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Opportunistic perfect preventive
maintenance policy in presence of
masked data

Hasan Misaii1,2, Firoozeh Haghighi1 and Mitra Fouladirad2

Abstract
In this paper, the maintenance optimization problem of multi-component system is considered. It is assumed that the
exact cause of system failure might be masked. That is, the exact cause of failure is unknown, and we only know that it
belongs to a set called mask set. Both opportunistic perfect preventive maintenance (OPPM) and perfect corrective
maintenance are considered. Threshold of OPPM and inter-inspection interval are considered as decision parameters
which are optimized using long-run cost rate criteria. The applicability of the proposed maintenance policy is investigated
using an illustrative example.
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Introduction

Maintenance activities are related with inspection, ser-
vice, repair, and replacement of system. The goal of
maintenance is to ensure the maximum efficiency and
availability of the system at an optimal cost under
safety. Generally, maintenance actions are classified
into two categories: corrective maintenance (CM) where
maintenance activities are carried out when the system
is failed and preventive maintenance (PM) where main-
tenance activities are performed when the system is
operating. Also, there are different types of preventive
and corrective maintenance, for more details one is
referred1–5 and references therein.

Both preventive maintenance (PM) and corrective
maintenance (CM) are classified based on the impact
incurred by the system/unit after maintenance action as
follows: perfect maintenance (PEM) which restores the
system to an as good as new (AGAN) state, minimal
maintenance (MM) which restores the system to an as
bad as old (ABAO) state, imperfect maintenance (IM)
which restores the system to a state between AGAN
and ABAO state, worse maintenance which makes the
system weaker than its state just before failure and
worst maintenance which breaks down the system
unintentionally.6

Maintenance of multi-component systems is differ-
ent from single-unit systems because of economic,

structural, and/or failure (correlated failures) depen-
dency between components.7,8 Thus the emergence of
new categories of repairs which could support these
dependencies has been the next step in classification
development of maintenance. This class is based on
combination of PM and CM and called opportunistic
maintenance (OM). Cavalcante and Lopes9 defined
OM as a systematic method of collection, investigation,
and preplanning activities for generating a set of main-
tenance tasks to act on in the occurrence of an oppor-
tunity. OM contains any maintenance actions that
could opportunely be done in order to carry out the
optimal maintenance policy. According to this defini-
tion, OM could be inter-twisted with many other types
of maintenance. This combined model saves set-up
costs using corrective maintenance which is not possi-
ble in planned maintenance but it is often not known in
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advance which actions are taken, and then no planning
and no work preparation are possible.10

The opportunistic maintenance has been first studied
by Radner and Jorgenson,11 McCall,12 and Jorgenson
and McCall.13 Since, budgets and costs were been more
important over time, the advantage of OM overcame its
disadvantages (no planning and no work preparation)
and it has been developed in considerable academic and
industrial works Such as Berg,14,15 Vu et al.,16 Yuan
et al.,17 Zhao et al.,18 Yang et al.,19 Cavalcante and
Lopes,9 and Mishra et al.20

In the reliability analysis of series systems, time to
failure, and the exact cause of failure are collected in
order to do different statistical analysis such as estima-
tion of the reliability function and maintenance model-
ing. But, sometimes the exact cause of failure is
unidentifiable (because of improper diagnostic equip-
ment storage, or time and cost restrictions) and we only
know that the exact cause of failure belongs to a mini-
mum random subset (MRS) of all possible causes.
These data are called to be masked.21,22 It is worth
nothing that there is difference between masked and
missing cause. In missing data setup there is no infor-
mation about missed cause while in masking data setup
there is some partial information about masked cause,
for more details about differences one is referred.23,24

In this paper, an opportunity based perfect preven-
tive maintenance policy is considered in presence of
masked data. A perfect preventive maintenance action
restores an operating deteriorated (non-failed) compo-
nent to an as good as new (AGAN) state, for instance
replacing it by a new one. When the system fails besides
the failed component, some endangered components
are replaced by a new one thus the perfect preventive
replacements are opportunistic. The difference of the
presented paper with other existing ones could be men-
tioned as considering optimal maintenance policy in
presence of masked data and applying opportunistic
maintenance action. Also, inspections are applied peri-
odically and inter-inspection interval is optimized.

