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Abstract
This article reports a procedure to implement as well as to validate
non-reflecting boundary conditions applied for turbomachinery simulations,
using Navier–Stokes characteristic boundary conditions in a compressible lat-
tice Boltzmann solver. The implementation of both an inlet condition imposing
total pressure, total temperature, and flow angles, as well as an outlet condition
imposing a static pressure profile that allows the simulation to reach a simpli-
fied radial equilibrium, is described within the context of a lattice Boltzmann
approach. The treatment at the boundaries relies on the characteristic method-
ology to derive conditions which are non-reflecting in terms of acoustics and is
also compatible with turbulence injection at the inlet. These properties are eval-
uated on test cases of increasing complexity, ranging from a simple 2D periodic
domain to an S-duct stage with turbulence injection.

K E Y W O R D S

characteristic boundary conditions, lattice Boltzmann method, LODI, turbomachinery

1 INTRODUCTION

To design innovative engines for modern aircraft, the study of unsteady turbulent phenomena is required. However,
turbulence prediction reveals to be a major issue, especially considering the complexity of the geometry involved. Thus, it
remains a challenge to simulate the flow developing in modern aero-engines. Reynolds averaged Navier–Stokes (RANS)
approaches, which model all the turbulent motions within the flow, remain the most widespread family of methods
for turbomachinery simulations. However, these approaches often produce inaccurate results, and with the continuous
increase in computing power, large eddy simulation (LES), which resolves the large scale turbulent motions, has become
an increasingly appealing choice. However, the high computational cost of LES has limited its adoption in industrial CFD.

Considering these challenges, the lattice Boltzmann approach1-3 has emerged in the fluid dynamics community as a
viable method to solve the Navier–Stokes equations. The LBM has demonstrated its capability to handle complex geome-
tries by the use of Cartesian grids, thanks to immersed boundary conditions.4-7 Moreover, the low dissipation properties
demonstrated by the LBM allow it to capture the small acoustic pressure fluctuations.8,9 All these properties have attracted
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intensive research in aerodynamics,10-12 aero-acoustics,13 extension to weakly compressible thermal flows,14-16 compress-
ible flows,17-21 and turbulent applications.22-24 Finally, the algorithm of the method is well adapted to high-performance
computing thanks to an easy parallelization.25

However, specifying inlet and outlet boundary conditions for compressible flow simulations remains a major issue,
especially when wave reflections must be controlled.26-28 For Navier–Stokes methods, a successful approach is the use of
non-reflective boundary conditions based on a treatment of the characteristic waves of the local flow. The extension to the
LBM framework is not straightforward considering that the LBM describes the population of particles at the mesoscopic
level whereas the Navier–Stokes description applies at the macroscopic level.

Indeed, in practice, imposing an outlet boundary that is realistic and non-disturbing is a major issue in most cases.
For an outlet condition to be considered ideal, it should have a weak influence on the upstream flow, remain stable, and
minimize the reflection and dissipation of acoustic waves. These requirements become especially important when using
LES or DNS which belong to the category of high-fidelity simulations. The principle of such methods is to resolve all or
a part of the turbulence scales in highly turbulent and unsteady flows. Thus, the boundary should not create spurious
reflections or acoustic waves inside the domain that would deteriorate the solution. In the particular case of turboma-
chinery flows, strong inhomogeneities are found at the stage exit in the form of wake effects, unsteady flow bubbles or
pressure gradients. Moreover, the presence of blades and rotating parts create a flow deviation in the form of a swirling
motion of the mean flow. This swirling motion generates a positive radial pressure gradient that is in equilibrium with
the square of the tangential velocity. This so called radial equilibrium has to thus be satisfied by the static pressure pro-
file imposed at the outlet condition. For (U)RANS simulations, it is usual for turbomachinery simulations to impose a
static pressure profile that satisfies a simplified radial equilibrium. However, this methodology leads to a boundary which
is not appropriate for proper LES and DNS as it is fully reflecting. It will be demonstrated that the NSCBC method-
ology applied at the outlet remains fully compatible with the need to verify the radial equilibrium while also being
non-reflective.29

For the particular case of inlet boundary conditions in the turbomachinery field, the imposed values are usually

expressed in terms of total pressure Pt = Ps

(
1 + 𝛾−1

2
Ma2
) 𝛾

𝛾−1 and total temperature Tt = Ts

(
1 + 𝛾−1

2
Ma2
)

30 where Ps rep-
resents the static pressure, Ts the static temperature. Furthermore, the flow direction, determined by the angles 𝜙 and 𝛼
must also be specified (see Figure 4). Indeed, these quantities are commonly measured at different sections in an experi-
mental facility using Pitot tubes and thermocouples. Once the total quantities are adequately imposed at the inlet, it must
also be able to handle synthetic turbulence injection. Indeed, turbulence may have a major effect on the flow developing
in a turbomachine.31-36

Finally, some recent progress has been made on the adaptation of characteristic boundary conditions to the LBM
formalism. Their use has been extended to high Reynolds number flows using a regularized approach.37 Moreover, an
open boundary condition have been developed38 using the LODI formalism coupled with a hybrid recursive regularized
lattice Boltzmann method suited for compressible flow.

The goal of this article is to detail and validate an NSCBC methodology in a compressible LBM framework that is
applicable to turbomachinery flows. This consists of the imposition of total pressure, total temperature, and flow direc-
tion at the inlet, with the possibility of adding synthetic turbulence injection, together with the imposition of a pressure
profile satisfying a simplified radial equilibrium at the outlet. This article is structured as follows: Section 2 recalls the
main principles underlying the compressible LBM. This section is then supplemented by Section 2.5 that focuses on the
treatment of the boundary with the LBM. Then, Section 3 describes the NSCBC formulation for this particular inlet con-
dition while Sections 4 and 5 assess the NSCBC methodology for the inlet and outlet respectively on several academical
test-cases. Finally, Section 6 shows the practical use of these boundary conditions on an industrial configuration that
consists of studying an S-duct stage.

2 ADAPTATION IN THE LATTICE BOLTZMANN METHOD

2.1 Short lattice Boltzmann method introduction: Classical BGK collision operator

The lattice Boltzmann method aims at solving the Boltzmann equation through space, time, and particle velocity dis-
cretization to describe the evolution of the discrete particle distribution functions fi(x, t). To do so, a Cartesian grid is used
to discretize space and time while the particle velocities are discretized on what is usually called a lattice. The lattice is
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530 GIANOLI et al.

F I G U R E 1 Scheme of the velocity directions for the D3Q19 lattice

described by its number of dimensions, denoted d, and the number q of discrete velocities ci𝛼 . The usual notation used to
described the lattice is thus DdQq.

To solve the flow problem, it is necessary to obtain the density distribution function of particles with velocity ci𝛼 located
at (x𝛼, t) at the next time step t + Δt. The collision step is expressed using Equation (1). The collision operator Ωi(x𝛼, t) is
approximated by the single-relaxation time Bhatnagar–Gross–Krook (Equation 2) model.1,39

fi(x𝛼 + ci𝛼Δt, t + Δt) − fi(x𝛼, t) = Ωi(x𝛼, t) + Ψi, (1)

Ωi(x𝛼, t)(BGK) = −1
𝜏

(
fi(x𝛼, t) − f (eq)

i (x𝛼, t)
)
, (2)

where 𝜏 represents the relaxation time toward the equilibrium distribution function f (eq)
i (x𝛼, t) andΨi is a force term. This

equilibrium distribution function is usually approximated using a development in the Hermite polynomials basis to an
order N,(n)

i .

f (eq)
i (x𝛼, t) = 𝜔i

N∑
n=0

1
c2n

s !
an

0 ∶ 
(n)
i , (3)

with cs the lattice speed of sound and 𝜔i the Gaussian weights, which are characteristics of the set of velocities ci𝛼 used
to form the lattice. an

0 are equilibrium coefficients recovered from a projection of the Maxwell–Boltzmann distribution
function onto the Hermite polynomials base(n)

i expressed as


(n)
i =

(−c2
s )n

𝜔(ci)
∇n

c𝜔(ci). (4)

In this article, the D3Q19 lattice (see Figure 1) is used, which leads to the following discrete velocities and weights:

[ci𝛼,wi] =
⎧
⎪⎨⎪⎩

[(0, 0, 0), 1∕3], i = 0,
[(±1, 0, 0), (0,±1, 0), (0, 0,±1), 1∕18], i = 1 − 6,
[(±1,±1, 0), (±1, 0,±1), (0,±1,±1), 1∕36], i = 7 − 18.

