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A B S T R A C T

This paper considers the degradation modelling of a non-monotonous health indicator. A Variance Gamma
process is proposed for the degradation modelling and its calibration in presence of data is discussed. The
remaining useful lifetime estimation based on this model is considered and its sensitivity to parameters
estimates is analysed. The model is applied to real data of leakage rate of centrifugal pump. Eventually, an
imperfect maintenance policy is proposed and optimized.

1. Introduction

Nowadays, highly reliable and safe systems are the key priorities of
the advanced industries. The main concern of engineers and researchers
is to increase the reliability of systems. A good reliability analysis is
essential to predict the failure of the system and to propose an efficient
maintenance strategy. The major task of the maintenance strategy is
to propose an appropriate model that can replicate the degradation of
the system and thereby provide a better system life time prediction [1–
7]. Since the stochastic processes are capable to integrate the temporal

degradation cases where the Wiener process cannot be fit, for instance
a degradation with skewed or large tail increment distribution [19–25].
As a consequence, the requirement of introducing and analysing new
sophisticated stochastic processes capable of modelling non-monotonic
system’s degradation become significant. The Variance Gamma process
(VGP) is a good candidate to model a non-monotonic degradation
when the Wiener process is not suitable. The increments of a VGP
follows a variance gamma distribution also called generalized Laplace
distribution or Bessel function distribution. This distribution having
uncertainty associated to the evolution of degradation, they are widely
four parameters is a normal variance–mean mixture where the mixing
used in system degradation modelling [8–12]. Gamma and Wiener
process are the most used stochastic processes in reliability analyses
for modelling the system’s degradation.

Gamma process is used when the system degradation shows a
monotonic trend and its mathematical computations are relatively
tractable [11,13–15]. The inverse Gaussian process is also a good
candidate to model a monotonic degradation [12,16]. Even though,
the degradation of several industrial systems exhibit a non-monotonic
behaviour due their advanced and complicated working conditions, for
instance deterioration of asphalt roads presented in [17]. In that aspect,
Wiener process is extensively used in modelling the degradation of
the system witnessing a non-monotonic behaviour. The fact that the
major properties of this process are explored is considered as an advan-
tage [18]. The Wiener process with drift has also been extensively used
in degradation modelling. However, there are a lot of non monotonic
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density is the gamma distribution. The expression of all the moments
is available and Seneta [26] investigated the data fitting problem on
VGP by moment method. Fiorani [27] tested the ability of the VGP
to model different non-monotonic trend for time series data. Daal and
Madan [28] implemented the VGP to determine how much this model
can improve the fitting to real data compared to some diffusion and
jump–diffusion processes. Seneta [29] presented a review paper on
VGP. Yoo [30] proposed the VGP as a robust model for non-monotonic
phenomenon with skewed distribution increments. In several studies,
the VGP was compared to different models in order to prove its ability
to model different data, refer to [31–35].

The main contribution of this paper is as follows.

• The proposition of the Variance Gamma Process (VGP) as degra-
dation model;
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• Numerical comparison of two likelihood approximation methods
for VGP parameter estimation;

• Giving an overview of failure time distribution calculation related
to VGP;

• Analyse of the parameters estimates uncertainty on the prognosis
results (remaining useful lifetime estimation);

• Calibration and prognosis on leakage rate data of centrifugal
pumps;

• Application of an imperfect condition-based policy on centrifugal
pumps considering a VGP as degradation model.

First, definition and the properties of the VGP will be presented and
a brief literature review will be given in Section 2. Different analysis
such as parametric estimation, the failure time distribution and the
sensitivity of the VGP paths to its parameters will be introduced. In
Section 3, different analysis and the impact of estimation error on
failure time distribution are investigated using simulated degradation
data. In Section 4, the real data sets retrieved from the centrifugal pump
degradation will be presented and analysed. An imperfect maintenance
strategy and cost estimation analysis will be proposed in Section 5.
Conclusion of the paper will also be presented in Section 6.

2. Variance gamma process

In this section, the definition, the properties of the proposed VGP
and a brief literature review will be detailed. Different analysis such
as parametric estimation, the first hitting time distribution and the
sensitivity of the VGP to its parameters will be introduced.

2.1. Definition and properties

The VGP is obtained by evaluating Brownian motion (with constant
drift and volatility) at a random time change given by a gamma process.
VGP was initially introduced as a new stochastic process in finance by
Madan and Seneta in 1990 [36]. The process is a pure jump process,
having an infinite number of jumps in any interval of time and as
a jump Lévy process can be approximated by a compound Poisson
process. Unlike Brownian motion, the sum of the absolute variations
of VGP is finite which permits it to be written as the difference of two
increasing processes. This process increments follow a variance gamma
distribution which is skewed and non zero kurtosis which is not the
case of the most stochastic processes modelling non-monotonic degra-
dations [37–40]. Since VGP can be acquired by evaluating a brownian
motion with drift at a random time given by a gamma process there are
four parameters involved in its transition probability. In comparison to
a diffusion processes used for non-monotonic degradation modelling,
the volatility of the time change process (gamma process) and the drift
of the brownian motion are the two additional parameters that permit
to control the kurtosis and the skewness [41].

Consider a stochastic process (𝑊 (𝑡))𝑡≥0. If 𝑊 (0) = 0 and the non-
overlapping increments are independent and moreover 𝑊 (𝑡) −𝑊 (𝑠) ∼
 (0, 𝑡−𝑠), the process (𝑊 (𝑡))𝑡≥0 is a standard brownian motion. Consid-
ering the process (𝐵(𝑡; 𝜃, 𝜎))𝑡≥0 as a brownian motion with drift 𝜃 ∈ R
and volatility 𝜎 > 0 and (𝑊 (𝑡))𝑡≥0 as a standard brownian motion:

𝐵(𝑡; 𝜃, 𝜎) = 𝜃𝑡 + 𝜎𝑊 (𝑡) (1)

Let (𝛾(𝑡;𝜇, 𝜈))𝑡≥0 be a gamma process with 𝜇2

𝜈 as the shape parameter
and 𝜇

𝜈 as the scale parameter, where 𝜇 > 0 and 𝜈 > 0. The VGP at time
𝑡 can be expressed as:

𝑋(𝑡; 𝜎, 𝜈, 𝜃) = 𝐵(𝛾(𝑡;𝜇, 𝜈), 𝜃, 𝜎) (2)

As it is mentioned, the VGP is considered as a process of finite variation
which can allow it to be presented also as the difference of two gamma
processes. This additional presentation is considered as a big advantage
of the VGP. The two gamma processes can present two competitive
phenomenon where the first presents the increase in the degradation
2

phenomenon and the second presenting the decreases. Such presen-
tation could be so helpful to describe leakage rate evolution in time.
According to Madan [36], with this new presentation, the VGP at time
𝑡 can also be written as follows:

𝑋(𝑡; 𝜎, 𝜈, 𝜇) = 𝛾𝑝(𝑡; 𝜗𝑝, 𝜈𝑝) − 𝛾𝑛(𝑡; 𝜗𝑛, 𝜈𝑛) = 𝜃𝛾(𝑡; 1, 𝜈) + 𝜎𝑏(𝛾(𝑡; 1, 𝜈)) (3)

where:
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Based on the presentation of VGP in (2), the probability density func-
tion of 𝑋(𝑡; 𝜎, 𝜈, 𝜇) is given by 𝑓𝑋(𝑡;𝜎,𝜈,𝜃) as follows:

𝑓𝑋(𝑡;𝜎,𝜈,𝜇)(𝑥) = ∫

∞

0

1
𝜎
√

2𝜋𝑔
exp

(

−
(𝑥 − 𝜃𝑔)2

2𝜎2𝑔

) 𝑔
𝑡
𝜈 −1 exp(− 𝑔

𝜈 )

𝜈
𝑡
𝜈 𝛤 ( 𝑡𝜈 )

𝑑𝑔 (5)

where 𝛤 is the Euler Gamma function and by Gradshetyn and Ryzhik
[42] this form is integrable.

