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Abstract

Recent empirical analysis of income distributions are often limited by the exclu-
sive availability of data in a grouped format. This data format is made particularly
restrictive by a lack of information on the underlying grouping mechanism and sam-
pling variability of the grouped-data statistics it contains. These restrictions often
result in the unavailability of an analytical parametric likelihood function exploiting
all information available in the grouped data. Building on recent methods for infer-
ence on parametric income distributions for this type of data, this paper explores
a new Approximate Bayesian Computation (ABC) approach. ABC overcomes the
restrictions posed by grouped data for Bayesian inference through a non-parametric
approximation of the likelihood function exploiting simulated data from the income
distribution model. Empirical applications of the proposed ABC method in both
simulated and World Bank’s PovCalNet data illustrate the performance and suit-
ability of the method for the typical formats of grouped data on incomes.
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1 Introduction

Since its early days, the empirical study of income distributions and income inequality has
faced the limitations posed by data often being available only in a grouped or tabulated
format. Historically, perhaps the earliest cases for such limitations can be traced to the
release of tabulated or bracketed data on incomes from tax authorities and other admin-
istrative institutions for the purpose of economic research (e.g., Goldsmith et al. (1954),
Kuznets (1955), and Lebergott (1959)). This choice of format at the time responded in
part to technological limitations in providing and handling full samples of individual-level
data and in part as a method of statistical disclosure control avoiding the identification
of individuals from their reported incomes.

Recent decades have seen an important increase in the availability of microdata sources
to study income distributions from individualized survey or tax data samples, made fea-
sible with the progress of computational resources and with the development of more
refined statistical disclosure control methods such as top-coding or multiple imputations
(An and Little, 2007). However, it still is the case today that data for income distribution
analysis are in many cases only available in restrictive grouped-data formats.

Grouped data is still encountered for instance in datasets constructed with the inter-
est in international comparisons of income distributions. This is the case for all large
compilatory datasets on world household incomes publicly available today such as UNU-
WIDER’s World Income Inequality Database (WIID) (an extension of the World Bank’s
Deininger and Squire (1996) dataset), the Lakner-Milanovic World Panel Income Dis-
tribution (LM-WPID) (Lakner and Milanovic, 2016), the Global Consumption and In-
come Project (GCIP) dataset (Lahoti et al., 2016), or the World Inequality Database
(WID.world) (Piketty et al., 2019), where only summary statistics for different income
groups, such as average decile incomes, are provided for each country and period.

This format of data are the outcome of compiling many micro- and grouped-data
sources across several countries and periods using compatible definitions of incomes and
populations of interest. In doing so, it allows for splitting cross-country comparisons into
simple differences in scale-invariant measures such as group income shares and more del-
icate differences in scale-dependent measures such as per capita incomes measured in a
common Purchasing Power Parity (PPP) currency.

Moreover, this format for data provision is not exclusive to questions of international
comparisons but is also still the usual format in which income tax data are provided for
research purposes (e.g., Piketty and Saez (2003), Piketty (2003), Blanchet et al. (2017)).

The challenge that grouped data poses for its analysis is that it imposes additional
limitations to the usual methods used for inference on income distributions: the income
distribution underlying the data needs to be infered along with the specific grouping mech-
anism yielding the observed grouped-data summary statistics. This poses a difficulty for
point-estimation of quantities of the income distribution such as inequality measures, as
the distribution or level of inequality within groups cannot be directly observed in the
data.
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Grouped data also poses more general difficulties of inference on the income distribu-
tion as computing measures of statistical uncertainty such as standard errors may require
analytical expressions or additional information on the underlying individual-level data
such as sample sizes which are unavailable in many situations.

This paper seeks to contribute to the recent literature on grouped data methods for in-
come distribution analysis in several aspects. Firstly, following recent approaches approx-
imating the often unavailable grouped-data likelihood function, Approximate Bayesian
Computation (ABC) is explored as a new type of non-parametric approximation to the
likelihood. Secondly, parametric Generalized Lorenz curves are explored as suitable repre-
sentations of the income distribution for exploiting all information commonly available in
grouped data. Finally, the performance of the proposed ABC method is studied in both a
simulated data and a real data setting, evidencing it to perform competitively with other
recent methods. In the interest of comparability with recent research on grouped-data
methods, the case of the Peruvian income distribution in 2013 is revisited exploiting the
same data as in Eckernkemper and Gribisch (2021) through a parametric Generalized
Beta distribution of the second kind (GB2) Generalized Lorenz curve.

The rest of this article is presented as follows. The following section summarizes empir-
ically relevant formats of grouped data on incomes and the recent development of methods
to study a population’s income distribution through them. The third section proposes
a grouped-data Bayesian inference method for this purpose. Section four presents firstly
a simulated-data experiment assessing the performance of this method in contrast with
other recent grouped-data methods. Section four also provides a real-data application of
this Bayesian method taking as benchmark recent results on the income distribution of
Peru in 2013 with grouped data from the World Bank’s PovCalNet database. Finally, the
fifth section discusses the main virtues and limitations of the proposed approach along
with future lines of work which could overcome them.

2 Parametric income distributions and methods for

inference from grouped data

Studying an income distribution from grouped data involves a degrouping task. To ex-
ploit this type of data fully requires considering two separate components of the process
generating them (i.e., the data generating process (DGP)). Firstly, a grouping component
which produces the observed grouped-data summary statistics from an empirical income
distribution. This grouping mechanism can be exploited for insight on the possible em-
pirical distribution of incomes underlying grouped data. Secondly, an income distribution
component which produces the underlying empirical income distribution. This second
component allows for exploiting the information on the underlying sample income distri-
bution to make inference on the corresponding population’s income distribution.
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2.1 Grouped-data formats

Introducing notation, define individual i’s observed income by yi ∼ fy and let the K
income groups [zk−1, zk) , k = 1, ..., K be defined by the income levels {zk : k = 0, ..., K},
with z0 = 0 and zK = ∞. This gives K − 1 relevant income group bounds {zk}K−1

k=1 =
{zk : k = 1, ..., K − 1}.

Traditionally, the most common format of grouped data on incomes provides a sum-
mary statistic SObsk for each of these K income groups from the underlying sample of
incomes {yi}ni=1. These {SObsk }Kk=1 summary statistics are often the groups’ mean incomes
{SObsk }Kk=1 = {ȳObsk }Kk=1 defined as1:

ȳObsk =
1

nk

n∑
i=1

yi × I(zk−1 ≤ yi < zk) , k ∈ {1, ..., K}

with group sizes {nk}Kk=1 and sample proportions {uk}Kk=1 following

nk =
n∑
i=1

I(zk−1 ≤ yi < zk) , uk ≡
nk
n
, k ∈ {1, ..., K}

or groups’ cumulative income share {SObsk }Kk=1 = {sObsk }Kk=1:

sObsk =

∑k
j=1 ȳ

Obs
j∑K

j=1 ȳ
Obs
j

, k ∈ {1, ..., K} (1)

. In the latter case, the data often also provides a sample average income µObs

µObs =
1

n

n∑
i=1

yi =
k∑
j=1

ukȳ
Obs
k , k ∈ {1, ..., K} (2)

along with {sObsk }Kk=1.

This is still today the more widely spread format for such type of data and is there-
fore the focus of the remainder of this paper. An important observation is that the case
{SObsk }Kk=1 = {ȳObsk }Kk=1 always allows for a re-expression in terms of cumulative income
shares {sObsk }Kk=1 following (1). Another additional important observation is that although
the observed statistics {SObsk }Kk=1 are sample quantities subject to sampling variability, it
is very rare for datasets on grouped data to provide an estimate of this variability for
them. Estimating standard errors for any distributional estimate obtained from this data
is also difficult given the usual lack of information on the underlying sample sizes n (e.g.,
see Anand and Segal (2008)).

