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Highlights: 

 

 

Breathing frequency and Saturation are highly predictive of intubation in COVID-19 

Intensive care patients. 

 

Modification of Breathing Frequency and Saturation signals are altered at least 48h 

before actual intubation for COVID-19 patients. 

 

Automated signal analysis and Artificial Intelligence algorithms enable robust 

monitoring of COVID-19 patients. 
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ABSTRACT 

 

Background: 
We designed an algorithm to assess COVID-19 patients severity and dynamic intubation 

needs and predict their length of stay using the breathing frequency (BF) and oxygen 

saturation (SpO2) signals. 

Methods 
We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU 

of a teaching hospital during both the first and subsequent outbreaks of the pandemic in 

France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was 

applied to the patients’ data for clustering. The algorithm’s robustness was ensured by 

comparing its results against actual intubation rates. We predicted intubation rates using 

the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity 

score that represented the patient's severity over the previous 24 h; the validity of MS24, the 

maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay. 

Results 
Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 

87.8% for intubation recognition (AUC=0.94, True Positive Rate 86.5 %, true Negative Rate 

90.9%)The S24 score of intubated patients was significantly higher than that of non-intubated 

patients at 48h before intubation. The MS24 score allowed for the distinguishing between three 

severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red 

(77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an 

accuracy rate of 81.0% (AUC = 0.87). 

Conclusions 
Our algorithm uses simple signals and seems to efficiently visualize the patients’ respiratory 

situations, meaning that it has the potential to assist staffs’ in decision-making. Additionally, 

real-time computation is easy to implement. 
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BACKGROUND 

The rapid spread of coronavirus disease (COVID-19) challenged intensive care units (ICU) 

worldwide, and increases in cases may overwhelm ICU capacity [1, 2]. This situation calls for 

the early screening and monitoring of these patients to distinguish those that are likely to 

worsen and should therefore be directed to intermediate care facilities or regular hospital 

wards. Therefore, in this study, we present a method that allows for the real-time analysis of 

respiratory signals using an AI algorithm for dynamic severity assessment. COVID-19 

patients might experience profound, repeated hypoxia without requiring intubation. Indeed, 

prior to the pandemic, severely hypoxic patients were mostly treated via mechanical 

ventilation after intubation. Many COVID-19 patients are treated with high-flow oxygen 

therapy using a non-invasive method. Additionally, high flow oxygen therapy has proven to 

be efficient for COVID-19 pneumonia [3–5]. However, some patients may be over-treated 

with these methods, leading to delayed intubation, hence the interest in early potential failure 

detection. 

Besides intubation prediction, the SAPS2 score seems unsuitable for severity assessment of 

COVID-19 patients. Indeed, this score is not suitable for these patients. Upon ICU admission, 

these patients generally present only one mild failure that then changes or worsens during the 

first days of their stay. The respiratory score is 0 for almost all patients at 24 hours post-

admission because more than 93% are not intubated (Figure 1). Therefore, all COVID-19 

patients have the same SAPS2 respiratory score  regardless of their future evolution. This 

means that standard scoring methods fail to accurately predict COVID-19 evolution [6]. 

Recent efforts have been made to design an effective scoring method [7, 8], but these more 

efficient methods require lab results and may therefore be more challenging to implement. In 

this study, we therefore present an entirely automated scoring system that uses only two 

physiological respiratory signals (breathing frequency (BF) and oxygen saturation (SPO2)) to 
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assess patients’ infection severity, predicting the potential for both intubation and prolonged 

stay in the ICU (>5 days).  

In sum, the early detection of patients that will require an extended stay in the ICU may help 

regulate patient flow and resource management for hospitals. 

METHODS 

This retrospective, observational study included confirmed COVID-19 patients that were 

admitted to our ICU during both the first and subsequent outbreaks of the pandemic in France 

(March to May 2020 and September 2020-September 2021). We excluded patients that had 

been intubated prior to admission, patients with missing data, and patients with a non-

intubation decision. The local ethics committee (CCP1 SUD Mediterranée) approved the use 

of physiological data for study within the framework of our physios project. Participants or 

their families were informed of the research’s purpose and their right to decline to participate. 

