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A Local ρ-improvement of the ψ-filter

Compared to score models, the additional flexibility of the class of ψ-filters may come at
some cost. In fact, the results in Blasques et al (2015) provide a reasoning for imposing
the restriction of score models that

ψ(yt, ft, θ) =
∂ log p(yt|ft, θ)

∂ft
.
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Blasques et al (2015) show that only the score filter guarantees that the parameter update
from ft to ft+1 produces a local improvement in the log-likelihood of the model and,
under appropriate conditions, an improvement in the Kullback-Leibler distance to the
true conditional distribution of the data. In particular, Blasques et al (2015) explore
the fact that, in regions of high probability, the conditional log-likelihood is improved
(i.e., log p(yt, ft) ≤ log p(yt, ft+1)) when the update step ft+1 − ft| is small, if and only
if the parameter update is score equivalent. This happens because, under appropriate
conditions, the score can be seen as a derivative of a local Kullback-Leibler divergence
between the true unknown conditional density p0

t of yt given its past yt−1, and the
conditional density p(·|ft) implied by the model; i.e., the score term takes the form

st =
∂ log p(yt|ft)

∂ft
= lim

δ→0

∂

∂ft
KL(yt,δ)

(
p0
t , p(·|ft)

)
,

where KL(yt,δ) denotes a local Kullback-Leibler divergence that places its mass on a δ-
neighbourhood of yt. The QSD model allows for a generalization of this idea whereby
ψt is a derivative of some local differentiable distance (metric) function D (yt,δ),

ψt = lim
δ→0

∂

∂ft
D (yt,δ)

(
p0
t , p(·|ft)

)
.

As illustrated below, the distance function D (yt,δ) is implicitly defined by the loss criterion
used to build the updating equation of the QSD model.

Proposition 1 highlights the trivial but relevant notion that the ψ-update can be
used as a Newton-type algorithm when the ρ-function is adopted as a filtering objective
criterion and the parameter update is smooth. For simplicity, we focus on updates
that resemble a Newton step by setting (ω, β) sufficiently close to the values (0, 1). For
completeness, a short justification for Proposition 1 is given in Appendix B. Naturally,
since QSD models nest score models (in particular, when the log likelihood is used as
a loss function for the update), there are a range of settings under which where these
updates are equivalent. Definition 1 introduces the notion of ψ-equivalent update as being
an update that always steps in the same direction as the ψ-update.

Definition 1. (ψ-equivalent update) A parameter update of the form

ft+1 = ω + αξ(yt, ft, θ) + βft,

is said to be ψ-equivalent if sign
(
ξ(y, f, θ)

)
= sign

(
ψ(y, f, θ)

)
∀ (y, f, θ).

Proposition 1. (local ρ-improvement of ψ-updates) Let ρ be continuously differentiable
in ft. Then, there exists a δf > 0, and (ω, β) in a neighborhood of (0, 1) such that

ρ(yt, ft+1, θ)− ρ(yt, ft, θ) ≥ 0 for every yt ∈ R and |ft+1 − ft| < δf

if and only if ft is ψ-equivalent. Additionally, let ρη and η be such that

ρη(η(y), f, θ) = ρ(y, f, θ) ∀ (f, y, θ)
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with ρη continuously differentiable in η(y). Then, for η(yt+1) sufficiently close to η(yt),
we have

ρ(yt+1, ft+1, θ)− ρ(yt, ft, θ) ≥ 0 for every |ft+1 − ft| < δf

if and only if ft is ψ-equivalent.

The following two examples illustrate the reasoning behind Proposition 1 on condi-
tional location and scale examples.

Example 1. (Location model) For the location model yt = ft + εt with the inverse linex
forecast loss function, ρ(yt, ft, θ) = 1 + δεt − exp(δεt), Proposition 1 tells us that the
ψ-update with ψ(yt, ft, θ) = δ exp(δεt) − δ delivers one-step-ahead local improvements of
the inverse linex criterion (i.e., ρ(yt, ft+1, θ) > ρ(yt, ft, θ)). Furthermore, in this case,
we can set η(yt) = yt and hence conclude that we also improve relative to yt+1 (i.e.,
ρ(yt+1, ft+1, θ) > ρ(yt, ft, θ)) if the data evolve smoothly.

Example 2. (Volatility model) The same reasoning applies to a volatility model. Here,
one might set η(yt) = y2

t so that the ψ-update is ensured to deliver

ρ(yt+1, ft+1, θ) > ρ(yt, ft, θ)

when both ft and y2
t evolve smoothly.

B Proofs

Proof of Proposition 1

The first claim follows trivially by noting that

ρ(yt, ft+1, θ)− ρ(yt, ft, θ) = ψ(yt, f
∗
t , θ)(ft+1 − ft)

= αψ(yt, f
∗
t , θ)ψ(yt, ft, θ) + o(1)

= αψ(yt, ft, θ)
2 + o(1) > 0,

where the first equality is an application of the mean value theorem, the second equality
is obtained since ft+1−ft = ω+αψ(yt, ft, θ)+(β−1)ft with ω+(β−1)ft = o(1), the third
equality follows by continuity of ψ and hence writing ψ(yt, f

∗
t , θ)

2 = ψ(yt, ft, θ)
2 + o(1)

as ft → f∗t . Finally, the inequality is obtained by setting ω, β − 1 and ft+1 − ft small
enough such that the inequality holds.