Consider the first component of the DGP: the grouping mechanism relating {SObsk }Kk=1

to the underlying sample on incomes {yi}ni=1. Earlier studies dealing with grouped data
on incomes faced a format in which sampled individuals where split into groups defined
by their level of income using pre-defined income group bounds {zk}K−1

k=1 available in the

1In what follows I(.) represents the identity function, taking value 1 whenever the condition it takes
as argument holds true and 0 otherwise.
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data. This format, still common today in sources such as tabulated tax data, determines
a grouping mechanism which is trivial whenever the bounds are reported in the data. In
this case, which will be referred to as grouped data of type II, sampling variability affects
only the sample proportions {uk}Kk=1 and the masses (or shares {sk}Kk=1) of income of the
groups covered in the data but not the {zk}K−1

k=1 income groups’ bounds. In what follows,
type II data is defined to contain K observations {uk, SObsk , zk}Kk=1 and a sample average
income µObs.

With the development of survey data and the spread of microdata sources across de-
velopped and developping countries in recent decades it has become usual in grouped-data
sources that income groups’ bounds are themselves sample quantities and not pre-defined
by the data provider. This format of data, which will be referred to as grouped data of
type I in what follows, essentially differs from type II in that the groups are built under
externally fixed proportions {uk}Kk=1. Type I data is defined to contain K observations
{uk, SObsk }Kk=1 and a sample average income µObs in what follows. The design of type I
data concludes in sampling variability affecting the income groups’ bounds {zk}Kk=1 and
the group income masses (or shares {sk}Kk=1) but not the sample proportions {uk}Kk=1.
In the most common case, this grouping is done by setting {zk}Kk=1 to be sample income
quantiles, such as deciles, fixing all groups to represent a same proportion uk. This group-
ing mechanism poses bigger difficulties for inference on income distributions than data of
type II as the income groups’ bounds are rarely presented in the data.

As an illustrative example of type I data, table 1 below presents data on a sample of
incomes from Peru for the year 2013 as available on the World Bank’s PovCalNet2 web-
site. In this case, as usual, no information on the underlying {zk}Kk=1 bounds is provided
with the data. Each row in the data can be interpreted analogously to the following:
Approximately 2810 individuals in the underlying sample have incomes positioning be-
tween the 60-th and 70-th sample percentiles, their mean income is of 383.64 PPP$ and
corresponds to a cumulative income share of sObs7 = 38.89%.

2.2 Parametric income distribution models

Consider the second component of the DGP, the income distribution fy that yields the
sample of incomes {yi}ni=1 underlying the data. Given the generally small samples deter-
mined by grouped data, non-parametric approaches such as kernel density estimation have
been evidenced to largely underperform parametric approaches (e.g., Minoiu and Reddy
(2014), Jorda et al. (2020)). This is, assuming the income distribution fy to belong to
a class of distributions parametrized by the parameter vector θ, fy ≡ fy(.;θ), has been
evidenced empirically to be a fruitful approach when facing grouped data.

One class of parametric approaches, largely credited to Kakwani and Podder (1973),
focuses on exploiting the cumulative aspect of the data in {SObsk }Kk=1 through paramet-
ric Lorenz curves. The Lorenz curve of a population’s income distribution LC (Lorenz,
1905, Gastwirth, 1971) can be defined as a function relating income-ordered population
cumulative shares u ∈ [0, 1] and the cumulative share of the total population’s income

2PovcalNet: the on-line tool for poverty measurement developed by the Development Research Group
of the World Bank. http://iresearch.worldbank.org/PovcalNet/
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Table 1: PovCalNet data for the income distribution of Peru in 2013

k uk SObsk = ȳObsk

1 0.1 60.67
2 0.2 114.95
3 0.3 162.62
4 0.4 209.53
5 0.5 259.53
6 0.6 317.46
7 0.7 383.64
8 0.8 472.59
9 0.9 629.35
10 1 1267.85
µObs 387.82
n 28099

Source: PovCalNet, in same scale as in Eckernkemper and Gribisch (2021) for ease of comparability in
what follows.

LC(u) ∈ [0, 1] represented by these population shares. The Lorenz curve is a powerful
tool for studying the concentration of a population’s incomes along different points of the
income distribution and has been used as such for countless studies of income distribution
and income inequality.

Following the presentation in Sarabia (2008), the Lorenz curve for the parametric
income distribution fy(.;θ) can be expressed using the definition of its first-order moment
cumulative distribution function F(1)(.;θ), defined as in (3) below, where F(1)(yi;θ) can
be interpreted as the proportion of total incomes which correspond to the subpopulation
of individuals with incomes below yi. For each income-ordered population proportion u,
the corresponding income level is given by the quantile function associated to fy:

Q(u;θ) = F−1(u;θ) = inf{y : F (y;θ) ≥ u}

, such that the Lorenz curve LC ≡ LC(.;θ) corresponding to this parametric distribution
can be expressed as

LC(u;θ) = F(1)(Q(u;θ);θ) (3)

=

∫ u
0
Q(x;θ)dx

µ
, u ∈ [0, 1]

with µ denoting the expected value of yi

µ ≡ E[yi;θ] ≡
∫ 1

0

Q(x;θ)dx

and from which properties of continuity, convexity, non-decreasing, and differentiability
almost everywhere in u ∈ [0, 1] can be proved, as well as the properties of L(0;θ) = 0 and
L(1;θ) = 1.
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Several income concentration and inequality measures are derived from the LC such
as the Gini coefficient G(θ):

G(θ) = 1− 2

∫ 1

0

LC(u;θ)du

Closely related to the LC is the Generalized Lorenz curve GLC (Shorrocks (1983),
Kakwani (1984)):

GLC(u;θ) ≡ LC(u;θ)× µ ≡
∫ u

0

Q(x;θ)dx

This curve, in addition to allowing for comparisons between distributions in terms of rel-
ative inequality as any Lorenz curve, allows for comparisons in terms of mean incomes.

This first type of parametric approaches then exploits a chosen parametric form for the
Lorenz curve to make inference on its parameter vector θ by matching points of LC(u;θ)
to their empirical counterpart {(uk, sObsk )}Kk=1. Sarabia (2008) presents an overview of
conventional parametric forms for the Lorenz curve usually exploited in the literature on
income distributions.

One important limitation of this first approach is that directly assuming a parametric
form for LC ≡ LC(.;θ) often lacks a known form for its associated distribution fy(.;θ),
limiting the quantities of this distribution on which inference can be made. In particular,
the Lorenz curve is a scale-invariant function of the income distribution fy(.;θ) deter-
mined exclusively by proportions and therefore only allows for inference on all but the
scale parameters in θ, denoted from here on by θR. The GLC is then the closest feasible
scale-sensitive alternative to the Lorenz curve allowing for estimation of all parameters in
θ.

A second class of parametric approaches directly assumes a parametric form for fy(.;θ)
and derives analytical expressions for the quantities represented in the data {Sk(θ)}Kk=1.
Inference on θ is then made by fitting the theoretical {Sk(θ)}Kk=1 to the observed data
{SObsk }Kk=1. This approach allows in particular for using the GLC to exploit the cumulative
aspect of grouped data while making the underlying distribution model fy(.;θ) available.