General conception 

This study used standard monitoring data (BF and SPO2) to judge the severity of infection in 

patients with COVID-19. More specifically, we investigated whether a clustering algorithm 

could accurately recognize patients at risk for intubation without supervision. We, therefore, 

used a clustering algorithm fed with data from BF and SPO2 from intubated and non-

intubated patients. Each intubated patient gave a mean state vector averaged over the four 

hours before intubation.   Non-intubated patients provided a state vector averaged four hours 

prior to the theoretical average time of intubation (91 hours after ICU admission. We then 

hourly applied this algorithm to gauge the severity of the patients at various other times. The 

principle is shown in Figure 1 
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Figure 1: General Principles: A-The SpO2 and BF signals are used to calculate a state vector 

representing the patient's respiratory status every hour. This state vector is averaged over the 

last four hours before intubation. We set a fictitious date of intubation for patients who were 

not intubated, which is 91 h after admission (91 hours the average date of intubation for 

patients). The state vector is also averaged over the last four hours prior to this fictitious 

intubation date. B- All state vectors of the 279 patients are provided to an unsupervised 

clustering algorithm (GMM). We compared the performance of this algorithm to the actual 

classification. C- The algorithm calculates the probability of intubation in 4 hours every hour. 

However, this prediction is often distorted by brief periods of instability. This probability is 

therefore averaged over 24 hours.  

 

Data collection 

Physiological data was extracted from the bedside monitors every five seconds, and a python 

script transformed the HL7 format into an exploitable monitor parameters CSV file containing 

all patients’ parameters.  

 



 7 

 

 

Data processing 

Our two parameters (BF and SPO2) were recorded for all patients, and may also be easily 

deployed outside of the ICU for regular wards monitoring of COVID-19 patients. Artefacts as 

disconnection or movements were removed using a median filter. We computed 10 basic 

parameters derived from BF and SPO2; they are listed in Table 1. 

 

Parameter ai Description 

BFM Mean value of BF 

BFmax Maximum value of BF 

BF40 Percentage of time over 40 breaths/minute 

BF20 Percentage of time under 20 breaths/minute 

varBF Variance of BF 

SPO2M Mean value of SPO2 

SpO2min Minimum value of SPO2 

ITS Integral of 100-SPO2  

varSpO2 Variance of SPO2 

SPO2-90 Percentage of time under 90% of SPO2 

 

Table 1: Parameters computed from BF and SPO2. 

A 10-parameters vector x =[ ai], that is, the hourly mean of the ten parameters listed in Table 

1, represents the patients’ respiratory condition. 

 

Intubation recognition 

We used a Gaussian mixture model-clustering algorithm for intubation pattern recognition, 

using either part of or the whole x vector.  

We assumed that a patient’s situation will worsen in the 4 hours leading up to actual 

intubation. Indeed, we assumed that intubation was performed for unstable patients for which 
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non-invasive therapy was no longer sufficient. For intubated patients, we calculated the mean 

state vector x=[ai] of the four hours immediately before intubation (Figure 1). Intubation was 

timed using a capnogram curve. Capnography is the measurement of exhaled CO2 and is 

required for ventilation monitoring. Our ICU protocol specifies a mandatory capnogram for 

all patients prior to any intubation. Therefore, intubation timing is detected by a non-zero 

capnogram. For non-intubated patients, we computed the mean state vector of the four hours 

prior to median intubation time (91 hours) (Figure 1). Each patient provided a state vector 

representing the supposed worst condition for intubated patients. Two-class unsupervised 

clustering was then applied to the data (Figure 1). 

Prior to clustering, we reduced the dimensionality. Feature selection was performed 

pragmatically using logistic regression analysis. Only those results with p < 0.1 were kept for 

further analysis. Features were then reduced to the minimum according to parsimony 

principles while clustering was performed using various combinations of the remaining 

features; only the model that performed best was kept. The state vector x=[ai], which was 

made up of the kept features, described the patient’s situation each hour. 