(5)

The macroscopic density 𝜌, and momentum 𝜌u𝛼 , with the general forcing term 𝜓i are then deduced using:

𝜌 =
∑

i
fi, (6)

𝜌u𝛼 =
∑

i
ci𝛼fi +

Δt
2
∑

i
ci𝛼𝜓i. (7)
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GIANOLI et al. 531

Finally, a Chapman–Enskog expansion derives the link between the relaxation time 𝜏, and the dimensionless
kinematic viscosity 𝜈. Using a BGK collision operator, this gives

𝜈 = c2
s

(
𝜏 − Δt

2

)
. (8)

However, it has been shown in the literature40 that this choice of collision model lacks stability and is limited to the
simulation of incompressible, athermal flows.2,41,42 To overcome these issues, several methods have been investigated. For
instance, the use of multiple relaxation times (MRT) model43 allows to relax each moment of the distribution function at
a specific relaxation rate, increasing the stability. Another method consists of building more advanced collision models,
called regularized collision models, that cancel high-order contributions. This category of models has been shown to filter
some non-hydrodynamic modes out of a computation and that they can be interpreted within the framework of entropic
LBM, thus leading to thermal and compressible simulations.38,39,44-51

2.2 Hybrid recursive regularized collision model

The lattice Boltzmann solver described in this section refers to the one used in all the presented simulations. The solver
corresponds to a hybrid recursive regularized model47 onto which the latest improvements described in the literature52,53

are applied. The main modifications are the addition of a correction in all directions, leading to a more symmetric behav-
ior, the reconstruction of the non-equilibrium distribution functions is encapsulated in lattice space and finally, the hybrid
procedure does not longer depend on a tuning parameter.

The algorithm for the compressible lattice Boltzmann method with hybrid recursive regularization remains under the
common form of collide and stream algorithm. The lattice Boltzmann BGK equation with hybrid recursive regularization
is expressed49 using Equation (9)

fi(x𝛼 + ci𝛼Δt, t + Δt) = f eq
i (x𝛼, t) +

(
1 − 1

𝜏

)
(f neq

i ) + Δt
2
𝜓i(x𝛼, t), (9)

where 𝜏 is the relaxation time and(f neq
i ) is the hybrid recursive regularization on the off-equilibrium distribution func-

tion. This term is used to filter non-physical modes and is defined in the next section by Equation (12). 𝜓(x𝛼, t) is a forcing
term meant to correct errors that are introduced by the D3Q19 lattice as well as other errors introduced by f eq

i as detailed
in the next section. The off-equilibrium distribution function is defined as:

f neq
i = fi(x𝛼, t) − f eq

i (x𝛼, t) +
Δt
2
𝜓i(x𝛼, t). (10)

2.3 Improved density-based approach and isotropic equilibrium

The goal of Equation (9) is to retrieve the physics of the fully compressible Navier–Stokes equations for a gas respecting
the ideal gas law. To do so, an expression of f eq

i and 𝜓i must be set. Here, the formulation53 is chosen with a modification
on the second order terms54 to obtain a better isotropy. The Gauss–Hermite polynomials used read:


(2)
i𝛼𝛽 = ci𝛼ci𝛽 − c2

s 𝛿𝛼𝛽 ,


(3)
i𝛼𝛽𝛾 = ci𝛼ci𝛽ci𝛾 − c2

s (ci𝛼𝛿𝛽𝛾 + ci𝛽𝛿𝛾𝛼 + ci𝛾𝛿𝛼𝛽). (11)

Having defined theses polynomials, the hybrid recursive regularization on the off-equilibrium distribution function
reads:

(f neq
i ) = 𝜔i

⎡
⎢⎢⎣


(2)
i𝛼𝛽

2c4
s

(1,HRR)
𝛼𝛽

+

(3)
i𝛼𝛽𝛾

6c6
s

(1,HRR)
𝛼𝛽𝛾

⎤
⎥⎥⎦
, (12)
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532 GIANOLI et al.

with(1)
𝛼𝛽
=
∑

i ci𝛼ci𝛽 f neq
i the second-order off-equilibrium moment, and the third-order moment is recursively computed

using (1)
𝛼𝛽𝛾

= u𝛼(1)
𝛽𝛾
+ u𝛽(1)

𝛾𝛼 + u𝛾(1)
𝛼𝛽

. The equilibrium function is expressed depending on the zeroth to third order
moments:

f eq
i = 𝜔i𝜌(f eq,(0)

i + f eq,(1)
i + f eq,(2)

i + f eq,(3)
i ). (13)

The zeroth order moment contains the thermal information and ensures the coupling of the LBM solver with the ideal
gas law:

f eq,0
i = 1 + di, where di =

{
𝜔0−1
𝜔0
(𝜃 − 1), ci = (0, 0, 0),

𝜃 − 1, else,
(14)

where 𝜃 = rT∕c2
s . The first order moment is identical to classic LBM approaches with

f eq,(1)
i = ci𝛼

c2
s

u𝛼. (15)

Then, the second order moment is modified to account for isotropic improvements:54

f eq,2
i =

⎧
⎪⎨⎪⎩

−u𝛼u𝛼, ci = (0, 0, 0),
−3u𝛼u𝛼 + 6(ci𝛼u𝛼)2, ci ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},
− 3

2
c2

i𝛼u2
𝛼 +

9
2
(ci𝛼u𝛼)2, else.

(16)

Finally, the third order moment is:

f eq,3
i = 1

6c2
s

[
3
(
ℋ (3)

ixxy +ℋ
(3)
iyzz

) (
uxuxuy + uyuzuz

)

+
(
ℋ (3)

ixxy −ℋ
(3)
iyzz

) (
uxuxuy − uyuzuz

)

+ 3
(
ℋ (3)

ixzz +ℋ
(3)
ixyy

) (
uxuzuz + uxuyuy

)

+
(
ℋ (3)

ixzz −ℋ
(3)
ixyy

) (
uxuzuz − uxuyuy

)

+ 3
(
ℋ (3)

iyyz +ℋ
(3)
ixxz

) (
uyuyuz + uxuxuz

)

+
(
ℋ (3)

iyyz −ℋ
(3)
ixxz

) (
uyuyuz − uxuxuz

)]
. (17)

From this formulation of f eq
i , as well as the limited number of discrete velocities with the D3Q19 lattice, this leads to

errors in the viscous stress tensor such as the (Ma3) error. To correct these errors, the forcing terms 𝜓i is written as:

𝜓i = −𝜔i

(2)
i𝛼𝛽

2c4
s
Ψ𝛼𝛽 , (18)

with Ψ𝛼𝛽 defined as:

Ψ𝛼𝛽 = c2
s u𝛼

𝜕(𝜌(1 − 𝜃))
𝜕x𝛽

+ c2
s u𝛽

𝜕(𝜌(1 − 𝜃))
𝜕x𝛼

+ 2
3
𝛿𝛼𝛽𝜌c2

s
𝜕u𝛾
𝜕x𝛾

− 𝛿𝛼𝛽c2
s
𝜕𝜌(1 − 𝜃)