2.3 The GB2 distribution

One parametric form of particular relevance is the GB2 (McDonald (1984)), which has
become increasingly popular in the recent literature (e.g., Jenkins (2009), Hajargasht
et al. (2012), Graf and Nedyalkova (2014)). The recent popularity of this four-parameter
distribution arises firstly from it generalizing many popular income distribution models
such as the log-Normal, the Singh-Maddala (Burr XII), and the Weibull distributions.
Secondly, the GB2 distribution can be derived as the income distribution resulting from
a neoclassical microeconomic model of optimizing firm behaviour as presented in Parker
(1999). Finally, this distribution has been empirically evidenced to outperform other can-
didate distributions in fitting income data and performing not significantly worse than
the more complex generalized Beta distribution of which it is a special case (e.g., McDon-
ald and Ransom (2008), Hajargasht and Griffiths (2013), Kobayashi and Kakamu (2019)).
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Under the GB2 distribution, the income level yi ∼ GB2(α, β, p, q) with parameters
θR = (α, p, q) controlling the shape of the distribution and β controlling the scale. The
Lorenz curve of this distribution follows (Chotikapanich et al. (2018)):

LCGB2(u|α, p, q) = IB

(
IB−1(u|p, q)|p+

1

α
, q − 1

α

)
, 0 < u < 1

where IB denotes the regularized incomplete Beta function3, the cumulative distribution
function (cdf) of the GB2 distribution (Kleiber and Kotz, 2003, chapter 6):

FGB2
y (yi|α, β, p, q) =

1

B(p, q)

∫ x

0

tp−1(t− x)q−1dt = IB(x; p, q)

where x ≡ (yi/β)α/(1+(yi/β)α) and where B(p, q) denotes the Beta function4. Addition-
ally, the GB2 has the following probability density function (pdf)

fGB2
y (yi|α, β, p, q) =

αyαp−1
i

βαpB(p, q)
(

1 +
(
yi
β

)α)p+q , (yi, β, α, p, q) ∈ R5
+

and the expected value follows:

µ ≡ µGB2(α, β, p, q) ≡ E(yi|α, β, p, q) = β
B(p+ 1

α
, q − 1

α
)

B(p, q)
, − αp < 1 < αq

2.4 Parameter inference under grouped data

Regardless of the choice made to model {Sk(θ)}Kk=1, the main challenge for inference on
θ from type I data stems from the unavailability of the income groups’ bounds {zk}Kk=1.

In the earlier context of type II data with known bounds, maximum likelihood estima-
tion (MLE) methods exploiting the inherently multinomial likelihood of the distribution of
group sizes nk across groups under this grouping mechanism were developped for inference
on θ (e.g., McDonald (1984)). However, as recent work has illustrated, the multinomial
likelihood approach only exploits information on the group bounds and sizes, entirely
ignoring all information contained in the income group means or shares and as such is an
inefficient approach (e.g., see Eckernkemper and Gribisch (2021)).

Recent methods have placed the focus on overcoming the issue of unknown group
bounds in data of type I, and on constructing measures of statistical uncertainty for their
estimations without requiring the unavailable data on the standard errors (or underlying
sample sizes n) of the statistics {SObsk }Kk=1 presented in the data.

Amongst recent methods for frequentist inference on fy(.;θ) in the context of type
I grouping is the Dirichlet distribution approach of Chotikapanich and Griffiths (2002).
This approach avoids the issue of uncertain group bounds by restricting itself to anal-
ysis on the LC and measures of relative inequality. Sample non-cumulative income
shares qObsk = sObsk − sObsk−1 are computed and modelled through a parametric Lorenz curve

3Also known as the incomplete Beta function ratio.
4The Beta function can be defined as B(p, q) =

∫ 1

0
tp−1(1− t)q−1dt
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qk(θ
R) = LC(uk;θ

R)− LC(uk−1;θR) with the assumption of a Dirichlet distribution for
{qk(θ)}Kk=1. This corresponds to a multivariate distribution assuming each qObsk to follow
a Beta distribution and the restriction

∑K
i=1 qk(θ) = 1. An additional tuning parameter

ruling the inverse of the variance (i.e., the precision) of the estimates must be calibrated
or estimated along with θR under this approach. This tuning parameter has been found
to be hardly identifiable from grouped data without information on standard errors while
having a high impact on the resulting θR parameter estimates (Kobayashi and Kakamu,
2019).

An alternative recent frequentist method is the grouped-data generalized method-
of-moments (GMM) approach of Hajargasht et al. (2012) and Griffiths and Hajargasht
(2015) . This approach matches group mean incomes {ȳObsk }Kk=1 to their theoretical coun-
terpart {Sk(θ)}Kk=1 under a GB2 distribution through GMM estimation. The weights
for this GMM estimation are given by an estimated asymptotically optimal covariance
matrix. Deriving expressions for the group mean incomes and this GMM weights matrix
for a given parametric distribution requires expressions for the first- and second-order
moments and moment cdf of this distribution. The main virtue of the GMM approach is
that it always exploits all information in the data on group bounds, sizes, and shares while
offering an estimate of asymptotic standard errors. This allows for frequentist inference
on all shape and scale parameters in θ. However, under the GMM method all {zk}K−1

k=1

income groups’ bounds must be estimated as additional parameters along with θ under
type I data, increasing the number of parameters to estimate with the number of groups
in the data.

Focusing on the middle and upper parts of the income distribution, the use of Gen-
eralized Pareto curves (GPC) has recently been explored for analysis from grouped data
(Blanchet et al. (2017)). Generalized Pareto interpolation is a semi-parametric approach
which estimates inverted Pareto coefficients5 points of the GPC, from the {SObsk }Kk=1 statis-
tics available in the grouped data. It then employs smoothing methods to interpolate a
smooth curve passing through these point-estimates. Such interpolation can yield a good
approximation to the true GPC for the distribution of incomes only above a pre-defined
and sufficiently high threshold. Furthermore, to extrapolate the GPC for the top of the
income distribution, this method exploits the Generalized Pareto distribution as a para-
metric form assumed for the upper tail of the distribution6.

The GPC method may prove fruitful in studying the upper tail of an income distri-
bution from grouped data, estimating group bounds if these are unknown, yet it is not
well suited for studying the lower part of the distribution. Additionaly, this method lacks

5The inverted Pareto coefficient b(p) at percentile p of an income distribution following yi ∼ fy can
be expressed as the average income above this percentile E[yi|yi > Q(p)] divided by the p-th quantile of
the distribution Q(p):

b(p) =
E[yi|yi > Q(p)]

Q(p)

6The Generalized Pareto is a three-parameter distribution with cdf following:

yi ∼ Fy(yi; ζ, µ, σ) =

1−
(

1 + ζ(yi−µ)
σ

)− 1
ζ

, if ζ 6= 0

1− e−( yi−µσ ) , if ζ = 0
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development for estimating standard errors for its estimates, such that overall this de-
grouping method does not allow for inference on fy.

Bayesian inference offers an alternative approach when no information on the sampling
variability of the grouped-data statistics is given. Expliciting prior uncertainty on the val-
ues of θ within parameter space Θ in a prior probability distribution p(θ) , θ ∈ Θ, the goal
would be to make inference on the posterior probability distribution π(θ|{(uk, SObsk )}Kk=1)
following Bayes’ rule:

π(θ|{(uk, SObsk )}Kk=1) ∝ L({(uk, SObsk )}Kk=1|θ)× p(θ) (4)

This posterior distribution is proportional to weighting prior probabilities p(θ) , θ ∈ Θ
through the likelihood function of the assumed parametric model L({(uk, SObsk )}Kk=1|θ).
For any given parameter value θ̃, the likelihood L({(uk, SObsk )}Kk=1|θ̃) reflects the proba-
bility of the model having generated the observed grouped data {(uk, SObsk )}Kk=1. In this
sense, if the data is informative on θ then the uncertainty contained in the posterior
distribution is lower than that contained in the prior and reflects an ’evidence-weighted’
measure of statistical uncertainty.

The main constraint that grouped data poses for studying the target posterior distri-
bution is that, while likelihood functions can be analytically obtained for a parametric
distribution over individual-level data7 L({yi}ni=1|θ), it is often not feasible to do so for
grouped data and this is particularly so under grouping of type I with unknown bounds.
Recent methods seek to overcome such constraint through approximating the unavailable
grouped-data likelihood function L({(uk, SObsk )}Kk=1|θ).

Eckernkemper and Gribisch (2021) propose a Bayesian approach approximating the
unavailable joint likelihood for group mean incomes L({(uk, ȳObsk )}Kk=1|θ) through a prod-
uct of Normal distributions. The main virtue of this Bayesian quasi-likelihood (BQL)
approach is that it is asymptotically equivalent to the frequentist GMM estimator de-
scribed above, allowing for inference on all parameters in θ from grouped data of type I
or II. As with the GMM approach, however, all income groups’ bounds {zk}K−1

k=1 must be
estimated as additional model parameters under type I data and the asymptotic GMM
covariance matrix must be computable.

