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Abstract

This paper introduces the class of quasi score-driven (QSD) models. This new
class inherits and extends the basic ideas behind the development of score-driven
(SD) models and addresses a number of unsolved issues in the score literature. In
particular, the new class of models (i) generalizes many existing models, including
SD models, (ii) disconnects the updating equation from the log-likelihood implied
by the conditional density of the observations, (iii) allows testing of the assumptions
behind SD models that link the updating equation of the conditional moment to
the conditional density, (iv) allows QML estimation of SD models, (v) and allows
explanatory variables to enter the updating equation. We establish the asymptotic
properties of the QLE, QMLE and MLE of the proposed QSD model as well as the
likelihood ratio and Lagrange multiplier test statistics. The finite sample properties
are studied by means of an extensive Monte Carlo study. Finally, we show the
empirical relevance of QSD models to estimate the conditional variance of 400 US
stocks.
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1 Introduction

Score-driven (SD) models, also known as generalized autoregressive score (GAS) mod-
els or dynamic conditional score (DCS) models, have been proposed independently by
Harvey and Chakravarty (2008) and Creal, Koopman and Lucas (2012). They provide a
general modelling strategy for time series data.

Consider a time series {yt}t∈Z with conditional density indexed by a time-varying
parameter {ft}t∈Z,

pt(yt, θ) = p(yt|ft, θ) ∀ t ∈ Z.

The conditional distribution p(yt|ft, θ) is often defined by means of a time series model
of the type

yt = g(ft, ϵt), (1)

where ϵt is an i.i.d. random variable that can be interpreted as an error term and g is a
differentiable measurable function. g(ft, ϵt) := ft + ϵt describes a location model while
g(ft, ϵt) :=

√
ftϵt corresponds to a volatility or duration model.

An SD model for ft is a model of the form

ft+1 = ω + αS(ft)
∂ log p(yt|ft, θ)

∂ft
+ βft, (2)

where S(ft) is a scaling function for the score, e.g., the inverse of an information matrix.
There are more than 220 papers referenced on the gasmodel.com website that build

upon this modelling strategy and have applications in various areas in financial economet-
rics (such as default and credit risk modelling, stock volatility and correlation modelling,
modelling time-varying dependence structures, CDS spread modelling, systemic risk, and
high-frequency data) but also in macroeconomics or public health.

The success of SD models is attributable to the following features: (i) these models
nest and extend existing observation-driven models such as GARCH, (ii) their estimation
does not require sophisticated techniques (the conditional likelihood is readily available),
(iii) they constitute a natural way to achieve robustness in the presence of fat-tailed inno-
vations, (iv) statistical inference is standard, and (v) the models’ predictive performance
is outstanding.

They have received considerable attention in the literature on volatility modelling
because when pt(yt, θ) has fatter tails than the Gaussian distribution (e.g., a Student’s
t distribution with a finite degree of freedom), ∂ log pt(yt,θ)∂ft

downweights and even bounds
the effect of large shocks on the conditional variance; by contrast, in GARCH models,
the squared residual is the main driver of the dynamics, irrespective of the choice of the
density. This is in line with the empirical literature, which suggests that GARCH models
tend to overestimate the conditional volatility for several days or even weeks following
very large unexpected shocks (see Lecourt, Laurent and Palm, 2016, among others).

However, it is also clear from (2) that SD models impose a strong link between the
conditional distribution of yt, i.e., p(yt|ft, θ), and the updating equation of ft, which is
not always desirable. Testing the relevance of these restrictions and eventually relaxing
them if they are rejected by the data can therefore be advantageous.
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In this paper, we keep the downweighting mechanism (2) of SD models but allow the
updating equation of ft to be disconnected from the density of the innovations if needed.
Our family of models, called quasi score-driven (or QSD) models, therefore encompasses
not only SD models but also many other existing models. For instance, Banulescu-Radu,
Hansen, Huang and Matei (2018) use a volatility model whose dynamic is derived from
a QSD model obtained from a Student’s t log-likelihood to bound the effect of large
shocks, although the model is estimated by Gaussian ML.

We study the statistical properties of QSD models in the case where the conditional
moment of interest depends on some covariates. We also study three estimation methods
for this model. Since QSD models disconnect the dynamics in ft and the density of
the innovations, unlike SD models, they permit the consideration of the estimation of
the parameters by QML or by ML with a score function in (2) taken with respect to
a conditional density other than the one of yt. We also study the estimation of QSD
models using the quasi-likelihood estimator (QLE), which encompasses the QMLE. QLE
can actually be seen as an extension of QMLE where the mean-variance relationship of
the exponential family is relaxed.

In addition to the fact that these estimators are consistent and asymptotically normal,
we also show that likelihood ratio and Lagrange multiplier tests of linear restrictions have
the usual χ2 distribution, which offers a strategy to test some restrictions implied by
standard SD models.

We study in detail a QSD volatility model extending the βT GARCH model of
Harvey and Chakravarty (2008). This model, called QSDT GARCH − T , relies on a
Student’s t density for the innovations and the score of a Student’s t log-density in the
updating equation of the conditional variance but does not restrict the degrees of freedom
to be the same. The additional flexibility of this model (over the βT GARCH) is found
to be significant at the 5% significance level in more than 50% of the cases out of 400 US
stocks.

We also show that when an asymmetric density is used instead of a symmetric Stu-
dent’s t density, the SD model is rejected in all cases in favour of a QSD model with
different parameters for the innovation density and the updating function.

The rest of the paper is structured as follows. Section 2 presents the quasi score fil-
tering equation and the properties of this model. The estimation of this model is studied
in Section 3. Section 4 studies in more detail the QSDT GARCH − T model, i.e., the
stationarity, invertibility and positivity conditions, its estimation, some hypothesis tests
as well as the finite sample properties of the QMLE and MLE via a Monte Carlo simu-
lation. The empirical application is presented in Section 5. Finally, Section 6 concludes.
All proofs are given in the online supplement.

2 The QSD filtering equation

We propose a new class of observation-driven models for ft with an updating equation
given by

ft+1 = ω + αψ(yt, Xt, ft, θ) + βft, (3)
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where ω, α, β are real parameters, θ ∈ Θ ⊂ Rp is a parameter vector (possibly containing
ω, α, β among other parameters), ψ is a differentiable measurable function and Xt is a
vector of exogenous random variables.

