as the above EEG microstate maps. To assess the relationship between microcircuit-

level assembly activity and global EEG microstate dynamics during QW and NREMs, the estimated start points of assembly activations were obtained (red

(legend continued on next page)
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including directionality, behind the coordination between global

brain dynamics and microcircuit-level assembly activity that we

observed in the awake resting brain.

Limitations of the study
The relatively low temporal resolution of calcium imaging limited

our ability to fully resolve the finer structure of identified cortical

assembly activity and prevented us from analyzing the potential

relationship between cortical microcircuit-level assembly activity

and EEG microstate dynamics during R.

The hierarchical clustering procedure used to identify signifi-

cant cortical assemblies can only assign a given neuron to 1

cluster. Therefore, neurons that may participate in multiple clus-

ters are not considered in this study.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were approved by the French ethics committee (Ministère de l’Enseignement Supérieur, de la Re-

cherche et de l’Innovation (MESRI); Comité d’éthique CEEA-014; APAFiS #’s 18.185, 28.506) and were conducted in agreement

with the European Council Directive 86/609/EEC. Male Swiss wild-type mice (C.E. Janvier, France) were used in this study. With

the exception of neonatal (P0) virus injections, all experimental procedureswere performed in adult micewhichwere at least 3months

old. When not being used in experiments, mice were housed in cages on a 12h:12h light:dark light schedule (lights on at 20:00 h) and

had access to food and water ad libitum. Mice were housed in individual cages following weaning at 3 weeks age.

METHOD DETAILS

Virally-mediated expression of calcium indicators
In-vivo calcium imaging experiments were facilitated through cortical expression of GCaMP6s via the viral vector AAV1-hSyn-

GCaMP6s.WPRE.SV40 (a gift from Douglas Kim & GENIE Project (Addgene viral prep #100843-AAV1; http://n2t.net/

addgene:100843; RRID:Addgene_100843)). To achieve stable widespread GCaMP6s expression long-term throughout the cortex,

we used an intracerebroventricular injection protocol.16,17 On postnatal day 0, Swiss mouse pups were anesthetized on ice for

3–4 min and 2 mL of viral solution (titration at least 1 3 1013 vg/mL) were injected in the left lateral ventricle whose coordinates

were estimated at 2/5 of the imaginary line between the lambda and the eye at a depth of 0.4 mm.

Implantation of electrodes and imaging window
Atapproximately 3monthsage, transducedmalemicewereanesthetizedwith isoflurane (5% induction,1–2%maintenance) andplaced

into a stereotaxic frame. Skin covering the top of the skull was removed and the skull surface was cleared of all connective tissue. The
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headpositionwas subsequently adjusted so that the bregmaand lambdawere located in the samehorizontal plane. The top of the skull

was then lightly scored with a drill and a thin layer of dental cement (C&B Metabond, Parkell, Edgewood, NY) was applied to the skull

surface. In all of the mice, a �250 mm diameter hole was drilled through the skull (anterior-posterior (AP) �2.67, medial-lateral

(ML) +1.54, all values in mm relative to bregma) and a stainless-steel EEG screw (Antrin Miniature Specialities, Inc.) with an insulated

tungsten wire lead (A-M systems; item # 795500) soldered to the screw head was inserted just until secure to avoid damaging the

underlying dura. 2 additional screws were similarly placed in the bone above the frontal cortex and cerebellum to serve as ground

and reference electrodes, respectively. In order to investigate the dynamics of global brain EEG microstates, 8 additional EEG screws

(multi-EEGs) were added at the following coordinates in a subset of themice: (AP +2.67, ML ± 1.54; AP 0.00, ML 0.00, ±3.08; AP -2.67,

ML -1.54, ±4.62). In addition, an insulated strandedwire (Medwire) was inserted into the nuchal muscle to serve as an electromyogram

for recording of postural muscle tone. To facilitate 2-photon calcium imaging of cortical neural activity, a 3mmdiameter circular portion

of the skull centered over the sensorimotor cortex of the left hemisphere (center coordinates: AP -0.75, ML -1.75) was then carefully

removed. Next, a small amount of clear silicon polymer (Kwik-sil (World Precision Instruments)) was applied to the top of the dura

and a 3mmdiameter glass windowwas subsequently placed on top. Ametal bar, required for head-fixation ofmice during later exper-