The second claim is easily achieved since

ρ(yt+1, ft+1, θ)− ρ(yt, ft, θ) = ρ(yt+1, ft+1, θ)− ρ(yt, ft+1, θ)

+ ρ(yt, ft+1, θ)− ρ(yt, ft, θ)

= ρ′η(yt+1, ft+1, θ)(η(yt+1)− η(yt))

+ ψ(yt+1, f
∗
t , θ)(ft+1 − ft)

= ρ′η(yt+1, ft+1, θ) · o(1) + αψ(yt, f
∗
t , θ)ψ(yt, ft, θ) + o(1)

= αψ(yt, ft, θ)
2 + o(1) > 0,
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where in the first equality we add and subtract ρ(yt, ft+1, θ), the second equality uses the
mean-value theorem twice, and the final inequality is obtained by setting η(yt+1)−η(yt),
ω, β − 1 and ft+1 − ft small enough.

Proof of Lemma 1

For all t ∈ Z and n ∈ N, let
f

(n)
t+1 = ϕ(zt, f

(n−1)
t ) (B.1)

with f (0)
t = f0. Note that

f
(n)
t+1 = ϕn(zt, zt−1, . . . , zt−n+1),

for some measurable function ϕn : En → F . For all fixed n, the sequence (f
(n)
t )t∈Z is

stationary and ergodic. If for all t, the limit ft = limn→∞ f
(n)
t exists a.s., then by taking

the limit of both sides of (B.1), it can be seen that the process (ft) is solution of (5).
When it exists, the limit is a measurable function of the form ft = ψ∞(zt−1, zt−2, . . . ),
and is therefore stationary and ergodic. To show the existence of limn→∞ f

(n)
t , it sufficies

to prove that, a.s., (f
(n)
t )n∈N is a Cauchy sequence in the complete space F .

By the mean value theorem we have

sup
f,f̃∈F, f 6=f̃

∣∣∣∣∣ϕ(zt, f)− ϕ(zt, f̃)

f − f̃

∣∣∣∣∣ ≤ Λt := sup
f∈F

∣∣∣∣∂ϕ(zt, f)

∂f

∣∣∣∣
= sup

f∈F

∣∣∣∣α∂ψ(g(f, εt), Xt, f, θ)

∂f
+ β

∣∣∣∣ .
It follows that ∣∣∣∣∣ f

(n)
t+1 − f

(n−1)
t+1

f
(n−1)
t − f (n−2)

t

∣∣∣∣∣ =

∣∣∣∣∣ϕ(zt, f
(n−1)
t )− ϕ(zt, f

(n−2)
t )

f
(n−1)
t − f (n−2)

t

∣∣∣∣∣ ≤ Λt,

and thus∣∣∣f (n)
t+1 − f

(n−1)
t+1

∣∣∣ ≤ Λt

∣∣∣f (n−1)
t − f (n−2)

t

∣∣∣ ≤ ΛtΛt−1 · · ·Λt−n+2

∣∣ϕ(zt−n+1, f
0)− f0

∣∣ .
For n < m, we then have

∣∣∣f (m)
t+1 − f

(n)
t+1

∣∣∣ ≤ m−n−1∑
k=0

∣∣∣f (m−k)
t+1 − f (m−k−1)

t+1

∣∣∣
≤

m−n−1∑
k=0

ΛtΛt−1 · · ·Λt−m+k+2

∣∣ϕ(zt−m+k+1, f
0)− f0

∣∣
≤
∞∑
j=n

ΛtΛt−1 · · ·Λt−j+1

∣∣ϕ(zt−j , f
0)− f0

∣∣ . (B.2)
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Note that (i) implies that E ln+
∣∣ϕ(zt, f

0)− f0
∣∣ <∞. Therefore

lim sup
t→∞

ln
∣∣ϕ(zt, f

0)− f0
∣∣

t
≤ 0 a.s.

The process (Λt) being stationary and ergodic, (ii) then entails

lim sup
j→∞

ln
(
ΛtΛt−1 · · ·Λt−j+1

∣∣ϕ(zt−j , f
0)− f0

∣∣)1/j
= lim sup

j→∞

1

j

j∑
k=1

ln Λt−k+1 +
ln
∣∣ϕ(zt−j , f

0)− f0
∣∣

j
≤ E ln Λ1 < 0.

By the Cauchy rule, the right-hand side of (B.2) tends almost surely to zero as n→∞.
The existence of a stationary and ergodic solution to (5) follows.

Assume that there exists another stationary process (f∗t ) such that f∗t+1 = ϕ(zt, f
∗
t ).

For all N ≥ 0 we have

|ft+1 − f∗t+1| ≤ ΛtΛt−1 · · ·Λt−N |ft−N − f∗t−N |. (B.3)

Since ΛtΛt−1 · · ·Λt−N → 0 a.s. as N → ∞, and |ft−N − f∗t−N | = OP (1) by stationarity,
the right-hand side of (B.3) tends to zero in probability. Since the left-hand side does not
depend on N , we have P (|ft+1−f∗t+1| > ε) = 0 for all ε > 0, and thus P (ft+1 = f∗t+1) = 1,
which establishes the uniqueness.

Proof of Lemma 2

By (B.2), we have

∣∣ft+1 − f0
∣∣ ≤ ∣∣ϕ(zt, f

0)− f0
∣∣+

∞∑
j=1

ΛtΛt−1 · · ·Λt−j+1

∣∣ϕ(zt−j , f
0)− f0

∣∣ .
Note that the variables Λt are independent, E log Λt < 0, E

∣∣ϕ(zt, f
0)− f0

∣∣r < ∞ and
EΛrt < ∞. The arguments of the proof of Lemma 2.3 in Berkes, Horváth and Kokoszka
(2003) (see also Corollary 2.3 in Francq and Zakoian, 2019) then entail that there exists
s ∈ (0, r∧1), such that EΛst < 1, and thus E

∣∣ft+1 − f0
∣∣s <∞ and the conclusion follows.