2.1 Some examples

The class of models defined by (1) and (3) is very general. For instance, when p(yt|ft, θ)
is a Student’s t density with conditional variance ft and ψ(yt, Xt, ft, θ) := y2t , we obtain
the GARCH − T model of Bollerslev (1987) and a GARCH − T model with additive
explanatory variables Xt in the conditional variance when ψ(yt, Xt, ft, θ) := y2t +ϖ⊤Xt,
where ϖ is a parameter vector.

While the QSD filtering equation (3) is very general, the parallel with SD models is
clearer when specifying ψ as follows

ψ(yt, Xt, ft, θ) :=
∂ρ(yt, Xt, ft, θ)

∂ft
S(ft). (4)

When the updating function ρ(yt, Xt, ft, θ) is the log-likelihood function of yt, i.e.,
ρ(yt, Xt, ft, θ) = log p(yt|ft, θ), we recover the class of score models described in (2).1

Importantly, when ρ(yt, ft, θ) is a log-likelihood function but ρ(yt, ft, θ) ̸= log p(yt|ft, θ),
ψ is no longer proportional to ∂ log pt(yt,θ)

∂ft
but is proportional to ∂ρ(yt,ft,θ)

∂ft
. Consequently,

the model is called the quasi score-driven (QSD) model.
The GARCH − T model presented above is an example of a QSD model, where

p(yt|ft, θ) is a Student’s t density with conditional variance ft but ρ(yt, ft, θ) is a Gaussian

log-likelihood with conditional variance ft while S(ft) = −E
[
∂2ρ(yt,ft,θ)

∂ft∂f⊤t

]−1
= 2f2t , i.e.,

the inverse of the information matrix of ρ.
In this formulation, QMLE also becomes a naturally viable alternative to MLE. In-

deed, in a volatility model, large shocks can be downweighted by an appropriate choice of
the updating function ρ, e.g., a Student’s t log-likelihood, without imposing yt to follow
the same conditional distribution; e.g, yt can be assumed to be conditionally Gaussian as
in Banulescu-Radu, Hansen, Huang and Matei (2018). This is in contrast to SD models
where there is a strong link between the innovation density and the updating function,
which makes it unnatural to use QMLE.

We also note that, in our new model formulation, we can formulate updating equations
that Winsorize or censor outliers, regardless of the conditional distribution p(yt|ft, θ).
More generally, QSD models yield filtering equations that employ many popular loss
functions used in robust statistics. These include the Cauchy–Lorentzian, the Geman–
McClure and the Welsch–Leclerc criteria, as well as the generalized Charbonnier and
pseudo Huber–Charbonnier loss functions.

Additionally, in empirical applications, we can define updating equations for volatility
models that incorporate leverage effects even if the conditional density of yt is symmet-
ric or left-skewed. This stands in sharp contrast to “pure” SD models that are unable

1Notice that, when exogenous variables Xt are not present in ψ and ρ, we simply write ψ(yt, ft, θ)
and ρ(yt, ft, θ) instead of ψ(yt, Xt, ft, θ) and ρ(yt, Xt, ft, θ).
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to deliver an updating equation with a leverage effect when the innovation density is
left-skewed (as shown in Example 2 below). One can also have an asymmetric up-
dating equation that gives greater penalty to over-prediction of conditional means or
under-prediction of conditional volatilities (as is common in macro and financial policy),
regardless of the conditional distributions of yt. This is impossible in the more restrictive
class of score models since ρ(yt, ft, θ) must be equal to log p(yt|ft, θ).

Examples 1 and 2 cover cases of location and volatility filtering involving nonlinear
asymmetric criteria as well as fat-tailed and skewed innovations.

Example 1. (Asymmetric forecast with symmetric innovations) Consider a location
model where yt = ft + ϵt and ϵt is i.i.d.. When ϵt is also assumed to follow a N(0, σ2)
distribution, the score is symmetric in ϵt, and the resulting SD model is given by

ft+1 = ω + α
ϵt
σ2

+ βft.

In many applications it is desirable to weight differently positive and negative shocks,
irrespectively of the shape of the distribution of ϵt.

As an example, consider the negative linex loss function introduced by Varian (1975),
i.e.,

ρ(yt, ft, θ) = 1 + δϵt − exp(δϵt).

The QSD filtering equation obtained with this loss function is

ft+1 = ω + αδ(exp(δϵt)− 1) + βft

and can therefore provide asymmetric forecasts even when the density of the innovations
is symmetric.

Example 2. (Volatility model with leverage effect and left-skewed innovations) Stock
returns are typically heavy tailed and left-skewed (see Giot and Laurent, 2003 among
others). As such, SD models of the conditional volatility yt =

√
ftϵt employing skewed

distributions such as the skewed Gaussian or skewed Student’s t distribution may define
an updating equation:

ft+1 = ω + αs(yt, ft, θ) + βft,

where the score s(yt, ft, θ) is an asymmetric function of the returns yt that produces higher
volatility for positive returns (i.e., yt > 0) and is more conservative for negative returns
(i.e., yt < 0). Unfortunately, this is contrary to the empirical evidence for the leverage
effect, which predicts higher volatility after negative returns. Depending on the skewed
Student’s t distribution that is adopted, pure SD models may thus be unable to capture
the leverage effect. This issue does not affect the larger class of QSD models

ft+1 = ω + αψ(yt, ft, θ) + βft,

since the ψ function can adopt nonlinear functional forms independently of the density of
the innovations ϵt. This model will be discussed in more details in Section 5.2.
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2.2 Stationarity and invertibility of QSD models

We now give general conditions for stationarity and invertibility of the QSD model
defined by (1) and (3). These general conditions will be illustrated on the QSDT

GARCH − T model presented in Section 4. In an earlier version of this paper (Blasques
et al., 2020), the assumptions are also made more explicit on various specific examples.

Let zt = (ϵt, X
⊤
t )

⊤ ∈ Rd. Note that the time-varying parameter ft satisfies a stochas-
tic recurrence equation (SRE) of the form

ft+1 = φ(zt, ft), (5)

where φ : E × F → F is measurable. We assume that E is a convex subspace of Rd
and F is an interval; see Bougerol (1993) and Straumann and Mikosch (2006) for major
references on SRE theory.