The main idea of the paper lies in a real problem
related to water supply network of some villages that
performs as a series system. The water supply network
comprises many components and when a component
fails the whole network is stopped. Overhauling of all
network is impossible because of cost and time limita-
tions. The best way is to find possible failure causes and
repair them. When the water supply network is broken
down the exact cause of failure might be unknown but
there are some possible failure causes yielding in the
masking problem. To repair the network a maintenance
modeling is required. In this paper, an opportunity
based perfect preventive maintenance policy is pre-
sented to encounter masking. Based on the opportunis-
tic perfect preventive maintenance (OPPM) policy a
probability threshold and inter-inspection interval are
optimized.

The rest of the paper is organized as follows. In
Section 2, the model is explained. The reliability

function is characterized in Section 3. In Section 4, the
maintenance model is proposed and maintenance prob-
abilities are calculated. A numerical example is con-
ducted in order to illustrate the applicability of the
proposed method in Section 5. Finally, the conclusion
is given in Section 6.

Model description

Suppose that we have a series system with J compo-
nents that operates in a static environment. Moreover,
we suppose that when the system fails we observe fail-
ure time, t, but the exact cause of failure might be
unknown, and we only know that it belongs to MRS of
f1, 2, :::, Jg. Let M be the observed MRS correspond-
ing to the failure time t for the system. The set M essen-
tially includes components that are possible to be cause
for system failure and if M= f1, :::, Jg then the system
cause of failure is called to be completely masked. Thus
the known information is given as follows:

(t,M): ð1Þ

To obtain the reliability function of the system and pro-
pose its maintenance modeling some assumptions and
definitions have been made as follows.

Assumptions and definitions:

1. Let Tl; l=1, 2, :::, J be the lifetimes of the l th
component (independent components) and assume
that the system fails only due to one of the J com-
ponents, therefore the system failure time T is
defined to be T=min(T1, :::,TJ).

2. Tl belongs to a continuous distribution family with
probability density and reliability functions
denoted by fl(t) and Rl(t), respectively.

3. The reliability function of T is given by

R(t)=R(t; u)=Pu(T. t)=
YJ
l=1

½1� Fl(t)� ð2Þ

where u=(u1, :::, uJ) and ul is the set of parameters
related to the l th component and Fl is corresponding
distribution function of l th component.

4. Suppose K be a random variable which indicates
the cause of failure for the system. Then the joint
probability density function of (T,K) is given by

fT,K(t, l)= fl(t)
Y
j6¼l
½1� Fj(t)� ð3Þ

where, the joint distribution of T and K can be speci-
fied in terms of the so called sub-distribution function
F(j, t)=P(K= j,T4t), or equivalently by the sub-
reliability function R(j, t)=P(K= j,T. t).25
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5. ptl(Mi)=P(M=MijT= t,K= l) is called the
masking probability, where Mi is an observation
of M. Some authors such as Mukhopadhyay and
Basu,26 Kuo and Yang,27 and Cai et al.28 assumed

P(M=MijT= t,K= l)=P(M=MijK= l)= pl(Mi),

that is, the masking probability is independent of failure
time, but is dependent to the causes of failure. Similar
to a new approach that was presented to model the
dependency of the masking probability on the failure
time and its exact cause using the multinomial logistic
regression model,23 we also assume that the masking
probability depends on the failure time and its exact
cause.

6. Some constraints are considered for conditional
masking probabilities. Suppose M be the set of all
nonempty subsets of f1, :::, Jg that have 2J � 1
members. For l=1, :::, J, define Ml = fM 2
M : l 2Mg (i.e. members of M that include l)
thus

ptl(Mi)=P(M=MijK= l,T= t)

=0 8 Mi 2M
c
l =M�Ml

andX
Mi2M

ptl(Mi)=
X

Mi2Ml

ptl(Mi)=1, l=1, :::, J ð4Þ

denote Pl = ftl(Mi) : Mi 2Mlg, l=1, 2, :::, J then the
set of all masking probabilities is P=(P1, :::,PJ).

Reliability modeling

The following theorem provides an expression for the
reliability function of a series system in presence of
masked data under the mentioned assumptions in the
previous section.