An alternative approximation to L({(uk, SObsk )}Kk=1|θ) is available from ’likelihood-free’
Bayesian computation methods8. These methods are specifically devised for situations in
which an analytical likelihood function is unavailable or costly to compute for the model
being exploited but in which we can simulate data from such model.

Theoretically, in dealing with an intractable likelihood one could estimate L({(uk, SObsk )}Kk=1|θ̃)
as the probability of observing {(uk, SObsk )}Kk=1 under the model fy(.; θ̃) at θ̃ ∈ Θ. This
probability could be estimated from simulating a sufficiently large M amount of datasets
S̃(m) = {Sk(θ̃)}Kk=1 , m = 1, ...,M and counting the proportion of them exactly matching
the observed {SObsk }Kk=1. However, this is unfeasible in practice as {SObsk }Kk=1 is a real-

7For example, in the case of yObs = {yObsi }ni=1 being n independent observations following yi ∼ fy(.;θ)
their joint likelihood follows L(yObs|θ) =

∏n
i=1 fy(yObsi ;θ)

8A likelihood is always exploited in Bayesian inference. The ’likelihood-free’ term here refers to not
requiring a computable expression for the likelihood function.
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isation of a continuous random vector and therefore the probability of simulating S̃(m)

exactly reproducing {SObsk }Kk=1 is theoretically zero. Two strategies to overcome this lim-
itation to ’likelihood-free’ Bayesian computation have recently been at the center of the
Bayesian literature, with some rare applications in economics.

The first of such approaches is that of Bayesian synthetic likelihood (BSL, Price et al.
(2018)). BSL closely resembles BQL in that L({(uk, SObsk )}Kk=1|θ) is approximated through
a multivariate Normal distribution {SObsk }Kk=1 ∼ NK(µK(θ),Σ(θ)) with means vector
µK(θ) and covariance matrix Σ(θ). For any given point θ̃ , p(θ̃) > 0, M independent
grouped-data S̃(m) = {Sk(θ̃)}Kk=1 , m = 1, ...,M are simulated from the model fy(.; θ̃)
and the approximate likelihood is computed as fNK ({SObsk }Kk=1;µK(θ̃),Σ(θ̃)) with{

µK(θ̃) = 1
M

∑M
m=1 S̃

(m)

Σ(θ̃) = 1
M

∑M
m=1(S̃(m) − µK(θ̃))(S̃(m) − µK(θ̃))′

and fNK denoting the pdf of the multivariate Normal distribution.

One important difference between BSL computational approach and BQL is that no
restrictions are imposed on the type and dimension of grouped data statistics to exploit
from the data. This allows for exploiting potentially more information on a population’s
incomes which might eventually be available in the data such as Gini coefficient estimates.
The main drawback of BSL is that it still imposes multivariate normality as an appro-
priate representation of L({(uk, SObsk )}Kk=1|θ), which might not be adecquate in all cases,
particularly so when statistics of different nature are being considered simultaneously.

ABC is another type of ’likelihood-free’ Bayesian computation methods9. ABC differs
from BSL primarily in that it imposes no particular form to approximate L({(uk, SObsk )}Kk=1|θ)
and instead approximates it in a non-parametric fashion. In a nutshell, ABC approxi-
mates L({(uk, SObsk )}Kk=1|θ̃) through a weighting kernel Kτ (d({Sk(θ̃)}Kk=1, {SObsk }Kk=1)) giv-
ing higher importance to points θ̃ ∈ θ yielding simulated data {Sk(θ̃)}Kk=1 closely re-
sembling the observed {SObsk }Kk=1 under a pre-specified distance d(., .). The bandwidth
parameter τ rules the strictness of the approximation, with τ → 0 enforcing an exact
approximation of L({(uk, SObsk )}Kk=1|θ̃) and τ → ∞ enforcing a same likelihood for any
point θ̃ ∈ Θ (i.e., considering all points θ̃ ∈ Θ equally likely to have generated {SObsk }Kk=1

from the model).

To illustrate the properties of this approach, the ABC target posterior distribution
can be stated as (Drovandi and Frazier (2021)):

πτ (θ|{(uk, SObsk )}Kk=1) ∝
∫
RK

Kτ (d(S̃, {SObsk }Kk=1))× L({(uk, SObsk )}Kk=1|θ) dS̃︸ ︷︷ ︸
Lτ ({(uk,SObsk )}Kk=1|θ)

×p(θ) , S̃ = {Sk(θ)}Kk=1

(5)
with the intractable integral defining Lτ ({(uk, SObsk )}Kk=1|θ) being unbiasedly estimated in
practice for any given point θ̃ ∈ Θ using M simulated samples from the model fy(.; θ̃)

9See Sunn̊aker et al. (2013), Sisson et al. (2018), and Beaumont (2019) for a wide coverage of the
history and current state of ABC and its applications within different scientific fields
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following:

L̂τ ({(uk, SObsk )}Kk=1|θ̃) =
1

M

M∑
m=1

Kτ (d(S̃(m), {SObsk }Kk=1)) , S̃(m) = {Sk(θ̃)}Kk=1

The target posterior distribution in (5) can differ from the ’exact’ target posterior
(4) for several reasons. The degree of similarity between these posterior distributions de-
pends mainly on the quality of the approximation L̂τ ({(uk, SObsk )}Kk=1|θ) to the likelihood
L({(uk, SObsk )}Kk=1|θ). The quality of this approximation depends primarily on the choice
of τ . The computational cost of the exact approximation τ → 0 makes it unfeasible,
while setting τ too large can severly impact negatively the quality of the approximation.
A second parameter ruling the quality of the ABC approximation is the number M of
simulated samples generated for each point θ̃ ∈ Θ, despite setting M = 1 being common
practice. To a lesser extent, the quality of this approximation is also conditioned by the
choice for the discrepancy metric d(., .) and ABC kernel Kτ .

With respect to the target posterior distributions, it is also important to note that
group-data posterior distributions in (4) or (5) can differ from the exact microdata pos-
terior distribution π(θ|{yi}ni=1) as a consequence of the group data statistics {Sk(θ)}Kk=1

implying too large a loss of information with respect to {yi}ni=1. Such a loss of informa-
tion can hinder the inference made on θ from grouped data with respect to microdata,
in which case π(θ|{yi}ni=1) 6∝ π(θ|{(uk, SObsk )}Kk=1) and the statistics defining {SObsk } are
said to be insufficient.

Opting for its overall flexibility and its non-parametric approximation to the grouped-
data likelihod L({(uk, SObsk )}Kk=1|θ), the following section develops an ABC approach for
inference on θ compatible with type I data exploiting the GLC.

3 ABC inference from grouped data through the Gen-

eralized Lorenz curve

Kobayashi and Kakamu (2019) present a first application of ABC to study income distri-
butions from grouped data. Their approach exploits type I data with unknown income
groups’ bounds {zk}K−1

k=1 through a parametric LC under the generalized Beta distribution,
where no expression is available for the corresponding likelihood function. Their analysis
under the specific case of the GB2 distribution provides evidence of the suitability of ABC
for estimating the posterior distribution of all GB2 shape parameters θR = (α, p, q) and
on the income Gini coefficient G(θR) as jointly determined by them. By focusing strictly
on the LC, however, their approach only allows for exploiting data in the form of shares
and so disregards any information on the scale of the distribution contained in the income
groups’ means {ȳObsk }Kk=1.

Exploiting the available information on average income µObs and the groups’ data
expressed in cumulative shares {(uk, sObsk )}Kk=1 a sample GLC can be computed as a scale-
sensitive representation following:

GLCObs
k = sObsk × µObs , k = 1, ..., K

12



. This representation offers an approach similar to Kobayashi and Kakamu (2019) while
exploiting all the available information to allow for inference on all parameters in θ.