iments, was placed at the back of the skull behind the cerebellar reference screw. Mill Max pins (Duratool corporation) soldered to the

wire leadsoriginating fromtheEEG,EMG,ground, and referenceelectrodeswere thenfixed inapreciseconfigurationon topof themetal

bar; pinswereoriented toward the rear of themouseat a vertical angle of 45� to keepenoughspace for theobjective andalsoprevent the
headstage preamplifier fromobstructing themousewhen head fixed. As a final step, all electrodeswere insulated and the entire implant

wassecuredwithadditionaldentalcement.Micewere then returned to their homecageandgivenbuprenorphine (0.1mg/kg) tohelpwith

painmanagementduring the initial recoveryperiod.Miceweregiven3weeks to rest inorder to ensurea full recovery from the surgery.At

this time, the quality of the implanted electrodes and imaging field of view (FOV) was assessed; of 13 total mice that underwent the pro-

cedure outlined above, 6 were excluded from further experimentation at this point due to a poor FOV signal to noise ratio (due to low

levels of GCaMP6s expression and/or the presence of debris or air pockets under the imaging window which interfered with the fluo-

rescent signal below). In the remaining 7 mice, 4 of which had multi-EEG implants, the behavioral habituation procedure was started.

Habituation to head fixation
Once fully recovered from the electrode and imaging window implant procedure, habituation sessions for prolonged head fixation

commenced. Thestart of eachsessionoccurred�1hbefore the start of the light cycle to encouragesleepingbehavior.Using themetal

bar attached to the head of themouse during the prior surgery, mice were head fixed underneath the 2-photonmicroscope on a non-

motorized treadmill that allowed them to run at will. Light in the roomwas kept to a minimum to prevent contamination of the imaging

signal. For eachmouse, a single dedicated tread was used for the entire duration of a given habituation and recording procedure. The

head position was customized for each mouse to ensure that they would be able to sleep in a sphinxlike position on the tread while

leaving enough space to allow for running.Miceparticipated in 1 training sessionper day,with theduration of head fixation beinggrad-

ually increased across 12 successive sessions to amaximumduration of 4.5 h: 5min, 15min, 30min, 45min, 1 h, 1.5 h, 2 h, 2.5 h, 3 h,

3.5 h, 4 h, 4.5 h. Once themaximumduration of 4.5 h was reached, the daily head fixation time remained constant until the experiment

endpointwas reached. Thisprocedurewas toleratedwell byallmiceused in this study; all but 1of the7 remainingmicedemonstrateda

consistent full sleep-wake cycle (wakefulness, NREMs, REMs) while head fixed that was relatively stable from day-to-day�4 weeks

after starting habituation. The remaining mouse tolerated the procedure well; however, as there was little sustained (>5 s continuous)

sleepactivity, itwasexcluded fromany further dataacquisitionandanalysis.Sessionswerecompleteddaily throughout thedurationof

an experiment for a given mouse (habituation and subsequent data acquisition), unless mice began to demonstrate signs of fatigue

(significant (>50%) decrease in sleep quantity and weight loss (more than 5%) relative to prior day), in which case they were allowed

to rest at least 1dayor untilweight recovered (typically 1–2days), respectively.�2weeksofdata acquisitionwas typically required for a

givenmouse to obtain a single experimentwith optimal quality imaging andEEGdata as a result of common logistical issues related to

imaging (primarily loss of imaging FOV mid-experiment due to bubble formation or a shift in the FOV position that could not be cor-

rected post-hoc). For eachmouse, only data froma single optimal experiment was used for subsequent data preprocessing and anal-

ysis steps. Finally, to assess the potential impact of head fixation on sleep quality, the day following completion of data acquisition, the

treadmill apparatus was removed from the 2-photon imaging platform and replaced by an empty cage with woodchip bedding. The

mousewas placed un-head fixed in the cagewith the head stage pre-amplifier tether attached, andwas subsequently recorded under

otherwise identical experimental conditions (i.e., at the same time, for the same duration, under the same lighting conditions, andwith

the microscope scanner active). Once this endpoint was reached, mice were utilized for experiments in an unrelated project.