𝜕t
+
𝜕Err𝛼𝛽𝛾
𝜕x𝛾

. (19)

The terms in Equation (19) are discretized using a standard second-order centered scheme. A Chapman–Enskog
expansion55 shows that Equation (9) with the equilibrium distribution (Equation 15) and the correction terms
(Equation 19) allows to retrieve the compressible Navier–Stokes equations.
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GIANOLI et al. 533

F I G U R E 2 Issue at a boundary node illustrated on a D2Q9 lattice. The unknown populations are represented by the red dashed
arrows. [Colour figure can be viewed at wileyonlinelibrary.com]

2.4 Energy conservation using entropy equation

For the hybrid compressible lattice Boltzmann method discussed above, the strategy of hybridization50 consists of using
a non-conservative form of the entropy conservation equation with the corresponding expression:

𝜕s
𝜕t
+ u𝛼

𝜕s
𝜕x𝛼

= 1
𝜌T

𝜕s
𝜕x𝛼

(
𝜆
𝜕T
𝜕x𝛼

)
+ 1
𝜌T
Π𝛼𝛽

𝜕u𝛼
𝜕x𝛽

, (20)

where s = cv ln( P
𝜌𝛾
) is the entropy, 𝜆 is the heat conductivity, andΠ𝛼𝛽 is the viscous stress tensor. The temporal integration

is achieved using an explicit Euler scheme. The convective flux is then obtained using third-order MUSCL scheme56 and
the van Albada limiter,57 while the diffusion term and the viscous dissipation are approached using a second-order central
difference scheme.

2.5 Adaptation with the regularized boundary condition

From the previous section, it should be noted that a problem appears at the boundary after the streaming step.58,59

Indeed, on a boundary node, some populations are unknown before the collision since they are coming from outside the
computational domain as illustrated in Figure 2.

A finite difference-based reconstruction is applied along with the hybrid regularization procedure37,38,49,50,60-62 to
compute the distribution functions at the boundary. The methodology is the following:

• The macroscopic values of 𝜌, u, P on the boundary nodes are prescribed based on an interpolation/extrapolation scheme
through a cut-cell approach.38

• The entropy s and the temperature Ts can then be estimated thanks to the thermodynamic closure and equation of
state.

• Then, using the velocity gradients, the shear stress tensor and correction term 𝜓 are computed at the boundary node
with a first order biased finite-difference scheme.

• Then the distribution functions are computed38 such as fi = f eq
i + f neq

i . The off-equilibrium distribution function f neq
i

is recursively reconstructed from the macroscopic variables and their gradients.

Thus f eq
i , f neq

i ,𝜓 are fully defined at the boundary node, and the recursive collision operation followed by the streaming
step toward neighboring nodes in the fluid domain can be performed.
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534 GIANOLI et al.

3 THEORY OF THE NAVIER–STOKES CHARACTERISTIC BOUNDARY
CONDITIONS

Starting from the Navier–Stokes equations, written using Einstein notation, for a compressible viscous flow, one has:

𝜕𝜌

𝜕t
+ 𝜕mi

𝜕xi
= 0, (21)

𝜕mi

𝜕t
+
𝜕miuj

𝜕xj
+ 𝜕Ps

𝜕xi
=
𝜕𝜏ij

𝜕xj
, (22)

𝜕𝜌E
𝜕t

+ 𝜕(𝜌E + Ps)ui

𝜕xi
=
𝜕ui𝜏ij

𝜕xi
−
𝜕qi

𝜕xi
, (23)

with the corresponding notations

𝜌E = 1
2
𝜌ukuk +

Ps

𝛾 − 1
, (24)

mi = 𝜌ui, (25)

where 𝜌 is the local fluid density, ui the velocity components, Ps the static pressure, Ts the static temperature, E the total
energy, and 𝜏ij the stress tensor defined as:

𝜏ij = 𝜇
(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi
− 2

3
𝛿ij
𝜕uk

𝜕xk

)
. (26)

𝛿ij is the Kronecker symbol and 𝜇 the dynamic viscosity. qi is the heat flux along the xi direction and is defined as qi =
−𝜆𝜕Ts

𝜕xi
, where 𝜆 is the thermal conductivity. The system is finally closed using the ideal gas law:

Ps = 𝜌rTs, (27)

where r is the specific constant of the mixture r = R
W

, with W the mean molecular weight of the mixture and R = 8.3143
J/mol K is the universal gas constant.

Using characteristic analysis,26,63,64 it is possible to transform the vector of conservatives variables U =
(𝜌, 𝜌u, 𝜌v, 𝜌w, 𝜌E)T or the vector of primitive variables expressed in the reference frame n⃗, t⃗1, t⃗2 written V =
(𝜌,Ps,un,ut1 ,ut2)

T into characteristic variables. To do so, the Navier–Stokes equations are written under matrix form:

𝜕U
𝜕t

+ AU
𝜕U
𝜕x

+ BU
𝜕U
𝜕y

+ CU
𝜕U
𝜕z

+ S = 0, (28)

where AU, BU, CU are the Jacobian matrices of the respective fluxes in the x, y, z directions, and S is the diffusion term.
In the same way, V verifies:

𝜕V
𝜕t
+N𝜕V

𝜕n
+ T1

𝜕V
𝜕t1

+ T2
𝜕V
𝜕t2

+ S = 0, (29)

where N is the normal Jacobian, T1, T2 are the two tangential Jacobian along t⃗1 and t⃗2.
The fully developed primitives equations read:

𝜕𝜌

𝜕t
+ un

𝜕𝜌

𝜕n
+ ut1

𝜕𝜌

𝜕t1
+ ut2

𝜕𝜌

𝜕t2
+ 𝜌
(
𝜕un

𝜕n
+
𝜕ut1

𝜕t1
+
𝜕ut2

𝜕t2

)
= 0, (30)

𝜕Ps

𝜕t
+ un

𝜕Ps

𝜕n
+ ut1

𝜕Ps

𝜕t1
+ ut2

𝜕Ps

𝜕t2
+ 𝛾Ps

(
𝜕un

𝜕n
+
𝜕ut1

𝜕t1
+
𝜕ut2

𝜕t2

)
= 0, (31)

𝜕un

𝜕t
+ un

𝜕un

𝜕n
+ ut1

𝜕un

𝜕t1
+ ut2

𝜕un

𝜕t2
+ 1
𝜌

𝜕Ps

𝜕n
= 0, (32)
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GIANOLI et al. 535

𝜕ut1

𝜕t
+ un

𝜕ut1

𝜕n
+ ut1

𝜕ut1

𝜕t1
+ ut2

𝜕ut1

𝜕t2
+ 1
𝜌

𝜕Ps

𝜕t1
= 0, (33)

𝜕ut2

𝜕t
+ un

𝜕ut2

𝜕n
+ ut1

𝜕ut2

𝜕t1
+ ut2

𝜕ut2

𝜕t2
+ 1
𝜌

𝜕Ps

𝜕t2
= 0. (34)

Considering that the normal at the surface for the boundary is n⃗, the equations are written as:

𝜕V
𝜕t
+N𝜕V

𝜕n
+ C = 0. (35)

With N expressed in Equation (36) and C is the vector containing all remaining terms which do not involve elements
in the normal direction (terms of 𝜕V∕𝜕n).