Assuming a GB2 distribution as a model of the population’s income distribution, ABC
inference on θ = (α, β, p, q) requires firstly being able to simulate data in the same form
as {(uk, GLCObs

k )}Kk=1. For any given value θ̃ = (α̃, β̃, p̃, q̃) ∈ Θ this can be computed
analytically as:

GLCGB2
k (θ̃) ≡ GLCGB2(uk; θ̃) = LCGB2(uk|α̃, p̃, q̃)× µGB2(α̃, β̃, p̃, q̃) , − αp < 1 < αq

or can be approximated from computing sample shares {(uk, s̃k)}Kk=1 using (1) and sample
mean µ̃ using (2) over simulated microdata {ỹi}ni=1 from ỹi ∼ fGB2

y (.; α̃, β̃, p̃, q̃).

A further step in defining a framework for ABC inference concerns a choice on how to
make comparisons between observed {GLCObs

k }Kk=1 and simulated {GLCGB2
k (θ̃)}Kk=1 data

that are most informative on the values of θ. This is, a choice for the discrepancy metric
d({GLCGB2

k (θ̃)}Kk=1, {GLCObs
k }Kk=1). One simple metric that can be informative on greater

or smaller relative discrepancies along different segments of the income distributions un-
derlying the data is the following vector-valued distance10:

d({GLCGB2
k (θ̃)}Kk=1, {GLCObs

k }Kk=1) = ({GLCGB2
k (θ̃)}Kk=1 − {GLCObs

k }Kk=1)

◦ ({GLCGB2
k (θ̃)}Kk=1 − {GLCObs

k }Kk=1)

� ({GLCObs
k }Kk=1 ◦ {GLCObs

k }Kk=1)

. Each k-th element in d({GLCGB2
k (θ̃)}Kk=1, {GLCObs

k }Kk=1), denoted dk({GLCGB2
k (θ̃)}Kk=1, {GLCObs

k }Kk=1),
is then the squared difference between the observed and simulated GLCs for the k-th
group, scaled by the square of the observed value GLCObs

k :

dk({GLCGB2
k (θ̃)}Kk=1, {GLCObs

k }Kk=1) =

(
GLCGB2

k (θ̃)−GLCObs
k

GLCObs
k

)2

Choosing an appropriate discrepancy metric is not only relevant in exploiting the
data in a way informative about θ but also for insight on the goodness-of-fit of the
estimated model to the data. Following Ratmann et al. (2009), the distribution of
d({GLCGB2

k (θ̃)}Kk=1, {GLCObs
k }Kk=1) under the estimated ABC posterior distribution θ̃ ∼

πτ (θ|{(uk, GLCObs
k )}Kk=1) can be used for the purpose of model criticism. Vector-valued

metrics, in particular, can be informative about the degree of fit to the data at each of the
observed GLCObs

k , k = 1, ..., K groups along the income distribution. This information is
contained in the corresponding posterior distribution dk({GLCGB2

k (θ̃)}Kk=1, {GLCObs
k }Kk=1)

under θ̃ ∼ πτ (θ|{(uk, GLCObs
k )}Kk=1).

Finally, a form for the ABC kernel Kτ in (5) needs to be specified. Most ABC applica-
tions exploit a simple uniform kernel for each εk ≡ dk({GLCGB2

k (θ̃)}Kk=1, {GLCObs
k }Kk=1) , k =

1, ..., K, following:

KUni
τ ({εk}Kk=1) =

K∏
k=1

1

τk
I
(
|εk| ≤

τk
2

)
, εk ≡ dk({GLCGB2

k (θ̃)}Kk=1, {GLCObs
k }Kk=1)

10◦ and � denote the Hadamard or elementwise product and division operators respectively.
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. This amounts to giving a same common weight to points θ̃ ∈ θ yielding {GLCGB2
k (θ̃)}Kk=1

that are each within an interval of width τk , k = 1, ..., K around the corresponding ob-
served GLCObs

k , k = 1, ..., K. All other values θ̃ ∈ θ yielding simulated data ’too far
away’ from the observed data are given a weight of KUni

τ ({εk}Kk=1) = 0 as at least one of
the I

(
|εk| ≤ τk

2

)
, k = 1, ..., K conditions do not hold.

For computational purposes in studying πτ (θ|{uk, GLCObs
k }Kk=1), ’smooth’ ABC ker-

nels might be prefered, giving increasingly higher weights to values θ̃ ∈ θ with associated
simulations reproducing the observed data more closely than others. A multivariate Gaus-
sian kernel may be used together with a vector-valued metric in a spirit similar to the
multivariate Uniform kernel (Ratmann (2010)):

Kgauss
τ ({εk}Kk=1) =

K∏
k=1

1

τk

1√
2π

exp

{
−1

2

(
εk
τk

)2
}
, εk ≡ dk({GLCGB2

k (θ̃)}Kk=1, {GLCObs
k }Kk=1)

. This implies a weighting scheme for each of the ABC discrepancies {εk}Kk=1 following a
Normal distribution, centered at zero (i.e., highest weight is given to values θ̃ ∈ θ exactly
reproducing {GLCObs

k }Kk=1), and with a standard deviation of τk.

Despite the approximations involved in ABC, the way in which the posterior distri-
bution πτ (θ|{uk, GLCObs

k }Kk=1) is estimated closely follows the approach of most modern
Bayesian methods. It is in general feasible to sample values from or converging to this
distribution exploiting the Monte Carlo principle: any quantity of πτ (θ|{uk, GLCObs

k }Kk=1)
which can be expressed as an expectation can be studied through a sufficiently large sam-

ple of independent draws {θ̃(j)}Jj=1 from this distribution θ̃
(j) ∼ πτ (θ|{uk, GLCObs

k }Kk=1).
The simplest of algorithms seeking to obtain samples from the ABC posterior distribu-
tion πτ (θ|{uk, GLCObs

k }Kk=1) is that of rejection sampling. A standard rejection sampling
algorithm follows:

Algorithm 1: An ABC rejection (ABC-R) algorithm.

1: Set j ← 1
2: while j ≤ J do

3: Sample (α̃(j), β̃(j), p̃(j), q̃(j)) ≡ θ̃(j) ∼ p(θ)

4: Generate {GLC(j);GB2
k (θ̃

(j)
)}Kk=1 by simulating from fGB2

y (.; θ̃
(j)

)

5: Generate {ε(j)
k }Kk=1 = d({GLC(j);GB2

k (θ̃
(j)

)}Kk=1, {GLCObs
k }Kk=1)

6: Accept (θ̃
(j)
, {ε(j)

k }Kk=1) with probability:

Kτ ({ε(j)
k }

K
k=1) =

K∏
k=1

1

τk
I
(
|ε(j)
k | ≤

τk
2

)

. e.g., if u(j) ≤ Kτ ({ε(j)
k }

K
k=1) where u(j) is a draw from a Uniform(0, 1)

distribution

7: If accepted, store (θ̃
(j)
, {ε(j)

k }Kk=1) and set j ← j + 1, if rejected, re-draw.
end
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This rejection sampling algorithm explores, for a sufficiently large J , points θ̃
(j) ∈ Θ , j =

1, ..., J sampled independently from the prior p(θ) and returns a sample of accepted pa-

rameter values and associated ABC discrepancies {(θ̃(j)
, {ε(j)

k }Kk=1)}Jj=1. The output con-
tains only parameter values which have been accepted based on them closely reproducing
the observed {GLCObs}Kk=1 through the model. These sampled values qualify as a sample
proportional to πτ (θ|{uk, GLCObs

k }Kk=1).

Independent sampling algorithms like (ABC-R) are in general very computationally
inefficient as all samples are drawn from the prior p(θ). This can force the algorithm to
spend many simulations exploring regions of high prior density with low acceptance rates.
This can also make it such that an unfeasibly large number of draws J → ∞ must be

done before the sample of accepted points {(θ̃(j)
, {ε(j)

k }Kk=1)}Jj=1 is representative of the
target posterior distribution πτ (θ|{uk, GLCObs

k }Kk=1).

Dependent sampling algorithms, where the acceptance rule depends on previous draws,
can be designed instead under Sequential Monte Carlo (SMC) (e.g., see Sisson et al.
(2007)) or under the Markov Chain Monte Carlo (MCMC) principle11 (e.g., see Marjo-
ram et al. (2003), Clarté et al. (2021)). Allowing for dependance in the resulting samples
is the cost at which computational efficiency is gained.

