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Abstract
Most of the stochastic models adopted to describe the evolution over time of
degradation phenomena of technological units assume that their degradation
level can increase indeterminately. However, these degradation phenomena are
typically subjected to obvious bounds, if only because technological units have
finite size. In fact, very often, this inconsistency does not significantly affect the
effectiveness of unbounded degradation models, since degrading units are usu-
ally assumed to fail when their degradation level exceeds a failure threshold that
ismuch smaller than the obvious bounds. Nevertheless, in some cases, due to the
very nature of the underlying degradationmechanism, less obvious bounds could
exist, which are not necessarily far from the failure thresholds. The question that
arises is whether the use of a bounded degradation model, in this latter type of
experimental situations, could be beneficial. For this purpose, since a bounded
degradation process should necessarily have dependent increments, in this paper
we investigate the potential of a new bounded transformed gamma (TG) process
to adequately describe bounded degradation phenomena and predict their future
evolution. Differently from other existing gamma process based bounded degra-
dation models, here the upper bound is treated as an unknown parameter that
has to be estimated from the available degradation data. A numerical example is
presented where the parameters of the proposedmodel are estimated from simu-
lated data. Then the model is applied to a set of wear measures of cylinder liners
that equip a diesel engine formarine propulsion, which have also stimulated this
study. Model parameters are estimated by using the maximum likelihood (ML)
method. The fitting ability of the proposed new bounded process is compared to
that of an unbounded gamma process, which was previously adopted to analyze
the same liner wear data. Obtained results are critically discussed in the paper.
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1 INTRODUCTION

Stochastic models usually adopted to describe degradation phenomena of technological units, such as the gamma, the
inverse Gaussian, and the Wiener ones (e.g., see Kahle et al.1), assume that the degradation level can increase indetermi-
nately. However, this assumption is not always realistic. In fact, if only because their physical dimensions are finite, the
degradation processes of technological units are certainly bounded from above. For example, it is obvious that an upper
bound surely exists when the degradation is quantified in terms of loss of material. Likewise, an upper bound also surely
exists when the degradation state of a monotonic increasing process is expressed in terms of percent reduction of the qual-
ity of the unit with respect to its initial value. In fact, in this latter case the degradation level is obviously constrained to
range between 0 and 100.
Despite this evident incongruity, a vast variety of successful applications to realworld degradation data demonstrate that

unbounded degradation models are able to provide accurate descriptions of many real world degradation phenomena. In
fact, the reason why the existence of these obvious bounds does not inhibit the successful use of unbounded model is that
technological units are usually assumed to fail when their degradation level passes a threshold limit that is typically largely
far from the obvious bounds. Yet, this is not always the case. In fact, there are phenomena where, due to inherent features
of the degradation causingmechanism, it is possible to say that less obvious bounds certainly exist. Indeed, inmost of these
cases, the exact values of these bounds cannot be determined a priori, because the considered degradation phenomena are
not sufficiently well understood. Thus, in particular, it is not possible to say if they are close to the considered conventional
threshold limits.
The question that arises is whether, in this latter kind of experimental situation, the use of a degradation model that

explicitly accounts for the presence of an upper bound could be beneficial. With this objective in mind, and focusing our
interest on increasing degradation phenomena, in this paper we investigate the potential of transformed gamma (TG)
process (Giorgio et al.2) to tackle this specific modeling task. The idea of using the TG process is mainly motivated by
the circumstance that this process has increments that are not independent. Indeed, it is not hard to recognize that a
monotonic increasing bounded degradation process should necessarily have this feature, if only because (for example)
both the conditional mean and variance of its future degradation increment should necessarily go to zero as the current
degradation level approaches the upper bound.
It can be highlighted that the idea of using a transformation of the gamma process to describe bounded degradation

phenomena is not entirely new. In fact, just Giorgio et al.2 used a bounded TG process with a log-based state function
to describe the percentage reduction of strength of certain polymers. Contemporarily, Ling et al.3 used a gamma process
to describe the negative logarithm of the percentage reduction of light intensity of some light emitting diode (LED), an
approach that is (implicitly) consistent with the assumption that the percentage reduction of light intensity follows a log-
transformation of the gamma process. Indeed, although the motivating ideas of these papers were slightly different, the
proposed modeling solutions can be deemed quite similar. Likewise, Deng and Pandey4 used a logit transformation (e.g.,
see Baum5) of the gamma process to describe the wall thickness reduction of certain pipes.
However, all these papers consider upper bounds of the type we have previously labeled as “obvious” and, being

relatively simple to determine their values, assume that these bounds are known a priori. In fact, in the case of the
former models the bound it is set equal to 100%, while in the case of the latter one it is set equal to the initial wall
thickness.
Here, differently than in the mentioned papers, we focus on cases where the upper bound is not obvious, with spe-

cific regard to the experimental situations where the available knowledge does not allow to determine its value a priori.
In fact, coherently with this assumption, we treat the upper bound as one of the unknown parameters of the TG pro-
cess and assume that it has to be estimated on the basis of the observed degradation data, together to all the other
parameters.
To investigate the potential of the proposed modeling solution, we have formulated and then applied three different

characterizations of the bounded TG process to a set of wear measurements of the liners of an 8-cylinder diesel engine
equipping a cargo ship of the Grimaldi Lines. In fact, the considered degradation phenomenon has three specific features
that have stimulated this study. The first one is that a liner is assumed to fail when its wear level exceeds 4 mm, a value
that is far smaller than the thickness of the liner itself, which is equal to 100 mm. The second reason is that the observed
wear mechanism cannot lead the liner wear to grow up to its thickness, because the upper bound is expected to be not
much larger than the threshold limit. The third reason is that the considered wear phenomenon is not sufficiently well
known to define (a priori) the exact value of the upper bound.
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548 FOULADIRAD et al.

It is worth to underline that, under these circumstances, assuming that the upper bound coincides with the obvious
physical bound determined by the thickness of the liner (i.e., 100 mm) would be practically equivalent to assume that the
considered wear process is unbounded, because the failure threshold (i.e., 4 mm) is hugely far from it.
The rest of the paper is structured as it follows. The bounded TG process is introduced in Section 2. The reliability

function and the conditional distribution of the remaining useful life are formulated in Section 3. Themaximum likelihood
(ML) estimation of model parameters is addressed in Section 4. A numerical example is presented in Section 5, where the
parameters of the proposed model are estimated from simulated data. The example of application, developed on the basis
of the real set of wear data of cylinder liners of a diesel engine, which have motivated this work, is presented in Section 6.
The results presented in Section 6 are critically discussed in Section 7. Final considerations are given in Section 8.

