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Thermal-hydraulics safety requirements for the second and third generation of nuclear reactors led to the 
development of innovative passive safety systems. In particular, new devices must be developed involving 
numerical simulations for turbulent two-phase flows around complex geometries. To reduce the time-consuming 
mesh generation phase when testing various geometries, we use a fictitious domain approach. More specifically, 
we choose the Penalized Direct Forcing Method to take into account inflow obstacles. Following a recent work, 
involving the resolution of the one-phase incompressible Navier-Stokes equations using a projection scheme and 
the Finite Element Method, this paper focuses on different techniques to recover data from the discrete immersed 
boundary and different ways to achieve order 2 in space via linear interpolation. Indeed, we investigate two 
data reconstruction approaches (one based on various weighted averaging, the other based on optimization) 
and compare their results for cylindrical and NACA0012 airfoil shapes: they provide similar accuracy but the 
weighting is much faster in terms of execution time. We also investigate three different interpolation types: 
unidirectional, multi-directional and a new hybrid between the two. The Taylor-Couette flow and the flow around 
a circular cylinder are used to carry out mesh convergence studies. Globally, order 2 in space is numerically 
assessed in both 2 and ∞ norms for all the interpolation types, which is consistent with theoretical expectations 
– even if the space convergence order is a bit higher for the multi-directional approach. For the flow around a 
circular cylinder, the values of aerodynamic coefficients and Strouhal number are in good agreement with the 
literature, especially when using directional interpolation. Finally, an industrial case, representative of passive 
safety systems, is presented to assess the robustness and capability of the method. The simulations tend to show 
that, here again, the directional interpolation offers the best behavior when dealing with complex geometries 
and relatively coarse meshes.

1. Introduction

In engineering, Eulerian grid based numerical simulations are priv-
ileged tools to study fluid flows past or around complex geometries 
in order to optimize and assess new designs. In the case of moving, 
or deformable, inflow obstacles, the computation domain needs to be 
remeshed when the position, or shape, of the obstacle changes, which 
may lead to costly and time-consuming simulations. To overcome this 
issue, one can use the Immersed Boundary Method (IBM), introduced 
by C.S. PESKIN [1], in which the geometry of the obstacle is inde-
pendent from the computational domain mesh – for a more extensive 
history of fictitious domain methods, the interested reader can refer 

ing (PDF) [3,4,2]. The PDF inherits from both Direct Forcing [5] and 
penalty methods [6,7]. We use this method in the context of the new 
Research and Development (R&D) studies currently carried out by the 
CEA to match the increasing safety and performance requirements for 
the second and third generation of nuclear reactors. Those R&D studies 
include behavior characterization, design and statistical shape opti-
mization of innovative passive safety systems (i.e. conceived to prevent 
or mitigate potential accidental or incidental situations without needing 
extra energy). Some of them, such as the flow limiter [8] and the ad-
vanced accumulator [9], are based on the principle of hydraulic diodes 
(i.e. reverse flow is strongly damped [10]) and composed of thin in-flow 
obstacles with complex geometries immersed in turbulent two-phase 
to [2]. In this paper, we are interested in the Penalized Direct Forc-
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In a recent work [2], we presented a Finite Element version of the 
PDF method, inspired from [4], in the context of the incompressible 
laminar Navier-Stokes equations, using an implicit fractional step algo-
rithm (or projection scheme) [11] and a directional linear interpolation 
technique of the velocity near the immersed boundaries. In this present 
paper, we focus on different techniques to recover data from the discrete 
immersed boundary and different ways to achieve order 2 in space via 
linear interpolation. In particular, we are motivated by the comparison 
of the data reconstruction and interpolation techniques proposed in [2]
with the more global ones proposed in [4].

Generally speaking, data reconstruction on a boundary/interface or 
in its vicinity is a key issue in the scope of Fictitious Domain Methods. 
Hence, various techniques have been developed in order to reconstruct 
fields coming from a boundary on the computation domain (i.e. the 
computation of the velocity imposed by the IB in our case) or the con-
trary (reconstruction of the stress tensor on the envelop of an airfoil 
to compute aerodynamic forces, for instance [12]) such as: mollifier 
functions (used in the original IBM to approximate the Dirac delta func-
tions [13,14]), extrapolation outside the computation domain (used in 
ghost cells techniques [15,16]), interpolation (widely used in all kind 
of fictitious domain methods [5,4]). In the case of infinitely thin ob-
stacles, the eXtended (or Generalized) Finite Element Method (X-FEM), 
which is often used in the field of fracture mechanics [17,18], provides 
some advantages: it is capable to deal with discontinuous quantities 
(typically tangential velocities on each side of an infinitely thin obsta-
cle with slip conditions) while preserving the standard finite element 
properties elsewhere.

Let us notice that extrapolation and interpolation techniques, aside 
from involving polynomials or spline functions, can rather be direc-
tional (1D) [5] or spatial (multi-D) [4]. Here, we propose three inter-
polation techniques (unidirectional, multi-directional and hybrid) and 
a comparison between them on several test cases. In any case, geomet-
rical data coming from the immersed obstacles are also needed and this 
is why we also propose several methods to compute those geometrical 
data from a Lagrangian surface mesh, usually obtained via Computer 
Assisted Design (CAD).

In addition, in some fields of physics, geometrical reconstruction 
is not sufficient to take into account specific phenomena properly. In 
that case, information is added by the means of analytical or empiri-
cal laws. For instance, when dealing with turbulence modeling (which 
is of interest for nuclear safety systems design), numerous turbulent 
wall laws have been developed and used to compute data (velocity, 
velocity gradient, friction, etc.) on or in the vicinity of an immersed 
boundary/interface. Thus, our final purpose is to use turbulent wall 
laws (see [19] for instance) to interpolate the fluid velocity near the 
obstacle, but it will be treated in a forthcoming paper.

In this paper, we briefly recall the PDF method and the numerical 
methods involved in Section 2. Section 3.1 tackles the topic of recover-
ing data from the discrete immersed boundary whereas Section 3.2 fo-
cuses on the different linear interpolation approaches. Finally, Section 4
provides numerical results with a comparison between the different ge-
ometrical data reconstruction techniques and the different interpolation 
methods.

2. Numerical methods

The numerical methods involved in this paper are directly taken 
from [2] and references within. A brief summary is given in the follow-
ing section.

2.1. Governing equations

In this paper, we consider an incompressible fluid of unit density and 
neglect gravity effects, which means that the Navier-Stokes equations 
are reduced to the following form:
2

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝐮+∇ ⋅ (𝐮⊗ 𝐮− 𝜈∇𝐮) + ∇𝑝 = 𝟎 on Ω
∇ ⋅ 𝐮 = 0 on Ω
+BC on 𝜕Ω
+IC on Ω

(1)

with Ω ⊆ ℝ𝑑 a 𝑑-dimensional open compact domain with a piecewise 
regular boundary denoted 𝜕Ω such as Ω = Ω ∪ 𝜕Ω, 𝑝 ∶ Ω × ℝ+ → ℝ the 
fluid pressure, 𝐮 ∶ Ω ×ℝ+ → ℝ𝑑 the fluid velocity and 𝜈 ∈ ℝ+ the fluid 
cinematic viscosity.