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

un 0 𝜌 0 0
0 un 𝛾Ps 0 0
0 1∕𝜌 un 0 0
0 0 0 un 0
0 0 0 0 un

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

Considering that the speed of sound is c2 = 𝛾Ps
𝜌

, computing the eigenvalues 𝜆i of N yields the diagonal matrix D with the
corresponding eigenvalues: 𝜆1 = un − c, 𝜆2 = 𝜆3 = 𝜆4 = un, and 𝜆5 = un + c.

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

un − c 0 0 0 0
0 un 0 0 0
0 0 un 0 0
0 0 0 un 0
0 0 0 0 un + c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

The corresponding eigenvectors are:

lT
1 = (0, 1,−𝜌c, 0, 0), (38)

lT
2 = (c

2
,−1, 0, 0, 0), (39)

lT
3 = (0, 0, 0, 1, 0), (40)

lT
4 = (0, 0, 0, 0, 1), (41)

lT
5 = (0, 1, 𝜌c, 0, 0). (42)

By inverting these definitions it is possible to write the normal derivative terms (𝜕V∕𝜕n):

𝜕𝜌

𝜕n
= 1

c2

(
s

un
+ 1

2

[
+

un + c
+ −

un − c

])
, (43)

𝜕Ps

𝜕n
= 1

2

(
+

un + c
+ −

un − c

)
, (44)

𝜕un

𝜕n
= 1

2𝜌c

(
+

un + c
− −

un − c

)
, (45)

𝜕ut1

𝜕n
=
t1

un
, (46)
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536 GIANOLI et al.

F I G U R E 3 Representation of the i waves leaving or entering the computational domain

𝜕ut2

𝜕n
=
t2

un
. (47)

Then we substitute these expressions of 𝜕V∕𝜕n into the terms of N𝜕V∕𝜕n (Equations 30–34) leading to the following
primitive equations:

𝜕𝜌

𝜕t
+ 1

c2

(
s +

1
2
[+ + −]

)
+ ut1

𝜕𝜌

𝜕t1
+ ut2

𝜕𝜌

𝜕t2
+ 𝜌
(
𝜕ut1

𝜕t1
+
𝜕ut2

𝜕t2

)
= 0, (48)

𝜕Ps

𝜕t
+ 1

2
(+ + −) + ut1

𝜕Ps

𝜕t1
+ ut2

𝜕Ps

𝜕t2
+ 𝛾Ps

(
𝜕ut1

𝜕t1
+
𝜕ut2

𝜕t2

)
= 0, (49)

𝜕un

𝜕t
+ 1

2𝜌c
(+ − −) + ut1

𝜕un

𝜕t1
+ ut2

𝜕un

𝜕t2
− gn = 0, (50)

𝜕ut1

𝜕t
+ t1 + ut1

𝜕ut1

𝜕t1
+ ut2

𝜕ut1

𝜕t2
+ 1
𝜌

𝜕Ps

𝜕t1
− gt1 = 0, (51)

𝜕ut2

𝜕t
+ t2 + ut1

𝜕ut2

𝜕t1
+ ut2

𝜕ut2

𝜕t2
+ 1
𝜌

𝜕Ps

𝜕t2
− gt2 = 0. (52)

The wave amplitude associated with each characteristic velocity 𝜆i is notedi = 𝜆i
𝜕W
𝜕n

, with i the index of the correspond-
ing wave and W is the vector of characteristic variables. The characteristic analysis applied to the Navier–Stokes equations
finally leads to the following expression for the characteristic waves i associated to the characteristic velocities, written
in the local reference frame:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+

−

t1

t2

S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(un + c)
(
𝜕un
𝜕n
+ 1

𝜌c
𝜕Ps
𝜕n

)

(un − c)
(
− 𝜕un

𝜕n
+ 1

𝜌c
𝜕Ps
𝜕n

)

un
𝜕ut1
𝜕n

un
𝜕ut2
𝜕n

un

(
𝜕𝜌

𝜕n
− 1

c2
𝜕Ps
𝜕n

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (53)

As illustrated in Figure 3, for an inlet, + and − are, respectively, the inward and outward acoustic waves, whereas t1

and t2 are transverse shear waves, and s is the entropic wave.
The NSCBC strategy used in this article is based on locally one-dimensional inviscid (LODI) flow on the boundary

to specify the amplitude of ingoing waves. Under the LODI assumption, the characteristic system for the Navier–Stokes
equations becomes:
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GIANOLI et al. 537

𝜕𝜌

𝜕t
+
(
S +

𝜌

2c
(+ + −)

)
= 0, (54)

𝜕Ps

𝜕t
+ 𝜌c

2
(+ + −) = 0, (55)

𝜕Ts

𝜕t
+ (𝛾 − 1)Ts

2c
(+ + −) = 0, (56)

𝜕s
𝜕t
− c2

s

(𝛾 − 1)𝜌T
= 0, (57)

𝜕un

𝜕t
+ 1

2
(+ − −) = 0, (58)

𝜕ut1

𝜕t
+ t1 = 0, (59)

𝜕ut2

𝜕t
+ t2 = 0. (60)

It is necessary to specify the ingoing wave amplitudes to advance the solution in time at the boundary. It should also be
noted that only one of the two equations (Equations 55 or 56) is needed thanks to the ideal gas law.

Some algebra is required to rewrite the LODI expressions using the Pt and Tt variables. This approach has been first
presented by Odier et al.30 and will be recalled here. First, they need to be expressed as functions of the local Mach
number written Ma. Thus, to compute the time derivative of Pt and Tt, the time derivative of the Mach number is involved.
However, it is possible to write the Mach number as a function of the kinetic energy ec, the adiabatic coefficient 𝛾 , the
specific gas constant r and the static temperature Ts according to Equation (61):

Ma2 =
u2

n + u2
t1
+ u2

t2

𝛾rTs
= 2ec

𝛾rTs
. (61)

However, the kinetic energy ec is defined as:

ec =
u2

n + u2
t1
+ u2

t2

2
. (62)

The kinetic energy temporal derivative is thus:

𝜕ec

𝜕t
= un

𝜕un

𝜕t
+ ut1

𝜕ut1

𝜕t
+ ut2

𝜕ut2

𝜕t
. (63)

Using Equations (58)–(60), the temporal derivative of the kinetic energy can be written as:

𝜕ec

𝜕t
= −un

2
(+ − −) + ut1t1 + ut2t2 . (64)

The temporal derivative of the Mach number is expressed using Equation (64):

𝜕Ma2

𝜕t
= 2

c2

(
+

(
(𝛾 − 1)ec

2c
− un

2

)
+ −

(
(𝛾 − 1)ec

2c
+ un

2

)
. − ut1t1 − ut2t2 −

ec

2
s

)
. (65)

Moreover, using the definition of the total pressure:

Pt = Ps

(
1 + (𝛾 − 1)

2
Ma2
) 𝛾

(𝛾−1)

. (66)

The temporal derivative of the total pressure is:

𝜕Pt

𝜕t
= 𝜕Ps

𝜕t

(
1 + (𝛾 − 1)

2
Ma2
) 𝛾

(𝛾−1)

+ Ps𝛾

2
.
𝜕Ma2

𝜕t

(
1 + (𝛾 − 1)

2
Ma2
) 𝛾

(𝛾−1)
−1

. (67)
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538 GIANOLI et al.