2 THE BOUNDED TRANSFORMED GAMMA PROCESS

The bounded transformed gamma (BTG) process {𝑊(𝑡); 𝑡 ≥ 0} is a boundedmonotonic increasingMarkovian process that
has dependent increments. In fact, once an initial condition is assigned (in this paper we assume that𝑊(0) = 0), a BTG
process is completely defined by the conditional probability density function (pdf) of its generic incrementΔ𝑊(𝑡, 𝑡 + Δ𝑡) =
𝑊(𝑡 + Δ𝑡) −𝑊(𝑡), given𝑊(𝑡) = 𝑤𝑡, that has the following structure:

𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡) = 𝑔′(𝑤𝑡 + 𝛿) [Δ𝑔(𝑤𝑡, 𝑤𝑡 + 𝛿)]Δ𝜂(𝑡,𝑡+Δ𝑡)−1
Γ(Δ𝜂(𝑡, 𝑡 + Δ𝑡))

exp(−Δ𝑔(𝑤𝑡, 𝑤𝑡 + 𝛿)),

0 < 𝛿 < 𝑤lim − 𝑤𝑡,

(1)

where 𝑤lim denotes the upper bound of the degradation process, 𝑔(𝑤) is a non-negative, monotone increasing and
differentiable function of the degradation level 𝑤 (0 ≤ 𝑤 < 𝑤lim) with 𝑔(0) = 0 and

lim𝑤→𝑤lim𝑔(𝑤) = ∞, (2)

𝑔′(𝑤𝑡 + 𝛿) is the first derivative of 𝑔(⋅) evaluated at 𝑤𝑡 + 𝛿, Δ𝑔(𝑤𝑡, 𝑤𝑡 + 𝛿) = 𝑔(𝑤𝑡 + 𝛿) − 𝑔(𝑤𝑡), 𝜂(𝑡) is a non-negative,
monotone increasing function, with 𝜂(0) = 0, Δ𝜂(𝑡, 𝑡 + Δ𝑡) = 𝜂(𝑡 + Δ𝑡) − 𝜂(𝑡), and Γ(⋅) is the complete gamma function.
Hereinafter, the functions 𝜂(⋅) and 𝑔(⋅)will be called age function and “bounded” state function, respectively. Indeed, the
function 𝑔(⋅) is not bounded above but, for simplicity, we will call it “bounded” state function to intend that it is the state
function of the BTG process.
To obtain a fully-operative characterization of the BTG process it is necessary to assign functional forms to 𝜂(⋅) and 𝑔(⋅)

which under the general model are left unspecified for the sake of flexibility.
Suitable forms for the age function are, for example, those already proposed for the TG process in Giorgio et al.2,6 such

as the classical power-law function 𝜂(𝑡) = (𝑡∕𝑎)𝑏 and the exponential function 𝜂(𝑡) = 𝑎𝑏[exp(𝑡∕𝑏) − 1].
For the state function we suggest the following three functional forms:

𝑔1(𝑤) = −𝛽 ln

(
1 −

𝑤

𝑤lim

)
, (3)

𝑔2(𝑤) = 𝛽
𝑤

𝑤lim − 𝑤
, (4)

and

𝑔3(𝑤) = 𝛽 tan

(
𝜋

2

𝑤

𝑤lim

)
, (5)

which provide a good trade-off between model simplicity and flexibility and are differentiable with respect to 𝑤, with
derivative:

𝑔′
1
(𝑤) =

𝛽

𝑤lim − 𝑤
, (6)
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FOULADIRAD et al. 549

𝑔′
2
(𝑤) =

𝛽𝑤lim

(𝑤lim − 𝑤)
2
, (7)

and

𝑔′
3
(𝑤) =

𝛽

𝑤lim

𝜋∕2

cos2
(
𝜋

2

𝑤

𝑤lim

) , (8)

respectively.
It is worth to note that, when 𝜂(𝑡) is a linear function of 𝑡, so that Δ𝜂(𝑡, 𝑡 + Δ𝑡) ∝ Δ𝑡, the BTG process reduces to an

age-independent process. In fact, from Equation (1), when 𝜂(𝑡) is linear in 𝑡, we have that the conditional distribution of
the degradation increment Δ𝑊(𝑡, 𝑡 + Δ𝑡), given the current state𝑤𝑡, depend only on Δ𝑡, being independent of the current
age 𝑡. Otherwise, when 𝜂(𝑡) is non-linear, the BTG process is both age- and state-dependent. In fact, in this latter case, the
conditional distribution of Δ𝑊(𝑡, 𝑡 + Δ𝑡), given the current state 𝑤𝑡, depends both on Δ𝑡 and 𝑡.
Similarly, the functional form of the state function 𝑔(𝑤) determines how the increment Δ𝑊(𝑡, 𝑡 + Δ𝑡) depends on the

current degradation state𝑊(𝑡) = 𝑤𝑡, given the current age 𝑡. In fact, in particular, if 𝑔(𝑤) is convex upward, as the state
functions (3)-(5), the conditional mean of the degradation increment in the time interval (𝑡, 𝑡 + Δ𝑡) of the TG process
decreases monotonically with the current state 𝑤𝑡.
From Equation (1), the conditional cumulative distribution function (Cdf) of the degradation increment Δ𝑊(𝑡, 𝑡 + Δ𝑡),

given𝑊(𝑡) = 𝑤𝑡, can be expressed as:

𝐹Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡) ={
𝛾(Δ𝑔(𝑤𝑡,𝑤𝑡+𝛿);Δ𝜂(𝑡,𝑡+Δ𝑡))

Γ(Δ𝜂(𝑡,𝑡+Δ𝑡))
, for𝛿 < 𝑤lim − 𝑤𝑡

1, for𝛿 ≥ 𝑤lim − 𝑤𝑡
, (9)

where:

𝛾 (𝑥; 𝑎) = ∫
𝑥

0

𝑢𝑎−1exp (−𝑢) d𝑢 (10)

is the (lower) incomplete gamma function. Accordingly, from Equations (1) and (9), the pdf and the Cdf of the degradation
level𝑊(𝑡) of a new unit, being𝑊(𝑡) = Δ𝑊(0, 𝑡), are given by:

𝑓𝑊(𝑡) (𝑤) = 𝑔
′ (𝑤)

[𝑔 (𝑤)]
𝜂(𝑡)−1

Γ (𝜂(𝑡))
exp [−𝑔 (𝑤)] , 0 < 𝑤 < 𝑤lim (11)

and

𝐹𝑊(𝑡)(𝑤) =

⎧⎪⎨⎪⎩
𝛾 (𝑔(𝑤); 𝜂(𝑡))

Γ (𝜂(𝑡))
, for 𝑤 < 𝑤lim

1, for 𝑤 ≥ 𝑤lim
, (12)

respectively.
The conditionalmean and variance of the degradation increment, given the state𝑤𝑡 at the time 𝑡, do not allow for closed

form expressions. Yet, they can be easily computed by numerically evaluating the following integrals:

𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} = ∫
𝑤lim−𝑤𝑡

0

𝛿 𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡) d𝛿 (13)

𝑉 {Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} = ∫
𝑤lim−𝑤𝑡

0

𝛿2 𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡)d𝛿 − 𝐸2{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} (14)

Accordingly, the mean and variance of the degradation level𝑊(𝑡) of new unit are given by:

𝐸 {𝑊(𝑡)} = ∫
𝑤lim

0

𝑤 𝑓𝑊(𝑡)(𝑤) d𝑤 (15)
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550 FOULADIRAD et al.

and

𝑉 {𝑊(𝑡)} = ∫
𝑤lim

0

𝑤2 𝑓𝑊(𝑡)(𝑤) d𝑤 − 𝐸
2 {𝑊(𝑡)} . (16)

It is worth to note that, due to the “bounded” nature of the state function 𝑔(𝑤), the BTG process has the following
peculiar features:

∙ When 𝑡 → ∞ the pdf (11) tends to the Dirac delta distribution with support 𝑤lim, the mean 𝐸{𝑊(𝑡)} of the degradation
process tends to 𝑤lim, and its variance 𝑉{𝑊(𝑡)}, that initially grows with time, approaches to zero.

∙ For Δ𝑡 → ∞ (given 𝑡) the conditional pdf (1) tends to the Dirac delta distribution with support 𝑤lim − 𝑤𝑡, the
conditional mean 𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} of the degradation increment tends to 𝑤lim − 𝑤𝑡, and the condi-
tional variance 𝑉{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} approaches to zero. Of course, for 𝑤𝑡 → 𝑤lim, the conditional mean
𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} tends to 0.