The results given in this section can be considered a direct application of the gen-
eral theory developed in Bougerol (1993), but we will provide explicit and self-contained
proofs. Our results are also closely in line with those of Straumann and Mikosch (2006),
which focus on volatility models, or those reported for SD models in Blasques et al. (2020),
which do not include exogenous variables.

Lemma 1 details conditions for the QSD model to generate stationary sequences as
a data generating process.

Lemma 1. (Existence of a DGP) Assume that (zt) is stationary and ergodic. Suppose
that

(i) E log+ |ψ(g(f0, ϵt), Xt, f
0, θ)| <∞ for some constant f0 ∈ F ⊂ R;

(ii) E log Λt < 0 with Λt = supf
∣∣α∂ψ(g(f,ϵt),Xt,f,θ)

∂f + β
∣∣ < 0.

Then, there exist unique strictly stationary and ergodic solutions {ft}t∈Z and {yt}t∈Z to
Equations (1)-(3).

Lemma 2 gives conditions for the existence of bounded unconditional moments.

Lemma 2. (Existence of a marginal moment) Under the assumptions of Lemma 1, if the
sequence (Λt) is i.i.d.,

E
∣∣ψ(g(f0, ϵt), Xt, f

0, θ)
∣∣r <∞ and E sup

f

∣∣∣∣∂ψ(g(f, ϵt), Xt, f, θ)

∂f

∣∣∣∣r <∞

for some r > 0, then the stationary solution to Equations (1)-(3) satisfies E |ft|s < ∞
for some s > 0.

Note that if the exogenous variables appear additively, i.e., if ψ(g(f, ϵt), Xt, f, θ) =
ψ(g(f, ϵt), f, θ) +ϖ⊤Xt, then Λt only depends on ϵt, and therefore the assumption that
(Λt) is i.i.d. is satisfied without having to assume Xt to be i.i.d. itself.
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Assume that, for some θ = θ0 satisfying the assumptions of Lemma 1, (yt) is the
stationary solution to (1)-(3), and recall that the time-varying parameter ft depends on
the true but unknown parameter θ0. For all θ, let us investigate the solutions of the filter

ft+1(θ) = ω + αψ(yt, Xt, ft(θ), θ) + βft(θ), t ∈ Z, (6)

so that ft(θ0) = ft. Note, however, that when β ̸= 0, ft(θ) is not computable from a
finite number of past observations y1, . . . , yt−1 and X1, . . . , Xt−1. We thus approximate
ft(θ) by the statistics

f̂t+1(θ) = ω + αψ(yt, Xt, f̂t(θ), θ) + βf̂t(θ), t ≥ 1, (7)

with a starting value f̂1(θ) ∈ C(Θ, F ), where C(Θ, F ) denotes the space of the continuous
functions from Θ to F .

Lemma 3 gives sufficient conditions for the invertibility of the QSD filter.

Lemma 3. (Properties of the filter) Let {yt, Xt}t∈Z be stationary and ergodic, and suppose
that

(i) for all θ ∈ Θ, there exists f0 ∈ F such that E log+ |ψ(yt, Xt, f
0, θ)| <∞;

(ii) E log supf∈R supθ∈Θ
∣∣α∂ψ(yt,Xt,f,θ)

∂f + β
∣∣ < 0.

Then, for all θ ∈ Θ, there exists a unique strictly stationary and ergodic solution {ft(θ)}t∈Z
to (6). Furthermore, for all starting functions f̂1(·) ∈ C(Θ, F ), there exists ϱ ∈ (0, 1)
such that

ϱ−t sup
θ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣ → 0 a.s. as t→ ∞. (8)

When (8) holds, the model is said to be uniformly invertible. This property will
be essential to find a consistent estimator of θ0 and to approximate the time-varying
parameter ft.

It is necessary to study the first and second derivatives of the filter (6):

f ′t+1(θ) :=
∂ft+1(θ)

∂θ
= At + btf

′
t(θ), (9)

f ′′t+1(θ) :=vec
(
∂2ft+1(θ)

∂θ∂θ⊤

)
= Ct + btf

′′
t (θ), (10)

where

At =
∂ω

∂θ
+ ψt

∂α

∂θ
+ α

∂ψt
∂θ

+ ft(θ)
∂β

∂θ
, bt = α

∂ψt
∂f

+ β,

Ct =vec
(

∂2ω

∂θ∂θ⊤
+ ψt

∂2α

∂θ∂θ⊤
+
∂α

∂θ

∂ψt
∂θ⊤

+
∂ψt
∂f

∂α

∂θ

(
f ′t
)⊤

+
∂ψt
∂θ

∂α

∂θ⊤
+ α

∂2ψt
∂f∂θ

(
f ′t
)⊤

+ α
∂2ψt
∂θ∂θ⊤

+ ft
∂2β

∂θ∂θ⊤
+
∂β

∂θ
(f ′t)

⊤

+
∂ψt
∂f

f ′t
∂α

∂θ⊤
+ αf ′t

∂2ψt
∂f∂θ⊤

+ ft
∂β

∂θ⊤
+ α

∂2ψt
∂f2

f ′t(f
′
t)

⊤
)
,
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with ψt = ψ(yt, Xt, ft(θ), θ) and, using Leibniz’s notation,

∂ψt
∂θ

=
∂ψ(y,X, f, θ)

∂θ

∣∣∣∣
(y,X,f,θ)=(yt,Xt,ft(θ),θ)

,

∂ψt
∂f

=
∂ψ(y,X, f, θ)

∂f

∣∣∣∣
(y,X,f,θ)=(yt,Xt,ft(θ),θ)

and similar notations for the other derivatives. Assume that Θ is a compact subspace of
Rp with p ≥ 3. Without loss of generality, assume that θ = (θ1, . . . , θp)

⊤ with θ1 = ω,
θ2 = α and θ3 = β. Note that the expressions of At and Ct then become more explicit
because, for instance, ∂ω/∂θ = (1, 0, . . . , 0). As in (7), we approximate f ′t(θ) by

f̂ ′t+1(θ) = Ât + b̂tf̂
′
t(θ), t ≥ 1, (11)

where f̂ ′1(θ) ∈ C(Θ,Rp) is a starting value, Ât and b̂t are obtained by substituting f̂t(θ)
for ft(θ) in At and bt. With similar notations and assumptions, let

f̂ ′′t+1(θ) = Ĉt + b̂tf̂
′′
t (θ), t ≥ 1. (12)

Lemma 4 establishes stationarity and invertibility properties for the derivatives of the
filter.