Electrophysiological recording
Electrophysiological recordings were done during all phases of the experiment (head-fixation habituation in order to track

habituation progression as well as during imaging data acquisition experiments in fully habituated mice). For each recording, a

head stage pre-amplifier (Neuralynx, Boseman, Montana, USA) tether was attached to the Mill-max connector pins at the rear of

the head of the mouse immediately after being head fixed into the 2-photon imaging setup. Data from all electrodes were subse-

quently amplified by the head stage pre-amplifier before being digitized at 16,000 Hz using a digital acquisition system (Neuralynx,

Boseman, Montana, USA) and saved to a hard disk. Tread movement was also captured through a video recording synchronized to

the electrophysiology data.
12 Cell Reports 42, 112053, February 28, 2023



Report
ll

OPEN ACCESS
2-Photon imaging of cortical neural activity
To keep the size of datasets manageable and minimize the potential for photobleaching, imaging data acquisition was limited to

the second half of the experiment (�2.25 h in duration, hour 2.25–4.5 of experiment) when sleep activity was generally highest. At

the start of this period, a 163 immersion objective (NIKON, NA 0.8) connected to a GaSP PMT (H7422-40, Hamamatsu) was posi-

tioned over the imaging region of interest (field of view (FOV)) within the sensorimotor cortex at an imaging depth corresponding to

�150–250 mm below the pial surface. A series of 25 movies (2500 frames per movie acquired at 8 Hz (thus each movie has a dura-

tion of �5 min 12 s with �12 s interval between consecutive movies), FOV size = 400 3 400 mm acquired at a resolution of 200 3

200 pixels) was obtained using a single beam multiphoton-pulsed laser scanning system coupled to a microscope (TriM Scope II,

LaVision Biotech) and Ti: sapphire excitation laser (Chamelon Ultra II, Coherent) operated at 920 nm. GCamp6s fluorescence

was isolated using a bandpass filter of 510 nm/25nm. Images were acquired from the PMT signal using Imspector software

(LaVision, Biotech) and subsequently saved to a hard disk. There was no evidence of photo-toxicity or significant bleaching as

a result of the above imaging procedure. To synchronize imaging data with electrophysiological data, a TTL timestamp signal

was sent from the imaging acquisition software to the digital electrophysiology acquisition system at the onset of each imaging

frame scanning cycle.

Data analysis
All following data analysis was performed using custom written scripts in MATLAB (The MathWorks, Inc.).

Vigilance state architecture analysis
For quantitative and qualitative analysis of sleep and wake activity of each experiment, raw EEG and electromyogram data files were

first imported into MATLAB and downsampled to 1000 Hz. Data was then manually plotted and the major phases of the sleep-wake

cycle occurring throughout the entire recording session were scored in 5 s epochs using the fast Fourier transform (FFT; ‘fft’ function

in MATLAB) of the signal recorded from the right parietal EEG (AP -2.67, ML +1.54) in addition to the nuchal EMG signal.18 The pro-

cedure was as follows: epochs of wakefulness were identified by a binned ‘theta’ (4–10 Hz, ‘q’) to ‘delta’ (1–4 Hz, ‘d’) power ratio

greater than 1 and bursts of relatively high-amplitude movement-associated EMG activity (typically >0.1 mV and >1 s in duration).

Epochs of NREMs were identified by a binned q/d power ratio <1 and a lack of high-amplitude EMG activity. Transient spindle

(9–15 Hz) oscillations were also observed periodically during NREMs. Epochs of REMs followed and preceded NREMs and wake-

fulness, respectively, and were identified by a binned q/d power ratio greater than 1 and a completely flat EMG signal except for

relatively brief and phasic (<1 s in duration) periods of high-amplitude EMG activity associated with muscle twitches. While many

state transitions were relatively gradual, occurring over the course of several epochs (e.g., from wakefulness to NREMs, NREMs

to REMs) and thus allowing the above criteria to be applied with ease, epochs during which clear and relatively abrupt state transi-

tions occurred (e.g., REMs to wakefulness) were scored as being the state that occupied themajority of the epoch. Once scoring was

completed, the data was manually reviewed and crosschecked with video recordings to ensure a perfect correspondence between

overt mouse behavior (e.g., movement, grooming) and the scored vigilance state data (hypnogram). This step included removing

large microarousals occurring during NREMs,56 characterized by a transient and sudden reduction of high-amplitude slow wave ac-

tivity concomitant with an increase in low-amplitude high-frequency activity and increased muscle tone. This was done as a safe-

guard to prevent the inadvertent inclusion of brief awakenings in NREMs data selected for later analysis. Total state proportions

and average state durations for each experiment were calculated based on the hypnograms generated using the above procedure.