Theorem 1. Consider a series system with J component
where the exact cause of failure might be unknown.
Assume that T is the lifetime of the system, M is the set
of all nonempty subsets of f1, 2, :::, Jg and K indicates
the exact cause of failure. The reliability function is
given by

R(t)=

ð‘

t

XJ
l=1

fl(u)
Y
j6¼l

Rj(u)du: ð5Þ

Proof of theorem 1: The reliability function is driven as
follows:

R(t)=

ð‘

t

X
Mi2M

X
l2Mi

P(M=Miju\T\ u+ du, l)

fT,K(u, l)du

=

ð‘

t

XJ
l=1

fT,K(u, l)
X

Mi2M

P(M=Miju\T\ u+ du, l)du

=

ð‘

t

XJ
l=1

fT,K(u, l)du=

ð‘

t

XJ
l=1

fl(u)
Y
j6¼k

Rj(u)du

where the third equality is held since

8 l 2 f1, 2, :::, Jg )
X

Mi2M

P(M=Miju\T\ u+ du, l)=1

and other equalities are straightforward. Further, from
(2), it is concluded that

YJ
l=1

Rl(t)=

ð‘

t

XJ
l=1

fl(u)
Y
j6¼k

Rj(u)du:

Maintenance modeling

In this section, a perfect preventive maintenance (PPM)
policy is presented based on an opportunistic action
and an optimal maintenance policy is derived using
long-run cost rate criteria for a series system with J
components. Inspections are assumed to be periodically
at times kt; k=1, 2, :::, with cost cins for the system
and Mk; k=1, 2, ::: are corresponding masked sets.
The time interval ((k� 1)t, kt� is called the k th period.
Maintenance actions are applied based on some
assumptions including:

� Inspection is performed at the end of each period
� Time needed for inspection and maintenance

actions is negligible
� The system failure is not self-announced
� Components are maintained independently

At k th inspection time, kt, a maintenance action is
performed if the system has been failed during
((k� 1)t, kt� interval, that is,

T. (k� 1)t & T\ kt:

Since it is assumed that exact cause of failure is
unknown and it belongs to possibly masked set,
Mk � f1, 2, :::, Jg, thus the probability of each cause in
Mk given possibly masked set and interval censored
failure time is given by
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pjMk
=P(K= jjMk, u 2 ((k� 1)t, kt�)

=

Ð kt

(k�1)t P(Mkjj, u)fT,K(u, j)duÐ kt

(k�1)t
P

l02Mk
P(Mkjl0, u)fT,K(u, l0)du

ð6Þ

where u is the exact failure time. Note that pjMk
=0 for

j 62Mk.
Eventually, when the system is failed at ((k� 1)t, kt�

a maintenance action is carried out for each component
in Mk according to a predetermined value of
r; 0\ r \ 1, as follows:

� If Tl . (k� 1)t & Tl \ kt then perfect correc-
tive maintenance (PCM) action is done for compo-
nent l with cost clc (i.e. the failed component l is
replaced by a new one).

� If Tl . kt & plMk
. r then opportunistic perfect

preventive maintenance (OPPM) action is done for
component l with cost clp \ clc (i.e. the degraded
component l is replaced by a new one).

Otherwise, no maintenance action is done.

Maintenance probabilities calculations

Proposition 1. A perfect corrective repair (PCR) is done
for component l, l 2Mk, if the system fails at
((k� 1)t, kt� and

Tl . (k� 1)t & Tl \ kt:

Define Pcl(kt) as probability of perfect corrective repair
for component l; l=1, 2, :::, J, at k th inspection time,
thus

Pcl(kt)=P(l 2Mk & T. (k� 1)t & Tl \ kt)

=P(T. (k� 1)t & Tl \ kt)

X
M2M

P(Mk =MjT. (k� 1)t & Tl \ kt)IlfMg
" #

=P(T. (k� 1)t & Tl \ kt)

X
M2M

P(Mk=Mj(k�1)t \T\ kt & K= l)IlfMg
" #

=(Rl((k� 1)t)� Rl(kt))
YJ

j 6¼l, j=1

Rj(kt)

ð7Þ

where forth equation is hold sinceP
M2M P(Mk =MjT. (k� 1)t & K= l)IlfMg=1

and

IlfMg=
1 l 2M
0 l 62M

�

Proposition 2. An opportunistic perfect preventive repair
(OPPR) is done for component l, l 2Mk, if the system
fails at ((k� 1)t, kt� and

Tl . kt & plMk
. r:

Define Ppl(kt) as the probability of the opportunistic
perfect preventive repair for component
l; l=1, 2, :::, J, at k th inspection time, thus

Ppl(kt)=P(l 2Mk & (k� 1)t \T\ kt & Tl . kt & plMk
. r)

=P((k� 1)t \T\ kt & Tl . kt)

3
X
M2M

P(Mk =Mj(k� 1)t \T\ kt & Tl . kt)IlfMgI(plM . r)