∙ When 𝜂(𝑡) is convex downward, for 𝑡 → ∞ (given Δ𝑡) the conditional pdf (1) tends to the Dirac delta distribution with
support 𝑤lim − 𝑤𝑡, the conditional mean 𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} of the degradation increment tends to 𝑤lim − 𝑤𝑡,
and the conditional variance 𝑉{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} approaches to zero.
Moreover, from Equation (11), we have that, under the proposed state functions (3)-(5), the quantity 𝑤lim acts as a scale

parameter for the pdf of𝑊(𝑡). In fact, given that 𝑓𝑊(𝑡)(𝑤) can be rewritten as:

𝑓𝑊(𝑡)(𝑤) =
1

𝑤lim
ℎ

(
𝑤

𝑤lim
; 𝜂(𝑡), 𝛽

)
, (17)

where the functionℎ(𝑧; 𝜂(𝑡), 𝛽) depends on 𝜂(𝑡) and on the functional formof 𝑔(𝑤) and β only, the (dimensionless) variable
𝑍(𝑡) = 𝑊(𝑡)∕𝑤lim has pdf 𝑓𝑍(𝑡)(𝑧) = ℎ(𝑧; 𝜂(𝑡), 𝛽) that does not depend on 𝑤lim. Indeed, for example, if the state function
is modelled by the functional form 𝑔1(𝑤) given in Equation (3), the function 𝑓𝑍(𝑡)(𝑧) has the following expression:

𝑓𝑍(𝑡) (𝑧) =
𝛽𝜂(𝑡)[− ln (1 − 𝑧)]

𝜂(𝑡)−1

Γ (𝜂(𝑡))
(1 − 𝑧)

𝛽−1
, 0 < 𝑧 < 1. (18)

As a consequence, from Equations (15) and (16) we (obviously) have that, under the suggested state functions (3)-(5),
the mean:

𝐸 {𝑊(𝑡)} =

𝑤lim

∫
0

𝑤𝑓𝑊(𝑡) (𝑤) d𝑤 = 𝑤lim

1

∫
0

𝑧𝑓𝑍(𝑡) (𝑧) d𝑧 (19)

depends linearly on 𝑤lim and also that, being:

𝐸
{
𝑊2(𝑡)

}
=

𝑤lim

∫
0

𝑤2𝑓𝑊(𝑡) (𝑤) d𝑤 = 𝑤
2
lim

1

∫
0

𝑧2𝑓𝑍(𝑡) (𝑧) d𝑧, (20)

the variance of𝑊(𝑡) depends linearly on the square of 𝑤lim.
In addition, it is interesting to note that, under the function (3), the quantity 𝑤lim − 𝑤𝑡 acts as a scale parameter in

the conditional pdf 𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)(𝛿|𝑤𝑡) of the degradation increment Δ𝑊(𝑡, 𝑡 + Δ𝑡), given𝑊(𝑡) = 𝑤𝑡. In fact, the functions
Δ𝑔1(𝑤𝑡, 𝑤𝑡 + 𝛿) and 𝑔′1(𝑤𝑡 + 𝛿) can be rewritten as:

Δ𝑔1 (𝑤𝑡, 𝑤𝑡 + 𝛿) = −𝛽

[
ln

(
1 −

𝑤𝑡 + 𝛿

𝑤lim

)
− ln

(
1 −

𝑤𝑡
𝑤lim

)]
= −𝛽 ln

(
1 −

𝛿

𝑤lim − 𝑤𝑡

)
(21)

and

𝑔′
1 (𝑤𝑡 + 𝛿) =

𝛽

𝑤lim − 𝑤𝑡 − 𝛿
=

𝛽

(𝑤lim − 𝑤𝑡)
(
1 −

𝛿

𝑤lim−𝑤𝑡

) . (22)
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FOULADIRAD et al. 551

The conditional pdf 𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡) in Equation (1) can be rewritten as:
𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡)
=

1

𝑤lim − 𝑤𝑡

𝛽𝜂(𝑡,𝑡+Δ𝑡)
[
− ln

(
1 −

𝛿

𝑤lim−𝑤𝑡

)]Δ𝜂(𝑡,𝑡+Δ𝑡)−1
Γ (Δ𝜂(𝑡, 𝑡 + Δ𝑡))

(
1 −

𝛿

𝑤lim − 𝑤𝑡

)𝛽−1
, (23)

and the (dimensionless) variable Δ𝑍(𝑡, 𝑡 + Δ𝑡) = Δ𝑊(𝑡, 𝑡 + Δ𝑡)∕(𝑤lim − 𝑤𝑡) has pdf:

𝑓Δ𝑍(𝑡,𝑡+Δ𝑡) (𝛿𝑧) =
𝛽Δ𝜂(𝑡,𝑡+Δ𝑡)[− ln (1 − 𝛿𝑧)]

Δ𝜂(𝑡,𝑡+Δ𝑡)−1

Γ (Δ𝜂(𝑡, 𝑡 + Δ𝑡))
(1 − 𝛿𝑧)

𝛽−1
, 0 < 𝛿𝑧 < 1 (24)

that does not depend on 𝑤lim and 𝑤𝑡. As a consequence, being:

𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡)} = 𝑤lim−𝑤𝑡

∫
0

𝛿𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡)d𝛿
= (𝑤lim − 𝑤𝑡)

1

∫
0

𝛿𝑧𝑓Δ𝑍(𝑡,𝑡+Δ𝑡) (𝛿𝑧) d𝛿𝑧 (25)

and

𝐸{Δ𝑊2(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} = 𝑤lim−𝑤𝑡

∫
0

𝛿2𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡)d𝛿
= (𝑤lim − 𝑤𝑡)

2

1

∫
0

𝛿2z𝑓Δ𝑍(𝑡,𝑡+Δ𝑡) (𝛿𝑧) d𝛿𝑧, (26)

it (obviously) results that the conditional mean and variance of the increment Δ𝑊(𝑡, 𝑡 + Δ𝑡), given 𝑊(𝑡) = 𝑤𝑡, depend
linearly on (𝑤lim − 𝑤𝑡) and (𝑤lim − 𝑤𝑡)2, respectively. Differently, under the state functions (4) and (5) the conditional pdf
of the increment Δ𝑊(𝑡, 𝑡 + Δ𝑡), given𝑊(𝑡) = 𝑤𝑡, depends both on 𝛿∕𝑤lim and on 𝑤𝑡∕𝑤lim.
It is also worth to remark that the age function 𝜂(𝑡), being non negative, continuous, and unbounded, only affects the