So far the VGP is mostly used in financial analysis. However, it has
possible potentials to be applied in several other applications, especially
in the system engineering and maintenance field. The VGP, due to
its four parameters, is a flexible stochastic model capable of fitting to
different time series with independent increments and non-monotonic
paths. VGP can be also expressed under two presentations: the first as
a changing time of a brownian motion by a gamma process and the
second as a difference of two gamma processes. These characteristics
will permit it to model different system’s degradation behaviour. The
VG simulation is carried out according to three possibilities. In the gen-
eral case, a gamma process is generated with gamma bridge sampling
to give the time set and afterwards a Wiener process for this latter is
generated by gaussian increments. In the second method, a Dirichlet
bridge sampling is used to generate the difference of two gamma
processes. And finally, for the specific cases, two gamma process are
generated with gamma bridge sampling and the VGP as their difference
is proposed, refer to [40].

2.2. Parametric estimation

The estimation of the VGP parameters has not received much at-
tention. Most of the work was based on simulated data [43] and
lately few works presented some estimation based on a huge data
set. Rathgeber et al. [34] considered a huge daily finance data for
20 years of companies in order to estimate the VGP parameters. Le
Courtois and Walter [44] tried to study the estimation of the VGP
parameters modelling financial data over the period around 8 years
by maximum likelihood method and no computational problems was
reported. Cervellera and Tucci [45] attempted to replicate the results of
estimation of VGP parameters obtained by Madan et al. [41]. The com-
putational problems, mainly associated with finding the maximum like-
lihood estimation (MLE) of the parameters of the VGP was investigated.
Estimation of the VG parameters is considered as a challenging task
because of the complexity of log-likelihood function which contains
many local optima and the presence of the modified Bessel function
of the third kind. A new expectation–maximization (EM) algorithm
was developed by Bee et al. [46] based on expectation-conditional-
maximization (ECM) proposed by Nitithumbundit and Chan [47]. The
VGP is considered as a good model in fitting data related to a non-
monotonic phenomenon and is flexible enough to fit to the skewness
and leptokurtosis.

Given a sample of increments 𝑦 = (𝑦1,… , 𝑦𝑛), the observed log-
likelihood of VGP is given by:

𝐿(𝜇, 𝜎, 𝜃, 𝜈; 𝑦) =
𝑛
∑

log(𝑓 (𝑦𝑘;𝜇, 𝜎, 𝜃, 𝜈)), (6)

𝑘=1



where 𝑓 (𝑦;𝜇, 𝜎, 𝜃, 𝜈) is the probability density function given in (3). The
log-likelihood function derived [48] is given as follows:
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where 𝐾𝑎 is the modified Bessel function of the third kind of or-
der 𝑎 > 0. Since one of the parameters to be estimate is inside
the modified Bessel function 𝐾𝑎, an approximation of this latter is
required. The modified Bessel function approximation and therefore
the estimation of the parameters in this paper is ensured using two
numerical tools. For the first tools, called ‘VG’ the estimation of the
parameters of the VGP can be insured using the ‘vgFit’ function de-
veloped under R [49]. The second tool known as the ‘ghyp’ uses the
‘fit.VGuv’ function developed under R [48]. In the VGP, the vgFit
function allows the user to employ the Nelder–Mead, the BFGS method
(Broyden–Fletcher–Goldfarb–Shanno) or a Newton-type algorithm in
estimating the parameters. Since The variance-gamma distributions
form a subclass of the generalized hyperbolic distributions, the ghyp
method proposes a detailed functionality for working with Generalized
Hyperbolic processes such as the VGP. It provides also a fitting method
based on the fit.VGuv function that capable to ensure the estimation
based only on the Nelder–Mead algorithm. Other approximations are
also available for instance on MATLAB.

2.3. Failure time distribution

It is of a great interest to assess the evolution of the degradation
and to predict the failure to avoid the system failure and an undesirable
period of inactivity [1,50]. When the degradation indicator reaches a
given threshold known as failure threshold, it means that the system
is to much deteriorated and even if it is functioning it cannot fulfil its
mission in acceptable manner. The first passage or hitting time of the
failure threshold by the degradation path is considered as the failure
time. In stochastic process literature the first time a process exceeds
a given threshold is known as first hitting time of the process to the
threshold.

The failure time associated to the failure threshold 𝐿 for a VGP
(𝑋(𝑡; 𝜎, 𝜈, 𝜃))𝑡≥0 is defined as:

𝑇 = inf {𝑡 > 0, 𝑋(𝑡; 𝜎, 𝜈, 𝜃) ≥ 𝐿} (8)

In the VGP, the subordinated time is a non continuous path process
known as a gamma process which makes the calculation more chal-
lenging. Due to the non continuity of paths, the usual first hitting time
of a path continuous process such as Wiener process cannot be applied
to VGP [51]. Hurd [52] proposed to calculate the first hitting time of
the second kind and it is defined as the first time when the process of
time change (gamma) is greater than the failure time of the brownian
motion. Let us consider 𝑇 ∗ to be the first hitting time of the brownian
motion from threshold 𝐿 which is defined as

𝑇 ∗ = inf {𝑡 > 0, 𝐵(𝑡; 𝜃, 𝜎) ≥ 𝐿} .

According to Hurd [52], the first passage time of the second kind of
(𝑋(𝑡; 𝜎, 𝜈, 𝜃))𝑡≥0 = (𝐵𝛾(𝑡;𝜇,𝜈))𝑡≥0 is defined as:

𝑡∗𝑑 = inf
{

𝑡 > 0, 𝛾(𝑡;𝜇, 𝜈) ≥ 𝑇 ∗} . (9)

This first hitting time of second kind is illustrated in Fig. 1.
3

Fig. 1. First hitting time of second kind.

The Cumulative distribution function (CDF) of the failure time can
also be approximated similarly to the brownian motion first hitting time
by another expression as follows :

P(𝑡∗𝑑 < 𝑡) ≃ 2P(𝑋(𝑡; 𝜎, 𝜈, 𝜃) > 𝐿) = 2(1 − 𝐹𝑋(𝑡;𝜎,𝜈,𝜃)(𝑑)) (10)

where the 𝐹𝑋(𝑡;𝜎,𝜈,𝜃)(𝐿) = ∫ 𝐿
−∞ 𝑓𝑋(𝑡)(𝑥)𝑑𝑥 and the 𝑓𝑋(𝑡) is given by (3).

Li [53] presented another analytical presentation of the first hitting
time and P(𝑇 ≤ 𝑡) can be obtained by calculating the two following
equations:
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According to Li [53], The sum of (11) and (12) provides a new
expression of the CDF of first hitting time of the threshold 𝐿. Once
the failure time distribution is obtained a deep study of the model
parameters and the impact of the uncertainty related to their estimation
on the prognosis.

2.4. Remaining useful lifetime distribution

Consider that the system is not failed at time 𝑡, the remaining time to
reach the failure threshold is called remaining useful lifetime at time



Fig. 2. Schematic representation of RUL estimation.

𝑡. In other words, the remaining useful lifetime is a random variable
indexed by time defined as follows:

𝑅𝑈𝐿(𝑡) = min{ℎ > 0, 𝑋(𝑡 + ℎ; 𝜎, 𝜈, 𝜃) > 𝐿|𝑋(𝑡; 𝜎, 𝜈, 𝜃) < 𝐿}.

Therefore,

𝐹𝑅𝑈𝐿(𝑡)(ℎ) = P(𝑅𝑈𝐿(𝑡) ≤ ℎ) = P(𝑋(𝑡 + ℎ; 𝜎, 𝜈, 𝜃) > 𝐿|𝑋(𝑡; 𝜎, 𝜈, 𝜃) < 𝐿)

= P(𝑋(𝑡 + ℎ; 𝜎, 𝜈, 𝜃) −𝑋(𝑡; 𝜎, 𝜈, 𝜃) > 𝐿

− 𝑥|𝑋(𝑡; 𝜎, 𝜈, 𝜃) = 𝑥 < 𝐿)

= ∫

𝐿

0
P(𝑋(𝑡 + ℎ; 𝜎, 𝜈, 𝜃) −𝑋(𝑡; 𝜎, 𝜈, 𝜃) > 𝐿 − 𝑥)𝑓𝑋(𝑡;𝜎,𝜈,𝜃)(𝑥)𝑑𝑥

(13)

Fig. 2 explains the first hitting time (FHT) modelling principle. At
inspection time 𝑡𝑖𝑛𝑠𝑝, the parameters of the past degradation paths are
estimated and will be used to calculate the failure time distribution.