Metropolis-Hastings (MH) samplers are a general-purpose class of MCMC algorithms
feasible for ABC inference. In general terms, the MH algorithm performs a global explo-
ration of the support of the target posterior distribution πτ (θ|{uk, GLCObs

k }Kk=1) through
local accept-reject steps. Any j-th, j = 1, ..., J , local accept-reject step is defined by the
following acceptance probability:

ρ(j) = min

{
1,

(
πτ (θ̃

(j)|{uk, GLCObs
k }Kk=1)

πτ (θ̃
(j−1)|{uk, GLCObs

k }Kk=1)

)
×

(
gΣ(j−1)(θ̃

(j−1)
, θ̃

(j)
)

gΣ(j−1)(θ̃
(j)
, θ̃

(j−1)
)

)
}

with gΣ(j−1)(θ̃
(j)
, θ̃

(j−1)
) denoting a candidate function from which the j-th candidate value

θ̃
(j)

is sampled, given the previously retained value θ̃
(j−1)

. Given a same probability of

sampling θ̃
(j)

after θ̃
(j−1)

and of sampling θ̃
(j−1)

after θ̃
(j)

, the j-th draw θ̃
(j)

has a higher
probability ρ(j) of being accepted as a draw from πτ (θ|{uk, GLCObs

k }Kk=1) the higher its

posterior density πτ (θ̃
(j)|{uk, GLCObs

k }Kk=1) is with respect to the previous draw’s poste-

rior density πτ (θ̃
(j−1)|{uk, GLCObs

k }Kk=1).

One popular choice for a MH proposal g is the Adaptive Random-Walk Metropolis
(AM) algorithm (Haario et al., 2001). gΣ is in this case defined by the following adaptive
random walk process:

11The MCMC principle states that any quantity of the posterior distribution of θ which can be expressed
as an expectation can be studied through a sufficiently large sample of dependent draws from a Markov
Chain having this posterior distribution as stationary distribution.
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(α(j), β(j), p(j), q(j)) ≡ θ(j) ∼ gΣ(j−1)(θ(j), θ̃
(j−1)

)⇒ θ̃
(j)

= θ̃
(j−1)

+ η̃(j)

η(j) ∼ N4(0,Σ(j−1))

Σ(j−1) =

{
Σ(0) , if j ≤ J0

s4 × 1
(j−1)

(∑(j−1)
d=1 θ̃

(d)
θ̃

(d)′ − d× θ̄θ̄′
)

+ s4 × χ× I4 , if j > J0 , 0 < χ� 1

with θ̄ denoting the mean value of all draws up to and including the (j−1)-th and with s4

suggested, following Gelman et al. (1996), to be set to s4 = 2.42

4
given the 4 parameters in

θ under the GB2 distribution12. This proposal distribution draws a candidate value θ̃
(j)

by drawing from a multivariate Gaussian distribution centered at the previously retained

draw θ̃
(j−1)

and with covariance matrix Σ(j−1). Being initially set to a given matrix Σ(0),
this covariance matrix starts adapting exploiting all past draws after a sufficiently large
initial period J0 following the sample covariance matrix. An AM algorithm can thus focus
on sampling more densely in regions near values θ̃ with high posterior density and more
sparsely in regions of low posterior density.

An AM algorithm for ABC inference on θ through a parametric model fGB2
y (.; θ) un-

der type I grouped data follows:

12The addition of the diagonal matrix χ× I4 is needed with an insignificantly small but non-zero χ to
assure the non-singularity of Σ(j−1) and assure the ergodicity properties of the Markov chain allowing
for the MCMC principle.
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Algorithm 2: An AM ABC (ABC-AM ) algorithm.

1: Initialization:
2: Set Σ(0)

3: Until Kτ ({ε(0)
k }Kk=1) > 0:

4: Sample (α̃(0), β̃(0), p̃(0), q̃(0)) ≡ θ̃(0)
from p(θ)

5: Generate {GLC(0);GB2
k (θ̃

(0)
)}Kk=1 by simulating from fGB2

y (.; θ̃
(0)

)

6: Generate {ε(0)
k }Kk=1 = d({GLC(0);GB2

k (θ̃
(0)

)}Kk=1, {GLCObs
k }Kk=1)

7: Sampling: for j = 1, ..., J do

8: Sample θ̃
(j) ∼ gΣ(j−1)(θ, θ̃

(j−1)
) from the candidate gΣ(j−1)

9: Generate {GLC(j);GB2
k (θ̃

(j)
)}Kk=1 by simulating from fGB2

y (.; θ̃
(j)

)

10: Generate {ε(j)
k }Kk=1 = d({GLC(j);GB2

k (θ̃
(j)

)}Kk=1, {GLCObs
k }Kk=1)

11: Accept and store (θ̃
(j)
, {ε(j)

k }Kk=1) with probability:

ρ(j) = min


1,

L̂τ ({(uk,GLCObsk )}Kk=1|
˜

θ(j))︷ ︸︸ ︷
Kτ ({ε(j)

k }
K
k=1) × p(θ̃(j)

)× gΣ(j−1)(θ̃
(j−1)

, θ̃
(j)

)

Kτ ({ε(j−1)
k }Kk=1)× p(θ̃(j−1)

)× gΣ(j−1)(θ̃
(j)
, θ̃

(j−1)
)


. e.g., if u(j) ≤ ρ(j) where u(j) is a draw from a Uniform(0, 1) distribution

otherwise store (θ̃
(j)
, {ε(j)

k }Kk=1) = (θ̃
(j−1)

, {ε(j−1)
k }Kk=1)

if j > J0 then
12: Update Σ(j)

end

end
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As usual in MCMC algorithms, the unavailability of πτ (θ|{uk, GLCObs
k }Kk=1) makes it

that the acceptance probability ρ(j) is instead computed from the product of a prior
probability p(θ̃) and the approximated likelihood L̂τ ({(uk, GLCObs

k )}Kk=1|θ̃), proportional
to πτ (θ|{uk, GLCObs

k }Kk=1) following (5). For computing L̂τ ({(uk, GLCObs
k )}Kk=1|θ̃) with

M > 1 it suffices to sample M times in step 9 of (ABC-AM ).

One first important property to assess on output from an MCMC sampler is the con-
vergence of the sampled values to a stationary distribution. Without such convergence,
it is uncertain whether the achieved sample is representative of πτ (θ|{uk, GLCObs

k }Kk=1).
Typically, these class of samplers contain an initial ’burn-in’ period in which the sample
relative frequencies are rarely representative of their respective posterior density thus it
is usual in practice to discard an initial set of draws from the chain before analysis.

Three parameters must be pre-defined in (ABC-AM ). Firstly, Σ(0), the initial co-
variance matrix for the proposal distribution. Secondly, J0, defining the initial ’burn-in’
number of draws before this covariance matrix starts incorporating information from all
previous draws of the chain. Finally, the τ = {τk}Kk=1 bandwidths ruling the strictness of
the ABC approximation in terms of discrepancies with each of the observed {GLCObs

k }Kk=1.
Without previous informative guesses for these parameters, these may be set on the basis
of the degree and speed of convergence and acceptance rates across several pilot runs of
the algorithm.

Once a sample {(θ̃(j)
, {ε(j)

k }Kk=1)}Jj=1 has been obtained as a valid sample from πτ (θ|{uk, GLCObs
k }Kk=1),

sample quantities such as average income µGB2(α(j), β(j), p(j), q(j)) or Gini coefficientG(α(j), p(j), q(j))
can be computed over each set of parameter values yielding a sample representative of
their posterior distributions.

The posterior distribution of the ABC discrepancies, as represented by the sam-
ple {{ε(j)

k }Kk=1}Jj=1, can be informative of segments of the income distribution in the
data {GLCObs

k }Kk=1 which the fitted model systematically fails to reproduce correctly.