Using Equation (65) in Equation (67), the total pressure temporal derivative becomes:

𝜕Pt

𝜕t
= +

(
−𝜌cPt

2Ps
+ Pt

rTt

(
(𝛾 − 1)ec

2c
− un

2

))
+ −

(
−𝜌cPt

2Ps
+ Pt

rTt

(
(𝛾 − 1)ec

2c
+ un

2

))

− Pt

rTt

(
ut1t1 + ut2t2 +

ec

𝜌
s

)
. (68)

With the same method, starting from the definition of the total temperature:

Tt = Ts

(
1 + (𝛾 − 1)

2
Ma2
)
. (69)

The temporal derivative of the total temperature is:

𝜕Tt

𝜕t
= 𝜕Ts

𝜕t
Tt

Ts
+ Ts

(𝛾 − 1)
2

𝜕Ma2

𝜕t
. (70)

Then using Equations (56) and (65):

𝜕Tt

𝜕t
= +

(
−(𝛾 − 1)Tt

2c
+ 1

Cp

(
(𝛾 − 1)ec

2c
− un

2

))
+ −

(
−(𝛾 − 1)Tt

2c
+ 1

Cp

(
(𝛾 − 1)ec

2c
+ un

2

))

− 1
Cp

(
ut1t1 + ut2t2 +

ec

𝜌
s

)
. (71)

With Cp being the specific heat ratio:

Cp = 𝛾r
𝛾 − 1

. (72)

The flow direction is fixed by choosing a flow angle 𝜙 and 𝛼 (see Figure 4). Then, sin(𝜙) and sin(𝛼) can be linked to the
local flow velocity vector with:

sin(𝜙) =
ut1

‖‖‖
−→U‖‖‖

, (73)

sin(𝛼) =
ut2

‖‖‖
−→U‖‖‖

, (74)

with ‖‖‖
−→U‖‖‖ =

√
u2

n + u2
t1
+ u2

t2
. (75)

The last step consists in determining the wave expressions of+ ands by solving the system constituted by Equations (68)
and (71):

+

(
−𝜌cPt

2Ps
+ Pt

rTt

(
(𝛾 − 1)ec

2c
− un

2

))
− ecPt

𝜌rTt
s =

𝜕Pt

𝜕t
− −

(
−𝜌cPt

2Ps
+ Pt

rTt

(
(𝛾 − 1)ec

2c
+ un

2

))

+ Pt

rTt

(
ut1t1 + ut2t2

)
, (76)

+

(
−(𝛾 − 1)Tt

2c
+ 1

Cp

(
(𝛾 − 1)ec

2c
− un

2

))
− ec

𝜌Cp
s =

𝜕Tt

𝜕t
− −

(
−(𝛾 − 1)Tt

2c
+ 1

Cp

(
(𝛾 − 1)ec

2c
+ un

2

))

+ 1
Cp

(
ut1t1 + ut2t2

)
, (77)
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GIANOLI et al. 539

(A) (B)

F I G U R E 4 (A) Rotation from Cartesian basis to normal patch. (B) Flow direction angles 𝜙, 𝛼 associated to the velocity vector −→U
[Colour figure can be viewed at wileyonlinelibrary.com]

⎧
⎪⎨⎪⎩

+F4 − s.F1 =
𝜕Pt

𝜕t
+ Pt

rTt
.F3 − −.F6, (78)

+F4 − s.F1 =
𝜕Pt

𝜕t
+ Pt

rTt
.F3 − −.F6. (79)

Combining Equation (78) ×F2 and adding Equation (79) ×F1 gives:

+ (F4F2 + F5F1) = F2
𝜕Pt

𝜕t
+ F1

𝜕Tt

𝜕t
+ Pt

rTt
F3F2 +

F3F1

Cp
− −(F6F2 + F1F7). (80)

Finally, + can be extracted from Equation (80) and gives Equation (84). Once + has been expressed, the unknown S
wave is deduced from Equation (79) giving Equation (85).

Solving this system allows to write the following expressions for the wave amplitudes:

− = (un − c)
(
−𝜕un

𝜕n
+ 1
𝜌c
𝜕Ps

𝜕n

)
, (81)

t1 = −
𝜕ut1

𝜕t
, (82)

t2 = −
𝜕ut2

𝜕t
, (83)

+ =
F1

𝜕Tt
𝜕t
+ F2

𝜕Pt
𝜕t
+ F1F3

Pt
rTt
− (F2F6 + F1F7)−

F4F2 + F5F1
, (84)

S =

𝜕Tt
𝜕t
+ F3

1
Cp
− F5+ − F7−

F2
. (85)

With the following useful relations:

ec =
u2

n + u2
t1
+ u2

t2

2
, (86)
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540 GIANOLI et al.

F1 = ecPt

𝜌rTt
, (87)

F2 = Tt

𝜌
− ec

𝜌Cp
, (88)

F3 = t1 ut1 + t2 ut2 , (89)

F4 = −𝜌cPt

2Ps
+ Pt

rTt

(
(𝛾 − 1)ec

2c
− un

2

)
, (90)

F5 = −(𝛾 − 1)Tt

2c
+ 1

Cp

(
(𝛾 − 1)ec

2c
− un

2

)
, (91)

F6 = −𝜌cPt

2Ps
+ Pt

rTt

(
(𝛾 − 1)ec

2c
+ un

2

)
, (92)

F7 = −(𝛾 − 1)Tt

2c
+ 1

Cp

(
(𝛾 − 1)ec

2c
+ un

2

)
. (93)

+ is dependent of − which implies reflection for acoustics. To ensure non-reflectivity − is set to 0 which simplifies
Equations (84) and (85). The wave amplitudes are finally written:

− = (un − c)
(
−𝜕un

𝜕n
+ 1
𝜌c
𝜕Ps

𝜕n

)
, (94)

t1 = −
𝜕ut1

𝜕t
, (95)

t2 = −
𝜕ut2

𝜕t
, (96)

+ =
F1

𝜕Tt
𝜕t
+ F2

𝜕Pt
𝜕t
+ F1F3

Pt
rTt

F4F2 + F5F1
, (97)

S =

𝜕Tt
𝜕t
+ F3

1
Cp
− F5+

F2
. (98)

To avoid a drift between the computed and the target value, a linear relaxation method65 is used as detailed below:

𝜕X
𝜕t

dt = −𝜎X (Xpredicted − Xtarget), (99)

where𝜎X is an user-chosen relaxation coefficient (same for every variable), Xpredicted is the value predicted by the numerical
scheme and Xtarget is the value imposed at the boundary. These evaluations are used in Equations (82–(85) with X being
sin(𝜙), sin(𝛼), Pt, Tt. If 𝜎X is different from 0 the condition is partially non reflective. The consequences of such a relaxation
method66 will be studied later in this article.

4 VALIDATION OF THE NSCBC INLET

4.1 Convergence toward the mean values

The goal of this first simplified 2D test-case is to validate the implementation of the inlet boundary condition. This test
case is built similarly to a previous study performed with the compressible LES solver AVBP30 to be able to compare the
results. It is built as a square of dimension [Lx × Ly] = [100 mm × 100 mm] discretized with [nx × ny] = [128 × 128] cells
(see Figure 5). The minimal mesh size chosen imposes a time stepΔt = 1.33 × 10−6 s. The inlet condition is set to inject air
with a total pressure Pt = 9.8803 × 104 Pa, a total temperature Tt = 281 K and a normal flow direction (𝛼 = 𝜙 = 0◦). The
kinematic viscosity is set to 1.397 × 10−5 m2 s−1 corresponding to air at this temperature. The outlet condition is imposed
as an outflow boundary with a static pressure Ps = 7.1 × 104 Pa. On the other boundaries, periodic conditions are applied.
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GIANOLI et al. 541

F I G U R E 5 Scheme of the 2D square box test case [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Convergence of the macroscopic values toward the imposed value with the Pt − Tt inlet [Colour figure can be viewed at
wileyonlinelibrary.com]

Considering the chosen physical values and the periodicity, the Mach number must reach the expected value of (with
𝛾 = 1.4):

Ma =

√√√√ 2
𝛾 − 1

[(
Pt

Ps

) 𝛾−1
𝛾

− 1

]
= 0.7036. (100)

The initial solution corresponds to a static pressure field and a static temperature field such that Ps = Pt and Ts = Tt.
As the fluid is considered a perfect gas, the density 𝜌 is set such as 𝜌 = Pt

rTt
. The initial velocity is set to ux = 10 m s−1.