Proof of Lemma 3

The filter satisfies the SRE

ft+1(θ) = ςθ(yt, Xt, ft(θ))

for some function ς = ςθ such that E ln+
∣∣ς(yt, Xt, f

0)− f0
∣∣ < ∞ and E log Λt(θ) < 0

with
Λt(θ) = sup

f∈F

∣∣∣∣∂ς(yt, Xt, f)

∂f

∣∣∣∣ = sup
f∈F

∣∣∣∣α∂ψ(yt, Xt, f, θ)

∂f
+ β

∣∣∣∣ .
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As in the proof of Lemma 1, the solution of the SRE is obtained by taking the almost
sure limit, as n→∞, of

f
(n)
t+1(θ) = ς(yt, Xt, f

(n−1)
t (θ))

with f (0)
t (θ) = f0. Now, note that

sup
θ∈Θ
|ft+1(θ)− f̂t+1(θ)| ≤ ΛtΛt−1 · · ·Λ1 sup

θ∈Θ
|f1(θ)− f̂1(θ)|,

where Λt = supθ∈Θ Λt(θ). By (ii) one can choose % such that

1 > % > eE ln supθ Λ1 > 0,

so that
lim
t→∞

1

t
ln %−tΛtΛt−1 · · ·Λ1 = − ln %+ E ln Λ1 < 0

and the conclusion follows.

Proof of Lemma 4

Let θ be a fixed value of the parameter. Under the conditions of Lemma 3, the process
Zt = (εt, X

>
t , ft(θ))

> is stationary and ergodic. The processes (At) and (bt) are thus also
stationary and ergodic. The sequence {f ′t(θ)}t satisfies the linear stochastic difference
equation

f ′t+1(θ) = At + btf
′
t(θ),

where (At, bt) is strictly stationary and ergodic, and under (i) E log+ ‖A1‖ < ∞ and
E log+ |b1| < ∞. By Brandt (1986) and Bougerol and Picard (1992), or simply by
applying the Cauchy rule, it is known that there exists a stationary, ergodic and non
anticipative solution

{
f ′t+1(θ)

}
t
to the stochastic difference equation if

γ := E log |bt| < 0,

which is implied by (ii) of Lemma 3.
In the sequel, % denotes a generic constant of the interval (0, 1), and K denotes a

positive constant or a random variable measurable with respect to {zt, t ≤ 0}. Let

∂ψ̂t
∂θ

=
∂ψ(y,X, f, θ)

∂θ

∣∣∣∣
(y,X,f,θ)=(yt,Xt,f̂t(θ),θ)

and similar notations for the other derivatives. For i = 1, . . . , p, Taylor expansions show
that

∂ψt
∂θi

=
∂ψ̂t
∂θi

+
∂2ψ(y,X, f, θ)

∂θi∂f

∣∣∣∣
(y,X,f,θ)=(yt,Xt,f∗,θ)

{
ft(θ)− f̂t(θ)

}
,

where f∗ is between ft(θ) and f̂t(θ). By Lemma 3, we have |ft(θ) − f̂t(θ)| ≤ K%t.
Dropping "(θ)" in the notations, other similar Taylor expansions thus show that∥∥∥At − Ât + (bt − b̂t)f ′t

∥∥∥ ≤ K%t,
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where %t = ut%
t with E log+ ut <∞, using (ii). We thus have∥∥∥f ′t+1 − f̂ ′t+1

∥∥∥ =
∥∥∥At − Ât + (bt − b̂t)f ′t + b̂t

(
f ′t − f̂ ′t

)∥∥∥ ≤ K%t + ct

∥∥∥f ′t − f̂ ′t∥∥∥ ,
where

ct = |bt|+K%t ≥ |bt|+ |̂bt − bt| ≥ |̂bt|.

We obtain∥∥∥f ′t+1 − f̂ ′t+1

∥∥∥ ≤K {%t + ct%t−1 + · · · + ct · · · c2%1 + ct · · · c1‖f ′1 − f̂ ′1‖
}
.

Now note that, by the dominated convergence theorem, limτ→0 E log(|b1| + τ) = γ < 0.
Therefore, there exists τ > 0 such that

% < eE log(|b1|+τ) < 1,

and then
%i∏i

j=1 cj + τ
≤ %i∏i

j=1 |bj |+ τ
≤ K

( %

eE log(|b1|+τ)

)i
≤ K a.s.

We thus have ∥∥∥f ′t+1 − f̂ ′t+1

∥∥∥ ≤K t∑
i=1

%i

∏t
j=1(cj + τ)∏i
j=1(cj + τ)

+K
t∏

j=1

(cj + τ)

≤K
t∏

j=1

(cj + τ)

{
1 +

t∑
i=1

%i

}
.

Note also that E log(|b1|+ τ̃) < 0 implies

(|b1|+ τ̃) · · · (|bt|+ τ̃) ≤ K%̃t a.s., when eE log(|b1|+τ̃) < %̃ < 1.

Since lim supt→∞(log %t)/t ≤ log ρ + lim supt→∞(log ut)/t < 0, using E log+ ut < ∞, it
follows that %t converges almost surely to 0 as t → ∞. When τ < τ̃ we then have
0 ≤ ct + τ < |bt|+ τ̃ for t large enough, and thus

(c1 + τ) · · · (ct + τ) ≤ K%̃t a.s.

For any %∗ ∈ (%̃, 1) we then have

1

%t∗

∥∥∥f ′t+1 − f̂ ′t+1

∥∥∥ ≤K ( %̃

%∗

)t(
1 +

∞∑
i=1

%i

)
→ 0

a.s. as t→∞.
The second-order derivatives are treated in the same way, and the conclusion follows.
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Proof of Theorem 1

By compactness of Θ, the strong consistency is obtained by showing that for any θ 6= θ0,
there exists a neighbourhood V (θ) of θ such that

lim inf
T→∞

inf
θ∗∈V (θ)∩Θ

∥∥∥ĜT (θ∗)
∥∥∥ > 0, a.s. (B.4)

and that for any neighbourhood V (θ0) of θ0

lim sup
T→∞

inf
θ∗∈V (θ0)∩Θ

∥∥∥ĜT (θ∗)
∥∥∥ = 0, a.s. (B.5)

Let

GT (θ) =
1

T

T∑
t=t0+1

gt(θ).