Lemma 4. (Derivatives of the filter) Let the conditions of Lemma 3 hold, assume that ψ
admits continuous second-order derivatives with respect to its last two components, and
suppose that

(i) for all θ ∈ Θ, E
{
log+ |ψt|+ log+

∥∥∥∂ψt

∂θ

∥∥∥+ log+
∣∣∣∂ψt

∂f

∣∣∣+ log+ |ft(θ)|
}
<∞.

Then, for all θ ∈ Θ, there exists a unique strictly stationary and ergodic solution {f ′t(θ)}t∈Z
to (9). If in addition

(ii) E
{
log+

(
supf

∣∣∣∂ψt

∂f

∣∣∣+ supf,θ

∥∥∥ ∂2ψt

∂θ∂f

∥∥∥+ supf

∣∣∣∂2ψt

∂f2

∣∣∣+ supθ ∥f ′t(θ)∥
)}

<∞,

then, for all starting functions f̂1(·) ∈ C(Θ, F ) and f̂ ′1(·) ∈ C(Θ,Rp), there exists ϱ ∈
(0, 1) such that

ϱ−t sup
θ∈Θ

∥∥∥f̂ ′t(θ)− f ′t(θ)
∥∥∥ → 0 a.s. as t→ ∞. (13)

If we further assume

(iii) for all θ ∈ Θ, E
{
log+

∥∥∥ ∂2ψt

∂θ∂θ⊤

∥∥∥+ log+
∥∥∥ ∂2ψt

∂θ∂f

∥∥∥+ log+ |∂
2ψt

∂f2
|
}
<∞,

then, for all θ ∈ Θ, there exists a unique strictly stationary and ergodic solution {f ′′t (θ)}t∈Z
to (10). Under the additional assumption

(iv) E
{
log+

(
supf,θi,θj

∣∣∣ ∂3ψt

∂θi∂θj∂f

∣∣∣+ supf,θi

∥∥∥ ∂3ψt

∂θi∂f2

∥∥∥+ supf

∣∣∣∂3ψt

∂f3

∣∣∣)} <∞,

then, for all starting functions f̂1(·) ∈ C(Θ, F ), f̂ ′1(·) ∈ C(Θ,Rp) and f̂ ′′1 (·) ∈ C(Θ,Rp2),
there exists ϱ ∈ (0, 1) such that

ϱ−t sup
θ∈Θ

∥∥∥f̂ ′′t (θ)− f ′′t (θ)
∥∥∥ → 0 a.s. as t→ ∞.
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3 Estimating the QSD models

In contrast to SD models, QSD models disentangle the parameters involved in ft of those
involved in the conditional distribution. We first consider the case where the time-varying
parameter of interest is ft = ft(θ0), where θ0 is a p-dimensional vector. It makes sense
to estimate θ0, trying to be as agnostic as possible on the distribution of the innovations.
In Section 3.1, we consider the class of the so-called quasi-likelihood estimators (QLEs),
which encompasses the usual QMLEs. Section 3.2 will consider the MLE, which is the
natural estimator for SD and QSD models, for which the conditional distribution is
entirely specified by θ0. In that case, θ0 contains the parameters governing the dynamic
of ft and possibly the shape parameters of the conditional distribution p(· | f, θ0).

3.1 The QLE approach

Assume that (yt) is a stationary process satisfying the QSD models (1)-(3) with ft =
ft(θ0).

To estimate θ0 using very weak assumptions, the estimating functions theory can
be used. This is a general estimation method introduced in the seminal papers of
Durbin (1960) and Godambe (1960) and that encompasses moment, likelihood and quasi-
likelihood-based techniques (see Chandra and Taniguchi, 2001, Bera and Bilias, 2002,
Heyde, 2008 and the references therein). By extending the Gauss-Markov theorem, Go-
dambe (1960, 1985) developed a concept of an optimal estimating function that applies in
finite i.i.d. samples, as well as for stochastic processes. In econometrics, Hansen (1985)
and Chamberlain (1987) constitute early examples of the literature on the estimating
equations approach, estimation of parameters characterized by moment conditions, as
well as the literature on optimal instruments for conditional moments. See also Newey
(1990) for an efficient instrumental variables estimation of nonlinear models and more
recently, Ai and Chen (2003) for an estimation method for models of conditional moment
restrictions, which contain finite dimensional unknown parameters and infinite dimen-
sional unknown functions.

In time series models, there generally exists an “unbiased estimating function” ht =
ht(θ0) ∈ R, depending on yt and ft = ft(θ0), such that

Et−1 (ht) = 0,

where Et−1 denotes the conditional expectation given the sigma-field Ft−1 generated by
{ys, Xs; s < t}. For a location model of the form yt = ft + ϵt, where {ϵt}t∈Z is i.i.d. with
E(ϵt) = 0, one can take ht(θ) = yt−ft(θ). For a volatility model yt =

√
ftϵt, with standard

notation, we can set ht(θ) = y2t − ft(θ). Obviously, under standard regularity conditions,
the score ∂ log pt(yt, θ0)/∂θ is also an unbiased estimating function. An estimator of θ0
can be obtained by solving an “estimating equation” of the form

T∑
t=1

ht(θ̂)at−1 = 0p, (14)
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where at = at(θ) is a p-dimensional vector of Ft-measurable weights. Godambe (1985)
shows that, within the class of the estimating functions of this form and under mild
assumptions, the optimal choice of at is

at−1 =
1

σ2t (θ)
Et−1f

′
t(θ), (15)

where σ2t (θ) = Et−1h
2
t (θ) (possibly multiplied by an unimportant non-zero constant).

According to the terminology of the estimating functions theory, a solution to (14)–
(15) is called the quasi-likelihood estimator (QLE).