In particular, if the sample distribution for a given k-th group discrepancy {ε(j)
k }Jj=1

has little density at 0 this can be interpreted as the estimated posterior distribution
πτ (θ|{uk, GLCObs

k }Kk=1) poorly fitting the income distribution at the k-th income group’s
GLCObs

k .

In dealing with the unknown income groups’ bounds {zk}K−1
k=1 this ABC approach

treats them as nuisance parameters. In fact, with known {uk}Kk=1 sample proportions,
these bounds are not necessary to make inference on θ under this framework. Further-
more, if information on {zk}K−1

k=1 were available then a goodness-of-fit check can be devised

by computing the posterior predictive distribution13 {z̃k(θ̃
(j)

)}Jj=1 = {QGB2
y (uk; θ̃

(j)
)}Jj=1

for each of the k = 1, ..., K − 1 group bounds and observing for significant discrepancies
with the {zk}K−1

k=1 .

The following section assesses the relative performance of the ABC approach proposed
in this section through a Monte Carlo experiment, firstly, and on PovCalNet data, sec-
ondly.

13Here QGB2
y (.;θ) denotes the quantile function of the GB2 distribution.
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4 Applications on simulated and real PovCalNet data

4.1 Simulated data applications

To study the performance of the proposed ABC method in comparison with other recent
methods, the following relevant aspects were explored. Firstly, three samples of n = 10000
individual-level incomes were generated from a GB2(α, β, p, q) distribution, under three
parameter settings representing different empirically relevant scenarios: (i) (α, β, p, q) =
(3.85, 10000, .4, 2) representing a hypothetical upper middle-income country’s distribution
with moderate levels of inequality, (ii) (α, β, p, q) = (2.3, 10000, 1.75, 1.25) representing a
hypothetical high-income country’s distribution with moderate levels of inequality, and
(iii) (α, β, p, q) = (1.64, 386, 1.22, 1.83) representing a hypothetical low-income country’s
distribution with high levels of inequality. These simulated samples are summarized in
table 2 below. To explore the loss in information due to not observing microdata and
observing grouped-data statistics instead, MLE estimates were obtained over these mi-
crodata samples14. Secondly, these individuals samples were grouped into 10 groups with
bounds set by the sample deciles to obtain a corresponding grouped dataset of type I.
Finally, over these grouped-data samples, GMM (Jorda et al. 2021), GPC15, and ABC
estimates were obtained.

In applying the ABC estimator presented in the previous section, the prior distribu-
tion for the vector of GB2 parameters (α, β, p, q) was set as the product of a Gamma(1, 1)
distribution for each of the shape parameters α, p, and q, representing a strictly positive
distribution heavily right-skewed and with a single mode at 0. A Gamma(5, 2) was as-
sumed for the β parameter under settings (i) and (ii), representing a less right-skewed
distribution spreading over a wider range of values, and a Gamma(5, 1) prior was as-
sumed for this parameter on setting (iii) to spread over a lower range of values given
the significantly lower observed mean income in this scenario. The mean income in the
data µObs was scaled by a constant power of 10 to lie within the range of this prior
for computational purposes. Additionally, a non-zero mode restriction α × p > 1, and
mean existence conditions α × q > 1 and −α × p < 1 were also enforced. The MCMC
algorithm presented in the previous section was applied and set with the following param-
eters. Initially, the proposal distribution was defined with a covariance matrix following
Σ(0) = diag(.5, .5, .5, .5), and was updated based on retained simulations after a ’burn-in’
period of t0 = 25000. Finally, a Gaussian ABC kernel was used with bandwidth param-
eter set at τ = (.001, .001, .001, .001, .0005, .0005, .0005, .0005, .0005, .0005), being overall
strict in fitting the data across all deciles but particularly so above the median.

Results from all four estimation methods explored over these same datasets are sum-
marized in table 2 below. As a first remark, all methods yield estimes which closely
resemble the data in terms of income shares, Gini coefficient, and mean income, with
no particular differences between the MLE estimates obtained over the individual-level

14The estimation routine used for MLE estimation of GB2 parameters from individual-level samples is
provided in the GB2 (Graf and Nedyalkova. 2015) library in R.

15GPC esimation was performed following Blanchet et al. (2017) and their publicly-available gpinter

library for R.
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samples and the grouped-data estimates. The fact that income shares estimated by the
GMM and GPC estimator exactly match the data should come as no surprise, as these
methods are built under the condition that this matching holds on resulting estimates.
Additionally, comparing the three parametric estimators for the GB2 distribution’s pa-
rameters evidences no particular gains or losses in terms of bias from estimating using
individual-level data or grouped data, a result consistent with those explored in simulated
data in Eckernkemper and Gribisch (2021). In terms of standard errors, however, MLE
estimation over individual-level samples and ABC result in parameter point-estimates
which are generally more precise than those obtained through GMM.

Figure 1 below graphically illustrates the true and fitted GB2 distributions for all
point-estimates and scenarios considered. These density curves suggest that while all
MLE, GMM, and ABC estimates yield accurate representations of the true density curve
the GPC method is suited for representing the upper part of the distribution but behaves
very erratically on the middle and bottom segments.

Finally, a remark concerning the point-estimates presented for the ABC estimated
posterior distribution is that the shape parameters p and q are in all cases slightly above
their true values. These point-estimates are simply obtained as the mean value of the re-
spective estimated posterior distribution (also known as the minimum mean square error
(MMSE) estimates), and are therefore sensitive to skewness in the estimated posterior
distribution. In this case, this could be the result of the estimated posterior distribution
being influenced by the skewed shape of the prior distribution chosen for these parame-
ters. The fact that the estimates for the α shape parameter do not share this behaviour
despite having an identical prior can likewise suggest that this format of grouped data is
relatively more informative on the value of this parameter and therefore yields a respective
estimated posterior distribution less influenced by the skewness of its prior distribution.
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4.2 Applications to real data from PovCalNet

The PovCalNet data on the income distribution of Peru in 2013, already presented in
table 1, provides an interesting scenario for empirically assesing the proposed ABC in-
ference method on real data on incomes in light of other recent methods. This is so not
only because of the popularity and conventional format of the PovCalNet data but also
because it covers a scenario recently explored in Eckernkemper and Gribisch (2021) and
therefore results from their survey on grouped-data methods can serve as a benchmark.

Under the same specifications as in the previous section, the GMM, ABC, and GPC
methods were used to estimate an income distribution from these grouped-data statistics.
The resultings point-estimates are presented in table 3 below. As a first observation, in
common with what is observed in the simulated data setting, all three methods yield esti-
mates which match the data well in terms of income shares, Gini, and mean income. The
relationship between GMM and ABC MMSE parameter estimates is also similar to that
obtained under simulated data, with GMM yielding a value for the α parameter above
the point-estimate obtained under ABC and the latter yielding values for the β, p, and q
slightly above those obtained under the former. Additionaly, here also the standard errors
of the GMM estimates are above those of ABC. Finally, these parameter estimates ob-
tained under the GMM and ABC methods closely match those obtained for the same data
in Eckernkemper and Gribisch (2021, table 7) under their quasi-likelihood approximation.
In particular, the GMM estimates yield identical parameter estimates and standard errors
as this and their method are asymptotically equivalent.

Comparing the density curves implied by these three estimates, figure 2 evidences that
both GMM and ABC point-estimates yield an almost identical distribution, while GPC
once again gives estimates for the middle and lower part of the distribution strongly in
discrepancy with that obtained under the other methods.

Another interesting point of comparison across the three methods concerns the esti-
mation of the unknown bounds {zk}K−1

k=1 underlying the data. Both GPC and GMM must
explicitly employ optimization steps to estimate these bounds. The ABC estimator can be
seen as more versatile as no analytical expressions or specific optimizations are required
for working around the problem of unknown bounds as long as the assumed parametric
model for the income distribution allows for simulating data. Figure 3 below presents es-
timated posterior marginal distributions for each of the 9 unknown bounds (i.e., deciles)
in the data used in this application, each being a function of the estimated joint posterior

distribution for the model parameters {z̃k(θ̃
(j)

)}Jj=1 , θ̃ ∼ πτ (θ|{uk, GLCObs
k }Kk=1), along

with the ABC MMSE, GMM, and GPC point-estimates for them. This figure evidences
very similar estimates for all bounds for the ABC and GMM methods, while the GPC
estimates give strongly constrasting results for the lower groups in the data. Interestingly,
the 9-th decile, defining the lower bound of the top income group in the data is estimated
at an almost identical value by all three methods. The strong similarities between the
estimated bounds between GMM and ABC suggest that the latter can be a fruitful ap-
proach to parameter inference in cases where the expressions required to estimate group
bounds under GMM or BQL for a specific model are unavailable.