For any neighbourhood V (θ) of θ, we have

inf
θ∗∈V (θ)∩Θ

∥∥∥ĜT (θ∗)
∥∥∥ ≥ inf

θ∗∈V (θ)∩Θ
‖GT (θ∗)‖ − sup

θ∈Θ

∥∥∥GT (θ)− ĜT (θ)
∥∥∥ .

By (16), (17) and (18), we have

sup
θ∈Θ
‖gt(θ)− ĝt(θ)‖ ≤ K%tut, ut = sup

θ∈Θ

(
|yt|k + |ft(θ)|+ 1

) (
1 +

∥∥f ′t(θ)∥∥) .
Since E log+ ut <∞ under the log-moment conditions and % < 1, the Cauchy root test
(see Lemma 2.1 of Straumann and Mikosch, 2006) shows that

∞∑
t=1

sup
θ∈Θ
‖gt(θ)− ĝt(θ)‖ <∞ a.s.,

which entails that, almost surely,

sup
θ∈Θ

∥∥∥GT (θ)− ĜT (θ)
∥∥∥ = O(T−1) as T →∞. (B.6)

Now note that

inf
θ∗∈V (θ)∩Θ

‖GT (θ∗)‖ ≥ ‖GT (θ)‖ − sup
θ∗∈V (θ)∩Θ

‖GT (θ∗)−GT (θ)‖ ,

with

sup
θ∗∈V (θ)∩Θ

‖GT (θ∗)−GT (θ)‖ ≤ 1

T

T∑
t=t0+1

sup
θ∗∈V (θ)∩Θ

‖gt(θ∗)− gt(θ)‖ .

Let Vm(θ) be the ball of center θ and radius 1/m. By the ergodic theorem applied to{
supθ∗∈Vm(θ)∩Θ ‖gt(θ∗)− gt(θ)‖

}
t
, we have

lim sup
T→∞

sup
θ∗∈Vm(θ)∩Θ

‖GT (θ∗)−GT (θ)‖ ≤ E sup
θ∗∈Vm(θ)∩Θ

‖gt(θ∗)− gt(θ)‖ .
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By Fatou’s lemma, the continuity of gt(·) and (21), the expectation of the right-hand side
of the inequality tends to 0 as m→∞. By (22) and the ergodic theorem, we have

lim
T→∞

‖GT (θ)‖ = ‖G(θ)‖ > 0

when θ 6= θ0. We thus have shown (B.4).
To show (B.5), it suffices to use the same arguments, noting that

lim sup
T→∞

inf
θ∗∈V (θ0)∩Θ

∥∥∥ĜT (θ∗)
∥∥∥ ≤ lim

T→∞

∥∥∥ĜT (θ0)
∥∥∥ = ‖G(θ0)‖ = 0.

The proof of the consistency is complete.
To show the asymptotic normality, first note that

∂GT (θ)

∂θ>
=

1

T

T∑
t=t0+1

ht(θ)

σ2
t (θ)

f ′′t (θ)− ht(θ)

σ4
t (θ)

∂σ2
t (θ)

∂θ
f
′>
t (θ)− 1

σ2
t (θ)

f ′t(θ)f
′>
t (θ). (B.7)

By already given arguments, Lemma 4 and (24) show that

sup
θ∈Θ

∥∥∥∥∥∂GT (θ)

∂θ>
− ∂ĜT (θ)

∂θ>

∥∥∥∥∥ = O(T−1) a.s. (B.8)

Now note that (B.7), the ergodic theorem and Et−1ht(θ0) = 0 imply that

ĠT := ∂GT (θ0)/∂θ> → −J (B.9)

almost surely as T → ∞. In view (25), we can thus assume that ĠT is invertible. The
mapping fT : Θ→ Θ then defined by

fT (θ) = θ − Ġ−1
T ĜT (θ)

satisfies ∥∥∥∥∂fT (θ)

∂θ

∥∥∥∥ ≤ ∥∥∥Ġ−1
T

∥∥∥∥∥∥∥∥ĠT − ∂ĜT (θ)

∂θ>

∥∥∥∥∥ < 1

for T large enough on some neighborhood of θ0, using (B.8), the ergodic theorem and
the continuity of ∂G(θ)/∂θ>. The contraction fT thus admits a unique fixed-point θT
on this neighborhood, for which ĜT (θT ) = 0p. See Jacod and Sørensen (2017) and the
references therein for examples of applications of the fixed-point theorem to show the
asymptotic existence of an estimator. In view of (20), we have θT = θ̂T , and thus

ĜT (θ̂T ) = 0p. (B.10)

Doing Taylor expansions of G1T (·), . . . , GpT (·), where GiT (θ) denotes the i-th element of
GT (θT ), and using (B.6) we have almost surely

0p =
√
TĜT (θ̂T ) =

√
TGT (θ0)− JT

√
T
(
θ̂T − θ0

)
+ o(1), (B.11)
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where the i-th row of JT is of the form −∂GiT (θiT )
∂θ>

with θiT a point between θ̂T and θ0.
The consistency of θ̂T entails that, for T large enough∥∥∥JT + ĠT

∥∥∥ ≤ 1

T

T∑
t=t0+1

sup
θ∈V (θ0)

∥∥∥∥∂gt(θ)∂θ>
− ∂gt(θ0)

∂θ>

∥∥∥∥ (B.12)

for any neighborhood V (θ0) of θ0. In view of (21) and (23) with r = 2, the Hölder
inequality entails

E sup
θ∈V (θ0)

∥∥∥∥ ht(θ)σ2
t (θ)

f ′′t (θ)

∥∥∥∥ ≤
√√√√E sup

θ∈V (θ0)
‖ηt(θ)‖2E sup

θ∈V (θ0)

∥∥∥∥ 1

σt(θ)
f ′′t (θ)

∥∥∥∥2

<∞.