3.1.1 Conditional moment estimation

We now consider the case where ft = Et−1(y
k
t ) for some k > 0. Location models corre-

spond to k = 1 and volatility models to k = 2. We set ht(θ) = ykt − ft(θ).
Of course, the estimating function ht(θ) is generally not computable because it de-

pends on the unknown values {yt, Xt; t ≤ 0}. We thus approximate ft(θ) by f̂t(θ) in (7)
and f ′t(θ) by f̂ ′t(θ) in (11). Let ĥt(θ) = ykt − f̂t(θ). Under the assumptions of Lemma 4,
we have seen that there exists ϱ ∈ (0, 1) such that

ϱ−t sup
θ∈Θ

{∣∣∣f̂t(θ)− ft(θ)
∣∣∣+ ∥∥∥f̂ ′t(θ)− f ′t(θ)

∥∥∥} → 0 a.s. as t→ ∞. (16)

In general, σ2t (θ) also depends on the unknown values {yt, Xt; t ≤ 0}, but we assume that
there exists a sequence {σ̂2t (θ)}t∈N computable from y1, . . . , yt and X1, . . . , Xt such that

ϱ−t sup
θ∈Θ

∣∣σ̂2t (θ)− σ2t (θ)
∣∣ → 0 a.s. as t→ ∞. (17)

Moreover, assume that there exists a constant σ2 > 0 such that

inf
θ∈Θ

∣∣σ2t (θ)∣∣ > σ2 a.s. (18)

As an approximation of (14)–(15), it seems natural to consider the solutions of

ĜT (θ̂) = 0p, ĜT (θ) =
1

T

T∑
t=t0+1

ĥt(θ)

σ̂2t (θ)
f̂ ′t(θ). (19)

If σ̂2t (θ) ≤ 0, which is impossible for large t under (17)-(18), the corresponding term
can be omitted in (19). The integer t0 is fixed and does not matter for the asymptotic
behaviour of the estimator but is expected to attenuate the effect of the (arbitrary) choice
of the initial values f̂1(θ) and f̂ ′1(θ). In practice, one could take t0 = 5 (one week for
most daily series), f̂1(θ) =

∑t0
t=1 y

k
t /t0 and f̂ ′1(θ) = 0p.
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3.1.2 Existence of the estimator

Note that the existence of a solution θ̂ ∈ Θ to (19) is not guaranteed. For instance,
consider a location model yt = ft + ϵt, where (ϵt) is i.i.d. with a mean of 0 and variance
σ2ϵ . If ft(θ) = ω + αyt−1 with θ0 = (ω0, 0) and Θ = [ω, ω] × [0, α], then with non-zero
probability, we have

ĜT (θ) =
1

T

T∑
t=t0+1

yt − ω − αyt−1

σ2ϵ

(
1

yt−1

)
̸= 02, ∀θ ∈ Θ.

More precisely, when the first component of ĜT (θ) is null and
∑

t(yt − y)(yt−1 − y) < 0
(which should be the case with probability of approximately 1/2 when α0 = 0), the
second component of ĜT (θ) is strictly negative for any value of α ≥ 0. Instead of (19),
we thus define a QLE as a measurable solution of

θ̂T = argmin
θ∈Θ

∥∥∥ĜT (θ)∥∥∥ (20)

with

ĜT (θ) =
1

T

T∑
t=t0+1

ĝt(θ), ĝt(θ) =
ĥt(θ)

σ̂2t (θ)
f̂ ′t(θ).

Since Θ is a compact set and ft is assumed to be of class C1, a solution of (20) always
exists but may not be unique. We will see that the asymptotic value of θ̂T does not
depend on the norm taken in (20).

3.1.3 Moment and identifiability assumptions

Let the rescaled innovations ηt(θ) = ht(θ)/σt(θ). Consider the moment conditions

E sup
θ∈Θ

|ηt(θ)|r <∞, E sup
θ∈Θ

∥∥∥∥ 1

σt(θ)
f ′t(θ)

∥∥∥∥r <∞. (21)

Under (21) with r = 2, let

G(θ) = Eg1(θ), gt(θ) =
ht(θ)

σ2t (θ)
f ′t(θ).

Since Et−1(y
k
t ) = ft(θ0), we obviously have G(θ0) = 0. Assume that the equality holds

at only θ = θ0:

θ0 ∈ Θ and G(θ) = 0 for θ ∈ Θ if and only if θ = θ0. (22)

To show the asymptotic normality of the QLEs, we need to consider the extra moment
conditions

E sup
θ∈V (θ0)

∥∥∥∥ 1

σ3t (θ)
f ′t(θ)

∂σ2t (θ)

∂θ⊤

∥∥∥∥r <∞, E sup
θ∈V (θ0)

∥∥∥∥ 1

σt(θ)
f ′′t (θ)

∥∥∥∥r <∞, (23)

for some neighborhood V (θ0) of θ0. To deal with the effect of the initial values, we also
need

ϱ−t sup
θ∈Θ

∥∥∥∥∂σ̂2t (θ)∂θ
− ∂σ2t (θ)

∂θ

∥∥∥∥ → 0 a.s. as t→ ∞. (24)
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3.1.4 Asymptotic behaviour of the QLE

Under (21) with r = 2, let J = E 1
σ2
t (θ0)

f ′t(θ0)f
′
t(θ0)

⊤. Assume that

J is invertible. (25)

Theorem 1 establishes the consistency and asymptotic normality of the QLE for condi-
tional moment models when the sample size diverges, i.e., when T → ∞.

Theorem 1. (CAN of the QLE for conditional moment models) Let {yt}t∈Z be generated
by (1)-(3) with θ replaced by θ0 and Et−1(y

k
t ) = ft(θ0) for some θ0 ∈ Θ and k > 0. Let

the conditions of Lemma 1 hold at θ = θ0 and the conditions of Lemma 4 hold. Assume
that E(log+ |yt|k) < ∞, E(log+ supθ∈Θ |ft(θ)|) < ∞ and E(log+ supθ∈Θ ∥f ′t(θ)∥) < ∞.
Suppose further (17), (18), (21) with r = 2, (22), Θ is a compact subset of Rp and
θ0 ∈ Θ. Then, for any sequence θ̂T satisfying (20) and for T large enough, we have
θ̂T

as→ θ0 as T → ∞.
Moreover, if θ0 belongs to the interior of Θ, (23) holds with r = 2, (24) and (25),

then
√
T (θ̂T − θ0) = J −1 1√

T

T∑
t=1

ηt(θ0)

σt(θ0)
f ′t(θ0) + oP (1)

d→ N(0,J −1)

with the usual notation. A strongly consistent estimator of J is ĴT = ∂ĜT (θ̂T )
∂θ⊤

.