2.2. Time discretization

Let denote 𝛿𝑡 ∈ℝ+∗ the adaptative time step and 𝑁𝑇 ∈ℕ the number 
of time steps. Given the sequence associated to the discrete time steps 
(𝑡𝑛)𝑛<𝑁𝑇 +1, we define 𝐮𝑛 ∶ Ω → ℝ𝑑 (resp. 𝑝𝑛 ∶ Ω → ℝ) as the approxi-
mations of the velocity (resp. the pressure) at time 𝑡𝑛. Considering a 
semi-implicit scheme (implicit diffusive terms and linearized advective 
terms) coupled with a projection scheme [11], we obtain the following 
fractional-step algorithm:

1. Prediction: only time, inertia, viscous and source terms are con-
sidered, the pressure term is kept from the previous time step. An 
intermediate velocity, called predicted velocity and denoted 𝐮∗, is 
computed.

1
𝛿𝑡
𝐮∗ + ∇ ⋅ (𝐮𝑛 ⊗ 𝐮∗ − 𝜈∇𝐮∗) + ∇𝑝𝑛 = 1

𝛿𝑡
𝐮𝑛 (2)

2. Projection: the pressure corrector field, denoted 𝜙𝑛+1, is computed 
using the predicted velocity and mass balance equation.

1
𝛿𝑡

(
𝐮𝑛+1 − 𝐮∗

)
+∇𝜙𝑛+1 = 𝟎 (3)

∇ ⋅ (3) ⇒Δ𝜙𝑛+1 = 1
𝛿𝑡
∇ ⋅ 𝐮∗ (4)

3. Correction: the velocity is computed using the pressure corrector 
gradient.

𝐮𝑛+1 = 𝐮∗ − 𝛿𝑡∇𝜙𝑛+1 and 𝑝𝑛+1 = 𝑝𝑛 +𝜙𝑛+1 (5)

2.3. Space discretization

The computation domain Ω is divided in 𝑁𝐸 ∈ ℕ hexahedral el-
ements, each denoted 𝐾𝑒 with 𝑒 ∈ �1, 𝑁𝐸� and Ω𝑒 the portion of Ω
associated to the element 𝐾𝑒. Those elements are composed of nodes 
and the total number of nodes is denoted 𝑁𝑁 . The mixed FEM is used, 
which means that the discrete unknowns of the problem are decom-
posed in two different FE basis. For the velocity, a ℚ1 basis (i.e. trilinear 
decomposition at nodes) is used while, for pressure, a ℚ0 basis (i.e. the 
discrete pressure field is constant by element) is used (for more de-
tailed information about the Finite Element formulation used in this 
paper, the interested reader can refer to [20]). This pair of elements 
is known to be unstable and can induce pressure checkerboard pat-
terns. Yet, we used it because it is rather simple to implement and 
because the methods presented in this paper (Penalized Direct Forcing 
Immersed Boundary Method, geometrical data reconstruction, direc-
tional and multi-directional interpolations) do not depend strongly on 
the chosen pair of elements. If needed, they could be adapted to another 
pair of elements with little effort and without changing the philosophy 
behind this approach.

2.4. Immersed boundary method

The chosen Immersed Boundary Method is called Penalized Direct 
Forcing and was initially developed by M. BELLIARD et al. in a Finite 
Difference framework [3,4]. In this paper, we consider the adaptation of 
this method to a Finite Element formulation, proposed in [2]. To make 



Fig. 1. Schematic representation of the computation grid and the collection of facets associated to the immersed boundary.
a brief reminder, the idea is to add a specific (penalized) Direct Forcing 
term to the momentum balance equation and to split it between the 
prediction and projection steps of the fractional-step algorithm (based 
on the work of [21] and references within):

1
𝛿𝑡
𝐮∗ + 𝐝(𝐮𝑛, 𝑝𝑛,𝐮∗) = 1

𝛿𝑡
𝐮𝑛 + 𝐟𝑛+1

𝑃
with 𝐟𝑛+1

𝑃
∶=

𝜒

𝜂𝛿𝑡

(
𝐮𝑛+1Γ − 𝐮∗

)
(6)

1
𝛿𝑡

(
𝐮𝑛+1 − 𝐮∗

)
+∇𝜙𝑛+1 = 𝐟𝑛+1

𝐶
with 𝐟𝑛+1

𝐶
∶=

𝜒

𝜂𝛿𝑡

(
𝐮∗ − 𝐮𝑛+1

)
(7)

where 𝐝(𝐮𝑛, 𝑝𝑛+1, 𝐮∗) = ∇ ⋅ (𝐮𝑛 ⊗ 𝐮∗ − 𝜈∇𝐮∗) + ∇𝑝𝑛 is an operator used 
for purpose of clarity while 𝐟𝑛+1

𝑃
and 𝐟𝑛+1

𝐶
are the parts of the forcing 

term respectively added in equations (2) and (3) with 𝜂 ∈ℝ+∗ (such as 
𝜂 ≪ 1) the penalty parameter, 𝜒 ∶ Ω → {0,1} the characteristic function 
of the immersed boundary Γ and 𝐮𝑛+1Γ is the velocity imposed by Γ (or 
immersed Dirichlet boundary condition). By gathering terms together 
in the projection equation (7), we obtain:

1
𝛿𝑡
𝐮𝑛+1 + 𝜂

𝜂 + 𝜒
∇𝜙𝑛+1 = 1

𝛿𝑡
𝐮∗ (8)

In terms of space discretization, we consider that the discrete char-
acteristic function is equal to 1 in the elements crossed by Γ and 0 
elsewhere (i.e. 𝜒 is decomposed in the ℚ0 FE basis). Thus, we can de-
fine 𝜒𝑒 and 𝜉𝑒 such as:

∀𝑒 ∈ �1,𝑁𝐸�,

{
𝜒𝑒 = 1 if Ω𝑒 ∩ Γ ≠ ∅

𝜒𝑒 = 0 else
and 𝜉𝑒 = 1 +

𝜒𝑒

𝜂
(9)

Regarding the fractional-step algorithm, let us denote 𝐌𝑒 (resp. 𝐃𝑒, 
𝐍𝑒 and 𝐁𝑒) the lumped mass (resp. diffusive, advective and gradient-
divergence) elemental matrix, 𝜆𝑛

𝑒
(resp. 𝜆∗

𝑒
) the components of the ve-

locity (resp. predicted velocity) in the ℚ1 finite elements basis, 𝜙𝑛+1
𝑒

the discrete pressure corrector in an element 𝐾𝑒 (i.e. ℚ0) and, finally, 
𝜆𝑛+1Γ the decomposition of the imposed velocity 𝐮𝑛+1Γ in the ℚ1 finite el-
ements basis. Then, the discrete projection scheme can be written as 
follows (cf. [2] for more details):( 1
𝛿𝑡
𝐌𝑒𝜉𝑒 +𝐃𝑒𝜇𝑒 +𝐍𝑒

)
𝜆∗
𝑒
=+𝐁𝑒𝑝

𝑛
𝑒
+ 1

𝛿𝑡
𝐌𝑒

(
𝜆𝑛
𝑒
+

𝜒𝑒

𝜂
𝜆𝑛+1Γ

)
(10)

𝐁𝑇
𝑒
𝐌−1

𝑒

1
𝜉𝑒
𝐁𝑒𝜙

𝑛+1
𝑒

=− 1
𝛿𝑡
𝐁𝑇
𝑒
𝜆∗
𝑒

(11)

𝜆𝑛+1
𝑒

=𝜆∗
𝑒
+𝐌−1

𝑒

𝛿𝑡

𝜉𝑒
𝐁𝑒𝜙

𝑛+1
𝑒

(12)

3. Imposed velocity interpolation

In [2], we presented two ways of computing the decomposition of 
𝐮Γ in the ℚ1 FE basis: one “staircase approximation” referred as direct 
assignment (first order accurate in space) and one involving linear di-
rectional interpolation (second order accurate in space). In this paper, 
3

we propose two other variants of linear interpolation and provide a 
comparison between all of them.