Similarly

E sup
θ∈V (θ0)

∥∥∥∥ ht(θ)σ4
t (θ)

∂σ2
t (θ)

∂θ
f
′>
t (θ)

∥∥∥∥ <∞, E sup
θ∈V (θ0)

∥∥∥∥ 1

σ2
t (θ)

f ′t(θ)f
′>
t (θ)

∥∥∥∥ <∞.
In view of (B.7), it follows that, by the ergodic theorem, the right-hand side of (B.12)
tends almost surely to

E sup
θ∈V (θ0)

∥∥∥∥∂gt(θ)∂θ>
− ∂gt(θ0)

∂θ>

∥∥∥∥ .
By the dominated convergence theorem this expectation is arbitrarily small when V (θ0)
is small. In view of (B.9), it follows that JT → J . The asymptotic distribution of θ̂T is
then obtained from the CLT for martingale differences. The consistency of ĴT is shown
exactly as that of JT .

Proof of Corollary 1

The convergence of the Wald statistic is obvious since Theorem 1 entails that,

under H0,
√
TKθ̂T =

√
TK(θ̂T − θ0)

d→ N(0,KJ −1K>).

By the arguments used to show (B.11), we have
√
TĜT (θ̂T |2) =

√
TGT (θ0)− JT

√
T
(
θ̂T |2 − θ0

)
+ o(1) a.s. (B.13)

Note that ĜT (θ̂T |2) is of the form

ĜT (θ̂T |2) =

(
0p1

Ĝ
(2)
T (θ̂

(1)
T )

)
= K>Ĝ

(2)
T (θ̂

(1)
T ). (B.14)

Under H0, we also have (
θ̂T |2 − θ0

)
= K̃>

(
θ̂

(1)
T − θ

(1)
0

)
.
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The first p1 rows of (B.13) thus yield

0p1 =
√
TK̃GT (θ0)− K̃JT K̃>

√
T
(
θ̂

(1)
T − θ

(1)
0

)
+ o(1) a.s.

and the last p2 rows yield
√
TĜ

(2)
T (θ̂

(1)
T ) =

√
TKGT (θ0)−KJT K̃>

√
T
(
θ̂

(1)
T − θ

(1)
0

)
+ o(1) a.s.

Letting

J =

(
J11 J12

J21 J22

)
, J11 = K̃J K̃>, J22 = KJK>, J12 = K̃JK>

and

G =

(
G(1)

G(2)

)
∼ N (0p,J ) , G(1) = K̃G, G(2) = KG,

we obtain
√
TĜ

(2)
T (θ̂

(1)
T )

d→ G(2) − J21J
−1
11 G

(1) ∼ N
(
0p2 , J22 − J21J

−1
11 J12

)
.

By (B.14), the previous result and the well-known block matrix inversion formulaKJ −1K>

= (J22 − J21J
−1
11 J12)−1, we obtain

RT = TĜ
(2)>
T (θ̂

(1)
T )KĴ −1

T |2K
>Ĝ

(2)
T (θ̂

(1)
T )

d→ χ2
p2 .

Proof of Theorem 2

The desired result follows from the classical consistency argument found e.g. in White
(1994, Theorem 3.4) or Pötscher and Prucha (1997, Lemma 3.1). First we show that
the sample log-likelihood converges uniformly to a deterministic limit criterion. Next we
show that θ∗0 is the identifiably unique maximizer of the limit criterion.

The uniform convergence of the criterion follows from

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=2

̂̀
t(θ)− E`t(θ)

∣∣∣∣∣ ≤ 1

T

T∑
t=2

sup
θ∈Θ

∣∣∣̂̀t(θ)− `t(θ)∣∣∣+ sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=2

`t(θ)− E`t(θ)

∣∣∣∣∣
≤ 1

T

T∑
t=2

sup
θ∈Θ

sup
f

∣∣∣∂`(yt, f, θ)
∂f

∣∣∣ sup
θ∈Θ
|f̂t(θ)− ft(θ)|

+ sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=2

`t(θ)− E`t(θ)

∣∣∣∣∣ ,
where

1

T

T∑
t=2

sup
θ∈Θ

sup
f

∣∣∣∂`(yt, f, θ)
∂f

∣∣∣ sup
θ∈Θ
|f̂t(θ)− ft(θ)|

as→ 0 as T →∞
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by the uniform invertibility obtained in Lemma 3, and

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=2

`t(θ)− E`t(θ)

∣∣∣∣∣ as→ 0 as T →∞

by application of Rao’s (1962) uniform law of large numbers. The identifiable uniqueness
of θ∗0 ∈ Θ is implied by the uniqueness assumption E`t(θ) < E`t(θ∗0) for every θ 6= θ∗0,
θ ∈ Θ, the continuity of the limit criterion and the compactness of Θ (Pötscher and
Prucha, 1997). The interpretation of θ∗0 as the minimizer of the expected KL is well
known and available e.g. in White (1994).

Proof of Lemma 5

Immediate under the assumptions of Theorem 2 as long as the level sets of the limit
log-likelihood function are regular. In our case, the regularity of the level sets is easily
implied by continuity (see Lemma 4.2 in Postcher and Prucha, 1997).