“time” scale of the process. Thus, for example, this implies that the functional form of 𝜂(𝑡) does not affect the maximum
value of the variance function.
The curves depicted in Figure 1 show the behavior of the mean function 𝐸{𝑊(𝑡)} of a BTG process with power-law age

function 𝜂(𝑡) = (𝑡∕𝑎)𝑏, for𝑤lim = 10 and five different sets of values of themodel parameters 𝑎, 𝑏, and 𝛽: (1, 1, 1), (1, 0.5, 1),
(1, 1, 2), (1, 2, 5), and (3, 1, 1), respectively. The bounded state function used here is the function 𝑔1(𝑤) given in Equation (3).
The figure shows that when the age parameter 𝑏 is larger than 1 (that is, when the age function is convex) the mean curve
has an inflection point. Otherwise, its first derivative with respect to 𝑡 decreases monotonically.
Figure 2 shows the behavior of the variance 𝑉{𝑊(𝑡)} of the same degradation model for 𝑤lim = 10 and the same values

of the parameters 𝑎, 𝑏, and 𝛽 used for Figure 1. Numerical investigations confirm the conjecture that the maximum value
𝑉max{𝑊(𝑡)} of the variance does not depend on the age function (i.e., on the values of the age parameters 𝑎 and 𝑏), and
hence that the ratio 𝑉max{𝑊(𝑡)}∕𝑤2lim depends on the parameter 𝛽 of the state function only (see Figure 2).
In addition, the time at which the variance reaches its maximum value given 𝑎, 𝑏, and 𝛽 does not depend on 𝑤lim and,

given 𝑏 and 𝛽, is proportional to 𝑎.
Finally, in Figure 3 the variance-to-mean ratio𝑉{𝑊(𝑡)}∕𝐸{𝑊(𝑡)} of the samedegradationmodel is depicted for𝑤lim = 10

and the same selected values of the process parameters 𝑎, 𝑏, and 𝛽 used for Figures 1 and 2. We note that the variance-to-
mean ratio is always decreasing with time, and tends to zero for 𝑡 → ∞.
Mean, variance, and variance-to-mean ratio functions of the BTG processes obtained by using the state functions (4)

and (5) have analogous properties and behaviors.
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F IGURE 1 Behavior of the degradation mean
𝐸{𝑊(𝑡)} for 𝑤lim = 10 and 𝑎, 𝑏, and 𝛽 set to the values
indicated in the figure, when 𝑔(𝑤) = −𝛽 ln(1 − 𝑤∕𝑤lim)
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F IGURE 2 Behavior of the degradation variance
𝑉{𝑊(𝑡)}, for 𝑤lim = 10 and 𝑎, 𝑏, and 𝛽 set to the values
indicated in the figure, when 𝑔(𝑤) = −𝛽 ln(1 − 𝑤∕𝑤lim)

3 REMAINING USEFUL LIFE AND RELIABILITY FUNCTION

In the context of increasing degradation processes, a unit is assumed to fail when its degradation level𝑊 exceeds a thresh-
old limit 𝐷 (𝐷 < 𝑤lim). Then, the lifetime of the unit 𝑋 can be defined as the operating time to first, and sole, passage
beyond the limit 𝐷; that is:

𝑋 = 𝑖𝑛𝑓{𝑥 ∶ 𝑊(𝑥) > 𝐷}. (27)

Accordingly, the remaining useful life (RUL) 𝑋𝑡 of a unit at time 𝑡 is defined as:

𝑋𝑡 = max {0, 𝑋 − 𝑡} , (28)

so that 𝑋𝑡 is equal to 𝑋 − 𝑡 if the unit at 𝑡 is unfailed, and is assumed to be 0 otherwise.
Then, by using the conditional Cdf (9), the conditional probability that the RUL𝑋𝑡 exceeds the time 𝑥, given the current

state 𝑤𝑡 < 𝐷 at the current age 𝑡 (here also referred to as the residual reliability), is given by:

𝑅𝑡 (𝑥|𝑊(𝑡) = 𝑤𝑡) = Pr{Δ𝑊 (𝑡, 𝑡 + 𝑥) ≤ 𝐷 − 𝑤𝑡|𝑊(𝑡) = 𝑤𝑡} = 𝛾 (Δ𝑔 (𝑤𝑡, 𝐷) ; Δ𝜂 (𝑡, 𝑡 + 𝑥))

Γ (Δ𝜂 (𝑡, 𝑡 + 𝑥))
. (29)

 10991638, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3167 by C

ochrane France, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FOULADIRAD et al. 553

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V
ar

ia
nc

e-
to

-m
er

am
 r

at
io

  V
{W

(t
)}

/E
{W

(t
)}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Operating time  t

a = 1.0, b = 1.0,
a = 1.0, b = 0.5,
a = 1.0, b = 1.0,
a = 1.0, b = 2.0,
a = 3.0, b = 1.0,

β = 1.0
β = 1.0
β = 2.0
β = 5.0
β = 1.0

F IGURE 3 Behavior of the variance-to-mean ratio
𝑉{𝑊(𝑡)}∕𝐸{𝑊(𝑡)}, for 𝑤lim = 10 and 𝑎, 𝑏, and 𝛽 set to
the values indicated in the figure, when
𝑔(𝑤) = −𝛽 ln(1 − 𝑤∕𝑤lim)

Accordingly, the reliability function of a new unit, which can be readily obtained from Equation (29) 𝑤𝑡 = 0 and 𝑡 = 0,
is given by:

𝑅 (𝑥) = Pr {𝑊 (𝑥) ≤ 𝐷} = 𝛾 (𝑔 (𝐷) ; 𝜂 (𝑥))

Γ (𝜂 (𝑥))
. (30)

It is worth to remark that, since the BTG is aMarkovian process, the residual reliability function (29) should be intended
to incorporate all the information useful for prognostic purposes provided by the past history 𝐻𝑡 = {𝑊(𝑠), 𝑠 ≤ 𝑡} of the
process up to (and included) the time 𝑡.
If the age function 𝜂(𝑡) is differentiable with respect to 𝑡, then the conditional pdf of the RUL 𝑋𝑡 can be obtained by

deriving the residual reliability (29) with respect to 𝑥:

𝑓𝑋𝑡|𝑊(𝑡)(𝑥|𝑤𝑡) = − d

d𝑥 ∫
𝑔(𝑤𝑡,𝐷)

0

𝑢Δ𝜂(𝑡,𝑡+𝑥)−1

Γ (Δ𝜂 (𝑡, 𝑡 + 𝑥))
exp (−𝑢) d𝑢. (31)

Then, by using the arguments given in Giorgio et al.2 it is possible to obtain a series representation of the pdf of 𝑋𝑡,
which does not involve any numerical integration:

𝑓𝑋𝑡|𝑊(𝑡) (𝑥|𝑤𝑡) =dΔ𝜂 (𝑡, 𝑡 + 𝑥)d𝑥

1

Γ (Δ𝜂 (𝑡, 𝑡 + 𝑥))
{𝛾 (Δ𝑔 (𝑤𝑡, 𝐷) ; Δ𝜂 (𝑡, 𝑡 + 𝑥)) (𝜓 (Δ𝜂 (𝑡, 𝑡 + 𝑥)) − ln (Δ𝑔 (𝑤𝑡, 𝐷)))

+

∞∑
𝑘=0

(−1)
𝑘
[Δ𝑔 (𝑤𝑡, 𝐷)]

Δ𝜂(𝑡,𝑡+𝑥)+𝑘

[Δ𝜂 (𝑡, 𝑡 + 𝑥) + 𝑘]
2
𝑘!

}
(32)

where 𝜓(𝑧) is the digamma function.
Accordingly, from Equation (32), the pdf of the lifetime 𝑋 of a new unit can be expressed as:

𝑓𝑋 (𝑥) =
d𝜂 (𝑥)

d𝑥

1

Γ (𝜂 (𝑥))

{
𝛾 (𝑔 (𝐷) ; 𝜂 (𝑥)) (𝜓 (𝜂 (𝑥)) − ln (𝑔 (𝐷))) +

∞∑
𝑘=0

(−1)
𝑘
[𝑔 (𝐷)]

𝜂(𝑥)+𝑘

[𝜂 (𝑥) + 𝑘]
2
𝑘!