For EEG microstate and imaging data analysis, periods of wakefulness were further segregated into ‘active wake’ or ‘quiet wake’

according to the presence or absence of movement-associated activity bursts in the EMG signal, respectively. Thus, quiet wake pe-

riods were completely free of both running and other active behaviors, such as grooming. To ensure that periods of early transitional

sleep were not accidentally identified as quiet wake, only periods of quiet wake completely free of any events reminiscent of large

slow wave and spindle-like activity that were flanked by overt periods of active wakefulness were selected. As a final step, potential

periods of active wake identified in the prior step were cross-checked with tread movement data to enable removal of all time points

which did not correspond to periods of running behavior (e.g., grooming behavior).

Spectral analysis of EEG data
For analyses that prioritized frequency resolution (creation of basic EEG spectrograms, spectral analysis of EEG microstate dy-

namics), vigilance state-specific spectral analysis of EEG data was completed in MATLAB using the mtspecgramc function from

the Chronux signal processing toolbox (parameters: window size = 5 s, step size = 5 s, tapers [3 5]).57,58

Wavelet analysis of EEG data
For analyses that prioritized temporal resolution (correlation of specified frequency bands with EEG microstate dynamics), vigilance

state-specific Morlet wavelet analysis of EEG data was completed in MATLAB using the ‘cwt’ function. The absolute values of the

resulting complex wavelet transforms were then calculated for each time point, and data were binned according to the following

non-overlapping frequency definitions: ‘delta’ (1–4 Hz, d); ‘theta’ (4–10 Hz, q); ‘alpha’ (10–15 Hz, a); ‘beta’ (15–30 Hz, b); ‘gamma’

(30–50 Hz). Values originating from datapoints within 0.5 s of a temporal break in the data were ignored.
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EEG microstate analysis
To gain insight into global brain activity dynamics, we opted to employ EEG microstate analysis as this procedure could be incor-

porated into our cortical imaging protocol with relative ease as opposed to other potential techniques (e.g., fMRI). For identification

of EEG microstates, we used a protocol similar to a well-established procedure.25,27 EEG traces from each experiment were first

bandpass filtered from 1–50 Hz using the ‘filtfilt’ function in MATLAB. The ‘global standard deviation’ (GSD), the standard deviation

of all EEG signals, was then calculated for each data time point and the indices of peak locations in the GSD were subsequently

found using the ‘findpeaks’ function in MATLAB. For each experiment, equal amounts of quiet wake, NREMs, and REMs data that

were free of activity bursts in the EMG were then identified. Periods of active wake were not analyzed due to the high potential for

contamination of EEG signals with movement artifacts. The amount of data available for each state was therefore limited by the

state with the least amount of data available (typically REMs). Valid data points for other states that had to be excluded as a result

were removed at random. The EEG profile maps, the instantaneous potential of each EEG signal, associated with the indices of

each identified peak in the GSD occurring during identified EMG noise-free quiet wake, NREMs, and REMs periods were then

clustered separately as well as in combination (i.e., select quiet wake, NREMs, and REMs periods combined) using the k means

clustering ‘kmeans’ function in MATLAB (parameters: maximum number of clusters = 10, number of iterations per clustering step =

100), followed by silhouette analysis using the MATLAB ‘silhouette’ function. For statistical evaluation of clustering results, the

above procedure was repeated 100 x using shuffled surrogate data which was generated by shifting each EEG channel individ-

ually relative to their initial position by a random amount. The resulting outcomes of clustering were highly similar both for different

states (including all states combined condition) within a single experiment as well as between different experiments, consistent

with prior reports.25,27 Therefore, to best facilitate comparison of microstate dynamics between different states, the optimal cluster

number that was subsequently used for state-specific microstate analysis was set at that which produced an explained variance

closest to 90% in clustering of combined (select quiet wake, NREMs, and REMs) data. This approach was used instead of taking

the cluster number associated with the peak silhouette value in order to capture the maximum reasonable amount of variation in

the data. For each individual state (select quiet wake, NREMs, and REMs) of each experiment, the clustering results associated

with the optimal cluster number determined using the aforementioned procedure were statistically significant (silhouette value

higher value than that from at least 95/100 of the shuffled surrogates). As a final step, EEG profile template ‘maps’ were generated

for every individual cluster by averaging, for each EEG, the potentials associated with all constituent timepoints of the cluster. Po-

tential maps corresponding to each cluster were then reindexed according to their general features which were consistently

observed both within (i.e., different vigilance states within the same animal) and between experiments (i.e., different mice). Poten-

tial ‘Map 1’ was characterized by relatively increased potentials in the frontal and posterior electrodes. ‘Map 2’ was also charac-

terized by relatively increased potentials in the frontal and posterior electrodes; however, the profile was shifted more negatively

relative to those of ‘Map 1’. ‘Map 3’ was characterized by relatively increased potentials in the middle EEG electrodes, while ‘Map