In the framework of this paper, the prognosis refers to the RUL
distribution estimation at the observation or prognosis time. The main
challenge is to define the RUL distribution considering the usage and
environmental conditions.

2.5. Analysis of the VG parameters on the degradation paths trend

In this section, the impact of the VGP parameters on its paths is
analysed. The VGP consist of four parameters, i.e. two extra parameters
compared to a brownian motion. The volatility and the drift of the
brownian motion are the parameters which control the kurtosis and
the skewness of the data. For the increments of the VGP, the mean
of is controlled only by the value of the drift (𝜃), the variance is
written as (𝜎2 + 𝜈𝜃2), the skewness (𝜃𝜈(3𝜎2 + 2𝜈𝜃2)∕(𝜎2 + 𝜈𝜃2)3∕2) and
the kurtosis (3(1 + 2𝜈 − 𝜇𝜎4(𝜎2))). From the expression of the mean of
VGP, it is obvious that the mean is mainly depending on the drift of the
brownian motion 𝜃. It is valuable to study the model’s parameters and
their impact on the degradation behaviour. A sensitivity analysis was
performed by varying the four parameters of the VGP to investigate
their influence on the degradation paths (3). For a time horizon 𝑇 ∈
{600, 10 000}, for each set of parameter, degradation paths are gener-
ated. The number of the generated paths can explain the superposition
4

of degradation paths for each set of parameters obtained in (3). The
10 000 trajectories in each figure give an envelop for the process and
each trajectory is non-monotonic. It can be noticed that 𝜃 the drift of
the brownian motion impacts substantially the degradation path. The
volatility parameter of the brownian motion 𝜎 has not an important
impact on the degradation rate. The change of the 𝜎 value impacts
the degradation rate and therefore the failure time. A small value of 𝜎
implies a slow degradation of the system and delays the time to reach
the failure threshold. Similarly, high values of 𝜎 accelerates the failure
threshold reaching.

From 3, one can notice that increasing 𝜈 does not impact the
degradation paths. The degradation level for different values of 𝜈 over
the period 𝑇 = 600 (hours) reaches the same level of degradation equal
to 2000. Same interpretation can be concluded for the parameter 𝜇. For
the same time span T = 600 h, the level of the degradation path reach
the level 5000 when the values of 𝜇 change. It is confirmed that both
𝜈 and 𝜇 parameters do not have substantial impact on the degradation
path trend. As mentioned in Madan [41], when 𝜃 = 0 the skewness also
will be equal to 0. The expressions of the kurtosis is mainly depending
on the parameters 𝜎, 𝜇 and 𝜈. Since the 𝜈 and 𝜇 parameters have
not an important impact on the degradation, the kurtosis can only be
presented by 𝜎.

3. Model analysis based on simulated data

In this section, the parametric estimation, first hitting time, prog-
nostics and impact of estimation error of the parameters based on the
simulated data were analysed. As explained in the previous section
two methods of simulation paths is considered. To generate gamma
process with gamma bridge sampling and simulate a Wiener process
considering time as the gamma process path. Otherwise two gamma
process are generated with gamma bridge sampling or their difference
by Dirichlet bridge sampling and the VG as the difference of two gamma
processes is derived.

3.1. Comparison of maximum likelihood approximation and optimization
methods

The parametric estimation of the unknown parameters of the VGP
is studied using two approximation of the Bessel function of second
kind in software R called VG and ghyp. Different optimization methods
are carried out the best results are exposed in this section. The
degradation is modelled using the VGP. Different set of parameters are
used to generate the degradation paths based on the definition of VGP
as an evaluation of the time of the brownian motion with a gamma
process. The aim is to define the initial parameters to generate the
degradation path and then to estimate these parameters again. The
evaluation of the two methods is based on the results of the RMSE (root-
mean-square error) calculation for the different number of degradation
paths (𝑁 ∈ {1000, 10 000}). Each degradation path is generated with
a sample length equal to 10 000. The RMSE is obtained by generating
the 𝑁 degradation paths with 𝑛 points on each path and estimating the
four VG parameters. The RMSE of a parameter 𝜃 using the following
equation:

𝑅𝑀𝑆𝐸 =

√

√

√

√

𝑁
∑

𝑖=1

(𝜃 − 𝜃̂𝑖)2

𝑁
(14)

where 𝜃̂𝑖 is the estimated parameter from the 𝑖th trajectory, 𝑁 is the
number of degradation paths and 𝑛 is the number of data on each
trajectory.

The results of the estimation of the two methods for six different VG
parameter combinations with 𝑁 = 1000 and 𝑁 = 10 000 are compared
and presented in Tables 1 and 2. Based on the results of the sensitivity
of the VGP to its parameters, the six parameters of combinations are
chosen to model three types of degradation (slow, average, fast). In this



Fig. 3. Sensitivity of VG degradation path to each parameter.
Table 1
RMSE estimation results (𝑛 = 100, 𝑁 = 1000).

𝜇 𝜎 𝜃 𝜈

Real parameters : 𝜇 = 1, 𝜎 = 2, 𝜃 = 2, 𝜈 = 1

ghyp 0.0004210789 0.00369599 0.01053718 0.00550920
VGfit 0.0004551270 0.02874830 0.03808217 0.03849895

Real parameters : 𝜇 = 1, 𝜎 = 3, 𝜃 = 3, 𝜈 = 1

ghyp 3.532141e−06 0.05741504 0.0388627 0.2201984
VGfit 5.612094e−05 0.08355467 0,0934466 0.3364936

Real parameters : 𝜇 = 1, 𝜎 = 0.75, 𝜃 = 0.75, 𝜈 = 1

ghyp 0.0004817726 0.0004798775 0.0008856789 0.01186778
VGfit 0.001164360 0.0213160872 0.0492638962 0.58713126

Real parameters : 𝜇 = 1, 𝜎 = 1, 𝜃 = 1, 𝜈 = 1

ghyp 0.001470636 0.001535299 0.003548021 0.006668589
VGfit 0.003756252 0.039027666 0.105642000 0.135408442

Real parameters : 𝜇 = 0.5, 𝜎 = 0.25, 𝜃 = 0.25, 𝜈 = 0.5

ghyp 0.0001100921 9.668181e−05 0.0002406135 0.007128364
VGfit 0.0051333200 1.565608e−03 0.0055610143 0.063434573

Real parameters : 𝜇 = 1, 𝜎 = 0.5, 𝜃 = 0.5, 𝜈 = 1

ghyp 0.0005272317 0.0004150291 0.001121821 0.01069433
VGfit 0.0021006104 0.0147634250 0.037662992 0.45139110

analysis, two Slow, two average and two fast degradations are tested.
The two first rows of the Tables 1 and 2 resume the RMSE calculation
of a fast degradation parameter. Similarly, the other four rows resumes
for average and slow degradation respectively.

For 𝑁 = 1000, the RMSE results obtained by ‘‘ghyp’’ are observed to
be smaller compared to the ‘‘VG’’ method and it can be concluded that
the method applied in ‘‘ghyp’’ shows better results than the one applied
in ‘‘VG’’. Similarly for 𝑁 = 1000, it was noted that the RMSE results for
5

Table 2
RMSE estimation results (𝑛 = 100, 𝑁 = 10 000).