Finally, in assesing the fit of the estimated GB2 distribution under ABC to the
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data, figure 4 presents the ABC posterior marginal discrepancies using violin plots16.
These plots describe, for the metric chosen in the ABC algorithm, the distances be-

tween the observed data GLCObs
k and the simulated data GLCk(θ̃

(j)
) for each point in

the estimated joint posterior distribution θ̃
(j) ∼ πτ (θ|{uk, GLCObs

k }Kk=1) and can there-
fore help identify specific aspects of the data in which the estimates might systematically
err. In this case, the marginal posterior distribution of the discrepancies with respect
to each of the ten {GLCObs

k }Kk=1 points in the data do not suggest any such problems
in terms of goodness-of-fit. Having set the ABC rejection kernel bandwidth parameter
at τ = (.001, .001, .001, .001, .0005, .0005, .0005, .0005, .0005, .0005) allows for a relatively
looser fit with respect to the decile groups below the median, a behaviour clearly present
in the resulting estimated posterior discrepancies for the first and second decile groups,
while all discrepancies have an estimated marginal posterior distribution heavily concen-
trated below their respective value in τ .
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Figure 2: Fitted income distributions for PovCalNet data on Peru’s income distribution
for 2013.

16Violin plots are a graphical extension of the conventional box plot to include kernel density estimates
over the same data
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Table 3: Peru 2013 income distribution estimates under all grouped-data methods consid-
ered

Data GMM ABC (MMSE) GPC
α - 1.645 1.579 -

(0.08) (0.018) -
β - 388.737 412.926 -

(8.337) (2.727) -
p - 1.213 1.385 -

(0.088) (0.02) -
q - 1.825 2.206 -

(0.152) (0.041) -
uk sObsk

.10 0.02 0.02 0.02 0.02

.20 0.05 0.05 0.05 0.05

.30 0.09 0.09 0.10 0.09

.40 0.14 0.14 0.15 0.14

.50 0.21 0.21 0.22 0.21

.60 0.29 0.29 0.31 0.29

.70 0.39 0.39 0.41 0.39

.80 0.51 0.51 0.53 0.51

.90 0.67 0.68 0.70 0.67
1 1.00 1.00 1.00 1.00

Gini 0.43 0.44 0.41 0.44
µ 387.82 387.83 377.65 387.82

Note: The Data columns presents sample decile shares, sample Gini coefficient, and
sample mean income for PovCalNet data on Peru’s income distribution for 2013. GMM,
ABC, and GPC are the corresponding grouped-data estimates. Estimated standard
errors for parameter point-estimates given in parenthesis. As in table 2, presented ABC
results summarize the estimated posterior distribution by its respective mean and
standard errors were computed using a batch means estimator (Flegal et al. 2020).
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Figure 3: Estimated ABC posterior marginal distributions for the unknown decile group
bounds in PovCalNet data on Peru’s income distribution for 2013. Posterior mean esti-
mate in red, GMM estimate in blue, and GPC estimate in green.
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5 Concluding remarks

A new Bayesian approach to estimating income distributions from grouped data with
non-deterministic and unknown bounds is explored in this paper. In following with re-
cent Bayesian approaches bypassing the issue of unavailable likelihood functions for these
type I data through simulation-based inference, ABC methods can offer a particularly
versatile approach due to the non-parametric nature of its approximation to said likeli-
hood.

The versatility of this method distinguishes it from other recent methods such as the
GMM or the BQL which require computable expressions for various aspects of the as-
sumed parametric model for the distribution of incomes which might not be available
and/or implemented in statistical software for all such models. As ABC avoids this re-
quirement by only requiring that data can be simulated from the specified model it can
potentially be applied to a wider range of models than these methods.

The particular ABC approach explored in this paper exploits the GLC as a represen-
tation of the typically available information in type I grouped data. This representation
is informative on both the shape and the scale of the underlying income distribution
and therefore allows for inference on all parameters of the commonly assumed parametric
distributions for modelling incomes. In this sense, the proposed method overcomes the
limitations of the previously explored application of ABC to grouped data on incomes of
Kobayashi and Kakamu (2019) which focused solely on inference in shape parameters and
scale-invariant quantities of the income distribution, and places it amongst the latest ap-
proaches seeking to exploit all information available in the data such as the BQL approach.

Additionally, in the interest of exploiting the ABC discrepancies {{ε(j)
k }Kk=1}Jj=1 for

model criticism the proposed algorithm extends standard ABC MCMC algorithms to
perform online computing by simply storing the measured ABC discrepancies at each
step of the algorithm. This avoids the typical computational cost of producing these
measures ex-post by re-drawing new simulated datasets from the estimated posterior dis-
tribution of the model parameters.

Applications presented on both simulated data and real data suggest this ABC ap-
proach to be suited no worse than other recent methods devised for type I grouped data.
Both income shares and scale-dependent quantities of the income distribution such as
the unknown group bounds are estimated with a high level of precision through ABC
in these applications, with estimated standard errors for the model parameter estimates
being significantly below those obtained by other methods.

As implemented in this paper, however, the ABC estimator suffers from certain draw-
backs which future research could overcome. In similarity with the simulated-data appli-
cations of the ABC method in Kobayashi and Kakamu (2019) the applications presented
in this paper assuming the GB2 distribution suggest that this format of grouped data
is potentially more informative on the α shape parameter than the other p and q shape
parameters, with the respective prior distributions being potentially less revised by the
ABC approximated likelihood and therefore yielding an estimated posterior distribution
closer in shape to said prior than it is the case for α. Two calibration exercises could be
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done for potentially improving on these aspects of the method. Firstly, the performance
of the estimator on simulated data could be explored under alternative less skewed prior
distributions for the p and q parameters. Secondly, aspects of the data, such as specific
deciles along the income distribution, could potentially be more informative on these pa-
rameters than others. The particular ABC estimator as implemented in these applications
employs a multivariate metric and rejection kernel with a bandwidth parameter τ that
allows for a more strict fit of the model to specific decile groups in the data. Studying
the performance of the estimator under different specifications for this bandwidth param-
eter can help understand which aspects of the data should be particularly emphasized to
obtain estimated posterior distributions for p and q which are less influenced by their prior.

A second drawback of the ABC method in this paper involves the MCMC sampling
algorithm used in the interest of obtaining samples from the ABC target posterior distri-
bution πτ (θ|{uk, GLCObs

k }Kk=1). This type of sampling algorithm is an invalid approach if
the Markov chain fails to converge, and so convergence must be assesed by the analyst
before interpreting MCMC output as a sample from the target posterior distribution.
An alternative sampling strategy for ABC inference, often more computationally efficient
than MCMC, is that of Sequential Monte Carlo (SMC, Sisson et al. 2007). Future re-
search exploring SMC sampling in the context of the present ABC framework could pose
an alternative to the issue of checking convergence posed by MCMC, as SMC samplers
explicitly require an ex-ante automatic rule determining when the sampler is considered
to have converged.

Finally, the versatility of the ABC approach could be exploited in future work by
considering more complex models for grouped data of type I than those explored in this
paper. In particular, additional components could be included as part of the assumed
DGP for the data, such as parametric models of high-income under-reporting or ’missing
rich’ coverage errors, for which deriving a grouped-data likelihood is yet more challenging.
These extensions could allow for Bayesian inference on the income distribution contempla-
tive of these phenomena which are commonly believed to affect virtually any survey-based
dataset on incomes.
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