The initialization is deliberately chosen far from the converged solution to validate the capability to reach the target. All
relaxation coefficients are equal in the following. To study the temporal evolution of Pt and Tt, a probe is located at the
inlet boundary and the results are presented in Figure 6.
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542 GIANOLI et al.

F I G U R E 7 Convergence of the flow direction [Colour figure can be viewed at wileyonlinelibrary.com]

From the presented results, it is seen that the total quantities converge toward the imposed value for 𝜎 ≥ 100. If the
relaxation parameter chosen is too low, the simulation is not able to recover the desired solution. Moreover, the higher
the relaxation parameter, the faster the convergence. Because of the periodic configuration, no loss occurs and the flow
can be considered isentropic. This implies that the static pressure in the domain must be equal to the prescribed outlet
static pressure.

4.2 Flow direction validation

In the second test case, a flow direction is added by introducing an angle 𝜙 = 15◦ to the flow established in the previous
test case. It is then possible to follow the convergence of the flow angle to the desired value depending on the value of the
relaxation coefficient as illustrated in Figure 7.

Once again, it can be seen that a minimum value of the relaxation coefficient is needed to reach the target value and
that a higher value of 𝜎 allows a faster convergence.

4.3 Imposition of several Mach numbers

This section aims at validating the approach for a given range of inlet Mach numbers typically encountered in turboma-
chinery simulations.

Figure 8 shows that it is possible to go through all the desired Mach values inferior to 1. If the set-up results in a
supersonic case, the Mach number converges and stays at 1. Indeed, for the supersonic case, the five waves are entering
the domain, and the NSCBC approach specifying one outgoing and four incoming waves is no longer valid. For all Mach
numbers, the relaxation coefficient used for the computation was 𝜎 = 104.

4.4 Evaluation of the acoustic properties

The goal of this section is to evaluate the acoustic reflectivity of the proposed inlet boundary, for several values of the
relaxation coefficient 𝜎. The set up is the following: a left-going acoustic wave with a Gaussian shape is super-imposed to
the flow established in the 2D-square box test case (Figure 9). The perturbation is initially centered at x0 = x

Lx
= 0.75 and

the perturbation is defined as:

p′ = −𝜌cA exp−
(x−x0)2

Γ2 , (101)

with the perturbation amplitude A = 0.001 and Γ = 0.01.
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GIANOLI et al. 543

F I G U R E 8 Convergence toward all the specified Mach numbers [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Scheme of the 2D-square box with the added acoustic wave [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 10 illustrates pressure and velocity fluctuation evolution as the acoustic wave crosses the inlet boundary for
several values of 𝜎.

It can be seen that for a higher value of the relaxation coefficient, the intensity of the fluctuations on the velocity and
pressure increases.

The reflection coefficient R is then evaluated from the pressure, velocity and density signals recorded at the inlet probe
and decomposed into mean and fluctuating components such as:

p(t) = p̃ + p′(t), (102)

u(t) = ũ + u′(t), (103)

𝜌(t) = 𝜌̃ + 𝜌′(t). (104)

From these definitions, the inward and backward acoustic waves w+ and w− are computed using:

{ w+ = p′ + 𝜌cu′, (105)
w− = p′ − 𝜌cu′. (106)

Figure 11 shows the reflection coefficient R as well as the reconstructed waves w+ at the inlet for several 𝜎.
It illustrates that the relaxation coefficient is linked to the intensity of the reflection. Moreover, concerning the wave

amplitude evolution, w− should be present as it represents the Gaussian left going acoustic wave, but any value of w+ is
a sign of reflection, whose amplitude rises proportionally to 𝜎.
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544 GIANOLI et al.

F I G U R E 10 Pressure and velocity fluctuations at the inlet for 𝜎 = 0 (top) and 𝜎 = 105 (bottom) [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 11 Plot of the reflection coefficient and acoustic waves [Colour figure can be viewed at wileyonlinelibrary.com]

4.5 Synthetic turbulence injection

The three unsteady velocity components (u′n,u′t1,u
′
t2) at the inlet are specified using a Kraichnan’s approach.67 Following

the characteristic boundary condition proposed by Guézennec and Poinsot,64 these fluctuations are added to the inlet
acoustic wave + and the two transverse shear waves t1,t2 derived in Section 3 such that:

+,turb = + +
𝜕u′n
𝜕t
, (107)

t1,turb = t1 +
𝜕u′t1

𝜕t
, (108)
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GIANOLI et al. 545

F I G U R E 12 Illustration of the computational domain for the three-dimensional turbulent channel [Colour figure can be viewed at
wileyonlinelibrary.com]

m
s

m
s

F I G U R E 13 Plot of the turbulent kinetic energy and the RMS evolution along the domain [Colour figure can be viewed at
wileyonlinelibrary.com]

t2,turb = t2 +
𝜕u′t2

𝜕t
. (109)

The proposed test case to validate the turbulence injection is a turbulent convected flow in a rectangular box. The
computational domain is a rectangular box of dimensions [Lx × Ly × Lz] = [4 mm × 1 mm × 1 mm], discretized with
[nx × ny × nz] = [392 × 98 × 98] cells (see Figure 12). The minimal mesh size of this test case imposes a time step Δt =
1.7 × 10−8 s. Total pressure and temperature Pt and Tt are imposed at the inlet, using a relaxation coefficient 𝜎 = 104,
while static pressure Ps is imposed at the outlet so that the expected mean velocity is 100 m s−1. All other boundaries
are periodic conditions. The targeted turbulent kinetic energy is TKE = 37.5 m s−2. Since the turbulent kinetic energy
is given by TKE = u′2

2
, this leads to an inlet velocity fluctuation fixed as u′ = 5 m s−1. The target integral length-scale is

𝜆 =
√

2𝜋
ke

= 𝜆e√
2𝜋
= 0.56 mm, with ke the most energetic wave-number in the Passot–Pouquet spectrum, and 𝜆e the most

energetic length-scale. We used 1000 modes to build the inlet velocity fluctuation field. Figure 12 shows the injection of
vortical structures near the inlet.

Figure 13 shows the turbulent kinetic energy decrease expected within the domain. At the inlet, a value of TKE =
37.5 m s−2 is reached.
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546 GIANOLI et al.

F I G U R E 14 Illustration of the imposition of an inlet radial profile [Colour figure can be viewed at wileyonlinelibrary.com]

4.6 Enforcing a radial profile for turbomachinery simulation

Typically, at the inlet of a turbomachinery simulation domain, radial profiles of quantities such as total pressure, total tem-
perature and flow angles are imposed. It is thus necessary to ensure the capability of the boundary condition to correctly
impose this kind of data. To do so, radial profiles of each macroscopic value are defined under the form of Y = f (x, y, z) or
Y = f (x, r, 𝜃)with Y being Pt,Tt, 𝜙, 𝛼, and f a polynomial function, dependent on the Cartesian or cylindrical coordinates.

For the radial profile, the expression of f is chosen such that:

• Pt = (−40 ∗ (y − y0)2 + 1.1) ∗ Pt,mean.
• Tt = (−10 ∗ (y − y0)2 + 1) ∗ Tt,mean.

These expressions are imposed on the inlet boundary of the 2D-square box test case defined in the first section using
a relaxation coefficient 𝜎 = 104. The numerical and physical parameters are unchanged from the first 2D square box test
case. Figure 14 illustrates that the inlet boundary condition properly produces total pressure and Mach number fields that
correspond to the imposed radial profile and outlet static pressure of Ps = 7.1 × 104 Pa.