4’ was also characterized by relatively increased potentials in the middle EEG electrodes but shifted more negatively relative to

those of ‘Map 3’.

Although a cluster number of 4 was consistently suggested as optimal according to our criteria outlined above, we also performed

the primary analysis of our study (i.e., Figure 4) using a cluster number of 2 for EEG microstate identification since the apparent co-

occurrence of microstate maps 1 and 3 as well as 2 and 4 that is occasionally observed in the data (e.g., Figure 3B) might suggest a

better fit of the data with 2 clusters. While less refined, the results were essentially the same as those obtained using a cluster number

of 4 (Figure S8), indicating that our results are robust when using a cluster number of either 2 or 4 (i.e., are robust tomoderate changes

in the degree of fitting of the data).

Construction of topographical maps of multi-EEG potentials
Topographical maps used to depict the spatial organization of multi-EEG potentials at various time points were constructed by first

plotting the corresponding derived potential values of each constituent EEG (i.e., EEG # 1–9) in 2 dimensions with accurate spatial

relation to one another, then interpolating the intervening values. 2-dimensional maps were then placed, at accurate scale, over dor-

sal view schematics of the skull. Topographical maps corresponding to significant identified EEGmicrostates were frequently scaled

according to the max-min difference for each map individually to enable visualization of variations in topographical potentials within

each given map; in these cases, direct comparison of values between each individual map is possible due to the inclusion of accom-

panying linear plots (see figure legends for details).

Analysis of spindle activity in multi-EEG data
Spindle analysis was completed on temporally continuous periods of select NREMs data (the same periods used for EEGmicrostate

analysis during NREMs) using non-overlapping 100ms windows; the following procedure was completed for each EEG channel indi-

vidually. For each window, EEG data was first bandpass filtered (9–15 Hz) using the ‘filtfilt’ function in MATLAB. The data was then

rectified and the sum of the absolute amplitude values was calculated. The mean and standard deviation (stdev) of absolute ampli-

tude data values derived from all analysis windows was subsequently obtained and used to determine the threshold for spindle

detection (mean +3 stdev). All time points associated with values exceeding this threshold were considered to be locations of sig-

nificant spindle activity.
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Motion correction of imaging data
Raw imaging movies for each experiment were first loaded into MATLAB, concatenated into a single 3-dimensional matrix, and sub-

jected to motion correction using the NoRMCorre algorithm.55 The procedure consisted of 2 rounds of rigid motion correction with

successively stricter corrective parameters (bin size of 10 and maximum allowable shift of 30 for the first round; bin size of 2 with a

maximum allowable shift of 15 for the second round). This was followed by 2 rounds of non-rigid motion correction, also with suc-

cessively stricter corrective parameters (grid size of ¼ the imaging field of view, bin size of 3, and maximum allowable shift of 15 for

the first round; grid size of 1/8 the imaging field of view, bin size of 2, and a maximum allowable shift of 10 for the second round).

Following the above motion correction procedure, the final corrected movie was visualized with the un-corrected data and manually

scanned to ensure the absence of significant overcorrections and/or other artifacts resulting from the algorithm.

Determination of neurons (regions of interest) in imaging field of view
The identification of regions of interest (ROIs) corresponding to neurons in the field of view (FOV) of motion corrected movies was

completed using a semi-automated approach. Each motion corrected movie was manually played back frame-by-frame; during

the playback, regions of interest (ROIs, i.e., areas of the field of view with calcium signals characteristic of healthy cortical neurons)

were manually identified. When a ROI was identified, a pixel in the center of the ROI was manually selected as a ‘seed’. The calcium

signal of this seed pixel throughout the course of the full movie was then z-scored, and the similarity of this data vector was compared

to that for each pixel in the immediate vicinity (pixels within 10 mm of the seed pixel) via linear correlation using the ‘corr’ function in

MATLAB. Pixels whose activity during the movie was highly correlated (p < 0.01) with that of the seed pixel were automatically

included as part of the ROI. If necessary, the pixels assigned to the ROI were then manually adjusted; adjustment was largely limited

to the removal of pixels clearly associated with processes, as well as those overlapping/in direct juxtaposition with other cells. The

above process was repeated until all clearly identifiable ROIs had been registered. At this point, a trace was derived for each ROI by

averaging the calcium signal across all constituent pixels for each movie frame.