As an application of Theorem 1, let us test that some components of θ0 are zero, for
instance the last p2 components. The null writes H0 : θ

(2)
0 = 0p2 , where θ(2)0 = Kθ0 with

K = (0p2×p1 , Ip2) and Ip2 is the identity matrix of size p2. The vector of the first p1
components of θ0 is θ(1)0 = K̃θ0 with K̃ = (Ip1 , 0p1×p2). Under H0, the QLE of θ(1)0 is
define as a measurable solution of

Ĝ
(1)
T (θ̂

(1)
T ) = 0p1 , Ĝ

(1)
T (θ(1)) = K̃ĜT

(
θ(1)

0p2

)
. (26)

In the appendix (available in the online supplement), we show that (??) has a solution,

at least for T large enough. Let θ̂T |2 =
(
θ̂
(1)⊤
T , 0⊤p2

)⊤
. Denote by χ2

p2 the χ2 distribution
with p2 degrees of freedom.

Corollary 1. (Wald and score-like tests based on the QLE) Let the assumptions of
Theorem 1 hold. Under H0 : θ

(2)
0 = 0p2, we have

WT := T θ̂⊤TK
⊤
(
KĴ −1

T K ′
)−1

Kθ̂T
d→ χ2

p2 ,

RT := TĜ⊤
T (θ̂T |2)Ĵ −1

T |2ĜT (θ̂T |2)
d→ χ2

p2 as T → ∞,

where ĴT |2 is any weakly consistent estimator of J under H0.
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Note that Corollary 1 can be extended to test more general linear restrictions of
the form H0 : Rθ0 = r, where R is a full rank p2 × (p − p2) matrix and r is a p2-
dimensional vector. Indeed, it is always possible to reparametrize by ϕ = A−1θ, where
A is a nonsingular matrix such that the null hypothesis is written H0 : Kϕ = 0p2 , K̃ϕ
unrestricted (see Engle, 1984).

The following remark discusses the link between the QLE in Theorem 1 and the
QMLE.

Remark 1. (Link with the QMLEs) Since the works of Wedderburn (1974) and Gourier-
oux, Monfort and Trognon (1984), it is known that in some location models of the form
yt = ft(θ) + ϵt, the parameter θ can be estimated consistently by a quasi-maximum likeli-
hood estimator (QMLE), which does not assume a particular distribution for ϵt but coin-
cides with the MLE when the distribution of ϵt belongs to the linear exponential family,
i.e., when, with respect to some σ-finite measure, ϵt admits a density of the form

pft(x) = exp{A(ft) +B(x) + C(ft)x}.

Since A′(ft) + C ′(ft)ft = 0 and C ′(ft(θ)) = 1/s2t (θ), where s2t (θ) is the variance of the
density pft(θ), the quasi-score of this QMLE is

s(θ) =
1

T

T∑
t=1

yt − ft(θ)

s2t (θ)
f ′t(θ).

For instance, the Poisson QMLE

θ̂T = argmax
θ∈Θ

T∑
t=1

{−ft(θ) + yt log ft(θ)}

is the QLE obtained by assuming σ2t = ft(θ) in gt(θ). The only–but essential–difference
between QLE and QMLE is that the QMLE is based on a quasi-score with a variance
constrained to be that of a linear exponential distribution. When the true density of ϵt
does not belong to that family, the QLE and QMLE are generally consistent, but the QLE
may be more efficient.

The following examples compare the QLE and QMLE in volatility models.

Example 3. (Standard volatility models and link with the Gaussian QMLE) Consider
the case where (1) is of the form yt =

√
ftϵt, where ϵt is i.i.d. with a mean of 0 and

variance of 1. The usual QMLE of the volatility parameter θ0 is

θ̂T = argmin
θ∈Θ

T∑
t=t0+1

y2t

f̂t(θ)
+ log f̂t(θ).

Writing the first-order conditions and noting that σ2t = f2t
[
E(ϵ4t )− 1

]
, it is easy to see

that in this case, the QMLE coincides with the optimal QLE.
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Example 4. (A non-multiplicative volatility model) Let Zt be a random variable whose
distribution, conditional on Ft−1, is a Gamma law of shape parameter kt = f2t /σ

2
t and rate

parameter θt = σ2t /ft (so that Et−1(Zt) = ft and vart−1(Zt) = σ2t ). Let yt = st
√
Zt, where

st is uniformly distributed on {−1, 1}. We thus have Et−1(y
2
t ) = ft and vart−1(y

2
t ) = σ2t .

When σ2t is not proportional to f2t , the sequence (yt) does not follow the standard volatility
model of Example 3, and the QMLE is not the optimal QLE of θ0 involved in ft = ft(θ0).

For the sake of illustration of Example 4, we run a Monte Carlo simulation in which
we simulate T = 4, 000 observations using the above model where ft is specified as a
GARCH(1, 1) model, i.e., ft = ω + αZt + βft−1 with ω = 0.03, α = 0.13 and β =
0.84 and σ2t = 2 so that σ2t is not proportional to f2t . A GARCH(1, 1) model is then
estimated by Gaussian QMLE (i.e., σ2t = 2f2t ) and optimal QLE (i.e., σ2t = 2). The
biases (over 1,000 simulations) are found to be marginal for both methods. The RMSE
of the three parameters, i.e., ω, α and β, are 0.0117, 0.0217, 0.0291 and 0.0073, 0.0093,
0.0128, respectively, for the Gaussian QMLE and optimal QLE, so that, on average, the
optimal QLE is two times more efficient than the Gaussian QMLE.