}
. (33)

Finally, the mean RUL 𝐸{𝑋𝑡|𝑊(𝑡) = 𝑤𝑡} and the mean lifetime 𝐸{𝑋} of a new item can be computed as:

𝐸{𝑋𝑡|𝑊(𝑡) = 𝑤𝑡} = ∞

∫
0

𝑅𝑡(𝑥|𝑊(𝑡) = 𝑤𝑡)d𝑥 (34)
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554 FOULADIRAD et al.

and

𝐸 {𝑋} =

∞

∫
0

𝑅 (𝑥) d𝑥, (35)

respectively.

4 THE ESTIMATION PROCEDURE

Let us consider 𝑚 identical units which operate under the same conditions and suppose that their degradation level is
periodically measured by performing ad hoc inspections. Moreover, let us denote by 𝑛𝑖 the number of measurements
performed on the unit 𝑖 (𝑖 = 1, … ,𝑚), by 𝑡𝑖,𝑗 (𝑖 = 1, … ,𝑚; 𝑗 = 1,… , 𝑛𝑖) the age of the unit 𝑖 at the epoch of the 𝑗-th inspec-
tion, and by 𝑤𝑖,𝑗 the degradation level of the unit at 𝑡𝑖,𝑗 . Finally, let 𝛿𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑤𝑖,𝑗−1, Δ𝑔𝑖,𝑗 = Δ𝑔(𝑤𝑖,𝑗−1, 𝑤𝑖,𝑗−1 + 𝛿𝑖,𝑗),
Δ𝜂𝑖,𝑗 = Δ𝜂(𝑡𝑖,𝑗−1, 𝑡𝑖,𝑗), 𝑤𝑖,0 = 𝑡𝑖,0 = 0 for all 𝑖, and let 𝜽 denote the vector of parameters which, together to 𝑤lim, index
the age and state functions. Therefore, for example, if the state function has one of the functional forms given in the
Equations (3) to (5) and the age function is the power-law function 𝜂(𝑡) = (𝑡∕𝑎)𝑏, then 𝜽 = (𝑎, 𝑏, 𝛽).
All this stated, under the BTG process, the log-likelihood function relative to the observed data𝒘 = (𝑤1,1,⋯,𝑤1,𝑛1 ,⋯,

𝑤𝑚,1, … ,𝑤𝑚,𝑛𝑚) is:

𝓁 (𝒘; 𝜽, 𝑤lim) =

𝑚∑
𝑖=1

𝑛𝑖∑
𝑗=1

ln(𝑓Δ𝑊(𝑡𝑖,𝑗−1,𝑡𝑖,𝑗)|𝑊(𝑡𝑖,𝑗−1)(𝛿𝑖,𝑗|𝑤𝑖,𝑗−1)), (36)

where, from Equation (1), the conditional pdf of the wear increment Δ𝑊(𝑡𝑖,𝑗−1, 𝑡𝑖,𝑗) accumulated by the unit 𝑖 over the
inspection interval (𝑡𝑖,𝑗−1, 𝑡𝑖,𝑗), given𝑊(𝑡𝑖,𝑗−1) = 𝑤𝑖,𝑗−1, is:

𝑓Δ𝑊(𝑡𝑖,𝑗−1,𝑡𝑖,𝑗)|𝑊(𝑡𝑖,𝑗−1)(𝛿𝑖,𝑗|𝑤𝑖,𝑗−1) = 𝑔′ (𝑤𝑖,𝑗−1 + 𝛿𝑖,𝑗)
(
Δ𝑔𝑖,𝑗

)Δ𝜂𝑖,𝑗−1
Γ(Δ𝜂𝑖,𝑗)

exp
(
−Δ𝑔𝑖,𝑗

)
,

0 < 𝛿𝑖,𝑗 < 𝑤lim − 𝑤𝑖,𝑗−1, (37)

Themaximum likelihood (ML) estimates 𝜽 and �̂�lim of the process parameters are the values of 𝜽 and𝑤lim thatmaximize
the log-likelihood function (23). These estimates are not available in closed form. Yet, they can be readily retrieved by using
a numerical procedure.
In several circumstances, previous experiences and/or physical considerations on the degradation phenomenon allow

the analyst to fix a lower limit or an interval of plausible values for 𝑤lim. An example of application where there is this
kind of prior knowledge is discussed in Section 6. In these circumstances, a proper (constrained) maximization procedure
of the log-likelihood (36) could be used in order both to satisfy the above constraints and to take advantage of the available
knowledge.
Approximate confidence intervals for the model parameters (𝜽, 𝑤lim) can be obtained by using asymptotic results. For

example, by assuming that the ML estimator of the parameter 𝛽 of the “bounded” state functions (3)-(5) is asymptotically
distributed as a normal random variable, the approximate equal-tails (1 − 𝑞) confidence interval for 𝛽 is given by:

𝛽 ± 𝑧𝑞∕2𝜎
(
𝛽
)
, (38)

where 𝑧𝑞∕2 denotes the 𝑞∕2 quantile of the standard normal distribution, and �̂�(𝛽) is the estimated standard deviation of
𝛽. This estimated standard deviation is given by the squared root of the element (1,1) of the estimated covariance matrix
[𝑱(𝜽, �̂�lim)]

−1
, which is obtained by inverting the observed Fisher information matrix 𝑱(𝜽, �̂�lim), whose entries are the

negative second derivatives of the log-likelihood function (23) with respect to the model parameters, evaluated at the ML
estimate of the parameter vector (𝜽, �̂�lim).
When the parameter is constrained to be positive, as it occurs for example for the parameters of the proposed state func-

tions, the normal approximation is sometimes unsatisfactory, because the distribution of the estimator of the parameter
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FOULADIRAD et al. 555

TABLE 1 Degradation level 𝑤𝑖,𝑗 = 𝑊(𝑡𝑗) accumulated by the unit i up to time 𝑡𝑗
𝒊 𝒘𝒊,𝟏 𝒘𝒊,𝟐 𝒘𝒊,𝟑 𝒘𝒊,𝟒 𝒘𝒊,𝟓 𝒘𝒊,𝟔 𝒘𝒊,𝟕 𝒘𝒊,𝟖 𝒘𝒊,𝟗 𝒘𝒊,𝟏𝟎

1 1.97 3.16 3.40 3.83 4.02 4.19 4.31 4.37 4.40 4.49
2 0.51 1.95 2.48 3.51 3.72 3.99 4.10 4.22 4.32 4.43
3 0.42 0.89 1.89 3.05 3.71 3.90 4.11 4.21 4.30 4.37
4 0.77 2.94 3.63 4.00 4.10 4.28 4.38 4.47 4.52 4.55
5 0.64 1.60 2.70 3.64 3.87 3.94 4.03 4.14 4.20 4.33
6 2.75 3.48 3.63 3.84 3.89 4.01 4.11 4.30 4.33 4.40
7 1.37 2.29 2.91 3.31 3.85 3.94 4.00 4.13 4.20 4.27
8 0.14 1.33 2.70 3.32 3.38 3.61 3.77 3.98 4.20 4.34
9 1.12 2.04 3.22 3.57 3.81 3.94 4.03 4.30 4.38 4.43
10 1.45 2.56 3.44 3.52 3.76 3.90 4.09 4.20 4.23 4.34

can be highly skewed when the sample size is small or moderate. In this case, for example, the use of a normal approxima-
tion for ln(𝛽), rather than for 𝛽, can bemore suitable, even because it prevents the lower bound of the resulting confidence
interval from being negative. Thus, if ln(𝛽) is asymptotically normal, then:

ln
(
𝛽
)
− ln (𝛽)

𝜎
(
𝛽
)
∕𝛽

(39)

is asymptotically standard normal (Bishop et al.7) and the (1 − 𝑞) approximate confidence interval for 𝛽 is given by:

𝛽 exp
(
±𝑧𝑞∕2𝜎

(
𝛽
)
∕𝛽

)
. (40)

Of course, in the cases where, as mentioned before, further constrains can be imposed to 𝑤lim, the confidence interval
on𝑤lim must account for it. In particular, when a lower limit, say𝑤∗

lim
, is imposed then an approximate lower confidence

limit for 𝑤lim, say 𝑤𝐿lim, when the asymptotic normal approximation is assumed for ln(�̂�lim), can be computed as:

𝑤𝐿
lim
=

{
𝑤lim exp

(
±𝑧𝑞∕2𝜎 (𝑤lim) ∕𝑤lim

)
, if𝑤∗

lim
< 𝑤lim exp

(
±𝑧𝑞∕2𝜎 (𝑤lim) ∕𝑤lim

)
𝑤∗
lim
, if𝑤∗

lim
≥ 𝑤lim exp (±𝑧𝑞∕2𝜎 (𝑤lim) ∕𝑤lim). (41)

Once the vector of unknown parameters has been estimated, the ML estimate of any function thereof, say 𝜙(𝜽, 𝑤lim),
can be easily obtained by substituting 𝜽 and �̂�lim to 𝜽 and𝑤lim in 𝜙(𝜽, 𝑤lim). In particular, by using this approach, one can
easily obtain the ML estimates of the conditional distribution of the RUL, the mean of the RUL, the residual reliability,
and the conditional distribution of the degradation growth over a future time interval.

5 NUMERICAL EXAMPLE

In order to give evidence of the utility of the proposed BTG processes and to demonstrate the affordability of the estima-
tion procedure suggested in Section 4, we have developed a preliminary numerical example by using the simulated data
reported in Table 1. The same data are also displayed in Figure 4. These data have been generated under a BTG2 process
with parameters 𝑤lim = 5, 𝛽 = 5 𝑎 = 1, 𝑏 = 1.2. There are 𝑚 = 10units and 𝑛𝑖 = 10 degradation measures for each unit
(i.e., 𝑛𝑖 = 10 ∀𝑖). It is assumed that measurements are performed at 10 equally-spaced inspection times that are the same
for all the measurements (i.e., 𝑡𝑖,𝑗 = 𝑡𝑗 ∀𝑖): 𝑡1 = 2, 𝑡2 = 4, . . . , 𝑡10 = 20.
The ML estimates of the parameters of the proposed BTG models obtained from these data are reported in the Table 2.

For comparative purposes, this table also reports the ML estimates of the parameters of the unbounded TG process with
the same age function and the power-law state function 𝑔(𝑤) = (𝑤∕𝛼)𝛽 .
The obtained results show that, according to the Akaike information criterion (AIC) (see, Akaike8), the BTG processes

fit the considered data better than the unbounded TG process and that, among them, the one that provides the better fit
is just the BTG2 process we have used to generate the data.
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TABLE 2 Estimation results under the BTG and the TG processes

Process �̂� �̂� �̂�𝐥𝐢𝐦 or �̂� 𝜷 𝓵 AIC
BTG1 0.657 1.004 4.597 9.554 71.08 −134.2
BTG2 1.450 1.349 4.921 4.011 81.12 −154.2
BTG3 0.984 1.186 4.913 5.795 80.20 −152.4
TG 6.173 2.591 12.40 3.444 63.01 −118.0

TABLE 3 Approximate 0.90 confidence intervals on the parameters of the BTG2 process

Parameter 0.90 confidence interval True value
𝑎 (0.619, 1.564) 1
𝑏 (1.037, 1.356) 1.2
𝑤lim (4.796, 5.032) 5
𝛽 (3.983, 8.431) 5

Although estimates obtained from a single dataset do not allow to evaluate the performances of the ML estimators, it is
still useful to observe that all the estimates obtained under the BTG processes are rather close to the true values of the cor-
responding true parameters. Specifically, it is to note that, the estimate of the bound𝑤lim obtained under the (true) BTG2
process model is very close to its true value. In fact, it is also interesting to remark that all the 0.90 confidence intervals of
the parameters reported in Table 3, obtained under the BTG2 process, by using the asymptotic normal approximation for
the logarithm of their estimators, include the corresponding true values.
Figures 5 and 6 display the ML estimates of the mean and variance functions obtained under the considered competing

models. The same figures also show the “true” mean and variance function (i.e., those computed under the BTG2 process
by setting the parameters to their true values) and the empirical estimates of the mean and variance of the degradation
process computed at the inspection times from the simulated data.
Figures 5 and 6 confirm the conclusions driven by analyzing the results reported in Tables 1, 2, and 3. In fact, they show

that the BTG2 model fits the mean and variance function of the true process adequately. They also show that the BTG3
process provides estimates that are very similar to those obtained under the BTG2 one, and that the estimates obtained
under theBTG1process are slightly different from those obtainedunder the other twoboundedprocesses. Finally, Figures 5
and 6 give evidence that unbounded TG process is not able to fully capture the behaviors of the true mean and variance
functions.
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F IGURE 5 True values and empirical estimates
of 𝐸{𝑊(𝑡)} together with the corresponding ML
estimates obtained under the TG, BTG1, BTG2, and
BTG3 processes
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F IGURE 6 True values and empirical estimates
of 𝑉{𝑊(𝑡)} together with the corresponding ML
estimates obtained under the TG, BTG1, BTG2, and
BTG3 processes

6 APPLICATION OF THEMODEL TOWEARMEASURES OF CYLINDER LINERS

This section illustrates the results we have obtained by applying the BTG processes with state functions (3)-(5) to the
real set of wear data that has motivated this paper. The dataset consists of 23 wear measures of the liners of a 8-cylinder
SULZER marine propulsion diesel engine which equips a cargo ship of the Grimaldi Lines. Data have been gathered via
ad hoc inspections between 1994 and 2004. During this period the cargo ship has operated on the same routes under
homogeneous operating conditions. At each inspection, the wear of the liner is measured by positioning a caliper inside a
predetermined hole situated at the top dead center of the engine, which is the point where (for physical reasons) the liner
wear usually reaches its maximum level. Each datum consists of the age of the liner at the inspection epoch and of the
associated wear measure. Both number of measures and inspection times changes from liner to liner. The wear data are
reported in Table 4 and depicted in Figure 7. In compliance with technical specifications and contractual agreements, a
liner is conventionally considered failed when its wear level passes the threshold limit 𝐷 = 4mm.
This wear process was previously analyzed in Giorgio et al.6 under a TG process with (unbounded) power-law func-

tion 𝑔(𝑤) = (𝑤∕𝛼)𝛽 , and two different age functions, namely the power-law function 𝜂(𝑡) = (𝑡∕𝑎)𝑏 and the exponential
function 𝜂(𝑡) = 𝑎𝑏[exp(𝑡∕𝑏) − 1].
The best fit for these data, according to the Akaike information criterion, was obtained by adopting a TG process with

power-law age function. Nonetheless, although this TG process was found to fit quite well the empirical mean of the wear
process (see the blue curve of Figure 8), it was found unable to fit equally well the empirical variance (see the blue curve
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558 FOULADIRAD et al.