𝜇 𝜎 𝜃 𝜈

Real parameters : 𝜇 = 1, 𝜎 = 2, 𝜃 = 2, 𝜈 = 2

ghyp 8.295178e−06 0.000207052 0.009850322 3.011430e−04
VGfit 4.599947e−05 0.002201068 0.003879024 0.007113568

Real parameters : 𝜇 = 1, 𝜎 = 3, 𝜃 = 3, 𝜈 = 1

ghyp 1.692809e−07 0.0045977 0.0082867 0.1608650
VGfit 2.622267e−05 0.0640549 0.0721939 0.2088096

Real parameters : 𝜇 = 1, 𝜎 = 0.75, 𝜃 = 0.75, 𝜈 = 1

ghyp 2.316306e−06 0.0000379694 5.876514e−05 0.00076909
VGfit 6.772278e−05 0.0027314184 1.310317e−03 0.09685972

Real parameters : 𝜇 = 1, 𝜎 = 1, 𝜃 = 1, 𝜈 = 1

ghyp 8.500192e−05 0.0001453872 0.0003301504 0.00064286
VGfit 8.837178e−04 0.0032286326 0.0006211723 0.01124481

Real parameters : 𝜇 = 0.5, 𝜎 = 0.25, 𝜃 = 0.25, 𝜈 = 0.5

ghyp 8.644142e−06 1.102703e−05 2.546313e−05 0.0007798861
VGfit 3.488508e−03 3.432321e−04 3.460239e−03 0.0082440602

Real parameters : 𝜇 = 1, 𝜎 = 0.5, 𝜃 = 0.5, 𝜈 = 1

ghyp 2.937456e−05 4.663161e−05 8.013216e−05 0.0007145383
VGfit 1.624349e−04 4.250019e−03 2.486369e−02 0.1420492314

the ‘‘ghyp’’ are smaller as in the case of 1000. The RMSE results using
the same data and sample size show that ‘‘ghyp’’ is more efficient in
estimation when compared to the ‘‘VG’’ package. However with a fast
degradation the two methods efficiency could be similar. It was also
perceived that the estimation of the VGP parameters can be affected
by the size of used data. In the further analysis, the estimation will be
ensured using the ‘‘ghyp’’ R-package and 𝑁 = 10 000 of degradation
paths.



Fig. 4. Histogram of the failure time distribution associated to a VGP.
3.2. Failure time distribution

In order to carry out a sensitivity analysis, due to burdensome
computational time of the closed form approximation methods, Monte
Carlo simulation method is used to analyse the failure time distribution.
In this aim, our concern is the failure time distribution which is the first
hitting time of the failure threshold. For efficiency reasons, different
sets of VGP parameters are used to model different types of degrada-
tion. The distributions for slow, average and fast degradation rates are
studied. Initially, 𝑁 = 10 000 paths are generated. The paths associated
to a fast degradation are generated with the set of parameters VGP(𝜇 =
1, 𝜎 = 2, 𝜃 = 2, 𝜈 = 2). Paths associated to slower degradation are also
generated considering VGP(𝜇 = 0.5, 𝜎 = 0.25, 𝜃 = 0.25, 𝜈 = 0.5) and
VGP(𝜇 = 1, 𝜎 = 0.5, 𝜃 = 0.5, 𝜈 = 1). The VGP(𝜇 = 1, 𝜎 = 1, 𝜃 = 1, 𝜈 = 1)
is introduced to model an average degradation rate. A predefined fail-
ure threshold 𝐿 was defined. The time at which the degradation paths
crossing the limit 𝐿 is captured and used to obtain the histograms of the
failure time (4). Fig. 4 presents the obtained failure time histograms for
the different degradation paths. The first histogram presents the failure
time histogram of an average degradation. The histogram is carried out
over a period 𝑇 ∈ [300, 550]. The failure time of the associated to a
fast degradation is obtained over the period 𝑇 ∈ [50, 350]. For the two
slow degradation the histograms of the failure time are obtained on a
time span 𝑇 ∈ [1600, 2600]. The different obtained results show that
the histograms of the failure times are unimodal and right skewed. It
is essential to study the failure time since it assess the integration of
the historical data of the degradation path at the inspection time. The
histograms of the failure time provide an idea about the prognostics by
locating the real crossing time comparing to the failure time histogram.

It is valuable to evaluate the distribution of the failure time and
to investigate its fitting to some famous parametric model. For this
fitting, maximum likelihood method is used. Different goodness of fit
tests are applied to calibrate the obtained histograms to six parametric
models: Weibull, Log-normal, Gamma, Beta, Exponential, Gaussian and
Inverse Gaussian models. More precisely, the Kolmogorov–Smirnov,
Chi-square, Cramer von Mises and the Anderson–Darling goodness of
fit tests are used. Table 3 resumes the results for the different type
of degradation (fast, average, slow). All the goodness of fit tests give
a very small 𝑝-value and therefore refused the null hypotheses which
means the proposed classical parametric models do not fit the failure
time data. The distribution of the failure time provides an idea about
the prognostics. The simulation method proposed to obtain the his-
tograms of the failure time is also applied to evaluate the prognostics by
considering data from the beginning of the lifecycle until the prognosis
time.

3.3. Prognosis and the impact of parameters estimation error

In this section, the evaluation of the prognosis obtained using the
VGP is proposed. Several analyses show that the estimation error in the
VG parameters leads sometimes to considerable error in prognosis [54,
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Table 3
𝑝-values of the calibration of the FHT distribution to different laws.

Law KS Chisq Cramer AD

VG(𝜇 = 1, 𝜎 = 2, 𝜃 = 2, 𝜈 = 2)

Weibull 0.000415 0.026887 0.00230 0.05051
Log-normal 0.021345 9.281e−04 0.006120 8.328e−04
Gamma 2.102e−16 0.0001248 0.000518 1.830e−06
Beta 7.421e−07 0.0006147 1.830e−06 0.00407
Exponential 0.00731 1.365e−06 0.000259 0.00873
Gaussian 8.501e−04 3.296e−08 9.061e−07 0.000749
Inverse Gaussian 7.304e−06 0.000334 8.32e−05 1.745e−03

VG(𝜇 = 1, 𝜎 = 1, 𝜃 = 1, 𝜈 = 1)

Weibull 2.752e−12 0.000109 0.00047 6.681e−08
Log-normal 0.02451 0.00934 0.00183 0.000192
Gamma 6.851e−05 0.00207 0.000436 3.852e−09
Beta 2.851e−04 1.713e−06 9.254e−05 6.041e−05
Exponential 0.00274 0.035377 0.000219 0.000483
Gaussian 0.02783 0.02589 4.745e−10 9.164e−12
Inverse Gaussian 0.000164 3.841e−07 0.002046 0.00142

VG(𝜇 = 1, 𝜎 = 0.5, 𝜃 = 0.5, 𝜈 = 1)

Weibull 0.00409 0.014811 0.00047 0.02783
Log-normal 2.942e−05 9.164e−12 0.02589 0.000164
Gamma 0.00029 0.00142 3.841e−07 0.00492
Beta 0.00081 0.045283 0.02575 0.0002103
Exponential 0.006317 3.076e−09 4.185e−08 8.43e−07
Gaussian 0.003051 0.01231 0.00906 0.00035
Inverse Gaussian 0.00592 0.00052 3.741e−04 0.063845

VG(𝜇 = 0.5, 𝜎 = 0.25, 𝜃 = 0.25, 𝜈 = 0.5)

Weibull 7.459e−06 6.939e−05 2.775e−04 1.472e−03
Log-normal 7.053e−08 1.472e−03 7.053e−08 0.00346
Gamma 0.00346 0.000683 0.000584 2.961e−03
Beta 0.000735 0.00837 0.000736 0.03515
Exponential 0.04373 1.030e−05 0.043042 4.863e−08
Gaussian 0.000653 1.965e−05 3.965e−04 3.745e−06
Inverse Gaussian 0.002037 0.00204 0.007031 0.00204