3.2 The MLE approach

When the conditional distribution p(yt|ft, θ) of the observations is entirely specified, the
MLE is the benchmark estimator. It results in simultaneous estimation of the parameters
involved in the time-varying parameter ft and the extra parameters involved in p(·|f, θ).
To estimate the p parameters of the model, the MLE is often much more efficient than
the QMLE and QLE when the conditional distribution p(yt|ft, θ) is well specified but is
likely to be inconsistent when this distribution is misspecified. We will therefore study
the asymptotic behaviour of the MLE in both situations.

3.2.1 Strong consistency

Theorem 2 establishes the consistency of the MLE θ̂T for QSD models satisfying the
stationarity and invertibility conditions stated in Section 2.2. This theorem allows model
misspecification and ensures only the convergence of the MLE θ̂T to the pseudo-true
parameter θ∗0 that maximizes the limit log-likelihood and minimizes the limit Kullback-
Leilber divergence between the true conditional density of the data and the model-implied
conditional density; see, e.g., White (1994, Chapter 3) for details. Below, ℓ(yt, f̂t(θ), θ)
denotes the logarithm of the conditional density of yt given f̂t, i.e., ℓ(yt, f̂t(θ), θ) =
log p(yt|f̂t, θ), and θ̂T is the MLE defined as

θ̂T = argmax
θ∈Θ

l̂T (θ), l̂T (θ) =
1

T

T∑
t=2

ℓ(yt, f̂t(θ), θ).

Let ℓt(θ) = ℓ(yt, ft(θ), θ) and ℓ̂t(θ) = ℓ(yt, f̂t(θ), θ).

Theorem 2. (Consistency of MLE under misspecification) Let the conditions of Lemma 3
hold. Suppose further that the parameter space Θ is compact, ℓ is continuous, ℓ(yt, ·, θ) is
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differentiable with E supθ∈Θ supf

∣∣∣∂ℓ(yt,f,θ)∂f

∣∣∣s < ∞ for some s > 0, E supθ∈Θ |ℓt(θ)| < ∞
and there exists θ∗0 ∈ Θ such that Eℓt(θ) < Eℓt(θ∗0) for every θ ̸= θ∗0, θ ∈ Θ. Then,
θ̂T

as→ θ∗0 ∈ Θ for every f̂1 ∈ C(Θ,R), as T → ∞, and

θ∗0 := argminE KL
(
p0t (yt), p(yt|ft(θ), θ)

)
.

When the QSD model is misspecified, the assumption of a unique maximizer of the limit
log-likelihood θ∗0 ∈ Θ may be too restrictive. Freedman and Diaconis (1982) show that
uniqueness fails in a simple location problem with i.i.d. data. Kabaila (1983) provides
similar results for ARMA models. Lemma 5 below follows Pötscher and Prucha (1997,
Lemma 4.2) and highlights that when the uniqueness fails, the estimator can still be
consistent with the argmax set of the limit log-likelihood as long as the level sets of the
limit log-likelihood function are regular (see Definition 4.1 in Pöstcher and Prucha, 1997).

Lemma 5. (Set consistency of MLE under possible misspecification) Let the conditions of
Lemma 3 hold. Suppose further that ℓ is continuous, Θ is compact, and E supθ∈Θ |ℓt(θ)| <
∞. Then, θ̂T

as→ θ∗0 ∈ Θ for every f̂1 ∈ C(Θ,R), as T → ∞, and

Θ∗
0 := argminE KL

(
p0t (yt), p(yt|ft(θ), θ)

)
.

In Theorem 2, we imposed high-level conditions on the data {yt}t∈Z since the data-
generating process was left unspecified. Corollary 2 highlights that if the QSD model
is assumed to be well specified, then we can derive the properties of the data, and the
convergence of the MLE θ̂T to the vector of true parameters θ0 can be obtained under
the additional conditions of Lemma 1 (ensuring that the data are well behaved).

Corollary 2. (Consistency of MLE under correct specification) Let {yt}t∈Z be generated
by (1) and (3) under some θ0 ∈ Θ, and let the conditions of Lemma 1 hold at θ0 ∈
Θ and the conditions of Lemma 3 hold on Θ. Suppose further that Θ is compact and
E supθ∈Θ |ℓt(θ)| < ∞. Finally, assume E log+ |ft| < ∞ and Eℓt(θ0) > Eℓt(θ) ∀ θ ̸= θ0.
Then, θ̂T

as→ θ0 ∈ Θ.

3.2.2 Asymptotic normality

We now turn to the asymptotic normality of the ML and QML estimators for the static
parameters of QSD models.

When the QSD model is correctly specified, we can use the martingale difference
sequence property of the score at θ0 to obtain a central limit theorem. However, when the
model is misspecified, the score will generally fail to be a martingale difference sequence;
see White (1994). Lemma 7 ensures that the MLE’s score is near epoch dependent
(NED) on an underlying (strong mixing) sequence; see e.g., Davidson (1994) and Pötscher
and Prucha (1997, Definition 6.3). This lemma is written for robust QSD models with
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bounded updates delivered by a uniformly bounded ψ function with uniformly bounded
derivatives. The NED property gives us sufficient fading memory for establishing the
asymptotic normality of the score when the model is misspecified and the score fails to
be a martingale difference sequence (Pötscher and Prucha, Chapter 10).2

Let ℓ̂′t(θ0) denote the score evaluated at θ0 and defined as follows:

ℓ̂′t(θ) =
∂ℓ(yt, f̂t(θ), θ)

∂θ
+
∂ℓ(yt, f̂t(θ), θ)

∂f
f̂ ′t(θ) =: ℓ′(yt, f̂t(θ), f̂

′
t(θ), θ).

Notice that a hat is used in the notation ℓ̂′t to highlight the fact that the score depends
on the filtered values (f̂t, f̂

′
t). Define similarly the second-order derivatives ℓ̂′′t (θ). Let

ℓ′t(θ) and ℓ′′t (θ) be obtained by replacing f̂t(θ) with ft(θ) in ℓ̂′t(θ) and ℓ̂′′t (θ).

The next lemma will be used to show that the initial values needed to compute the
MLE are irrelevant for its asymptotic distribution.