" #

=P(Tl . kt) ½
XJ

j6¼l;j=1

P((k� 1)t \Tj \ kt)
Y
i6¼j

Ri(kt)

" #

3
X
M2M

P(Mk =Mj(k� 1)t \T\ kt & K 6¼ l)IlfMgI(plM . r)�
" #

=P(Tl . kt) ½
XJ

j 6¼l;j=1

P((k� 1)t \Tj \ kt)
Y
i 6¼j

Ri(kt)

" #

3
X
M2M

" PJ
j6¼l;j=1

P(Mk =Mj(k� 1)t \T\ kt & K= j)P((k� 1)t \T\ kt & K= j)

PJ
j6¼l;j=1

P((k� 1)t \T\ kt & K= j)

3 IlfMgI(plM . r)��

ð8Þ
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Long-run cost rate

The time from the component installation to its first
replacement or the time between two successive replace-
ment of each component is referred to as a renewal
cycle. Let L and Lj denote the average long-run mainte-
nance cost per unit of time for the system and compo-
nent j, respectively. Therefore, based on the renewal
reward theorem the expected long-run maintenance
cost rate for component j is

Lj(t, r)= lim
t!‘

Cj(t)

t
=

E(Crj)

E(Trj)
ð9Þ

where E(Crj) and E(Trj) are total expected cost during a
replacement cycle and expected length of the replace-
ment cycle for component j, respectively such that

E(Crj)=
X‘

k=1

"
kcins
J

+ cjp

� �
Ppj(kt)

+
kcins
J

+ cjc

� �
Pcj(kt)

# ð10Þ

and

E(Trj)=
X‘

k=1

kt½Ppj(kt)+Pcj(kt)�: ð11Þ

Finally, the total expected long-run maintenance cost
rate for the series system until time t is given by29,30

L(t, r)=
XJ
j=1

Lj(t, r): ð12Þ

The maintenance plan is briefly illustrated in the
Algorithm 1.

Illustrative example

In this section, a series system with J=3 components is
considered. The system is inspected periodically at times
kt; k=1, 2, :::, and Mk; k=1, 2, ::: are correspond-
ing masked sets. The inspection cost for the system is
cins. The collected data are (kt,Mk); k=1, 2, :::.
When the system fails, an opportunistic perfect preven-
tive replacement is carried out for components that are
in the masked set Mk where plMk

. r and a perfect cor-
rective replacement is made for failed component with
costs clp and clc, respectively. Two illustrative examples
have been constructed to clarify previous sections. In

Algorithm 1. The plan of imperfect corrective maintenance of the system.
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both of them, it is assumed that the lifetime of compo-
nents are independent and follow the Weibull distribu-
tion with parameter set (aj,bj); j=1, 2, 3, as follows:

fTj(tj)=
aj

bj

tj
bj

 !(aj�1)

exp � tj
bj

 !aj
 !

:

We set cins=1, (c1p, c2p, c3p)= (1:5, 2:5, 3:5), and
(c1c, c2c, c3c)= (2, 4, 5).

Completely masked sets

In this subsection, all masked sets are considered as
completely masked sets which is similar to missing
setup, that is, Mk = f1, 2, :::, Jg; k=1, 2, :::, thus

pjMk
= p(K= jjMk, u 2 ((k� 1)t, kt�)

=

Ð kt

(k�1)t fT,K(u, j)duÐ kt

(k�1)t
P

l02Mk
fT,K(u, l0)du

since 8j 2 f1, 2, :::, Jg and t 2 ½0,‘)

P(Mk =MjK= j, t)=
1 if M= f1, 2, :::, Jg
0 if M 6¼ f1, 2, :::, Jg

�

where the inter-inspection interval, t, is considered as
decision parameter and should be optimized through
maintenance optimization problem.

One of the most important aspects of the Weibull
distribution is comprising three different failure rates
according to its shape parameter (a). Weibull distribu-
tions with a \ 1 have a failure rate that decreases with
time, also known as infantile or early-life failures, with
a close to or equal to 1 have a fairly constant failure

rate, indicative of useful life or random failures, with
a . 1 have a failure rate that increases with time, also
known as wear-out failures.

To begin, the decision parameters t and r are opti-
mized by considering three different types of failure
rates with different parameter sets as follows.