4.7 Partial conclusion

From the different test cases conducted in this section, several conclusions concerning the choice of the relaxation param-
eter can be drawn. From the first test case, it can be seen that the recommended range for the relaxation parameter is
between 1000 and 10,000. These values allow to correctly converge toward the target in a reasonable physical time while
keeping a low reflectivity. Choosing a value higher than 104 may also lead in some cases to stability issues. Moreover, at
the end of this section, it has been illustrated that uniform values or radial profiles of Pt, Tt, 𝛼, and 𝜙, with or without
turbulence injection can be imposed at the inlet.

5 STUDY OF THE RADIAL EQUILIBRIUM AT THE OUTLET

The usual method, used in RANS simulations, is to impose an outlet pressure profile consistent with the radial equilib-
rium. This approach leads to a fully reflecting outlet for acoustic waves. It is not an issue for RANS simulations, which do
not capture the acoustics. However, it becomes an issue for LES. To overcome this problem, NSCBC are commonly used.
For an outlet, they allow the user to control the influence of the incoming information through the manipulation of wave
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GIANOLI et al. 547

amplitudes. The study focuses on the investigation of how NSCBC conditions perform for flows with strong rotation. It is
illustrated that the NSCBC formalism can let the physical radial pressure gradient establish naturally so that this formal-
ism can be used at the outlet of turbomachinery simulations without additional treatment. This methodology has already
been successfully applied within a standard LES solver AVBP.29 The pursue of this study is to evaluate if it is reproducible
in the LBM approach.

5.1 Simplified radial equilibrium

The radial equilibrium equations were first derived in the 1940s–1950s.68 It was shown that the whirling motion of a fluid
inside a turbomachine creates a centrifugal force that has to be balanced by a centripetal one, thus creating a positive radial
pressure gradient. This simplified radial equilibrium is obtained by considering a flow with the following properties:

• No viscous effects.
• Negligible heat conduction.
• A steady-state ( 𝜕

𝜕t
= 0).

• No gravity or volumic forces.
• Axisymmetric flow ( 𝜕

𝜕𝜃
= 0).

• No radial velocity (ur = 0).

Under these hypotheses, the flow is governed by the Euler equations for a compressible flow with the equation of state
for an ideal gas. In cylindrical coordinates (r, 𝜃, x), the momentum equation in the radial direction is

𝜕ur

𝜕t
+ ur

𝜕ur

𝜕r
+ u𝜃

r
𝜕ur

𝜕𝜃
−

u2
𝜃

r
+ ux

𝜕ur

𝜕x
= −1

𝜌

𝜕P
𝜕r
. (110)

Applying the precedent assumptions to Equation (110) leads to the simplified radial equilibrium equation:

1
𝜌

𝜕P
𝜕r

=
u2
𝜃

r
, (111)

where P is the static pressure, u𝜃 is the azimuthal velocity component, and 𝜌 is the density.

5.2 Annulus test case

The test cases described below are presented in details in Koupper et al.29 The ability of characteristic boundary conditions
to recover the radial equilibrium assumption (REA) pressure profile is assessed in a rotating flow in a simple annulus,
see Figure 15. The annulus has the following dimensions:

• R1 = 0.2 m.
• R2 = 0.28 m.
• L = 0.32 m.
• Aspect ratio: L

R2−R1
= 4.

This geometry is chosen because it produces an analytical solution, which can thus be used to validate the simulation.

5.2.1 Analytical solution

The geometry and flow properties are set so that all hypotheses for the simplified radial equilibrium are fulfilled.
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548 GIANOLI et al.

F I G U R E 15 Geometry of the annulus test case

Two configurations are considered, namely the free vortex flow (FVF) (Equation 112) and the solid body rotation
(SBR) (Equation 113). The radial pressure profile is obtained by integrating Equation (111) using the perfect gas relation
to link density to pressure:

u𝜃 =
k
r

P(r) = 𝛼1 exp
(
− k2

2rgasTsr2

)
. (112)

Or

u𝜃 = C P(r) = 𝛼2r

(
C2

rgas∗Ts

)

. (113)

𝛼1 and 𝛼2 are integration constants that can be determined using the mean pressure on the outlet plane, Ps.

Ps =
1

Aannulus ∫ ∫
P(r)rdrd𝜃. (114)

Solving Equation (114) for the two cases gives:

𝛼1 =
Ps(R2

2 − R2
1){[(

k2

2rgasT

)
Ei
[

−k2

2rgasTr2

]
+ r2 exp

[
−k2

2rgasTr2

]]}R2

R1

, (115)

1
Aannulus ∫ ∫

P(r)rdrd𝜃 = 2𝜋𝛼2

𝜋(R2
2 − R2

1)∫

R2

R1

r

(
C2

rgasTs

)

× rdr

= 2𝛼2

(R2
2 − R2

1)∫

R2

R1

r

(
C2

rgasTs
+1
)

dr

= 2𝛼2

(R2
2 − R2

1)

[
r

(
C2

rgasTs
+2
)]R2

R1

C2

rgasTs
+ 2

= Ps.

It is then possible to isolate 𝛼2:

𝛼2 =
Ps(R2

2 − R2
1)
(

C2

rgasTs
+ 2
)

2

[
r

(
C2

rgasTs
+2
)]R2

R1

. (116)

With the usual notation [𝜙(r)]ba = 𝜙(b) − 𝜙(a), Ei(x) is the exponential integral function defined as Ei(x) = ∫ x
−∞

et

t
dt.
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GIANOLI et al. 549

T A B L E 1 Sum up of the parameters used during the simulations

Relaxation coefficient 𝜎cbc for FVF 2.52 × 10−4 1.26 × 10−3 6.30 × 10−3 1.26 × 10−2 1.26 × 10−1

Relaxation coefficient 𝜎cbc for SBM 2.43 × 10−4 1.21 × 10−3 6.06 × 10−3 1.21 × 10−2 1.21 × 10−1

Kcbc =
𝜎cbc(1−Ma2)c

R2−R1
1 5 25 50 500

Flow through times FVF 0.76 0.76 0.64 0.42 0.42

Flow through times SBR 4.11 4.11 2.25 1.8 0.91

F I G U R E 16 Plot of cylindrical coordinates and projection into Cartesian [Colour figure can be viewed at wileyonlinelibrary.com]

The target pressure is Ps = 105 Pa. The shape of the pressure profile, governed by radius-dependent terms, is controlled
by gas properties and by swirl profile u𝜃(r).

5.2.2 Numerical resolution

The swirling flow is simulated for six values of the outlet reflection coefficient 𝜎, ranging from 1 to 1000, to assess the
influence of the level of reflectivity on the radial equilibrium pressure profile. The annulus geometry is discretized with
50 points in the radial direction and 200 in the longitudinal direction. This is equivalent to a mesh sizeΔx = 1.6 × 10−3 m
and a time step Δt = 2.66 × 10−6 s. To be coherent with the inviscid assumption of the simplified radial equilibrium, the
physical behavior of the Euler equations is retrieved by setting the viscosity to zero. The summary of the test cases can be
found in Table 1.

The inlet boundary condition imposes the adequate swirl profile u𝜃(r) by imposing the corresponding total pressure
and azimuthal angle. The axial velocity is set to ux = 5 m s−1 for the FVF case or ux = 30 m s−1 for the SBR one. The
corresponding flow through times is noted 𝜏 and defined as 𝜏 = L

ux
. The maximum Mach number during the computation

is 0.29 for the FVF case while it is 0.17 for the SBR. The initial velocity field in the annulus is identical to the inlet boundary
condition velocity profiles ux,u𝜃 . At the outlet, the NSCBC 3D boundary condition is used with an imposed pressure Ps.
The inner and outer walls use slip conditions to avoid any near-wall effect on the velocity profile and thus on the pressure
distribution. The initial pressure field is uniform such that P(r, 𝜃, x) = Ps and is thus not consistent with the REA to ensure
that the NSCBCs are able to drive the pressure toward the REA.