Proof of Corollary 2

The proof is the same as for Theorem 2 after showing that the data {yt}t∈Z is strictly
stationary and ergodic. This follows by application of Lemma 1 at θ0 ∈ Θ and by
continuity of yt in ft and εt.

Proof of Lemma 6

Without loss of generality, assume s ∈ (0, 1]. Using the mean value theorem and the
Cauchy-Schwarz inequality, we have( ∞∑

t=1

sup
θ∈Θ

∥∥∥̂̀′t(θ)− `′t(θ)∥∥∥
)s
≤
∞∑
t=1

sup
θ∈Θ

∥∥∥̂̀′t(θ)− `′t(θ)∥∥∥s
≤
∞∑
t=1

sup
θ∈Θ

sup
f,f ′

∥∥∥∥∂`′(yt, f, f ′, θ)∂f

∥∥∥∥s ∣∣∣f̂t(θ)− ft(θ)∣∣∣s
+ sup

f,f ′

∥∥∥∥∂`′(yt, f, f ′, θ)∂f ′

∥∥∥∥s ∥∥∥f̂ ′t(θ)− f ′t(θ)∥∥∥s
≤K

∞∑
t=1

sup
θ∈Θ

(
sup
f,f ′

∥∥∥∥∂`′(yt, f, f ′, θ)∂f

∥∥∥∥s + sup
f,f ′

∥∥∥∥∂`′(yt, f, f ′, θ)∂f ′

∥∥∥∥s
)
%st a.s.

The expectation of the previous sum is finite, and thus it is finite almost surely. The
conclusion follows.

12



Proof of Lemma 7

The first claim is obtained by noting that Conditions (i) and (ii) imply

|ft+1 − f∗t+1| ≤ a|yt − y∗t |+ b|ft − f∗t |

with

a = |α| sup
y,X,f

∣∣∣∂ψ(y,X, f, θ0)

∂y

∣∣∣ <∞ and b = sup
y,X,f

∣∣∣α0
∂ψ(y,X, f, θ0)

∂f
+ β0

∣∣∣ < 1.

Since {yt} is NED of size −q on some process {et}t∈Z and has two bounded moments
supt E|yt|2 <∞, we conclude by Theorem 6.10 of Pötscher and Prucha (1997) that {f̂t}
is also NED of size −q on {et}t∈Z.

Let f̂t = f̂t(θ0) and f̂ ′t = f̂ ′t(θ0). To show the second claim, first note that (7) and
Condition (iii) entail

sup
t

∣∣∣f̂t∣∣∣ ≤ 1

1− |β0|

{
|ω0|+ |α0| sup

y,X,f

∣∣ψ(y,X, f, θ0)
∣∣}+ |β0|t−1

∣∣∣f̂1

∣∣∣ <∞.
In view of (11), we also have

∥∥∥f̂ ′t+1

∥∥∥ ≤ a+ b
∥∥∥f̂ ′t∥∥∥ for all t ≥ 1, where

a =

∥∥∥∥∂ω0

∂θ

∥∥∥∥+ sup
y,X,f

∣∣ψ(y,X, f, θ0)
∣∣ ∥∥∥∥∂α0

∂θ

∥∥∥∥
+ |α0| sup

y,X,f

∥∥∥∥∂ψ(y,X, f, θ0)

∂θ

∥∥∥∥+ sup
t

∣∣∣f̂t∣∣∣ ∥∥∥∥∂β0

∂θ

∥∥∥∥ <∞,
using Condition (iv). Therefore we have shown that supt

∥∥∥f̂t∥∥∥+
∥∥∥f̂ ′t∥∥∥ ≤M <∞.

Now, noting that f̂ ′t+1 = Ψ(yt, Xt, f̂t, f̂
′
t), let f̂

′∗
t+1 = Ψ(y∗t , Xt, f̂

∗
t , f̂

′∗
t ). The derivative

filter satisfies

‖f̂ ′t+1 − f̂
′∗
t+1‖ ≤ ay|yt − y∗t |+ af |f̂t − f̂∗t |+ b‖f̂ ′t − f̂

′∗
t ‖,

where, by Conditions (i)-(ii) and (v)-(viii),

ay =
∥∥∥∂α0

∂θ

∥∥∥ sup
y,X,f

∣∣∣∂ψ(y,X, f, θ0)

∂y

∣∣∣+ |α0| sup
y,X,f

∥∥∥∂2ψ(y,X, f, θ0)

∂θ∂y

∥∥∥
+ |α0| sup

y,X,f

∣∣∂2ψ(y,X, f, θ0)

∂f∂y

∣∣M <∞,

af =
∥∥∥∂α0

∂θ

∥∥∥ sup
y,X,f

∣∣∣∂ψ(y,X, f, θ0)

∂f

∣∣∣+ |α0| sup
y,X,f

∥∥∥∂2ψ(y,X, f, θ0)

∂θ∂f

∥∥∥+
∥∥∥∂β0

∂θ

∥∥∥
+ |α0| sup

y,X,f

∣∣∣∂2ψ(y,X, f, θ0)

∂f2

∣∣∣M <∞.
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Since {(yt, f̂t)} id NED of size −q on some process {et}t∈Z with supt E|yt|2 < ∞ and
supt |f̂t| < ∞, we conclude again by Theorem 6.10 of Pötscher and Prucha (1997) that
{f̂ ′t} is also NED of size −q on {et}t∈Z.

Finally, we conclude that the score {̂̀′t(θ0)}t∈N is also NED of size −q on {et}t∈Z by
the Lipschitz assumption and Theorem 6.7 and Corollary 6.8 of Pötscher and Prucha
(1997).

Proof of Theorem 3

For convenience, we adopt the following notation

lT (θ) :=
1

T

T∑
t=2

`(yt, ft(θ), θ)

and we let l̂
′
T (θ) := ∂ l̂T (θ)/∂θ, l′T (θ) := ∂lT (θ)/∂θ and l′′T (θ) := ∂lT (θ)/(∂θ∂θ′).