55]. In this framework, this section provides a great deal of insight into
how estimation errors can impact the performance of the prognosis.
Fig. 5 presents the idea of the evaluation of the prognosis by assessing
the evolution of the failure time distribution. A degradation path is
considered. At the prognosis time, the parameters of the degradation
path will be estimated and used to generate a failure time histogram.
The idea is to generate a slow degradation path (𝐷𝑠) using the VG(𝜇 =
0.5, 𝜎 = 0.25, 𝜃 = 0.25, 𝜈 = 0.5), mean degradation path (𝐷𝑚) generated
with VG(𝜇 = 1, 𝜎 = 1, 𝜃 = 1, 𝜈 = 1) and a fast degradation path (𝐷𝑓 )
generated using a VG(𝜇 = 1, 𝜎 = 2, 𝜃 = 2, 𝜈 = 2) and to evaluate the
prognosis for each degradation path at different inspection times. The
first crossing time of the failure threshold for each degradation path is
noted as 𝐹𝑐𝑡 and must be located when the three failure time histograms
are obtained. While comparing the position of the 𝐹𝑐𝑡 with the three
failure time histograms obtained respectively at t = 𝑡𝑖𝑛𝑠𝑝1, t = 𝑡𝑖𝑛𝑠𝑝2 and
at 𝑡 = 𝑡𝑖𝑛𝑠𝑝3, the efficiency of the prognosis can be studied. The results
obtained at the three prognosis times are presented in 6.
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Fig. 5. Schematic representation of prognostics based on degradation evolution where
FHT represent the failure time.

The first crossing time of the degradation trajectory 𝐹𝑐𝑡 is presented
and compared to the RUL histograms as well as the confidence intervals
of 5% and 95% percentiles. Based on the results, one can notice that the
𝐹𝑐𝑡 of a slow degradation path is well located compared to the failure
time histogram and the confidence intervals. Same conclusions can be
observed and obtained for the mean and fast degradation paths from
the second and third lines of Fig. 6. By evaluating the quality of the
RUL estimation, the risk of the failure time estimation after the real
failure seems low.

The accuracy of the prognostic is significant for to have a reliable
modelling of the system degradation. As a result of this, it is relevant
to analyse the impact of estimation error of each VG parameter on
prognostics. Moreover, the impact of estimation error can provide a
comprehensive sense about the robustness of the estimation algorithms
and also to determine the efficiency of the prognostics. Even though
it was established that the drift and the volatility parameters are the
two parameters which impact the most the degradation of the system,
the impact of 𝜎, 𝜃, 𝜈 and 𝜇 is studied. For one combination of VG
parameters, a number 𝑁 = 10 000 degradation paths are generated
in R and the unknown parameters are estimated through maximum
likelihood methodm see Table 4). Therefore, for the different four VG
parameters, 𝑁 estimators are calculated their histograms are illustrated
in blue in Figs. 7–10.

The objective is to evaluate the distribution of the FHT when the
value of the estimator changes. The MLE estimators are asymptotically
unbiased and normally distributed. Therefore, the distribution of the
estimator can be propagated into the RUL estimation and give the
uncertainty at each point of the RUL estimation. The red histograms in
7–10 time to failure histograms for the different quantiles of 𝜎̂, 𝜃̂, 𝜈̂ and
̂. More precisely, the 𝑁 = 10 000 estimated values of 𝜎 are calculated
and the corresponding 10%, 25%, 50%, 75% and 90% quantiles are
specified. These quantiles will be used to The evaluation of the impact
of estimation uncertainty on the FHT distribution leads to evaluate their
impact on prognosis. It can be noticed that considering different quan-
tiles of the parameter estimates does not impact substantially the FHT
distribution. Indeed, the estimated variance of parameter estimates are
very small he histograms of the FHT did not show remarkable changes
when the estimator 𝜎̂ value which can explain why the estimation error
does not impact subsequently the prognosis.

Due to the asymptotic normality of the estimates, delta method
leads us to asymptotic normality of the FHT quantiles.
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Table 4
Summary of parameter estimations (𝜎 = 2, 𝜃 = 2, 𝜇 = 1, 𝜈 = 2) vector (𝑁 = 10 000).
𝜎, 𝜃, 𝜇, 𝜈 Min 1st.Qu Median Mean 3rd.Qu Max Variance

𝜎 1.905 1.928 1.980 2.015 2.074 2.112 0.0006383893
𝜃 1.8716 1.9743 1.9989 2.0005 2.0199 2.0536 0.0004291118
𝜇 0.9684 0.9867 0.9340 0.9841 1.0005 1.0012 0.0001712903
𝜈 1.9155 1.9801 1.9947 1.9983 2.0019 2.0035 0.0002461708

4. Application on the real data

Centrifugal pumps are widely used in different small and large
industries. The main task of the pump is to transfer fluids from source to
destination by providing appropriate pressure (11). The most important
parts of the centrifugal pumps are nozzles, shafts, bearings, mechanical
seals, impeller, etc.

The mechanical seals are used to provide a leak proof seal between
the component parts in centrifugal pumps. Mechanical seals consists
of mainly three parts such as o-ring, sealing ring, spring and several
sub-parts such as mating rings, flexible diaphragm, retainer, etc. (11).
Two degradation factors are identified leading to the failure of seals:
delamination of rings and fouling with iron oxide deposit. In order
to detect failure the degradation is detected by the monitoring of the
leakage rate. A high level of leakage rate will lead to a maintenance
action [58]. In this paper, the leakage rate data are retrieved by specific
inspections.

The actual retrieved data presenting the health indicator of cen-
trifugal pumps over a specified time period are presented and will be
used to confirm the utility of the VGP as a degradation model. The
data retrieved presenting the degradation of the centrifugal pump are
applied in the calibration of the VGP and to study all its properties.
The water leakage rate from the centrifugal pump is considered as
the health indicator. The historical degradation data of the centrifugal
pump used in this study are retrieved at different periods of the year
using different sensors and they present the level of water leakage rate
with respect to time, i.e. each 4 h per day. The leakage rate level is
considered as a health indicator and a high level of the leakage rate is
considered as failure . Four pumps are considered. The retrieved data
(leakage rate measurements) are presented gathered in four vectors 𝑉1,
𝑉2, 𝑉3 and 𝑉4.

The times series presented by 𝑉1, 𝑉2, 𝑉3 and 𝑉4 are considered as
degradation paths presented in 12. The monitoring of the degradation is
performed over 9 different inspection periods. Let

{

𝑉𝑖𝑗 , 𝑖 ∈ {1, 2,… , 9}
}

be the degradation level of pump 𝑖 at the 𝑗th inspection. The centrifugal
pump is considered as failed when its leakage rate level is greater than
a specific threshold (𝑑), The threshold is defined by the experts as a
safety level beyond which the system is too damaged to be considered
as operational. As soon as the leakage rate of the pump exceeds a failure
threshold limit, which is set at around 1400 l/h (litre per hour), the
pump is stopped and a corrective maintenance action is performed.
Such incident leads to a total shutdown of the operation of the pump, so
the engineers proposed to define an alarm threshold in order to propose
proactive maintenance decisions. The alarm threshold is set at a level
of 1100 l/h. The concept of the alarm threshold is designed to alert the
operators to a possible degradation of the pump so it can be maintained
early enough before failure. To study the efficiency of the VGP in
modelling the non-monotonic degradation behaviour, four goodness
of fit tests are applied to the leakage rate dataset. The goodness of
fit are applied to give a comparison between the fitting by the VGP
and the Wiener process with 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.05. The choice of the Wiener
process is because it is the most used stochastic processes for modelling
non-linear degradation. Since the two processes under consideration
are Lévy processes (independent increments) the goodness of fit tests
suitable for independent data are applied.