The vector x served as an input for the Gaussian mixture model. We used the algorithm 

embedded in Matlab (The Mathworks, Inc., Natick, MA, USA) with a full covariance matrix 

and specified two clusters. The clustering was then compared to the actual classification. The 

probability density function of the multivariate Gaussian for cluster k = 0 or 1, as computed 

by Expectation-Maximization, is given by : 

����� = �
��	
��|
�|

��
�
�������

�
���������      (1) 

where k is the cluster number (0 or 1), X is the input vector (column), n is the input vector 

length, μk is the centers of the Gaussian for cluster k, Σk is the covariance matrix for cluster k, 

Σk is the determinant of Σk, and Σk
-1 is the inverse of Σk. 
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Therefore the probability of belonging to cluster k for vector xi is : 

��� = ��������
∑ �����������
�� 

            (2) 

where Φk is the prior probability of cluster k. 

Score construction 

S24 

The algorithm, by reflecting the state of a given patient at a given moment, expresses the 

instantaneous probability that a given patient will be intubated within four hours. The positive 

prediction of intubation is therefore associated with high levels of respiratory severity. 

However, this state may also be due to the patient moving (from a chair to a bed or vice 

versa), speaking, or getting of the high flow nasal canula, among other things. Therefore, we 

computed the average intubation probability over 24 hours to reflect the patient’s state on a 

more wider time window (Figure 1). Indeed, a patient with a positive prediction of intubation 

during 24 hours is more severe than one that has one hour or two episodes of high intubation 

probability over 24 hours. 

A given patient’s situation was characterized by its state vector x=[ai] as computed during the 

last hour. The algorithm was then applied to x, resulting in a p(x) , the posterior probability as 

predicted by the Gaussian mixture model (Equation 2). The S24 score is computed according 

to Equation 3, and this probability is updated hourly. 

 

!	"�#� = 100. ' �
	"∑ ��# − )��*	"

�*� + (3) 

 

Patients were classified into three categories depending on their maximum MS24.  
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We excluded the first 24 hours because most patients were unstable at admission and had a 

high score that decreased with support therapy initiation. We also excluded the 4 hours 

immediately prior to intubation because that time was used for algorithm learning. Therefore, 

a patient was categorized as green if their score remained in the green category. They were 

categorized as orange or red if their S24 maximum was in the orange or red category, 

respectively. A given patient’s score may increase, but never decreases. All computations 

were performed using Matlab® (The Mathworks, Inc., Natick, MA, USA).  

Length of Stay 

We studied the link between a patient’s MS24 and their length of stay in the ICU to use 

our data for triage.  We chose to study whether this score was predictive of a prolonged 

stay in intensive care. In particular, if it could predict a long length of stay, i.e. more than 

five days. W chose this value because it corresponds to our cohort's median length of 

stay in the ICU of non-intubated patients. The five days reflects a standard ICU stay for 

COVID-19. 

RESULTS 

Population 

We included 279 patients (63 [56-70] years of age, 93 females, and 76 deaths). 23 patients 

came from the first outbreak and 256 came from the others (see flow chart diagrams, Figure 

2). Their baseline characteristics are listed in Table 2: 
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Number 279 

Age 63  [56-70] 

Sex ratio F/M 93 / 186 (33% / 67%) 

Intubation 111 (40 %) 

ECMO 41 (14.7 %) 

Length of Stay 8 [4-20] 

Death 76 (27.2 %) 

 

Table 2: Patients’ characteristics 

 

 
 

Figure 2: Study flow chart, including patients from ongoing pandemic ,March 2020 to 

September 2021 
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Feature selection 

The logistic regression p-values for all parameters are listed in Table 3.  

Parameter 

ai 

p 

BFM 0.05 

BFmax 0.6 

BF40 0.3 

BF20 0.3 

varBF 0.2 

SpO2M 6.10-3 

SpO2min 3.10-7 

ITS 0.05 

varSpO2 0.02 

SpO2-90 8.10-4 

 

Table 3: P-values for the logistic regressions for all parameters in Table 1. 