For constant failure rate, the parameter sets
(a1,a2,a3)= (1, 1, 1) and (b1,b2,b3)= (0:25, 0:5, 1:5),
for increasing failure rate, the parameter sets
(a1,a2,a3)= (1:25, 2, 2:5) and (b1,b2,b3)= (2:5, 2:25,
2:75), and for decreasing failure rate, the parameter
sets (a1,a2,a3)= (0:5, 0:25, 0:7) and (b1,b2,b3)=
(1:5, 1:25, 1:75) are considered. Corresponding reliabil-
ity and failure rate functions of the system are drawn in
Figures 1(a), (b), 2(a), (b), 3(a), and (b), respectively.
Without loss of generality, inspections are scheduled
periodically at times kt; k=1, 2, :::. First, t is pre-
specified and then the optimal values of r and corre-
sponding cost rates for t =0:09, t =0:03, and t =0:04
are obtained and depicted in Figures 1(c), 2(c), and 3(c)
for constant, increasing, and decreasing failure rate
modes, respectively. Considering this setup, the optimal
values of r are 0:1, 0:1, and ½0:1, 0:2� for constant,
increasing, and decreasing failure rates with cost rates
69:639, 120:261, and 123:221, respectively.

Afterward, besides r, t is also considered as a deci-
sion parameter of the maintenance optimization prob-
lem. In such a case, the optimal value of t is a trade-off
between rate of cost and r. The value of t should
be chosen to minimize cost and maximize r, simultane-
ously. According to the obtained results given in
Table 1, the optimal value of t is obtained as t =0:54,
0.67, and 0.88 for constant, increasing, and decreasing
failure rates, respectively and corresponding optimal
values of r are drawn in Figures 1(d), 2(d), and 3(d).
Considering this setup, the optimal values of r are 0:1,
0:2, and 0:2 for constant, increasing and decreasing

Table 1. The optimal inter-inspection interval value (t) as decision parameter with different cost rates and r.

Constant Decreasing Increasing

t r Cost rate t r Cost rate t r Cost rate

0.03 0.00 154.38 0.01 0.20 445.45 0.01 0.00 368.44
0.04 0.00 125.23 0.02 0.20 234.48 0.02 0.00 184.31
0.05 0.10 102.16 0.03 0.10 161.29 0.03 0.10 120.26
0.06 0.10 92.90 0.04 0.10 123.22 0.10 0.20 37.42
0.07 0.10 86.11 0.10 0.20 56.15 0.20 0.20 21.17
0.09 0.10 69.64 0.20 0.20 32.80 0.29 0.20 16.37
0.11 0.10 62.42 0.30 0.20 24.18 0.30 0.20 16.01
0.14 0.10 55.72 0.40 0.20 19.50 0.40 0.20 13.37
0.17 0.10 48.73 0.50 0.20 16.30 0.50 0.20 11.76
0.26 0.10 36.90 0.70 0.20 12.72 0.59 0.20 10.69
0.27 0.10 34.14 0.80 0.20 11.42 0.60 0.20 10.58
0.31 0.10 32.96 0.81 0.20 11.31 0.67 0.20 9.99
0.42 0.10 24.21 0.82 0.20 11.20 0.68 0.10 10.04
0.44 0.10 23.16 0.85 0.20 10.88 0.69 0.10 9.95
0.50 0.10 21.13 0.86 0.20 10.77 0.70 0.10 9.87
0.53 0.10 20.10 0.87 0.20 10.68 0.71 0.10 9.80
0.54 0.10 19.90 0.88 0.20 10.58 0.72 0.10 9.72
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failure rates with cost rates 19:897, 9:988, and 10:577,
respectively. Based on the results, an optimal value of r

decreases rate of cost in three different types of failure
rates of the Weibull distribution. Moreover, the opti-
mal value of r, while the inter-inspection interval is also
optimized, results in a remarkable decreasing in rate of
cost in all types of failure rates such that, in the case of
constant failure rate, the rate of cost decreases from

69.639 to 19.897, in the increasing failure rate case, the
rate of cost decreases from 120.261 to 9.988 and in the
decreasing failure rate case, the rate of cost decreases
from 123.221 to 10.577.