The presented results (5, 6, 7, 8) show that the VGP is more efficient
in modelling the centrifugal pump. For the different data set, the



Fig. 6. Position of the first crossing time 𝐹𝑐𝑡 compared to the 5% and 95% percentiles of the failure time histograms obtained at different prognosis times.
Fig. 7. Impact of the uncertainty around the estimator 𝜎̂ on the failure time distribution, in blue the histogram of 𝜎̂, in red histograms of failure times for different quantiles of 𝜎̂.
goodness of fit tests was applied to ensure the calibration of the data to
the VG and Wiener process with linear and non linear drift according
to the best calibration result. All the goodness of fit tests proved that
the VGP is the best process to model such degradation. This can be
accepted and explicated by the flexibility of the VGP and its ability to
present the small and high jumps on the non-monotonic degradation
path. To model the degradation by Wiener process, both the mean and
the standard deviation should satisfy some conditions which cannot be
accepted or justified for some non-monotonic degradation system [59].
For the sake of confidentiality the parameters of processes are not
given.

After ensuring the estimation of the parameters and the calibration
of the stochastic model, it is essential to study the FHT distribution and
to study the impact of the error of estimations on FHT. These two tasks
were performed and the results were combined together and presented
Figs. 13, 14, 15. For one specific time span, the four parameters of one
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real degradation path are estimated. For each VG parameter, due to the
asymptotic unbiased and normality of estimates 𝑁 data are generated
but a normal distribution (blue histogram). The values of the estimators
will be sorted and then using their values at the different quantiles 10%,
25%, 50%, 75% and 90% a number 𝑁 = 10 000 of the paths will be
generated and the limit threshold is defined. The first hitting time of the
limit is captured and used to present the histograms in red. The graphs
show that the histogram of the FHT is right skewed and unimodal as
in the case of simulated data results. The different graphs are obtained
using the same axe scales, for the different parameters the obtained
distribution of the FHT occurs in the same time span.

Same work was reproduced with 𝑁 = 10 000 observations for the
other three parameters. As mentioned before, the histograms of the
FHT are unimodal and are right skewed. The variance of parameter
estimates are very small (less than 2 × 10−4) that is why the estimation
uncertainty does not influence subsequently the FHT distribution in (9).



𝜇

Fig. 8. Impact of the uncertainty around the estimator 𝜃̂ on the failure time distribution, in blue the histogram of 𝜃̂, in red histograms of failure times for different quantiles of 𝜃̂.
Fig. 9. Impact of the uncertainty around the estimator 𝜈̂ on the failure time distribution, in blue the histogram of 𝜈̂, in red histograms of failure times for different quantiles of 𝜈̂.
Fig. 10. Impact of the uncertainty around the estimator 𝜇̂ on the failure time distribution, in blue the histogram of 𝜇̂, in red histograms of failure times for different quantiles of
̂.
The next step will be fitting the distribution of the FHT to a para-

metric model. Four goodness of fit tests are used to approve the fitting
9

with a 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.05 : Kolmogorov-test (KS), Chis-square test (chisq),

Anderson-test (AD), Cramer-test (Cramer). For each degradation path



Fig. 11. Working principle of centrifugal pump and the detailed presentation of its mechanical seal [56,57].
Fig. 12. Leakage rate (l/h) of the four systems over a time (h): 𝑉1, 𝑉2, 𝑉3 and 𝑉4.
Fig. 13. In blue the histogram of 𝜎̂, in red histograms of failure times for different quantiles of 𝜎̂.
of (𝑉1, 𝑉2, 𝑉3 and 𝑉4), the process parameters are estimated and then

used to generate 𝑁 = 10 000 paths. When the 10 000 paths of each
10
degradation paths exceeds the failure threshold, the first hitting time

is captured and then used to define the distribution of the FHT. The



Fig. 14. In blue the histogram of 𝜈̂, in red histograms of failure times for different quantiles of 𝜈̂.
Fig. 15. In blue the histogram of 𝜇̂, in red histograms of failure times for different quantiles of 𝜇̂.
Table 5
𝑝-values for calibration of first vector of real data (V1).

Pump valve 1 Process KS.test Chisq.test AD.test Cramer test

𝑉11 VG 0.2439 0.3876 0.3165 0.7532
Wiener 0.0001854 0.026457 0.001045 8.054e−03

𝑉12 VG 0.2472 0.2207 0.1847 0.3286
Wiener 0.00769 0.001063 0.00907 3.938e−04

𝑉13 VG 0.2452 0.4309 0.7362 0.2170
Wiener 8.375e−04 1.282e−10 0.001058 3.967e−10

𝑉14 VG 0.6041 0.3827 0.837 0.294
Wiener 4.387e−04 8.361e−08 4.703e−10 1.750e−07

𝑉15 VG 0.3097 0.5139 0.2106 0.4739
Wiener 0.00902 0.001753 0.00854 0.004015

𝑉16 VG 0.2551 0.7014 0.8104 0.6074
Wiener 0.04768 0.041981 1.047e−06 0.032075

𝑉17 VG 0.2408 0.063717 0.8105 0.2601
Wiener 0.046628 0.039015 0.028319 0.038938

𝑉18 VG 0.2255 0.2419 0.2412 0.2438
Wiener 0.033491 0.16179 0.00975 0.01059

𝑉19 VG 0.2575 0.12123 0.09654 0.2672
Wiener 3.438e−05 0.010651 0.0085832 6.455e−05
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Table 6
𝑝-values for calibration of second vector of real data (V2).

Pump valve 2 Process KS.test Chisq.test AD.test Cramer test

𝑉21 VG 0.2408 0.2419 0.2466 0.1619
Wiener 0.041981 0.04768 0.032075 0.034434

𝑉22 VG 0.2412 0.17594 0.3763 0.443
Wiener 0.00724 0.00204 0.00937 0.01064

𝑉23 VG 0.5216 0.803 0.2 0.07281
Wiener 0.7086 0.0418 6.947e−04 0.000381

𝑉24 VG 0.1614 0.089 0.3785 0.3008
Wiener 0.02451 0.00934 0.00183 0.000192

𝑉25 VG 0.6229 0.4081 0.5183 0.2419
Wiener 0.035377 0.044811 0.02783 0.02589

𝑉26 VG 0.1408 0.3844 0.17075 0.16462
Wiener 0.045283 0.02575 0.0002103 0.0006317

𝑉27 VG 0.11263 0.088953 0.05165 0.063845
Wiener 0.04853 0.006812 0.0004647 0.034433

𝑉28 VG 0.7225 0.52733 0.3803 0.3553
Wiener 0.03515 0.04373 0.043042 0.1511

𝑉29 VG 0.62367 0.3313 0.7604 0.3974
Wiener 0.002037 0.007031 0.028149 0.04798



Table 7
𝑝-values for calibration of third vector of real data (V3).

Pump valve 3 Process KS.test Chisq.test AD.test Cramer test

𝑉31 VG 0.3427 0.06231 0.7758 0.47297
Wiener 0.00439 0.00091 0.00271 0.0684

𝑉32 VG 0.9425 0.8174 0.6703 0.10973
Wiener 0.00218 0.0194 0.0405 0.00039

𝑉33 VG 0.83 0.2408 0.2396 0.1221
Wiener 0.037168 0.03008 0.000438 8.164e−04

𝑉34 VG 0.7031 0.5884 0.8453 0.071355
Wiener 0.032058 0.03516 0.00792 0.045502

𝑉35 VG 0.2427 0.2694 0.2419 0.092037
Wiener 0.00382 0.00184 0.0213 0.025993

𝑉36 VG 0.10651 0.10445 0.5561 0.3067
Wiener 0.027798 0.035379 0.00903 0.00439

𝑉37 VG 0.2405 0.2348 0.2416 0.1312
Wiener 0.029135 0.01734 0.047932 0.2519

𝑉38 VG 0.2487 0.7572 0.1734 0.07589
Wiener 0.03702 0.009534 0.004841 0.003742

𝑉39 VG 0.3228 0.2519 0.6342 0.4246
Wiener 0.04716 0.0502 0.00735 0.000643

Table 8
𝑝-values for calibration of fourth vector of real data (V4).