However, in order to achieve the linear interpolation of 𝐮Γ, addi-
tional geometrical data coming from the IB are needed. Several ways 
to obtain those data have been used and are described in section 3.1. 
From practical point of view, immersed boundaries are rather described 
by an equation when their geometry is simple – planes, circles, cylin-
ders, etc. – and by a spline surface or a collection of facets – meshes 
coming from Computer Assisted Design (CAD) software for instance – 
when their geometry is complex. With respect to the aimed applications 
and CEA tools, only collection of plane facets – although exact equations 
are used on simple cases for purpose of verification and validation – are 
considered in the three investigated approaches.

3.1. Geometrical data reconstruction

The object of this section is to explain the different way used to re-
cover useful geometrical data from the immersed boundary input data. 
Those input data, representative of the shape of the immersed obstacle, 
can come from various sources and take various forms. Without any 
claim to be exhaustive, we formally define two categories: analytical 
equations (simple shapes like circles, squares, etc.) and discrete values 
(measurements, experiments, Computer Aided Design, etc.).

Obviously, the second category is wider than the first one (discrete 
values can be generated from analytical equations) so, in order to re-
main as general as possible, we consider the approximate obstacle Γℎ

(representative of Γ) as a union of discrete elements, here plane convex 

polygons called facets: Γℎ =
𝑁𝑆⋃
𝑖=1

𝑆𝑖

with 𝑁𝑆 the total number of facets, 
(
𝑆𝑖

)
𝑖∈�1,𝑁𝑆�

the collection of 
facets and their respective normal vectors 

(
𝐧𝑖
)
𝑖∈�1,𝑁𝑆�

. Also, in order 
to make the following explanations clearer, let us define some nota-

tions: 𝐽𝑒 =
{
𝑗 ∈ �1,𝑁𝑁 �

|||𝐱𝑗 ∈Ω𝑒

}
: the set of nodes included in element 

𝐾𝑒, 𝐸0
𝑗
=
{
𝑒 ∈ �1,𝑁𝐸� ||𝑗 ∈ 𝐽𝑒

}
: the set of elements sharing the node 𝑗, 

𝐸
𝜒

𝑗
=
{
𝑒 ∈𝐸0

𝑗
||𝜒𝑒 = 1

}
: the set of element crossed by Γℎ sharing the 

node 𝑗 and 𝐽 = {𝑗 ∈ �1, 𝑁𝑁 � |∃𝑒 ∈ 𝐸0
𝑗
∕𝜒𝑒 = 1}: the set of node numbers 

for which a projection point need to be computed (points marked with 
a cross on Fig. 1).
Two approaches are considered here. The first one is the local weight-
ing approach, introduced in [2] by the authors, that we confront to the 
second one, the global optimization approach, presented as a robust ge-
ometrical data reconstruction method in [4].

3.1.1. Weighting approach

The method based on quantity weighting and averaging is described 
in detail in [2]. Here, we only recall the main steps of the method. There 



are four variants, depending of the weighting: arithmetic mean (variant 
1), area weighting (variant 2), inverse distance weighting (variant 3), 
and area over distance weighting (variant 4). What ever is the consid-
ered variant, the geometrical computation is done in three steps.
First of all, we have to compute the intersection between hexahedral el-
ements 𝐾𝑒 and plane facets 𝑆𝑖 (cf. Fig. 1). Doing this we get, in each 
intersected element 𝐾𝑒, a collection of facet’s portions 𝑆𝑖

𝑒
, each charac-

terized by an area 𝑖
𝑒
, a normal 𝐧𝑖 and barycenter 𝐛𝑖

𝑒
.

Then, the second step is the determination of an equivalent facet by 
element, characterized by 𝑒, 𝐧𝑒 and 𝐛𝑒. For this, in each intersected 
element, we sum the areas and we average the normals and the barycen-
ters using an area weighting.

∀𝑒 ∈ �1,𝑁𝐸�∕𝜒𝑒 = 1,𝑒 =
𝑁𝑆∑
𝑖=1

𝑖
𝑒
,𝐧𝑒 =

1
𝑒

𝑁𝑆∑
𝑖=1

𝑖
𝑒
𝐧𝑖,𝐛𝑒 =

1
𝑒

𝑁𝑆∑
𝑖=1

𝑖
𝑒
𝐛𝑖
𝑒

(13)

Finally, the third step is the determination of immersed boundary pro-
jections 𝐱𝑝

𝑗
(cf. Fig. 2). In practice, we project each node 𝐱𝑗∕𝑗 ∈ 𝐽 on the 

equivalent facet of 𝐾𝑒: 𝐩
𝑗
𝑒 ∶= 𝐱𝑗 + 𝑙

𝑗
𝑒𝐧𝑒, with 𝑙𝑗𝑒 the oriented normal dis-

tance between the node and the equivalent facet. Then, 𝐩𝑗𝑒 is assembled 
in a FE way to obtain: 𝐱𝑝

𝑗
= 1

𝛼𝑗

∑
𝑒∈𝐸𝜒

𝑗

𝛼
𝑗
𝑒𝐩

𝑗
𝑒 by average of the elementary 

projections of the neighboring elements using the selected variant for 
the weight 𝛼𝑗𝑒 (arithmetic, area weighting, inverse distance weighting 
or area over distance weighting).

3.1.2. Optimization approach

In this approach, for a given node, we search for the point, located 
on Γℎ, which minimizes the distance between itself and the considered 
node – method inspired by C. INTROÏNI et al. [4] and adapted to thin 
obstacles in this work. The optimization problem can be written as fol-
lows:

∀𝑗 ∈ 𝐽 , Find 𝐱𝑝
𝑗
∈ Γℎ such as (𝐱𝑗 − 𝐱𝑝

𝑗
)2 = inf

𝐲∈Γℎ
(𝐱𝑗 − 𝐲)2 (14)

To solve this problem for each 𝑗 ∈ 𝐽 , we use the algorithm proposed 
in [4]. First, the immersed boundary is partially reconstructed in the 
vicinity of 𝐱𝑗 by collecting the facets of Γℎ which intersect at least one 
element sharing the node number 𝑗 (the indexes of those facets form a 
set denoted 𝐼𝑗 ). Then, for each of those facets, we write the equation of 
the facet’s plane:

∀𝑖 ∈ 𝐼𝑗 , 𝐧𝑖 ⋅ 𝐲 = 𝐧𝑖 ⋅ 𝐚𝑖 with ∀𝑗 ∈ 𝐽 , 𝐼𝑗 =
{
𝑘 ∈ �1,𝑁𝑆�

|||∃𝑒 ∈𝐸0
𝑗
∕ 𝑆𝑘

𝑒
≠ ∅

}
(15)

and 𝐚𝑖 ∈ℝ𝑑 the coordinates of a point belonging to 𝑆𝑖. Gathering all the 
collected facets for a node 𝑗, the following linear system is obtained:

𝐂𝑗𝐲 = 𝐫𝑗 with ∀ ∈ 𝑗 ∈ 𝐽 ,∀𝑖 ∈ 𝐼𝑗 ,∀𝑘 ∈ �1, 𝑑� , 𝐶
𝑗

𝑖𝑘
= 𝑛𝑖,𝑘 (16)

and:

∀ ∈ 𝑗 ∈ 𝐽 ,∀𝑖 ∈ 𝐼𝑗 , 𝑟
𝑗

𝑖
=

𝑑∑
𝑘=1

𝑛𝑖,𝑘𝑎𝑖,𝑘 (17)

where 𝑑 is the space dimension, 𝐶𝑗

𝑖𝑘
is the general term of 𝐂𝑗 ∈ ℝ𝑠×𝑑

with 𝑠 = card
(
𝐼𝑗
)
, 𝑛𝑖,𝑘 the 𝑘th component of vector 𝐧𝑖 and 𝑎𝑖,𝑘 the 𝑘th 

component of vector 𝐚𝑖.
Finally, we can consider that a point of coordinates 𝐲 which ver-

ifies, at least approximately, the system (16) is located on Γℎ, or at 
least in its vicinity – i.e. solving this linear system is a way to impose 
the constraint of the minimization problem (14). If we formally denote 


𝑗

Γℎ
=
{
𝐲 ∈ℝ𝑑 ||𝐂𝑗𝐲 ≈ 𝐫𝑗

}
, the set of the points which approximately ver-

ify the system (16), the minimization problem (14) becomes:

∀𝑗 ∈ 𝐽 , Find 𝐱𝑝
𝑗
∈ 

𝑗

Γℎ
such as (𝐱𝑗 − 𝐱𝑝

𝑗
)2 = inf

𝐲∈𝑗
(𝐱𝑗 − 𝐲)2 (18)
Γℎ
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Fig. 2. Schematic drawings of the different interpolations techniques.

This problem is solved using an Uzawa algorithm for each node 𝑗, 
with 𝜖 ≪ 1 the shutoff parameter and Λ𝑚 the Lagrange multiplier vector 
at iteration 𝑚:

1. Initialization (𝑚 = 0):
• Λ0 = 𝟎ℝ𝑠

2. Iterations (𝑚 > 0):

• 𝐲𝑚 = 𝐱𝑗 −
1
2
(
𝐂𝑗

)𝑇 Λ𝑚−1

• Λ𝑚 = Λ𝑚−1 +
𝐂𝑗𝐲𝑚 − 𝐫𝑗‖𝐂𝑗‖1 ‖𝐂𝑗‖∞

3. Finalization:
• if (𝐱𝑗 − 𝐲𝑚)2 < 𝜖 then 𝐱𝑝

𝑗
= 𝐲𝑚

Another variant of this approach has also been developed. It relies 
on a different definition of 𝐼𝑗 : instead of considering only the elements 
sharing the node 𝑗 to collect the facets of Γℎ, we also consider the neigh-
bors of those elements.

3.2. Linear interpolation methods

With those new pieces of information coming from the geometry 
of the immersed boundary Γℎ, interpolation methods can be used to 
compute the imposed velocity 𝐮𝑛+1Γ . In this document, we propose three 
techniques (detailed in the following sections): one purely directional, 
another one being multi-directional and a final one being a combination 
of the two. The first method was introduced by the authors in [2] taking 
advantage of the FE space discretization. The second one is inspired 
from [4] and was initially introduced in a context of a Finite Difference 
space discretization. The third one is an original approach.

From now on, the time index exponent notation will be omitted in 
this section for purpose of readability, keeping in mind that the imposed 
velocity is interpolated at each time step.

3.2.1. Directional interpolation

The directional interpolation variant is represented schematically in 
Fig. 2a and a full description can be found in [2]. Here, we briefly recall 
the principle of the method.

Given the coordinates 𝐱𝑝
𝑗

of the approximate projection of node 𝑗, 
we can reconstruct an outward normal vector 𝐧𝑗 = (𝐱𝑗 − 𝐱𝑝

𝑗
)|𝐱𝑗 − 𝐱𝑝

𝑗
|−1

and then we find a point 𝐱𝑓
𝑗

in the prolongation of 𝐧𝑗 (cf. Fig. 2a). The 
point 𝐱𝑓

𝑗
is chosen in the vicinity of 𝐱𝑗 and as belonging to a “purely 

fluid” element (i.e. not belonging to elements crossed by the boundary). 
Finally, we can interpolate the velocity 𝐮𝑗 at node 𝑗 as follows:

𝐮𝑗 = 𝐮𝑝
𝑗
+

𝐮𝑓
𝑗
− 𝐮𝑝

𝑗|𝐱𝑓 − 𝐱𝑝| |𝐱𝑗 − 𝐱𝑝
𝑗
| (19)
𝑗 𝑗



where 𝐮𝑓
𝑗

is the fluid velocity at 𝐱𝑓
𝑗

, evaluated using the FE basis func-

tions, and 𝐮𝑝
𝑗

is given by the IB condition.

3.2.2. Multi-directional interpolation

The idea of this approach, here adapted from [4] to a Finite Ele-
ment framework (roughly schematized in Fig. 2b), can be summarized 
as follows:

1. For each purely fluid node surrounding the node 𝑗 ∈ 𝐽 , we compute 
an approximate derivative, in the direction normal to Γℎ, of the 
fluid velocity.

2. We compute the arithmetic mean of the obtained approximate 
derivatives.

3. We use this mean normal derivative to compute 𝐮𝑗 .

However, to be able to compute approximate normal derivative of 
the velocity at the nodes surrounding 𝑗, we need the projections of those 
nodes on Γℎ. Those purely fluid neighbors are denoted as follows:

∀𝑗 ∈ �1,𝑁𝑁 � , 𝑉𝑗 =
{
𝑣 ∈ �1,𝑁𝑁 �

|||∃𝑒 ∈𝐸0
𝑗
∕𝑣 ∈ 𝐽𝑒 and ∀𝑓 ∈𝐸0

𝑣
, 𝜒𝑓 = 0

}
(20)

Regarding geometrical data reconstruction, the method to achieve 
the projection slightly differs between the weighting and optimization 
approaches:

In the weighting approach. First, new elemental projections are computed:

∀𝑒 ∈ �1,𝑁𝐸�∕𝜒𝑒 = 1,∀𝑗 ∈ 𝐽𝑒,∀𝑣 ∈ 𝑉𝑗 , 𝐩𝑣
𝑒
= 𝐱𝑣 + 𝑙𝑣

𝑒
𝐧𝑒 (21)

with the definition of 𝑙𝑣
𝑒

being identical to the one presented in Sec-
tion 3.1.1. Then they are assembled in the following way:

∀𝑗 ∈ �1,𝑁𝑁 �∕𝛼𝑗 ≠ 0,∀𝑣 ∈ 𝑉𝑗 , 𝐱𝑝
𝑣
= 1

𝛼𝑣

∑
𝑒∈𝐸𝜒

𝑗

𝛼𝑣
𝑒
𝐩𝑣
𝑒

(22)

with:

∀𝑗 ∈ �1,𝑁𝑁 �∕𝛼𝑗 ≠ 0,∀𝑣 ∈ 𝑉𝑗 , 𝛼𝑣 =
∑
𝑒∈𝐸𝜒

𝑗

𝛼𝑣
𝑒

(23)

In the optimization approach. For nodes of 𝑉𝑗 , we must collect the facets 
that intersect neighbors or neighboring elements, which means:

∀𝑣 ∈
⋃
𝑗∈𝐽

𝑉𝑗 , 𝐼𝑣 =
{
𝑘 ∈ �1,𝑁𝑆�

|||∃𝑒 ∈𝐸1
𝑣
∕𝑆𝑘

𝑒
≠ ∅

}
(24)

Then the approximated minimization problem (18) is also solved for 
nodes 𝑣 where 𝐼𝑣 ≠ ∅ using the methodology presented in Section 3.1.2.