Below, we first obtain the asymptotic normality of the estimator θ̃T which maximizes
the criterion lT , i.e.,

θ̃T ∈ arg max
θ∈Θ

lT (θ),

and also show that θ̂T has the same asymptotic distribution as θ̃T .
We use the usual mean-value theorem expansion

l′T (θ̃)− l′T (θ∗0) = l′′T (θ∗T )(θ̃T − θ∗0),

to obtain √
T (θ̃T − θ∗0) = −

(
l′′T (θ∗T )

)−1√
T l′T (θ∗0). (B.15)

By Lemma 7, we have that the score sequence {`′t(θ∗0)}t∈Z is near epoch dependent of
size −1 on a φ-mixing sequence of size −r/(r − 1) for some r > 2. Given the moment
bounds E|`′(yt, ft, θ0)|r < ∞, we can thus appeal to the central limit theorem for near
epoch dependent sequences in Pötscher and Prucha (1997, Theorem 10.2) to show that

= lim
√
T l′T (θ∗0)

d→ N(0, V (θ∗0)) as T →∞. (B.16)

Note that unlike in Pötscher and Prucha (1997, Theorem 10.2), the score here is also
strictly stationary and ergodic. This implies that the limit asymptotic variance V (θ∗0)
converges as the sums of the covariance terms are ensured to converge (see Theorem 13.12
in Davidson, 1994).

Additionally, by the stationary and ergodic behavior of the limit filter and its deriva-
tives obtained in Lemma 4 and the uniform moment bound on the Hessian,

E sup
θ∈Θ
|`′′(yt, ft, θ)| <∞.

The uniform convergence of the Hessian over Θ is obtained by Rao’s (1962) uniform law
of large numbers (i.e., supθ∈Θ ‖l′′T (θ)− E`′′t (θ)‖

as→ 0, which implies

l′′T (θ∗T ) =
1

T

T∑
t=2

`′′t (θ
∗
T )

as→ E`′′t (θ∗0) as T →∞, (B.17)
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since θ∗T
as→ θ∗0. The asymptotic distribution of θ̃T is obtained by combining (B.15), (B.16)

and (B.17), i.e., √
T (θ̃T − θ∗0)

d→ N
(
0,Σ(θ∗0)

)
,

where the asymptotic variance is given by

Σ(θ∗0) =
(
E`′′t (θ∗0)

)−1
V (θ∗0)

(
E`′′t (θ∗0)

)−1
,

We now expand the score using a mean value theorem

l′T (θ̃T )− l′T (θ̂T ) = l′′T (θ∗∗T )(θ̃T − θ̂T )

and notice that l′T (θ̃T ) = l̂
′
T (θ̂T ) = 0 to obtain

√
T
(̂
l
′
T (θ̂T )− l′T (θ̂T )

)
= l′′T (θ∗∗T )

√
T (θ̃T − θ̂T ). (B.18)

We use again the uniform convergence of the Hessian and the fact that θ̃T
a.s.→ θ∗0 to

conclude that
l′′T (θ∗∗T )

as→ E`′′t (θ∗0). (B.19)

Since the assumption of Lemma 6 hold, we have
√
T sup
θ∈Θ

∥∥∥̂l′T (θ)− l′T (θ)
∥∥∥ as→ 0 as T →∞ (B.20)

which in turn implies that
√
T
∥∥∥̂l′T (θ̂T )− l′T (θ̂T )

∥∥∥ as→ 0 as T →∞. (B.21)

Combining (B.18), (B.19) and (B.21), we conclude that
√
T‖θ̃T − θ̂T ‖

as→ 0 as T → ∞.
This delivers the desired result

√
T (θ̂T − θ∗0)

d→ N
(
0,Σ(θ∗0)

)
.

Proof of Corollary 3

The proof is the same as for Theorem 3 with the exception that the score satisfies a
central limit theorem for martingale difference sequences at θ0 and hence does not need
the NED property. Additionally, the stationarity the data {yt}t∈Z follows by application
of Lemma 1 at θ0 ∈ Θ and by continuity of yt in ft and εt.

Proof of Theorem 4

Recall that the constrained estimator (θ̂p0T ) is such that (θ̂p0T , λ̂T ) is a critical point of the
Lagrangian function

L(θ, λ) = l̂T (θ)− λ>(Rθ − r).
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The first order conditions yield

Rθ̂p0T − r = 0, R>λ̂T = l̂
′
T (θ̂p0T ). (B.22)

First recall that from Corollary 3

R
√
T (θ̂T − θ0)

d→ N
(
0, RI−1R>

)
, (B.23)

where I = −E`′′t (θ0).
We know that, almost surely, θ̂T → θ0 ∈ int(Θ). Therefore l̂

′
T (θ̂T ) = 0, at least for T

large enough. By (B.20), we thus have
√
T l̂
′
T (θ̂p0T ) =

√
T l′T (θ̂p0T ) + o(1),

√
T l′T (θ̂T ) = o(1) a.s.