TABLE 4 Wear 𝑤𝑖,𝑗 = 𝑊(𝑡𝑖,𝑗) [mm] accumulated by liner 𝑖 up to the inspection time 𝑡𝑖,𝑗 [hours]

𝒊 𝒘𝒊,𝟏 𝒕𝒊,𝟏 𝒘𝒊,𝟐 𝒕𝒊,𝟐 𝒘𝒊,𝟑 𝒕𝒊,𝟑 𝒘𝒊,𝟒 𝒕𝒊,𝟒

1 0.90 11,300 1.30 14,680 2.85 31,270
2 1.50 11,300 2.00 21,970
3 1.00 12,300 1.35 16,300
4 1.90 14,810 2.25 18,700 2.75 28,000
5 1.20 10,000 2.75 30,450 3.05 37,310
6 0.50 6,860 1.45 17,200 2.15 24,710
7 0.40 2,040 2.00 12,580 2.35 16,620
8 0.50 7,540 1.10 8,840 1.15 9,770 2.10 16,300
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F IGURE 7 Liner wear data
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F IGURE 8 Empirical and ML estimates of the
mean wear 𝐸{𝑊(𝑡)} under the TG, BTG2, and BTG3
processes

of Figure 9), in particular when the empirical variance decreases quickly.
Thus, considered that the proposed BTG process can describe the behavior of the empirical variance given in Figure 9,

which the TG process fails to do, and that previous experiences suggest that a physical bound to the wear process of
cylinder liners exists, we have decided to analyze the liner data under the proposed BTG process.
However, this is not the only reason that motivate the use of a BTG model. In fact, the idea that the liner wear process

is bounded is also directly suggested by the inherent features of its causing mechanisms. Indeed, the liner wear is jointly
caused by the abrasive action of small hard particles, in jargon referred to as soot, and by the corrosive actions of chemical
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F IGURE 9 Empirical and ML estimates of the
variance 𝑉{𝑊(𝑡)} under the TG, BTG2, and the BTG3
processes

TABLE 5 Estimation results under the BTG and the TG processes

Process �̂� [h] �̂�

�̂�𝐥𝐢𝐦 or �̂�
[mm] 𝜷 𝓵 AIC

BTG1 1295 1.106 4.3 31.36 2.657 2.686
BTG2 2682 1.434 4.363 18.62 3.843 0.314
BTG3 1504 1.182 4.3 21.67 3.837 0.327
TG 5107 1.701 2.321 0.750 0.590 6.820

agents, identified as sulphuric acid, nitrous/nitric acids, and water. Therefore, considered that the thickness of the liner is
100mm, it is surely realistic to presume that these wearmechanisms cannot lead the liner wear to grow up to its thickness.
Another interesting feature of the liner wear process is that the aforementioned physical considerations alone do not

allow to determine (a priori) the exact value of the upper bound. Indeed, based on previous experiences and wear data
of similar liners collected over a time span of about 20 years, it is only possible to say that the liner wear can surely grow
up to the value of 4.3 mm. Thus, based on these considerations, under the BTG process the upper bound is treated as an
unknown parameter and is estimated by considering the constraint 𝑤lim ≥ 4.3mm.
It is worth to note that, in this experimental situation, assuming that the upper bound of the BTG process coincides

with the thickness of the liner (that is equal to 100 mm) is practically equivalent to use unbounded TG process.
Table 5 reports the ML estimates of model parameters, the corresponding estimated log-likelihood 𝓁 and AIC value

obtained under the BTG1, BTG2, and BTG3 processes, with the power-law age function 𝜂(𝑡) = (𝑡∕𝑎)𝑏 and the “bounded”
state functions (3)-(5), where the acronyms BTGl indicates the BTG process that uses the state function 𝑔𝑙(𝑤) (𝑙 = 1, 2, 3).
For comparative purposes, the last row of the same table reports the ML estimates of model parameters, the estimated
log-likelihood 𝓁, and the AIC value obtained under the TG process adopted in Giorgio et al.6
Table 5 shows that all the suggested BTG processes fit the liner wear data better than the (unbounded) TG process.

Indeed, all the AIC values obtained under the BTG processes are smaller than the AIC value obtained under the TG
process. More in particular, it also results that, according to the Akaike information criterion, the models that provide the
best fit for the considered data are the BTG process with state functions 𝑔2(𝑤) given in Equation (4) and the BTG process
with state function 𝑔3(𝑤) given in Equation (5), which show a very similar fitting ability.
In Table 6 the approximate 0.90 confidence intervals on the parameters of the BTG2 and BTG3 processes, based on the

log-normal approximation, are provided. Clearly, because the lower limit𝑤∗
lim
= 4.3mm is here imposed, the approximate

lower confidence limits for 𝑤lim are obtained from Equation (41).
Figures 8 and 9 show the ML estimates of the mean 𝐸{𝑊(𝑡)} and variance 𝑉{𝑊(𝑡)} of the wear process under the TG,

the BTG2, and the BTG3 processes. For the sake of providing a graphical demonstration of the fitting ability of the BTG
models, the same figures also show the empirical estimates ofmean and variance obtained by using the availablewear data.
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560 FOULADIRAD et al.

TABLE 6 Approximate 0.90 confidence intervals on the parameters of the BTG2 and BTG3 processes

Parameter BTG2 process BTG3 process
𝑎 [h] (1353, 5314) (665, 3401)
𝑏 (1.119, 1.838) (0.931, 1.5003)
𝑤lim [mm] (4.3, 5.506) (4.3, 5.387)
𝛽 (8.03, 43.13) (10.55, 44.49)
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F IGURE 10 ML estimates of the reliability 𝑅(𝑥)
of a new liner obtained under the TG, BTG2, and BTG3
processes

Note that, since the inspection times differ from liner to liner, and hence the wear measures generally refer to different
operating times of the liners, the empirical estimates of mean and variance were obtained by using the linear interpolation
procedure of data already used in Giorgio et al.6
In particular, the empirical estimates �̃�{𝑊(𝑡𝑘)} and �̃�{𝑊(𝑡𝑘)} of 𝐸{𝑊(𝑡𝑘)} and 𝑉{𝑊(𝑡𝑘)}, are obtained by using the

formulas:

�̃� {𝑊 (𝑡𝑘)} =

∑
𝑖∶𝑡𝑖,𝑛𝑖≥𝜏𝑘𝑤𝑖 (𝑡𝑘)

𝑚𝑘
, (42)

�̃� {𝑊 (𝑡𝑘)} =

∑
𝑖∶𝑡𝑖,𝑛𝑖≥𝜏𝑘 [𝑤𝑖 (𝑡𝑘) − �̃� {𝑊 (𝑡𝑘)}]

2

𝑚𝑘 − 1
, (43)

where the times 𝜏𝑘 = 𝑘 ⋅ 2.5 (hours 103), 𝑘 = 0, 1, 2… , 12, are arbitrarily selected equally-spaced times, and the corre-
sponding degradation levels 𝑤𝑖(𝑡𝑘) are values determined by linear interpolation from the available data (i.e., the value
used for 𝜏𝑘 and 𝑤𝑖(𝑡𝑘) are coordinates of points that are on the lines represented in Figure 7). In Equations (42) and (43),
𝑚𝑘 denotes the number of liners whose last observation time is larger than or equal to 𝑡𝑘. The variance is computed until
𝑚𝑘 ≥ 2.
Figure 8 shows that the ML estimates of the mean function 𝐸{𝑊(𝑡)} obtained under the BTG2 and BTG3 processes

practically overlap one another, and fit the empirical mean a little better than the TG process, in particular at large time
𝑡 where the estimate obtained under the (unbounded) TG process seems to increase more rapidly than the last observed
data suggest. On the other hand, Figure 9 shows that, differently than the TG process, the BTG2 and BTG3 processes are
able to fit adequately both the initial growth and the subsequent rapid reduction of the empirical variance. Indeed, the
TG process is not able to provide an adequate fit for the empirical variance, neither for small nor for large values of 𝑡.
Figure 10 displays the ML estimates of the reliability of a new liner obtained under the BTG2 and BTG3 processes,