We kept the following parameters for the first evaluation: BFM, SpO2M, SpO2min, ITS, 

varSpO2, and SpO2-90. As the significances of SpO2M, SpO2min, and SpO2-90 were 

particularly high, these parameters were kept for all classifications as we tried all 

combinations including three others predictors: BFM, ITS , varSpO2. That gave eight 

combinations corresponding to eight different models numbered from 1 to 8. Models and their 

predictors are listed in table 4. 
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MODEL ALGORITHM PREDICTORS 

1 GMM SpO2M  SpO2min  SpO2-90 

2 GMM SpO2M  SpO2min  SpO2-90  BFM  ITS  varSpO2 

3 GMM SpO2M  SpO2min  SpO2-90  BFM  ITS 

4 GMM SpO2M  SpO2min  SpO2-90  BFM 

5 GMM SpO2M  SpO2min  SpO2-90  ITS 

6 GMM SpO2M  SpO2min  SpO2-90  ITS  varSpO2 

7 GMM SpO2M  SpO2min  SpO2-90  varSpO2 

8 GMM SpO2M  SpO2min  SpO2-90  BFM  varSpO2 

Table 4 : Tested models with their predictors  (GMM: Gaussian Mixture Model) 

Classification accuracy 

The clustering performances of each model are shown in Table 5: 

MODEL TPR(%) TNR(%) ACCURACY (%) 

1 83.8 88.1 86.4 

2 60.4 92.9 79.9 

3 84.7 49.4 63.4 

4 86.5 90.9 87.8 

5 84.7 49.4 63.4 

6 17.1 96.4 64.9 

7 63.1 92.1 81 

 8 70.3 92.9 83.9 

 

Table 5: Models’ performances.TPR: True Positive Rate, True Negative Rate, RI: Rand 

Index. 

Model 4 had the best performance (Figure 3), and was therefore retained for the rest of the 

study. Patients’ situations are represented each hour by the four-parameter [BFM, SpO2M, 

SpO2min, and SpO2-90] state vector. 

The model’s parameters can be found in Tables 5, 6, and 7 : 
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Parameters BFM SpO2M SpO2min SpO2-90 

μ0 24.0 94.6 90.8 0.06 

μ1 30.0 90.4 83.1 0.43 

 

Table 5: μk represents the centers of the Gaussian mixture model for cluster k = 0 (non-

intubated) and k=1 (intubated patients). 

The two covariance matrices were: 

Σ0 BFM SpO2M SpO2min SpO2-90 

BFM 20.3 -2.9 -4.3 0.10 

SpO2M -2.9 3.4 4.3 -0.08 

SpO2min -4.3 4.3 7.9 -0.14 

SpO2-90 0.10 -0.08 -0.14 0.004 

 

Table 6: Covariance matrix for non-intubated patients: 

Σ1 BFM SpO2M SpO2min SpO2-90 

BFM 46.4 -1.9 -6.6 0,].11 

SpO2M -1.9 7.5 8.5 -0.60 

SpO2min -6.6 8.5 27.2 -0.38 

SpO2-90 0.11 -0.60 -0.38 0.06 

 

Table 7: Covariance matrix for intubated patients: 
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Figure 3: Unsupervised clustering performances of Model 4 as listed in Table 2. A – The 

confusion matrix shows an accuracy of 87.8% . Class 0 is non-intubated and class 1 intubated. 

Numbers are actual number of patients in each predicted class according to the ground true 

class. Green percentages (resp. red) are true rate (positive or negative) or positive predictive 

values (resp.: false and negative predictive values). B - ROC curve had an AUC = 0.94. 
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S24 score 

Patients that were intubated had a higher S24 score at least 80 hours prior to intubation, and 

remained high until intubation, with a continuous increase that accelerated in the last 24 hours 

(Fig. 4). 