Provided the projections of neighbors, the velocity imposed at node 
𝑗 is computed as follows:

∀𝑗 ∈ 𝐽 , 𝐮𝑗 = 𝐮𝑝
𝑗
+ 𝛾𝑗

∑
𝑣∈𝑉𝑗

𝐮𝑣 − 𝐮𝑝𝑣|𝐱𝑣 − 𝐱𝑝𝑣| |𝐱𝑗 − 𝐱𝑝
𝑗
| (25)

with:

∀𝑗 ∈ 𝐽 ,

⎧⎪⎨⎪⎩
𝛾𝑗 =

1
card(𝑉𝑗 )

if card(𝑉𝑗 ) > 0

𝛾𝑗 = 0 else
(26)

3.2.3. Hybrid strategy

In future works, we will investigate turbulent immersed wall laws. 
As wall laws are usually directional, the directional approach of Sec-
tion 3.2.1 is privileged. However, depending on the immersed boundary 
geometry and the space step resolution, finding purely fluid elements 
around the node 𝑗, to define a fluid point 𝐱𝑓 , is not always possible. 
𝑗
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Table 1

Ranges of grid parameters for the geometrical test cases. The diameter of the 
cylinder 𝑑 = 2𝑟 and the chord length of the NACA0012 airfoil 𝑐 are equal to 1.

Case Length 𝑁𝐸 Grid Step 𝑁𝑆 Grid step

Cylinder [21, 151] [0.066, 0.63] [25, 250] [0.016, 0.13]
NACA0012 [21, 201] – [25, 250] –

In this case, a direct assignment of the immersed boundary velocity on 
node 𝑗 is usually done, decreasing the space order convergence. To over-
come this issue, we propose a hybrid strategy consisting in applying the 
directional approach where possible and the multi-directional approach 
elsewhere. Doing this, we apply second order space discretizations for 
all the configurations. Nevertheless, the computational cost is slightly 
increased by the fact that we have to build the needed interpolation 
data, not only for the point 𝐱𝑓

𝑗
, but also for the purely fluid nodes 𝐱𝑣

and their projection on Γℎ (cf. Fig. 2)

4. Numerical results and discussion

This section is divided in two parts:

1. the first one focuses on testing the geometrical reconstruction 
methods without flow simulation (cf. Section 4.1),

2. the second one focuses on flow simulations considering a fixed ge-
ometrical reconstruction method (cf. Sections 4.2 and 4.3).

4.1. Comparison between the geometrical data reconstruction methods

First, the different geometrical methods are compared using a sim-
ple 2D case with regular boundary (computed in a 3D framework): 
the circular cylinder. Second, the same geometrical methods are com-
pared using a more complex 2D case corresponding to the geometry of 
a NACA0012 airfoil. In this case, the trailing edge is no longer a regular 
boundary.

4.1.1. A regular test case: the circular cylinder

We consider a square domain of side 1.5 with a circular cylinder of 
radius 𝑟 = 0.5 and center 𝐜 = (0, 0) (cf. Fig. 3a). We compute some error 
indicators and observe their evolution when we refine the square hex-
ahedral volume mesh (Cartesian grid) or the cylindrical surface mesh 
(i.e. increase the number of facets) in order to compare accuracy and 
convergence rate (summary of grid configurations in Table 1). We use 
three different error indicators:

1. The radius related error: ∀𝑗 ∈ 𝐽 , 𝑒𝑟
𝑗
= |||𝑟𝑝𝑗 − 𝑟

||| with 𝑟𝑝
𝑗
= |||𝐱𝑝𝑗 − 𝐜|||,

2. The distance related error: ∀𝑗 ∈ 𝐽 , 𝑒𝑑
𝑗
= |||𝐱𝑝𝑗 − 𝐱𝑒

𝑗

|||,
3. The normal vector related error: ∀𝑗 ∈ 𝐽 , 𝑒𝑛

𝑗
= |||cos−1 |||𝐧𝑗 ⋅ 𝐧𝑒𝑗 |||||| with 

𝐧𝑗 = 𝐱𝑗 − 𝐱𝑝
𝑗
∕|||𝐱𝑗 − 𝐱𝑝

𝑗

||| and 𝐧𝑒
𝑗

the exact normal vector,

and, for each of them, we compute an approximated 2 and ∞ norms. 
Fig. 4a (resp. Fig. 4b) shows the evolution of those error indicators 
when the volume (resp. surface) mesh is refined for the weighting and 
optimization approaches. Let us recall that Weighting Ap. 1 (resp. 2, 
3, 4) is arithmetic mean (resp. area, inverse distance and area over 
distance weighting) and that Optimization lv. 1 (resp. 2) collects facets 
intersecting neighboring elements (resp. neighboring elements and their 
neighbors) of a given node. As a whole, when considering convergence 
with respect to the Eulerian grid step, all approaches seem to provide 
a roughly quadratic order ([2.34, 2.54] in 2 norm and [1.67,1.87] in 
∞ norm) for the radius and the distance related errors and linear 
([1.20, 1.42] in 2 norm and [0.70, 0.87] in ∞ norm) for the normal 
related error. Concerning convergence with respect to the Lagrangian, 
the conclusion for the weighting approach remains the same (except for 
the convergence of the distance indicator in ∞ norm which becomes 



Fig. 3. Examples of Eulerian (black) and Lagrangian (red) meshes for the geometrical test cases with 144 elements/cells (i.e. 𝑁𝐸 = 144) and 20 facets (i.e. 𝑁𝑆 = 20) 
and 𝑐 = 2𝑟 = 1.
roughly linear with value in [0.53, 1.12]). Optimization approaches sys-
tematically provide lower convergence rates.

It can also be noted that the optimization “level 1” systematically 
provides the largest error – probably because it takes into account data 
coming farther away from the considered point, making the approach 
formally non-local. On the other hand, when considering the weighting 
approach, the way of defining 𝛼𝑗𝑒 (cf. section 3.1.1) seems to have lit-
tle impact on the results except for the ∞ norm of the normal vector 
related error when refining the surface mesh. Indeed, when 𝛼𝑗𝑒 = 1 or 
𝛼
𝑗
𝑒 =𝑒 (i.e. Weigh. Ap. 1 and 2), we can see a jump at 𝑁𝑆 = 125 which 

is softened if an inverse distance weighting is used (i.e. Weigh. Ap. 3 
and 4). From Fig. 5b, we notice that a plateau minimal error is reached 
(or almost reached) for the finest Lagrangian space discretization. The 
level of this minimal error is driven by the Eulerian space step. It is not 
the case for the Eulerian space-step convergence study of Fig. 5a, where 
the minimal error driven by the Lagrangian space step is not reached. 
This could be explained by the fact that the minimum space step for the 
Lagrangian mesh (1.26 ×10−2) is slightly lower than the one of the Eule-
rian mesh (6.62 × 10−2) – factor 5. Finally, if we compare the weighting 
and optimization approaches, we can see that the optimization provides 
slightly larger errors but also a steadier convergence (less jagged), es-
pecially in ∞ norm, as we can expect from this method reputed as a 
robust one.