Pump valve 4 Process KS.test Chisq.test AD.test Cramer test

𝑉41 VG 0.3419 0.13426 0.11343 0.14236
Wiener 0.001854 0.01005 0.00937 0.01002

𝑉42 VG 0.3032 0.12037 0.10651 0.4246
Wiener 0.047932 1.868e−04 0.027798 0.000643

𝑉43 VG 0.81062 0.00539 0.2694 0.11582
Wiener 0.003086 0.06241 0.00184 0.042599

𝑉44 VG 0. 6354 0.000634 0.2453 0.2207
Wiener 0.00762 0.047932 0.027921 0.001063

𝑉45 VG 0.5216 0.3876 0.2 0.4309
Wiener 0.7086 0.026457 6.947e−04 1.282e−10

𝑉46 VG 0.1614 0.2396 0.3785 0.7225
Wiener 0.02451 0.000438 0.00183 0.03515

𝑉47 VG 0.2405 0.089 0.3750 0.5139
Wiener 0.029135 0.00934 8.705e−04 0.001753

𝑉48 VG 0.3313 0.2170 0.1094 0.7014
Wiener 0.007031 3.967e−10 0.004109 0.041981

𝑉49 VG 0.2551 0.294 0.063717 0.2207
Wiener 0.04768 1.750e−07 0.039015 0.001063

Table 9
Summary of parameter estimation for real data (𝑁 = 10 000).

Parameter Min 1st.Qu Median Mean 3rd.Qu Max Variance

𝜎 1.420 1.487 1.500 1.500 1.514 1.572 0.0004599811
𝜃 0.9346 0.9841 0.9997 1.0007 1.0164 1.0726 0.0005493316
𝜇 0.4885 0.5261 0.5340 0.5341 0.5425 0.5862 0.0001570702
𝜈 0.9544 0.9900 1.0001 1.0003 1.0115 1.0435 0.0002350807

obtained FHT distribution will be fitted using the four goodness of fit
tests to the different parametric models such as Exponential, lognormal,
Weibull, Gamma, Beta and the Inverse Gaussian models with 𝑝𝑣𝑎𝑙𝑢𝑒 =
0.05. The four FHT distribution fits were performed and the results were
presented (10, 11, 12, 13). The FHT distribution did not fit to any of
the proposed parametric models. The Gamma, Weibull, exponential,
lognormal, beta and inverse Gaussian distributions cannot present a
distribution that can model the FHT distribution of a VGP. The FHT
density of the VGP has a specific distribution that cannot be modelled
using such candidates. This will lead us to the need of using simulation
in the rest of the work such as proposing prognostic.

The new advanced systems are operating in a stressed and dynamic
environment which will impact the working conditions of the system
12
Table 10
𝑝-values for goodness of fit test for FHT data derived on vector (𝑉1).

Law KS.test AD.test Chisq.test Cramer test

Exponential 0.04207 0.0158 0.00571 0.02607
Lognormal 0.005867 0.003628 0.000491 0.006827
Weibull 0.033617 0.002151 0.00382 0.00184
Gamma 0.00396 0.00902 0.001753 0.005395
Beta 4.382e−04 0.00047 0.00343 0.01037
Inverse Gaussian 0.00115 0.03835 0.00207 0.000751

Table 11
𝑝-values for goodness of fit test for FHT data derived on vector (𝑉2).

Law KS.test AD.test Chisq.test Cramer test

Exponential 0.007031 0.004109 0.041981 0.001790
Lognormal 0.01087 0.03668 0.00854 0.000429
Weibull 0.002851 0.001438 0.01095 0.00173
Gamma 0.004762 4.072e−04 0.04259 0.01058
Beta 0.00745 1.055e−07 0.00503 8.32e−05
Inverse Gaussian 0.00694 0.00493 0.02087 0.00047

Table 12
𝑝-values for goodness of fit test for FHT data derived on vector (𝑉3).

Law KS.test AD.test Chisq.test Cramer test

Exponential 0.1094 0.035009 0.04219 0.00247
Lognormal 0.002601 0.00531 0.000806 0.01553
Weibull 0.00759 0.00458 0.00215 0.000672
Gamma 0.02563 0.00581 2.12e−06 0.001408
Beta 0.01907 2.157e−08 0.001048 0.005024
Inverse Gaussian 0.009262 0.00164 0.071518 2.738e−04

Table 13
𝑝-values for goodness of fit test for FHT data derived on vector (𝑉4).

Law KS.test AD.test Chisq.test Cramer test

Exponential 0.00507 0.001628 0.00754 0.02593
Lognormal 0.02402 0.01513 0.01307 0.000681
Weibull 0.00287 0.00521 0.00384 0.00156
Gamma 0.00591 0.04529 0.00103 0.0218
Beta 5.013e−05 0.000184 0.00751 1.250e−07
Inverse Gaussian 1.128e−08 0.00162 4.649e−06 0.00372

that can affect or accelerate its degradation. The usefulness of the
VGP in degradation modelling is explored. Both simulated and real
data are considered to analyse the VGP statistical properties. As it
is one of the first papers proposing the application of the VGP in
modelling the system degradation, the possibilities of implementing the
VGP in the system maintenance field are opened. Similar works may
be recreated in the prediction of degradation of gas pipeline valves,
chemical containers, etc.

5. Imperfect maintenance strategy and cost estimation analysis

In this section, imperfect maintenance strategy and cost estimation
analysis of a system subject to failure will be detailed. An optimization
of this strategy will be proposed in order to avoid catastrophic disaster
of systems and thereby reduce the maintenance cost for the industries.
In this study, two different policies are proposed and the optimal
maintenance parameters are obtained to minimize the long-run average
maintenance cost. The structure of the maintenance policy is presented
to define the proper time of implementing either inspection or replace-
ment activities. Also, the expression of the log-run maintenance cost
is developed to propose an optimized maintenance decision. The two
proposed maintenance will be applied to the degradation data of the
centrifugal pump. As mentioned before, the centrifugal pump system is
witnessing a non-monotonic degradation and it is modelled using VGP.



Fig. 16. Illustration of the degradation evolution and the imperfect maintenance strategy.
5.1. Periodic inspections

The cumulative degradation level of the system 𝑋𝑡 cannot be ob-
served and can only be measured by inspections. In this study a periodic
maintenance strategy is proposed. It is known that a non-periodic
inspections offers optimal results. The system is inspected every 𝛿 and
after the replacement of the failed system, it will be inspected at regular
time intervals (𝛿, 2𝛿, . . . , n𝛿) until the next replacement.

16 illustrates the degradation evolution and the maintenance strat-
egy. The degradation as a function of time is plotted and the different
maintenance actions are presented. Considering the initial case, the
degradation level was verified at 𝛿, 2𝛿 and 3𝛿. During the first 2 in-
spections, the degradation level did not attain the threshold and further
inspections were approved. At the third inspection, it was observed that
the degradation level crossed the threshold and the level of the degra-
dation is estimated in order to perform the appropriate maintenance
action. The level of the system degradation is considered as the health
indicator that based on it the maintenance policy will be scheduled.
Based on the inherent of the system given by the manufacturers two
thresholds were proposed: the first threshold (M) is used as an alarm
threshold and the second threshold (L) indicates the total failure of the
system. When the level of degradation exceeds the threshold 𝑀 , a pre-
ventive maintenance action will be applied. These preventive actions
will improve the state of the system and decrease its degradation and
leading to an imperfect maintenance. These maintenance actions will
lead to an improvement of the system’s behaviour with different per-
centage 𝑃%. When the degradation level exceeds the second threshold
𝐿 a corrective maintenance actions are required. In such cases, it is
mandatory to stop the system for corrective maintenance actions. The
researchers and the reliability engineers are often keen to optimize this
maintenance strategy for a better management of the systems.