 
Figure 4:  The cohort dynamic changes of the S24 score during the 80 hours prior to 

intubation. Patients from the intubated group are in red. The plain thick line is the mean 

and the fine lines correspond to the 25%-75% confidence interval. The green area 

represents the non-intubated group; the dashed thick line is the mean and the fine lines 

correspond to the 25-75% confidence interval. The S24 score discriminates both groups 

at least 80 h before intubation. We noted a net increase in S24 score at 24 h prior to 

intubation. 
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MS24 score 

The MS24 score is the maximum S24 score after disregarding the first 24 hour of the patient’s 

stay. MS24 was found to be highly correlated with the occurrence of intubation (Figure 5-A). 

Simply put, the rate of intubation increases with the MS24 score, and we established a 

probability law that also increases with MS24 score (Figure 5-B). The MS24 allows for 

distinguishing between three severity situations (green, orange, and red). The cut-offs for 

these categories were arbitrarily established by dividing in three the scale of 100 (Table 8).  

 

 Score MS24 Number of 

patients 

Number of 

intubations 

% 

 ≤33 89 3 3.4 

 34-66 97 36 37 

 >66 93 72 77 

 

Table 8: Number of intubations according to MS24 score. 

 

The MS24 score also helped distinguish between different patient behaviors: 

Green: (MS24 < 33) corresponds to patients that responded well to the therapeutics, meaning 

that their hourly score could increase but generally quickly returned to zero, indicating a low 

risk of intubation (3.4 %). Figure 6-A shows typical S24 evolution in such patients; they 

experience a mild increase in S24 score that quickly regressed. Two of the intubated patients in 

the green zone were admitted during the first COVID-19 outbreak.  

Orange: (MS24 ≤ 66) corresponds to patients that were unstable and experienced large 

increases in hourly score value that returned somewhat quickly to 0 with an increased risk of 

intubation (37 %) (Fig. 6-A and B). It is difficult to say whether the patients intubated in this 

category were intubated prematurely or, conversely, were prevented from worsening through 
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intubation. It is worth noting, however, that the patient in 6-A stabilized and improved 

dramatically while the patient in 6-B remained in the orange zone.  

Red: (MS24 > 66) corresponds to highly unstable patients with prolonged higher hourly scores 

and an increased risk of intubation (77 %). Fig. 6-C shows the typical evolution of a red 

category patient. The increase in S24 score was continuous and the patient’s condition 

continued to worsen in the 40 hours prior to intubation. 
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Figure 5: A - Evolution of the cumulative incidence of intubation with the severity score 

expressed as the rate of intubation. B - Evolution of the probability of intubation 

according to MS24 score. The probability increased continuously until it reached almost 

1 for MS24=100. 
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Figure 6: A - Score evolution of a stable patient (green). The S24 score had the potential 

to increase, but quickly returned to zero, staying under 33 overall.  The orange line 

shows an unstable patient with large score increases; this patient’s condition improved 

without tracheal intubation. B – Score evolution of an unstable patient with a prolonged 

stay in the warning orange zone. This patient had to be intubated. C – Score evolution of 

an unstable patient with a terminal increase to a final S24 score of 96 (MS24=88). 

 

MS24 score and length of ICU stay 

 

MS24 was correlated to the length of ICU stay for all patients (Figure 7 - A); for non-

intubated patients, this correlation was linear (Figure 7 – B). We found that a MS24 score 

over 40 was predictive of an ICU stay of greater than five days with an accuracy rate of 

81.0% (PPV=86.8%, sensibility=83.4%, AUC=0.87) (Figures 7-C and D).  

 
Figure 7: A - Changes in length of stay alongside MS24 score (lengths of stay greater than 

50 days were not plotted). Green dots represent non-intubated patients while red dots 

represent intubated patients. The purple line represents the moving average of length of 

stay with MS24.. B - Changes in length of stay with  MS24 score for non-intubated patients 

(red line is the linear regression) C -Confusion matrix of a prediction of a length of stay 

of > 5 days using a MS24 score greater than 40 that corresponds to the optimum of the 

ROC curve plotted in D. 

 



 21

Computational Complexity 

The EM algorithm has an O(nkd) complexity per iteration[9]. It can be updated on a regular 

basis, but this does not lead to an explosion of the computation time considering the number 

of patients entering the intensive care unit for COVID-19.  