Moreover, concerning computational resources, we monitored the 
execution time of the intersection pipeline – other CPU tasks can pollute 
execution time but the accuracy of the results is about 0.1 s, which is 
clearly sufficient for the comparison. The weighting approach is greatly 
faster: 0.7 to 21 s depending on the grids configurations against 41.7 
to 496 with the optimization approach) – this is a key finding regard-
ing our application of the proposed modeling (i.e. shape optimization 
in nuclear component design). Another interesting finding is that the 
execution time seems to be more dependent on the number of volume 
elements (i.e. grid step) when considering the weighting approach but 
more dependent on the number of facets when considering the opti-
mization approach (in fact it depends on the number of collected facets 
per node). These tendencies were expected. On one side, the weight-
ing approach is rather local and the number of operations is, to some 
extent, constant for one given volume. Therefore, the computation cost 
mainly depends on the total number of volumes (or meshes). On the 
other side, the optimization approach is global and the number of oper-
ations, for a given node, strongly depends on the collected-facet number 
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Table 2

Geometrical and physical parameters used for the laminar Taylor-Couette flow.

𝑟1 (m) 𝑟2 (m) 𝜔1 (rad s−1) 𝜔2 (rad s−1) 𝜈 (m2 s−1) Re = |𝜔|𝑟21𝜈−1
5 × 10−1 1 1 -1 2.5 × 10−1 1

in the adjacent volumes. Therefore, when decreasing the volume space 
step, the number of nodes to project is increasing, but the number of 
Uzawa operations is decreasing, leading to the observed behavior.

4.1.2. A non regular test case: the NACA0012 airfoil

In this case, we consider the 2D NACA0012 airfoil described in 
Fig. 3b for wich the trailing edge is no longer a regular boundary. A 
summary of grid configurations is presented in Table 1. The same er-
ror indicators are considered (except the radius one for obvious reasons) 
and their evolution with respect to the grid step (resp. number of facets) 
is show in Fig. 5a (resp. Fig. 5b). In that case, we can see that all ap-
proaches provide equivalent error values and equivalent convergence 
orders. Moreover, for all approaches, convergence is roughly linear in 
2 norm ([0.94, 0.97]) with respect to the Eulerian grid step and really 
degraded when considering the Lagrangian mesh ([0.17, 0.24]) – with 
more than 75 facets, the error seems to reach a plateau, tending to 
show that the error linked to the Eulerian grid becomes predominant. 
Thus, all approaches fail to handle the trailing edge (∞ norm of error 
is close to 1 and located around the trailing edge). However, when we 
look at the execution times (0.6 to 23.9 s with the weighting approach 
and 53 to 179.4 s with the optimization approach) we can assess that 
the weighting approach is still largely faster for the same accuracy in 
the results. Therefore, in terms of performance and regarding our appli-
cation, the weighting approach remains the most advantageous. Hence, 
in the following cases, only the weighting (approach 3) is considered to 
obtain geometrical data from the discrete immersed boundary.

4.2. Laminar Taylor-Couette flow

4.2.1. Description of the Taylor-Couette flow

Taylor-Couette flow refers to the flow between two infinitely long 
concentric circular cylinders rotating at different angular velocities. 
Fig. 6a gives a schematic view of the case configuration where 𝑟1 =
0.5 m (resp. 𝑟2 = 1 m) is the radius of the inner (resp. outer) cylin-
der, 𝜔1 = 1 rad.s−1 (resp. 𝜔2 = −1 rad.s−1) is the angular velocity of 



Fig. 4. Intersection of an Eulerian volume mesh and a cylindrical Lagrangian surface mesh: evolution of different error indicators with respect to the Eulerian (resp. 
Lagrangian) grid step at fixed Lagrangian (resp. Eulerian) grid step in log/log scale.
the inner (resp. outer) cylinder, Γ1 (resp. Γ2) is the immersed bound-
ary corresponding to the inner (resp. outer) cylinder (they correspond 
to a no-slip condition, which means a Dirichlet BC with the Dirichlet 
fluid velocities given by the cylinders velocities), 𝑙 = 2𝑟2 +

1
4 is the side 

of the square domain and (𝑒𝑟, 𝑒𝜃) is the polar frame. An ad hoc value 
is imposed to the viscosity (𝜈 = |𝜔|𝑟21) to guarantee that the Reynolds 
number (Re = |𝜔|𝑟21𝜈−1) is equal to 1 (cf. Table 2 for a summary of the 
different sets of parameters). The stability of this flow in ensured by a 
condition on the Taylor number: Ta < Ta𝑐 ≈ 1.712 (see [22] for value and 
definitions). The numerical application gives, in our case, Ta = 1.5, so 
the criterion is respected. This means that, using lubrication theory, we 
are able to compute a steady state solution in which the fluid velocity 
is purely azimuthal.

4.2.2. Mesh convergence study

The global behavior is in good agreement with the analytical so-
lution (cf. Fig. 7a). The spatial convergence is numerically assessed in 
7

Fig. 8. The order of convergence, when using interpolation, is close to 2 
(between 1.7 and 1.8 in 2 norm and about 1.5 in ∞ norm), which is 
consistent with the theory. Moreover, the different interpolation tech-
niques greatly enhance the results (a factor 10−1 applied on the 2 norm 
of the error). It can also be noted that the multi-directional interpola-
tion seems more sensitive to the mesh refinement as it can produce 
higher local errors when the space resolution is low. For this test case, 
with well separated regular immersed boundaries, the hybrid approach 
provides the same results as the directional one.

4.3. Laminar flow around a circular cylinder

4.3.1. Description of the flow around a circular cylinder

The flow around a circular cylinder is a widely studied problem in 
the field of fluid dynamics. Fig. 6b gives the test case configuration 
where Γ is the immersed boundary corresponding to the surface of the 
cylinder, 𝑟 = 0.5 m is the cylinder radius, 𝑙 = 120𝑟 is the side of the 



Fig. 5. Intersection of a hexahedral Eulerian volume mesh and a NACA 0012 airfoil Lagrangian surface mesh: evolution of different error indicators with respect to 
the Eulerian (resp. Lagrangian) grid step at fixed Lagrangian (resp. Eulerian) grid step in log/log scale.
square domain. It is large to avoid boundary effects. Here, 𝐮∞ represents 
the uniform inlet velocity field (with 𝑈∞ = 1 its norm) and 𝜔 ∈ {0,2} is 
the dimensionless angular velocity of the cylinder. There is no analyt-
ical solution, but many experiments and simulations give macroscopic 
indicators, such as the drag and lift coefficients, as comparison elements 
in the static case (i.e. 𝜔 = 0). Some experimental data are also available 
for the rotating case. In practice, similarly to the Taylor-Couette case, 
different values of the Reynolds number (Re = 2𝑈∞𝑟𝜈−1) are achieved 
by imposing ad hoc values to the viscosity 𝜈 (cf. Table 3 for a summary 
of the different sets of parameters).