together with the ML estimate of the same reliability function obtained under the (unbounded) TG process. The figure
gives evidence that the (unbounded) TG process provide reliability estimates that are much more pessimistic than those
obtained under the BTG processes. Consequently, also the ML estimate of the mean lifetime 𝐸{𝑋} of a new liner provided
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the TG, BTG2, and BTG3 processes
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F IGURE 1 2 ML estimates of the conditional pdf
𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡) of the wear increment of liner #1
during the interval (31,270 h, 31,270+10,000 h), given
𝑤𝑡 = 2.85mm, under the TG, BTG2, and BTG3
processes

by the TG process is very pessimistic with respect to those provided by the BTG2 and BTG3 processes. Indeed, the ML
estimate of 𝐸{𝑋} obtained under TG process is equal to 49,954 h, whereas those provided by the BTG2 and BTG3 processes
are equal to 109,994 h and 131,629 h, respectively.
Figure 11 shows the ML estimates of the conditional pdf 𝑓𝑋𝑡|𝑊(𝑡)(𝑥|𝑤𝑡) of the RUL 𝑋𝑡 of liner #5, evaluated at 𝑡 =

37, 310 ℎ, given the current degradation level 𝑤𝑡 = 3.05mm, obtained under the BTG2, BTG3, and TG processes. Also in
this case, the figure gives clear evidence that the ML estimate of the pdf 𝑓𝑋𝑡|𝑊(𝑡)(𝑥|𝑤𝑡) obtained under the TG process is
much more pessimistic than those obtained under the BTG processes. In fact, for example, while the MLE of the mean
of the RUL 𝐸{𝑋𝑡|𝑊(𝑡) = 𝑤𝑡} computed by using the TG process is equal 14,965 h, those provide by the BTG2 and BTG3
processes are equal to 72,836 h and 94,537 h, respectively. Similar results have been obtained for the other liners.
Finally, Figure 12 shows the ML estimates of the conditional pdf 𝑓Δ𝑊(𝑡,𝑡+Δ𝑡)|𝑊(𝑡)(𝛿|𝑤𝑡) of the wear increment

Δ𝑊(𝑡, 𝑡 + Δ𝑡) of liner #1 provided by the TG, BTG2, and BTG3 processes and evaluated at 𝑡 = 31, 270 h, by considering an
interval width Δ𝑡 of 10, 000 h, given the current wear level 𝑤𝑡 = 2.85mm.
Once again, this latter figure shows that the TG process provides estimates of the future wear growth that are hugely

pessimistic with respect to those provided by the BTG processes, that are also very close one to the other. Indeed, the
estimated mean wear increment 𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑊(𝑡) = 𝑤𝑡} evaluated under the TG process is equal to 0.637 mm, while
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562 FOULADIRAD et al.

those computed under the BGT2 and BTG3 processes are equal to 0.353 mm and 0.346 mm, respectively. Even in this case,
similar results have been obtained for the other liners.

7 CRITICAL DISCUSSION OF THE RESULTS OBTAINED BY APPLYING THE
PROPOSEDMODEL TO THE LINER DATA

The example of application presented in Section 6 shows that the BTG processes provide results that are hugely different
from those obtained under the unbounded TG process. Indeed, it is apparent that the presence of an upper bound 𝑤lim
influences in a significant manner the prognostic/predictive ability of the considered models. Thus, while it is clear that
an unbounded model risks to produce estimates that are overly conservative, it is also clear that a bounded process could
provide estimates that are too optimistic. This potential detrimental effect could be obviously caused by an erratic cali-
bration of the upper bound. Unfortunately, the circumstance that the BTG models fit the available data better than the
(unbounded) TG model does not prove that the estimates of the upper bound provided by the former models are close
to the true value. In fact, the possibility that the upper bound is underestimated is not negligible, because the estimate
is extrapolated from the observed wear data that are (all) smaller and relatively far from it. Indeed, mainly because the
threshold limit of 4mm is imposed by contract clauses, whose failure to comply determines the forfeiture of the guarantee
by the manufacturer of the engine, the liners are routinely replaced when their wear reaches a level that is rather smaller
than the failure threshold. This early replacement is often also due to the fact that only in certain ports it is possible to
replace the liners.
In addition, given that all the observedwear paths are convex upward, it seems realistic to presume that thewear process

of the liners up to 4 mm is still in its early phase (e.g., see Gertsbakh and Kordonskiy9). Thus, in particular, given that
the available experimental data do not allow to investigate how the process behaves for larger values of the wear, it is not
possible to exclude that after passing the threshold limit the process could evolve in a different manner.
Another important point of discussion concerns the interaction of the considered degradation induced failure with

other failure modes of the liners. In fact, given that the liners are also subjected to other kinds of failure modes (for
example thermal crack, see Bocchetti et al.10), in order to study the potential detrimental effect that could be caused by
using a model that underestimates the upper bound, it would be also important to study whether and how the excess of
wear could influence the occurrence and/or the progression of other failure modes (e.g., think about crack initiation).
Unfortunately, for the very same reasons mentioned above, the available data do not allow to perform these kinds of
analyses.
Therefore, taking into account all this, our idea is that in this kind of experimental situations, only the understanding of

the physics of the considered phenomenon could allow the analyst to decide whether to use a bounded or an unbounded
degradation process.
Besides these technological aspects, it is clear that the discussed decision of using a bounded or an unbounded degrada-

tion process should also bemade by taking into careful consideration the replacement cost of a liner and the consequences
determined by a failure. In this sense, it is worth to observe that, in the examined case, the consequences of the considered
wear induced soft (not catastrophic) failures consist in loss of power and extra costs that are very high but not too different
from the cost of a new liner (i.e., thousands of dollars).
Hence, itmakes sense investigating the possibility of delaying its replacement asmuch as possible. In this regard, the use

of a predictive/prognostic model that accounts for the presence of an upper bound would certainly represent an element
that could allow revising the maintenance strategy.

8 CONCLUSIONS

This paper suggests a new degradation process, called bounded TG, that has been specifically conceived to describe
increasing degradation processes that cannot grow indeterminately. More specifically, the paper focuses on experimen-
tal situations where, although it is possible to say that the degradation process of interest is surely bounded above, the
available information/knowledge alone does not allow to determine a priori the exact value of the upper bound. In fact,
under the suggested bounded TG process, the upper bound is treated as an unknown parameter that, coherently with this
setting, should be estimated from the available degradation data.
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The main characteristics of the proposed process have been illustrated. Hence, three possible functional forms have
been suggested for its state function, which in the general model is left unspecified for the sake of flexibility.
In order to investigate the potential of the proposed approach, all the suggested characterizations of the bounded TG

process have been applied both to a simulated data set and to a set of real data, the last one consisting of wear measures of
cylinder liners equipping a diesel engine for marine propulsion, which has also stimulated this study. Model parameters
have been estimated by using the ML method.
Obtained results relative to the real wear data have been compared to those obtained under an unbounded TG process

previously adopted to analyze the same wear data. The comparison is performed in terms of estimates of the reliability
function, of the distribution of the RUL, and of the (conditional) pdf of the future wear increment. The comparison has
shown that the suggested bounded TG processes provide reliability estimates and life predictions that are hugely different
from those obtained under the considered unbounded gamma process.
Potential pros and cons of using the suggested bounded gamma model have been finally discussed.
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