Identification of transient activity in calcium traces
Following extraction of calcium traces from identified ROIs, identification of calcium transients from this data was next completed for

each experiment. For this, each raw calcium trace obtained from imaging data was first smoothed with a Gaussian filter using the

‘smoothdata’ function in MATLAB and a smoothing window size corresponding to 1 s of data (8 frames). The ‘findpeaks’

MATLAB function was then used to identify the location (time point), peak prominence, and width of peaks occurring in the smoothed

trace. The onset timepoints for each peak were then identified by finding the closest preceding upwards deflection in the differen-

tiated smoothed trace, calculated using the ‘diff’ function in MATLAB. Peaks corresponding to significant calcium transients were

then automatically detected by determining those which had prominences greater than the set threshold value of 250 units. This

threshold value was determined for the current experiments as follows; first, the mean and standard deviation of the raw calcium

signal for all ROIs was calculated during quiescent periods of the recording (periods where the animal was not moving and no cells

were active) for each mouse. The value of 250 units was the nearest whole value (50 unit resolution required to best facilitate manual

verification of detected peaks described below) that was greater than 3 standard deviations above the average standard deviation

calculated for the noisiest experiment. The raw and corresponding smoothed traces, alongwith the calculated locations of significant

calcium transients, were then verified by plotting the data in an interactive figure and scanning through the entire trace. Manual

corrections were able to be made at this time; these were largely limited to the exclusion of transients detected during periods

contaminated with uncorrectable movement artifacts, as well as the inclusion of clear transients occurring in quick succession.

Once detection and manual verification of transients was complete, the data was binarized into spike rasters; for each ROI, periods

without significant transient activity were indicated with a 0, while the periods corresponding to significant transient activity (frames

occurring between the onset and peak location calculated for each significant transient) were indicated with a 1. It is important to note

that when using the above approach, sustained continuous inferred activity (i.e., activity lasting multiple imaging frames) of a given

neuron does not imply continuous depolarization, but rather multiple consecutive spikes that are too fast to be resolved due to the

relatively slow dynamics of calcium indicators in conjunction with the imaging frame rate. It is also important to emphasize that

despite the relatively slow dynamics of our technique, this approach was nonetheless highly effective at capturing increases in

cortical neural activity known to be associated with specific network events (e.g., EEG slow oscillations19; Figure S2).

Hierarchical clustering of cortical imaging data
To evaluate the presence of assemblies, defined in this study as neurons which coactive together, in cortical imaging data, we used a

hierarchical clustering procedure.59 Despite the disadvantage of being a relatively time-consuming technique compared to other

clustering methods that could be used on this dataset, we opted to employ this clustering procedure on our imaging data due to

the significant advantage of there being no need to predefine the number of clusters present. To enable a comparison of assembly

activity between different vigilance states, equal amounts of active wake, quiet wake, NREMs, and REMs data were identified (note

that for micewithmulti-EEGs imaging data was synchronized with the same quiet wake, NREMs, and REMs data time points used for

EEG microstate analysis described in the previous section). The amount of data available for each state was therefore limited by the

state with the least amount of data available (typically REMs). For select imaging data obtained for each vigilance state within an in-

dividual experiment, the hierarchical clustering procedure was as follows. First, the 0-lag associated cross-correlation value for each
Cell Reports 42, 112053, February 28, 2023 15



Report
ll

OPEN ACCESS
ROI pair was calculated using the ‘xcorr’ function in MATLAB and stored in a correlation matrix. The corresponding p value of the

correlation between each ROI pair was then found through the use of a block-shuffling technique. This procedure, which was

repeated 100 x for each ROI pair, involved fragmenting the spike rasters of both ROIs into �5 s blocks and independently reassem-

bling them in random order before calculating and storing the correlation value. Once this process had been repeated 100 x, the p

value of the correlation value found between the intact spike rasters of the ROI pair was determined by calculating the proportion of

correlation values corresponding to the shuffled surrogates that were weaker (smaller) than that calculated for the intact data. When

the initial correlation and corresponding p-value matrices had been created, the main clustering procedure began. The index of the

most statistically significant positive correlation in the entire matrix was found and the two associated ROIs were ‘clustered’ together

with the corresponding spike rasters being merged. The values in the correlation matrix associated with the individual ROIs were

nullified, and correlation and p-values were calculated between the newly merged spike raster and all of the remaining spike rasters.