4.3.2. Mesh convergence study and aerodynamic coefficients

After checking that the global behavior of the flow was in good 
agreement with the literature (cf. Fig. 7b), the mesh convergence study 
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Table 3

Geometrical and physical parameters used for the laminar flow around a cylin-
der.

𝑟 (m) 𝑈∞ (m s−1) 𝜔 (rad s−1) 𝜈 (m2 s−1) Re = 2𝑈∞𝑟𝜈−1

5 × 10−1 1 0 5 × 10−2 2 × 101

5 × 10−1 1 2 5 × 10−2 2 × 101

5 × 10−1 1 0 10−2 102

5 × 10−1 1 2 10−2 102

was carried in both static and rotating configurations using the same 
parameters than the one presented in [2] – i.e. small domain (20𝑟 ×20𝑟) 
and finest simulation results considered as reference. The convergence 
curves, in 2 and ∞ norm, are presented in Figs. 9 and 10 for both 



Fig. 6. Schematic representation of the computational domain for various cases and flow limiter meshes drawings (source: [2]).

Fig. 7. Example of computed velocity magnitude fields for the flow around a circular cylinder at Re = 20 and the Taylor-Couette flow.
static and rotating cases. At Re = 20 (cf. Figs. 9a, 9b, 9c, 9d), the linear 
interpolation of the velocity in the vicinity of the obstacle reduces the 
error between the computed and reference solutions while increasing 
the rate of convergence. As expected, the order of convergence is close 
to 2 in 2 norm (in [1.7, 1.9]) when using linear interpolation. With 
direct assignment however, the order is slightly larger than 1 (1.3). As 
9

the physics is more complex and as there is no analytical solution avail-

able to compute the error, this deviation from the theory is expected. It 
is also noticeable in ∞ norm: the value is in [1.3, 1.5] with linear in-

terpolation and in [0.7, 0.9] with direct assignment. Nonetheless, what 
is important to note is that an approximative ratio of 2 in convergence 
order is preserved between direct assignment and linear interpolation. 



Fig. 8. Evolution of the relative 2 and ∞ norms of error of the azimuthal velocity with respect to the grid step in the case of the Taylor-Couette flow.

Fig. 9. Mesh convergence (2 and ∞) of the velocity for the steady flow around a circular cylinder (Re = 20) in both static and rotating configurations.
Furthermore, we can say that the multi-directional approach seems to 
provide slightly superior convergence rate but, overall, results are sim-
ilar.

To study the mesh convergence at Re = 100 (unsteady flow regime), 
as we use an adaptative time step which depends on the grid step (so 
10
the solutions of unsteady cases desynchronize when the mesh changes), 
only the mean value of the drag coefficient is considered. The results 
obtained with the interpolation techniques are summarized in Fig. 10. 
The difference in convergence order between the linear interpolation 
([1.5,1.7] in the static case and [1.7,2.1] in the rotating case) and the 



Fig. 10. Mesh convergence of the mean value of the drag coefficient for the unsteady flow around a circular cylinder (Re = 100).
Table 4

Aerodynamic coefficients computed for the steady laminar flow around a cir-
cular cylinder (Re = 20), static and rotating cases, using direct assignment 
(label “A”) and linear interpolation techniques (“B”: directional, “C”: multi-
directional, “D”: hybrid). Reference value for the static case are taken from 
[4,23–27] whereas reference values for the rotating case are taken from 
[4,24,28–30].

𝜔 Present work References

A B C D

𝐶𝑑 0 2.099 2.054 2.053 2.054 2.02 – 2.09
𝐶𝑑 2 1.911 1.880 1.879 1.880 1.85 – 2.000

𝐿𝑤 0 1.047 0.918 0.919 0.918 0.900 – 094

𝐶𝑙 2 2.877 2.779 2.780 2.779 2.617 – 3.032

𝛼(◦) 2 56.41 55.92 55.95 55.92 53.66 – 57.68

direct assignment (about 1.2 in both cases) is noticeable. In both cases, 
the order of convergence is overestimated for the direct assignment with 
respect to the theory (i.e. slightly superior to 1). Concerning linear in-
terpolation, the order of convergence is closer to 2 in the static case. It is 
also worth noting that the multi-directional technique seems to provide 
higher order of convergence (1.7 in the static case and 2.1 in the ro-
tating case) than the directional and hybrid techniques even if, overall, 
the error values are very similar.

The laminar flow around a circular cylinder was also used to carry 
out a global quantity study. This time, we consider a much larger do-
main (120𝑟 × 120𝑟) to minimize potential boundary effects and we use a 
grid counting 1,638,400 elements (approximately 40 within the diame-
ter of the cylinder). Depending on the configuration, different quantities 
have been monitored.

• Static cylinder at Re = 20: drag coefficient (𝐶𝑑 ) and recirculation 
length (𝐿𝑤) presented in Table 4.

• Rotating cylinder at Re = 20: drag coefficient (𝐶𝑑 ), lift coefficient 
(𝐶𝑙) and angle between the aerodynamic force and the horizontal 
axis (𝛼) presented in Table 4.

• Static cylinder at Re = 100: mean drag coefficient and fluctuations 
(resp. 𝐶𝑑 and 𝐶 ′

𝑑
), lift coefficient fluctuations (𝐶 ′

𝑙
) and Strouhal 

number St presented in Table 5.
• Rotating cylinder at Re = 100: mean drag coefficient and fluctua-

tions (resp. 𝐶𝑑 and 𝐶 ′
𝑑
), mean lift coefficient and fluctuations (resp. 

𝐶𝑙 and 𝐶 ′) and Strouhal number St presented in Table 5.

𝑙
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Table 5

Aerodynamic coefficients related to the unsteady laminar flow around a circular 
cylinder (Re = 100) using direct assignment (label “A”) and linear interpola-
tion techniques (“B”: directional, “C”: multi-directional, “D”: hybrid). Reference 
value for the static case are taken from [4,28,26,23,31–34] whereas reference 
values for the rotating case are taken from [4,28,24,35].

𝜔 Present work References

A B C D

𝐶𝑑 0 1.363 1.325 1.321 1.325 1.317 – 1.376
𝐶𝑑 2 1.138 1.102 1.098 1.102 1.0979 – 1.1890

𝐶𝑑
′ 0 0.012 0.011 0.011 0.011 0.009 – 0.012

𝐶𝑑
′ 2 0.105 0.091 0.090 0.091 0.0986 – 0.1195

𝐶𝑙 2 2.641 2.562 2.560 2.562 2.4050 – 2.51

𝐶𝑙
′ 0 0.343 0.295 0.294 0.295 0.227 – 0.349

𝐶𝑙
′ 2 0.369 0.301 0.297 0.301 0.3603 – 0.4427

St 0 0.161 0.165 0.165 0.165 0.164 – 0.170
St 2 0.163 0.166 0.166 0.166 0.165 – 0.1732

As a whole, we can see that the obtained results are in very good 
agreement with the reference values, in both steady (i.e. Re = 20) and 
(i.e. Re = 100) unsteady cases. Moreover, the linear interpolation pro-
vides results that are systematically closer to the reference values (all 
the kinds of interpolation produce similar values in this case with regu-
lar geometry and a very fine mesh).