Moreover, three different types of failure rates are
considered in order to study how the uncertainty about
the shape parameter affects on the obtained results.
This can be done by varying the values of a but

Figure 1. The optimal value of r as decision parameter considering (a1, a2, a3) = (1, 1, 1) and (b1, b2, b3) = (0:25, 0:5, 1:5):
(a) reliability function of the system, (b) failure rate of the system (constant), (c) t = 0:09, and (d) t = 0:54 (the optimal value).
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keeping b values as the same. We set (b1,b2,b3)=
(0:25, 0:5, 1:5) for three types of parameter sets
(a1,a2,a3)= (1, 1, 1), (1:25, 2, 2:5), (0:5, 0:25, 0:7) for
constant, increasing, and decreasing failure rates,
respectively. As the results show in Figure 4, different
values for the shape parameter lead to different optimal
values since the operation mechanism varies for

different shape values. Such that, for
(a1,a2,a3)= (1, 1, 1) the optimal values are
(t, r)= (0:54, 0:1), for (a1,a2,a3)= (1:25, 2, 2:5) the
optimal values are (t, r)= (0:11, 0:2) and for
(a1,a2,a3)= (0:5, 0:25, 0:7)) the optimal values are
(t, r)= (1:11, ½0:2, 0:3�) with cost rates 19.897, 60.530,
and 9.709, respectively.

Figure 2. The optimal value of r as decision parameter considering (a1, a2, a3) = (1:25, 2, 2:5) and (b1, b2, b3) = (2:5, 2:25, 2:75):
(a) reliability function of the system, (b) failure rate of the system (increasing), (c) t = 0:03, and (d) t = 0:67 (the optimal value).
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Not-completely masked sets

In this subsection, the data are masked randomly using
multinomial distribution with probability vector
(p1, p2, p3), where pi = p(jMkj= i) that is, pi is the
probability that cardinality of Mk is i; i=1, 2, 3. We
set (b1,b2,b3)= (2:5, 2:25, 2:75) and (p1, p2, p3)=
(0:5, 0:3, 0:2) for three types of failure rates.
Considering (a1,a2,a3)= (1, 1, 1) as the constant

failure rate leads to optimal values (t, r)= (0:201,
½0:6, 0:9�) presented in Figure 5, (a1,a2,a3)=
(1:25, 2, 2:5) as the increasing failure rate leads to opti-
mal values (t, r)= (1:2, ½0:7, 0:9�) presented in Figure 6
and (a1,a2,a3)= (0:5, 0:25, 0:7) as the decreasing fail-
ure rate leads to optimal values (t, r)= (0:101, 0:3) pre-
sented in Figure 7 with cost rates 26.415, 7.268, and
58.726, respectively.

Figure 3. The optimal value of r as decision parameter considering (a1, a2, a3) = (0:5, 0:25, 0:7) and (b1, b2, b3) = (1:5, 1:25, 1:75):
(a) reliability function of the system, (b) failure rate of the system (decreasing), (c) t = 0:04, and (d) t = 0:88 (the optimal value).
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Figure 4. The optimal value of r as decision parameter considering (b1, b2, b3) = (0:25, 0:5, 1:5) under different failure rates:
(a) t = 0:54 (the optimal value) and a = (1, 1, 1), (b) t = 0:11 (the optimal value) and a = (1:25, 2, 2:5), and (c) t = 1:11 (the optimal
value) and a = (0:5, 0:25, 0:7).
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Figure 5. The optimal value of r as decision parameter considering (a1, a2, a3) = (1, 1, 1) and (b1, b2, b3) = (2:5, 2:25, 2:75) and
t = 0:201 as the optimal value.

Figure 6. The optimal value of r as decision parameter considering (a1, a2, a3) = (1:5, 2, 2:5) and (b1, b2, b3) = (2:5, 2:25, 2:75) and
t = 1:2 as the optimal value.

Figure 7. The optimal value of r as decision parameter considering (a1, a2, a3) = (0:5, 0:25, 0:7) and (b1, b2, b3) = (2:5, 2:25, 2:75)
and t = 0:101 as the optimal value.
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Conclusion

In this work, a maintenance policy is proposed for a
multi-component system in which the exact cause of
system failure might be masked. The system is periodi-
cally inspected and the inter-inspection interval is con-
sidered as a maintenance variable. At each inspection
time, if the system fails masked set is specified and all
components in the masked set are checked. The failed
component is replaced by a new one as a corrective
replacement action and the conditional probability of
cause for other components is compared with a preven-
tive threshold. If it exceeds the preventive threshold the
component is replaced by a new one as opportunistic
perfect preventive replacement action. Maintenance
variables, inter-inspection interval and preventive
threshold, are chosen to minimize the average long-run
cost rate. The simulation results show that optimal val-
ues of maintenance variables significantly reduce the
average long-run cost rate. The maintenance problem
for multi-component systems with masked causes of
failure in a dynamic environment will be considered in
the future studies.
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