The index of the most statistically significant positive correlation in the entire matrix was again found and the associated ROIs

(including correlations involving rasters that were the product of the merging of data from multiple ROIs) were clustered together.

This process was repeated until there were no remaining significantly correlated spike raster pairs. At this point, the indices of

ROIs (cortical neurons) that had been clustered together were stored. Only clusters consisting of at least 5 ROIs were considered

valid in order to minimize the potential for chance cluster activations to introduce noise in subsequent analysis (i.e., dramatically

reduce the likelihood that a single cluster could contain a proportionally significant number of neurons which were clustered together

as a result of chance p values). For analysis of assembly activity, an assembly was considered active during a given frame if at least 3

of its constituent neurons were simultaneously active. Consecutive frames as well as frames that were not separated by a period

where no constituent cells were active were not counted as unique assembly activations. Assembly start points were defined for

each identified assembly activation as the time point at which the first constituent neuron became active. For all analyses, assembly

activation start points identified with the above procedure which were located within 125 ms of a temporal break in the data were not

analyzed due to potential prior activity.

The above clustering protocol was able to identify the presence of significant cluster (neural assembly) activity in all vigilance states

tested for eachmouse. Even so, a weakness of this clustering approach is the inability to assign a given neuron tomore than 1 cluster.

Therefore, any neurons which individually participate in multiple assemblies would not be identified in this study, an important po-

tential caveat. However, the similarity of neural activity occurring during a specific vigilance state of a given experiment, assessed

via Pearson correlation of activity rasters, was significantly higher between neurons belonging to the same assembly than for neurons

originating from different assemblies (Figure S3A), indicating that different assemblies identified within the same vigilance state-spe-

cific data segment were generally highly distinct and non-overlapping. Finally, an important consideration surrounding our procedure

for identifying cortical assembly activity is that, while it is a general method for detecting neurons which consistently coactivate

together, it is not capable of segregating assembly activity arising from multiple different potential coactivation-promoting fac-

tors (e.g.,9).

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless stated otherwise within the text, statistical analysis was performed using GraphPad Prism software (Dotmatics). p < 0.05 was

considered statistically significant, and all group-level data are presented asmean ± SEM. No subjects which reached the previously

defined experimental endpoint, nor data values produced from resulting analysis, were excluded from this study. Where appropriate,

the decision to use parametric vs non-parametric statistical measures was strictly dependent on the results of normality and equal

means testing using the Kolmogorov-Smirnov and Bartlett’s tests, respectively. Specific statistical details can be found in the figure

legends, as well as in the ‘method details’ section for shuffling-based statistical analysis used for evaluation of clustering results.
16 Cell Reports 42, 112053, February 28, 2023


	Cortical neuronal assemblies coordinate with EEG microstate dynamics during resting wakefulness
	Introduction
	Results
	Imaging sensorimotor cortex across the full sleep-wake cycle
	Detection of vigilance state-specific local microcircuit-level assembly activity in sensorimotor cortex
	Identification of global EEG microstates from multi-EEG recordings during different vigilance states
	Microcircuit-level assembly activity in sensorimotor cortex is coordinated with global EEG microstates during QW

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Virally-mediated expression of calcium indicators
	Implantation of electrodes and imaging window
	Habituation to head fixation
	Electrophysiological recording
	2-Photon imaging of cortical neural activity
	Data analysis
	Vigilance state architecture analysis
	Spectral analysis of EEG data
	Wavelet analysis of EEG data
	EEG microstate analysis
	Construction of topographical maps of multi-EEG potentials
	Analysis of spindle activity in multi-EEG data
	Motion correction of imaging data
	Determination of neurons (regions of interest) in imaging field of view
	Identification of transient activity in calcium traces
	Hierarchical clustering of cortical imaging data

	Quantification and statistical analysis