A Taylor expansion of
√
T l′T (·) around θ̂p0T and θ̂T then entails
√
T l̂
′
T (θ̂p0T ) = −Î

√
T (θ̂p0T − θ̂T ) + o(1) a.s. (B.24)

where Î = 1
T

∑T
t=2 `

′′
t (θT ) for some θT between θ̂p0T and θ̂T . It can be shown that θ̂p0T → θ0

a.s. under H0. Therefore (B.17) entails that Î tends almost surely to I.
Using (B.22) and (B.24), it follows that under H0

R
√
T (θ̂T − θ0) = R

√
T (θ̂T − θ̂p0T ) = RI−1R>

√
T λ̂T + oP (1). (B.25)

Using (B.23) we then obtain

√
T λ̂T =

(
RI−1R>

)−1
R
√
T (θ̂T − θ0) + oP (1)

d→ N

{
0,
(
RI−1R>

)−1
}

and thus, using again (B.22),

T λ̂>TRI−1R>λ̂T = T l̂
′>
T (θ̂p0T )I−1l̂

′
T (θ̂p0T )

d→ χ2
p0 . (B.26)

The first convergence follows.
To derive the asymptotic distribution of LRT we use the usual argument which in-

volves expanding l̂T (θ̂T ) around θ̂p0T to obtain

LRT := 2T
{
l̂T (θ̂T )− l̂T (θ̂p0T )

}
= 2T

{
l̂
′>
T (θ̂p0T )(θ̂T − θ̂p0T )− 1

2
(θ̂T − θ̂p0T )>I(θ̂T − θ̂p0T )

}
+ oP (1)

=
√
T (θ̂T − θ̂p0T )>

√
T l̂
′
T (θ̂p0T ) + oP (1)

=
√
T (θ̂T − θ̂p0T )>

√
TR>λ̂T + oP (1)

= T λ̂>TRI−1R>λ̂T + oP (1)
d→ χ2

p0

using (B.24), (B.22), (B.25) and (B.26).
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C Monte Carlo Simulation results on the PIT test

In this appendix, we study the finite sample properties of the goodness-of-fit test proposed
by Diebold, Gunther and Tay (1998) and the correction we propose to account for the
estimation error when the model is estimated by ML.
Recall that under the null hypothesis of correct specification, the probability integral
transform (PIT) series {ut}Tt=1

i.i.d.∼ U(0, 1) so that
√
T
∑T

t=1(ut − T/2) ∼ N(0, 1/12)
as T →∞. Furthermore, according to Corollary 2 in Section 3, the MLEs of the models
considered in this paper are asymptotically Gaussian under the assumption of correct
specification, so that

√
T (θ̂T − θ0)

d→ N(0, I(θ0)−1), where I(θ0) denotes the Fisher
information matrix.
We have therefore that both statistics are jointly are asymptotically Gaussian, i.e.,( √

T
(
θ̂ − θ0

)
√
T
∑T

t=1(ut − T/2)

)
∼ N

((
0
0

)
,

(
I(θ0)−1 Σθ0,u

Σ′θ0,u 1/12

))
,

where Σθ0,u is the asymptotic covariance which is cumbersome to derive.
However, in empirical applications, the true PIT series is never observed and has to be
replaced by ût(θ̂) or ût in short, i.e., the PIT series computed from the cumulative distri-
bution function of the estimated residuals which depends obviously on θ̂. To derive the
asymptotic distribution of

∑T
t=1(ût − T/2) we rely on Pierce’s (1982) theorem.

Following Pierce (1982), we assume that
√
T (
∑T

t=1(ût − T/2)) can be approximated as
√
T (
∑T

t=1(ût − T/2)) =
√
T (
∑T

t=1(ut − T/2)) + B
√
T
(
θ̂ − θ0

)
+ op(1), where

∑T
t=1 ut

is differentiable in θ and B = limT→∞E
(
∂
∑T
t=1(ut−T/2)
∂θ′

)
. A simple application of

Pierce (1982) allows us to show that under the above conditions,
√
T (
∑T

t=1(ût−T/2)) ∼
N
(
0, 1/12−BI(θ0)−1B′

)
when T →∞. In the Monte Carlo simulations and the empiri-

cal application, we rely on numerical procedures to compute B although explicit formulas
could also be obtained.
This result suggests rejecting the null of correct specification at the 5% nominal level when

|(
∑T

t=1 ût − T/2)|/
√
T (1/12−BI(θ̂)−1B′) > 1.96. To illustrate the finite sample prop-

erties of this test, we generate T = 4, 000 observations of the QSDST GARCH(1, 1)−ST
presented in Section 5.2 and estimate the true model as well as a βST GARCH(1, 1) and
a GARCH(1, 1)− ST (also presented in Section 5.2).
For simplicity, we chose the same parameter values as in Table 1 for µ, ω,$, α and β.
For the shape parameters of the skewed Student’s t distributions, we set 1/ξ = 5.2383
and κ = 0.5 for the density of the innovations and 1/ζ = 19.8381 and κ = 0.3327 for
the updating equation of ft so that the conditional density has fat-tails and is symmet-
ric while the NIC is bounded and asymmetric. The rejection frequencies (over 1,000
replications) of the PIT test described above at the 5% nominal level applied to the
QSDST GARCH(1, 1) − ST , βST GARCH(1, 1) and GARCH(1, 1) − ST models are
respectively 6.11% (size), 87.96% (power) and 45.54% (power). The true model being a
QSDST GARCH(1, 1) − ST , the first value corresponds to an empirical size while the
other two figures correspond to empirical powers. These results suggest that the PIT
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test has a decent size and high power to reject the misspecified models for the considered
DGP. Importantly, not accounting for the estimation error leads indeed to strong size
distortions and in our case to a strong lack of power when the test is applied on misspec-
ified models as the rejection frequencies are 0% (size), 1.4% (power) and 0% (power),
respectively for the same three models. This is in line with the findings of Tse (2002)
and Lambert, Laurent and Veredas (2012) who have shown that not accounting for the
estimation error when testing, respectively, the null hypothesis of no ARCH effects or no
conditional skewness in the standardized residuals of a GARCH-type model leads strong
size distortions, with empirical sizes close to 0% for a nominal size of 1, 5 or even 10%
and that accounting for the estimation error using Pierce’s (1982) theorem gives empirical
sizes close to the nominal sizes.
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