5.2. Replacements

The corrective replacement which takes place to renew the system
after failure or the preventive replacement used to improve the system
and avoid the failure presents the two types of replacement that are
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mainly used. A corrective replacement is required if the system is
observed in the failure state during the inspection time. The total cost
of the maintenance mainly consists of the cost unit of the corrective
replacement 𝐶𝑐 , the cost unit of the unavailability per unit of time 𝐶𝑢,
the inspection cost 𝐶𝑖 and the cost unit of the preventive replacement
𝐶𝑝. The preventive replacement is recommended when the degradation
level at the inspection time 𝑋𝑘 is between the alarm and the failure
thresholds. It is essential to mention that the cost unit of the preventive
replacement 𝐶𝑝 must be smaller than the corrective replacement cost
unit 𝐶𝑐 . In this study, the parameters of the maintenance decision
that should be optimized in order to obtain a minimized long-run
maintenance cost are:

• The alarm threshold 𝑀 leading to avoid the failure.
• The inspection period 𝛿, allowing the optimization of the main-

tenance cost by evaluating the cumulative inspection cost, the
prevention of a failure and the earlier detection.

• The rate of the preventive maintenance 𝑃% leading to an upgrade
of the system degradation behaviour.

The study consists of inspecting the system every 𝛿 and at each
inspection time. The leakage rate is considered as the degradation
level. The leakage rate level will be compared to the two predefined
thresholds. For the cases when the leakage rate did not exceed the
alarm threshold, only inspection costs will be considered and the
system will be working. When the leakage rate reaches the level be-
tween the 𝑀-threshold and the 𝐿-threshold, a preventive maintenance
actions are proposed and the system behaviour will be corrected with
a correction percentage given by 𝑃%. The cost of the maintenance will
be obtained by integrating all the previous inspection costs and the
preventive maintenance costs. When the leakage rate exceeds the level
𝐿, a corrective maintenance actions are needed and the whole system
will be replaced. The replaced system will start operating as a new
system and the maintenance cost unit will be calculated based on the
previous inspection cost unit, the preventive cost unit, the correction
cost unit and the unavailability cost unit. The three decision variables
are important which implies a better evaluation of their impact on the
maintenance cost. The idea is to find a suitable maintenance policy



Table 14
Part/Task, price and Mean time to repair (MTTR).

Part/Task Price MTTR

O-ring 20 20 min
Mating ring 50 25 min
Flexible diaphragm 35 25 min
Primary sealing ring 55 30 min
Drive ring 40 30 min
Retainer 70 45 min
Spring 60 35 min
Spring retainer 30 1 h

Work force (wf) 20 per h
Delivery charge (dc) 5 per item
Production cost loss (plc) 200 per h
Inspection cost (ic) 5 per h

that offers the best maintenance cost but also is easy to implement.
The three parameter estimation has lot of local minima that is why to
two parameters optimization is considered. For that two maintenance
policies are proposed in order to evaluate the impact of varying the
(𝑀 , 𝛿) values comparing to varying the (𝑀 , 𝑃%) values. The aim is to
find the optimum values of the three decision criteria which lead to an
optimum value of the maintenance cost. The first policy (𝑀 , 𝛿) and the
policy (𝑀 , 𝑃%) are also proposed and evaluated with different values
of (𝑀 , 𝛿) and (𝑀 , 𝑃%).

5.3. Cost-based criterion for maintenance performance evaluation

The mathematical framework for assessing the evaluation of the
performance of the proposed maintenance policy with respect to the
long-run maintenance cost per unit of time is presented. Let be 𝐶(𝑡) the
total maintenance cost until time 𝑡 The total expected maintenance cost
acquired by integrating the successive actions operated on the system
is given using the following equation:

𝐶∞ = lim
𝑡↦∞

𝐶(𝑡)
𝑡

=
𝐸(𝐶(𝑇 ))
𝐸(𝑇 )

(15)

where, 𝑇 : a replacement period: between the beginning of the system
lifetime cycle and the corrective maintenance.

𝐸(𝑇 ): the average of the renewal cycle known as:

𝐸(𝑇 ) = ∫

∞

0
𝑅(𝑡)𝑑𝑡 (16)

and R(t) is the reliability of the system 𝑅(𝑡) = P(𝑋𝑡 < 𝐿). The Cost
expectation is derived as follows:

𝐸(𝐶(𝑡)) =
[𝑡∕𝛿]
∑

𝑖=0
𝐶𝑐P(𝑋𝛿𝑖 > 𝐿) + 𝐶𝑝P(𝑀 ≤ 𝑋𝛿𝑖 ≤ 𝐿) + 𝐶𝑖 + 𝐶𝑢 ∫

𝛿𝑖

𝛿(𝑖−1)
𝑓 (𝑢)𝑑𝑢

(17)

with 𝑓 design the probability of failure.
The numerical implementation leading to obtain the optimal values

of the decision parameters will be presented. For the better illustration
of the strategies, the approximated cost of the each part of the cen-
trifugal pump seal that cause the leakage rate and the cost of different
tasks were considered 14. For the same system, the maintenance costs
are considered respectively 𝑐𝑖 = 20, 𝑐𝑝 =20, 𝑐𝑐 =100 and 𝑐𝑢 =30.

The 17 presents the results of the calculation of the maintenance
cost. The first graph (a) present the results of the optimization of
the maintenance cost unit with respect to the imperfect maintenance
actions 𝑃%. The optimum value of 𝑃% of 8.3 provided the optimum
maintenance cost. Similarly, the second graph (b) presents an evalua-
tion of the maintenance cost to the different values of 𝛿. The optimum
cost was obtained for 𝛿 = 4.95. The graph (c) indicates that for 𝑀
=890, the optimal cost value was obtained. From the numerical results,
it can be concluded that the optimum results of the maintenance cost
were noticed for 𝑀 = 890, 𝑃% = 8.3 and 𝛿 = 4.95. If the alarm
14
threshold was settled late after 𝑀 =880, the maintenance actions will
be costly because of the late detection of the failure, which will cause an
important period of unavailability and an increase in the maintenance
cost.

The two proposed maintenance policies (𝑀 , 𝛿) and (𝑀 , 𝑃%) were
also evaluated. 18 resume the obtained results of the two policies. The
first graph (a) shows that the optimal cost is given with 𝐶∞(𝑀𝑜𝑝𝑡 =
1093, 𝑃%𝑜𝑝𝑡 = 5.3) = 318.45. The second graph (b) presents also the
optimal cost given by 𝐶∞(𝑀𝑜𝑝𝑡 = 1075, 𝛿𝑡 = 4.7) = 310.50. The two
maintenance policies were compared and it is noted that the second
policy offered a better optimized cost of maintenance.

6. Conclusion

In this study, the VGP is proposed to model the system degradation.
Initially, a brief literature review about the evolution of VGP, definition
and the properties are presented. The estimation of the unknown pa-
rameters of the degradation model is obtained using the two methods:
‘VG’ and the ‘ghyp’. The obtained results of the estimation show that
the ‘ghyp’ method gives the best results. A study of the distribution of
Failure Time (FHT) was also performed. The analytical study of the FHT
was complicated and due to that the simulation method was proposed
as an alternative. The usefulness of the proposed VG model and the
importance of integrating a non-linear behaviour into the degradation
model was demonstrated. The VGP proved its ability to model a non-
linear degradation and as any degradation model, it is important to
qualify the nature of prognostic. VG prognostic is studied and the
obtained prognostic is evaluated. Moreover, the impact of estimation
error on prognostics was also presented. Based on the sensitivity study
of the FHT to the error of estimation, one can presume that the VG
is proposing an efficient prognostic. The real data sets retrieved from
the centrifugal pump degradation were presented as a real study case
of the VG modelling. All the works introduced and presented with
simulated data were applied on the real data. Two maintenance policies
were proposed to optimize the expected total maintenance cost and
to evaluate the efficiency of the VGP. Numerical examples show that
the performance of the two proposed policies is very promising. In
the future, it is important to study the proposed mathematical model
in the presence of covariates. It can be relevant to evaluate also the
performance of the maintenance policy (𝑀𝑜𝑝𝑡, 𝑃%𝑜𝑝𝑡, 𝛿𝑡).
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Fig. 17. Optimum cost estimation with respect to : (a) 𝑃%, (b) 𝛿, (c) 𝑀 .
Fig. 18. Maintenance cost rate as a function of iterations numbers: (a) the policy (𝑀 , 𝑃%), (b) the policy (𝑀 , 𝛿).
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