4.4. Industrial case involving the flow limiter

4.4.1. Description of the flow limiter test case

This case is representative of the flow into a hydraulic diode. As we 
can see in Figs. 6c and 6d, we have a volume mesh (which represents 
the fluid located in the downcomer of a Pressurized Water Reactor in-
cluding the vessel inlet and vessel outlet) and a surface mesh (which 
comes from a CAD software and represents the shape of the flow lim-
iter). The combination of the two, gives a volume mesh with embedded 
data about the immersed boundary (characteristic function, normal vec-
tor, etc.). Let us notice that, for this case, the geometry of the immersed 
boundary is not a regular one, it involves some salient corners.

The case in itself corresponds to a Loss Of Coolant Accident induced 
by a break on the vessel cold inlet. Thus, as the primary circuit is pres-
surized, the flow comes from the bottom of the core, with a flowrate of 
5.2 kg s−1 (this estimation is coming from system scale computations), 
to the break (i.e. the vessel inlet). The outflow pressure is fixed at an ad 
hoc value of 50 bar. For this case, a Homogeneous Equilibrium Model 



Fig. 11. Streamlines and velocity magnitude for the flow limiter case (converged state with 3,594,240 elements).
Table 6

Flow limiter case: values of the head loss coefficient 𝐾 for different grids (ℎ =
𝑁

− 1
3 ) computed with the PDF method (“A”: direct assignment, “B”: directional 

interpolation, “C”: multi-directional, “D”: hybrid).

𝑁 ℎ (m) 𝐾

A B C D

6,080 5.48 × 10−2 28.3 17.7 43.5 17.7
48,640 2.74 × 10−2 13.8 14.6 15.8 14.4
164,160 1.83 × 10−2 6.6 5.78 6.76 5.75
794,880 1.08 × 10−2 5.7 5.45 5.65 5.48
3,594,240 6.53 × 10−3 5.5 5.4 – –

is used (with an inlet negative quality) as well as a Schlichting’s scalar 
turbulence model with a characteristic length of turbulence 𝐿𝑇 = 0.3 m. 
For a more detailed description of the case, the interested reader can 
refer to [8].

4.4.2. Mesh convergence study and head loss coefficient

We successfully ran simulations involving the 3D flow limiter [8], 
which demonstrates the generality and robustness of our method, as 
well as its capacity to deal with the aimed applications. First, the flow 
topology is respected as the creation of a vortex, supposed to delay 
core dewatering, occurs (cf. Figs. 11a and 11b). Second, we use the 
headloss coefficient 𝐾 [8] to carry out a mesh convergence study over 
the different grids (with the solution computed on the finest grids con-
sidered as reference). The values of 𝐾 are presented in Table 6. The 
results are consistent with the preliminary studies [8] and show that 
the directional interpolation tends to enhance the space convergence 
(cf. Fig. 12). Moreover, we can see that the values obtained with the 
directional interpolation are closer to the one obtained on the finest 
grid – this is encouraging for future turbulent wall law interpolation. 
What is also interesting to note is the threshold effect between 48,640 
and 164,160 elements, clearly visible in Fig. 12. Indeed, with less than 
164,160 elements, the space resolution is not sufficient to model the 
channel between the fins properly, leading to an overestimated head 
loss coefficient. Also, in this case, the results obtained with the hybrid 
interpolation are not exactly the same as the ones obtained with the di-
rectional interpolation (cf. Table 6) because the geometry is complex 
and non-regular at some locations. However, the hybrid approach does 
not show any significative improvement compared to the directional 
one.

In addition, some body-fitted simulations (with about 240,000 el-
ements) have been carried out. The value of 𝐾 obtained with the FE 
element discretization (resp. Volume Finite Element discretization) is 
5.40 (resp. 4.61). Those values are very close to the one obtained with 
the PDF method but the meshes are much more difficult to build, which 
highlights the interest of our approach, especially in the scope of shape 
optimization.
12
Fig. 12. Evolution of the head loss coefficient with respect to the grid step for 
the flow limiter case.

5. Conclusion and perspectives

In conclusion, we have introduced the context of this work, under-
lining the fact that the immersed boundary approach is more and more 
attractive for engineer studies, in particular considering the reduction 
of the meshing effort when the geometry is frequently modified. For 
instance, it is the case in fluid structure interaction or geometry op-
timization problems. Our work was focused on inflow thin complex 
obstacles with fluid on both sides, as we can find in the design of some 
innovative nuclear passive safety systems studied at CEA. Details about 
the original method developed by the authors to face this challenge 
and primary results were presented in [2]. This paper focuses specifi-
cally on different techniques to recover data from the discrete immersed 
boundary and different ways to achieve order 2 in space via linear in-
terpolation.

The Penalized Direct Forcing method was briefly reminded, as well 
as the other numerical methods involved in the simulation tool (frac-
tional step algorithm, FEM). However, additional data (such normal 
vector, normal projection, etc.) are needed to linearly interpolate field 
variables in the vicinity of the immersed obstacles in order to reach 
order 2 in space. Two different approaches, each including several 
variants, were considered: weighting and optimization. Results and per-
formances for those two approaches were compared over analytical 
(cylinder) and quasi-industrial (NACA0012 airfoil) test cases. It turns 
out that the error values obtained are similar but the weighting ap-
proach offers much lower computation times.

Then, to reach second order in space, two different interpolation 
strategies were presented: one involving interpolation in the direc-
tion normal to the immersed obstacle and the other involving multi-
directional interpolation. A hybrid strategy was proposed too.



Afterwards, all different interpolation techniques were tested over 
two cases. First, the laminar Taylor-Couette flow (for which the analyti-
cal solution is known) was used to carry out a mesh convergence study. 
It showed that all linear interpolation variant reduce the error while in-
creasing the spatial order of convergence (reaching two for the velocity 
in 2 norm). Second, the laminar flow around a circular cylinder – de-
clined in four configurations: steady regime with static cylinder, steady 
regime with rotating cylinder, unsteady regime with static cylinder and 
unsteady regime with rotating cylinder – was also used to carry out a 
mesh convergence study, even if no analytical solution is available (re-
sults obtained with finest grid considered as reference). All the linear 
interpolation techniques allow to reach order 2 in space. We also used 
experimental data and other simulations results as comparison for our 
method by the means of global quantities (mainly aerodynamic coef-
ficients and Strouhal number). Although the results obtained with all 
interpolation techniques are similar, they still provide a great enhance 
when compared to the direct assignment variant (i.e. results are much 
closer to the reference values).

Finally, the capacity of our method to deal with the aimed applica-
tion was demonstrated using a case representative of the flow limiter. 
Results are coherent with the preliminary study [8] but assessed a sig-
nificative improvement in term of robustness. Also, this industrial test 
case tended to show that the directional interpolation approach pro-
vides the faster rate of convergence and lowest errors.

As perspectives, we are considering creating cases representative of 
other systems involving hydraulic diodes, for instance advanced ac-
cumulators [9]. Furthermore, we are currently developing a wall law 
(inspired from [19]) interpolation feature in order to deal with tur-
bulence modeling. Finally, we could extend the method to Neumann 
boundary conditions or use the same linear interpolation techniques to 
deal with the pressure gradient in the prediction equation.
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