To avoid using a rotational domain, the azimuthal velocity u𝜃 is specified in the Cartesian coordinates at the inlet
according to (Figure 16):

uy = −u𝜃 sin(𝜃), uz = u𝜃 cos(𝜃). (117)

The required time to establish the pressure field is imposed by the domain size, flow properties, and relaxation parameter
𝜎. Convergence is reached when the local pressure is ±0.1% of P(t → ∞). Increasing the relaxation parameter 𝜎 reduces
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550 GIANOLI et al.

F I G U R E 17 Results for the solid body rotation (left) and free vortex flow (right) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 18 Illustration of the convergence toward the target pressure with increasing relaxation parameter 𝜎 [Colour figure can be
viewed at wileyonlinelibrary.com]

the convergence time. As the pressure profile is only radius dependent (one-dimensional flow), it can be plotted at the
domain exit. The simulations converge toward the theoretical profile as the relaxation coefficient at the outlet is increased.
The main action of the relaxation coefficient 𝜎 is to drive the mean pressure toward the target. For 𝜎 → ∞, the mean
pressure would converge to the imposed value, and thus the pressure profile would exactly match the theoretical one.
However, in this case, the boundary would become fully reflecting. The pressure profile is plotted at the domain exit in
Figure 17. It can be seen that a radial equilibrium pressure profile establishes at the end of the simulation and that the
profiles converge toward the analytical profile as the relaxation parameter at the outlet increased.

The role of the relaxation coefficient is, as explained before, to drive the static pressure toward the target. The reduction
of the offset between the mean pressure and the target when increasing 𝜎 is illustrated in Figure 18. It can be seen that
the error is inversely proportional to 𝜎.

5.3 Partial conclusion

In this section, it has been demonstrated that the NSCBC formalism applied on an outlet is compatible with strongly
rotating flows usually found in turbomachinery. Concerning the choice of the relaxation coefficient, it should be noted
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GIANOLI et al. 551

(A) (B)

F I G U R E 19 Complete CAM1 geometry (left) and sketch of the computational domain (right) [Colour figure can be viewed at
wileyonlinelibrary.com]

that a value around 0.2 leads to a pressure profile at the outlet close to the one predicted by the theory. The relaxation
coefficient could be increased further to improve the precision of the results but this would lead to a fully reflective outlet
which may have to be avoided.

6 S-DUCT CONFIGURATION

The S-duct configuration illustrated in this section is taken from the European project AIDA and corresponds to the
CAM1 geometry. The full configuration consists of a strutted S-duct located between a low-pressure compressor (LPC)
and a high-pressure compressor (HPC) (see Figure 19A). For simplicity and because the goal here is simply to validate
the correct application of the Pt − Tt inlet boundary as well as the Ps at the outlet boundary, the computational domain
is restricted to the strutted duct and the following inlet guide vane IGV2 (see Figure 19B).

6.1 Initial and boundary conditions

The initial condition consists in a uniform field with no velocity and a static pressure corresponding to the one imposed
at the outlet. The fluid considered is air with a kinematic viscosity at this temperature of 1.49 × 10−5 m2 s−1.

The total pressure, total temperature as well as the flow angles are imposed at the inlet by computing a polynomial
interpolation from the experimental data available. This allows to impose a radial profile of these macroscopic quantities
at the S1 exit plane with a relaxation coefficient fixed at 104. Moreover, turbulence is injected at the inlet with a velocity
fluctuation u′ = 5 m s−1. At the outlet, situated one chord away from the IGV2 exit, static pressure is imposed using an
NSCBC condition with a relaxation coefficient 𝜎 = 0.25.

6.2 Wall law and SGS model

For this computation a wall law derived from the classical formulation but taking into account curvature, pressure gradi-
ent and near-wall damping is applied. Moreover, the shear-improved Smagorinsky model (SISM) is used with a standard
Smagorinsky constant Cs = 0.18. These two methods have already been successfully applied with the LBM on complex
configurations.69,70

6.3 Meshing strategy

The Cartesian mesh is generated by specifying a minimal mesh size of 2.5 × 10−4 m applied on the walls while a maximal
mesh size of 1 × 10−3 m is set in the rest of the simulation domain. This leads to a y+ value of approximately 25 on the
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552 GIANOLI et al.

(A) (B)

F I G U R E 20 Plot of the inlet radial profiles (left) and check of the radial equilibrium assumption at the outlet [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 21 Contour of Q-criterion colored by vorticity and 2D map of Mach number at the different control planes [Colour figure can
be viewed at wileyonlinelibrary.com]

walls which is in agreement with the recommendations in the literature70 for the use of wall law. This leads to a mesh
containing 250 × 106 equivalent fine cells. The corresponding time step for this computation is set by the smallest mesh
size and is equal to Δt = 1.7 × 10−6 s.

6.4 Results

Firstly, the mass-flow convergence was evaluated to check that the correct design point is reached. The difference
between the computed mass-flow and the design one is 1% which is judged acceptable to compare the results in the
following.

The radial profiles obtained at the inlet by azimuthal averaging are represented in Figure 20A while the radial evolu-
tion of the static pressure at the outlet is represented in Figure 21. It shows that the inlet imposes the desired values while
the radial equilibrium is closely respected at the outlet. Finally, the flow field is depicted in more details in Figure 20B. It
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shows contours of Q-criterion colored by vorticity between the inlet and the strut to illustrate the turbulence injection as
well as the averaged Mach number at the different control planes of the machine.

7 CONCLUSIONS

Characteristic boundary conditions for compressible LBM simulations that impose total pressure Pt, total temperature
Tt, and flow angles 𝜙 and 𝛼 at the inlet and static pressure at the outlet verifying the radial equilibrium have been derived
in this article. The compressible expressions of total pressure and total temperature are determined thanks to the NSCBC
methodology so that it is expressed in terms of characteristic waves i. The LODI relations and the imposed values
of Pt,Tt, 𝜙, 𝛼 are then used to obtain the waves expressions i. The formulation obtained has a behavior varying from
non-reflecting to fully-reflecting, depending on the relaxation parameter used in the linear relaxation methodology.

The NSCBC formulation is assessed on several test cases with increasing complexity, for a broad range of relaxation
coefficients. Results show that the values of the relaxation coefficients used enable to recover non-drifting mean values
as well as reflecting or non-reflecting behavior. The possibility to add synthetic turbulence injection is demonstrated on
a periodic rectangular box before being used on a turbomachinery simulation. The inlet boundary condition gives fair
results regarding the expected turbulent kinetic energy.

Moreover, the REA at the outlet of the computational domain is validated considering the annulus test case. This
assumption is of high importance in regards to turbomachinery simulations, and the capacity of the NSCBC to deal
with the radial equilibrium and the control of acoustic waves must be assessed. Results show that low errors on the
pressure profile are obtained even when using low values of the relaxation parameter 𝜎 thanks to characteristic boundary
conditions taking into account transverse terms.

Finally, this boundary condition is applied for a turbomachinery configuration corresponding to an S-duct stage. The
case of an S-duct simulation is illustrated here with the imposition of total quantities under the form of radial profiles.
The test case shows the ability to recover the imposed target values, to handle radial profiles and turbulence injection at
the inlet while simultaneously allowing the development of the radial profile of static pressure at the outlet. This paves
the way for more complex turbomachinery simulations using the lattice Boltzmann method.
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