 

Regarding the algorithm for calculating the severity scores, it is a linear process with a 

complexity O(n) which is economical in time and could lead to an embedded technology 

easily. 

 

DISCUSSION 

We used BF and SpO2 to assess COVID-19 patients’ level of respiratory severity by means of 

the IA unsupervised algorithm. The algorithm output was used to design two scores, namely 

S24 and MS24. S24 was computed continuously and reflected the patient's state in real time 

while MS24 reflected the patient's absolute level of respiratory severity and helped categorize 

the patient. The results allowed for patient monitoring and other related decision-making by 

dividing the patients into three categories, namely green, orange, and red. First, green patients 

have a lower risk of intubation. They could therefore be directed to intermediate care while 

others remain under careful monitoring because of higher intubation risk. Secondly, COVID-

19 patients are highly hypoxic and experience profound desaturation episodes that may lead 

to premature intubation in a constrained pandemic situation [10]; this is becoming even more 

pronounced as the benefits of intubation are debated[10, 11]. During an episode of 

desaturation, a low MS24 may help postpone intubation. Finally, intubation should 

immediately be considered for a red patient with a continuously increasing score. Indeed, 

prompt detection of non-invasive treatment failure is of great importance. It avoids 

unnecessary delays in intubation. Recent studies have shown that patients' self-inflected 
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injuries during spontaneous breathing could potentially lead to aggravated lung damage, 

which could, in turn, be responsible for increased mortality rates [13]. However, this theory is 

up for debate [13, 14].  

The three categories distinguish the way that various patients react to non-invasive therapy. 

Green patients respond well; their instantaneous score (i.e., algorithm classification) 

sometimes rises to 1 during moments of effort or active treatment, but it quickly returns to 

zero. In the orange category, the algorithm prediction may stay high for a longer time, 

reflecting a high level of instability, leading to intubation. Finally, the red category 

characterizes highly unstable patients that usually cannot be successfully stabilized via non-

invasive therapy. 

These scores have multiple uses. They could assist in resource management during periods of 

constraint; green patients may be cared for at intermediate facilities or even on regular 

hospital floors with adequate non-invasive oxygen therapy and simple SpO2 and BF 

monitoring. The same algorithm could then be used to continuously monitor regular floor 

patients [15, 16]. The early detection of a potential prolonged stay in the ICU also helps with 

resource management, as a high number of bed-blocking patients could trigger the opening of 

new premises [18] or the evacuation of patients to remote regions[19]. This score could also 

be used to determine the patients with the most severe cases at ICU admission in order to 

immediately initiate treatment for those patients. Finally, the scores could be used to compare 

patients’ severity as SpO2 and BF are repeatedly recorded.  

This pilot study has limitations. First, we focalized the algorithm on COVID-19 patients, and 

did not consider all patients at risk of intubation. A universal intubation prediction algorithm 

could have been developed and then calibrated for COVID-19 patients. However, it seemed to 

us that the policy surrounding the intubation of COVID-19 patients is different, especially 

since our center involves very heterogeneous patients.  
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Secondly, this monocentric study reflects our institution’s intubation policy for COVID-19 

patients. However, the unsupervised characteristic of the learning revealed that all patients are 

intrinsically different. The Gaussian mixture model is easy to modify and adapt for other 

centers; for modification, a center could add its own data and then modify the coefficient of 

the probability computation. We can also continuously update the algorithm by training it on 

all previous patients; training sets are provided in electronic supplementary file. 

Finally, we intentionally chose not to include clinical data in the classification to have the 

most straightforward algorithm possible, especially since the patients are relatively 

homogeneous and not different from the published national cohort[20]. 

 

CONCLUSION 

The score we designed uses simple signals and seems to be efficient in terms of visualizing a 

given patient’s respiratory situation and could help in decision-making. Real-time 

computation is easy to implement, allowing for the prediction of both tracheal intubation and 

prolonged ICU stay for COVID-19 patients. The algorithm could also be used on regular 

floors when patients are monitored with continuous portable devices. The use of the algorithm 

for non-COVID-19 patients with potentially worsening respiratory situations, however, 

requires its own dedicated study. 
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