Lemma 6. (Irrelevance of the initial values) Suppose ℓ′(yt, ·, ·, θ) is differentiable with
E supθ∈Θ supf,f ′

∥∥∥∂ℓ′(yt,f,f ′,θ)∂f

∥∥∥s < ∞ and E supθ∈Θ supf,f ′
∥∥∥∂ℓ′(yt,f,f ′,θ)∂f ′

∥∥∥s < ∞ for some
s > 0. Under conditions entailing (8) of Lemma 3 and (13) of Lemma 4, we have

∞∑
t=1

sup
θ∈Θ

∥∥∥ℓ̂′t(θ)− ℓ′t(θ)
∥∥∥ <∞ a.s.

Lemma 7. (Near epoch dependent score) Let {yt} have two bounded moments supt E|yt|2 <
∞ and be NED of size −q on some process {et}t∈Z and suppose that

(i) supy,X,f
∣∣∂ψ(y,X,f,θ0)

∂y

∣∣ <∞; (ii) supy,X,f
∣∣α0

∂ψ(y,X,f,θ0)
∂f + β0

∣∣ < 1.

Then, {f̂t(θ0)}t∈N is NED of size −q on {et}t∈Z. Additionally, if |β0| < 1 and

(iii) supy,X,f
∣∣ψ(y,X, f, θ0)∣∣ <∞; (iv) supy,X,f

∥∥∥∂ψ(y,X,f,θ0)∂θ

∥∥∥ <∞;

(v) supy,X,f

∥∥∥∂2ψ(y,X,f,θ0)∂θ∂y

∥∥∥ <∞; (vi) supy,X,f

∥∥∥∂2ψ(y,X,f,θ0)∂θ∂f

∥∥∥ <∞;

(vii) supy,X,f
∣∣∂2ψ(y,X,f,θ0)

∂f∂y

∣∣ <∞; (viii) supy,X,f
∣∣∂2ψ(y,X,f,θ0)

∂2f

∣∣ <∞

then the derivative process {f̂ ′t(θ0)}t∈N is NED of size −q on {et}t∈Z. Finally, assume
the score ℓ̂′t(θ0) is Lipschitz on (yt, f̂t, f̂

′
t),

(ix) supy,f

∥∥∥∂2ℓ(y,f,θ0)∂θ∂y

∥∥∥ <∞; (x) supy,f

∥∥∥∂2ℓ(y,f,θ0)∂θ∂f

∥∥∥ <∞;

(xi) supy,f
∣∣∂2ℓ(y,f,θ0)

∂f2

∣∣ <∞; (xii) supy,f
∣∣∂2ℓ(y,f,θ0)

∂f∂y

∣∣ <∞;

2In general, the concept of mixing sequences is mostly suitable for linear processes; see e.g. pages
65-68 in Pötscher and Prucha (1997) for a detailed discussion of this point. As such, NED offers a way
forward to describe fading memory in nonlinear autoregressive processes, which mixing does not.
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(xiii) supy,f
∣∣∂ℓ(y,f,θ0)

∂f

∣∣ <∞.

Then, {ℓ̂′t(θ0)}t∈N is also NED of size −q on {et}t∈Z.

Theorem 3 uses the stochastic properties discussed in Lemmas 3, 4 and 7 to obtain
the asymptotic normality of the MLE in a setting where the model is allowed to be
misspecified; see White (1982), Domowitz and White (1982), White (1994), and Pötscher
and Prucha (1997). In this theorem, we assume that the data are NED on an underlying
ϕ-mixing sequence of size −r/(r − 1). The same result can, however, be obtained for
α-mixing sequences of size −2r/(r − 2). We assume that the asymptotic variance exists
and is bounded. This condition requires that the partial sum of the covariances of the
score sequence converges. This can be verified by appealing to the stationarity and
ergodicity and bounded moments of the score, together with appropriate sizes for NED
and underlying mixing sequence; see e.g., Theorem 6.4.6 in Davidson (2000) or Lemma 3
in De Jong (1997). Such conditions implicitly impose restrictions on the unknown DGP
given the setting of model misspecification.

Theorem 3. (Asymptotic normality of MLE under possible misspecification) Assume
that the conditions in Theorem 2 and Lemmas 4 and 7 are satisfied. Suppose further that
θ∗0 ∈ int(Θ) and {yt}t∈Z is NED of size −1 on a ϕ-mixing sequence of size −r/(r− 1) for
some r > 2, and that

E
∥∥ℓ′t(θ0)∥∥r <∞ and E sup

θ∈Θ

∥∥ℓ′′t (θ)∥∥ <∞.

Suppose further that the limit

V (θ∗0) = lim
T→∞

T−1E
( T∑
t=1

ℓ′t(θ
∗
0)
)( T∑

t=1

ℓ′t(θ
∗
0)

⊤
)

exists and is bounded, and Eℓ′′t (θ∗0) is invertible. Then
√
T (θ̂T − θ∗0)

d→ N
(
0,Σ(θ∗0)

)
as

T → ∞, where

Σ(θ∗0) =
(
Eℓ′′t (θ∗0)

)−1
V (θ∗0)

(
Eℓ′′t (θ∗0)

)−1
.

Corollary 3. (Asymptotic normality of MLE under correct specification) Let {yt}t∈Z
be generated by (1) and (3) under some θ0 ∈ int(Θ), and let the conditions of Corollary
2, Lemma 4 and Lemma 6 hold. Suppose further that

E
∥∥ℓ′t(θ0)∥∥2 <∞, E sup

θ∈Θ

∥∥ℓ′t(θ)∥∥ <∞ and E sup
θ∈Θ

∥∥ℓ′′t (θ)∥∥ <∞.

Then,
√
T (θ̂T − θ0)

d→ N(0, I−1), when the Fisher information matrix I is invertible

As a final result, we obtain the asymptotic distribution of the score (also called the
Lagrange Multiplier) and log-likelihood ratio tests for testing p0 linear restrictions on the
p > p0 dimensional parameter vector θ0. The null hypothesis of interest is H0 : Rθ0 = r,
where R is a given full rank p0× p matrix and r is a given p0-dimensional vector. Below,
θ̂p0T denotes the MLE of θ0 in the model constrained by the null.
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Theorem 4. (Score and Likelihood Ratio tests) Let the conditions of Corollary 3 hold.
Then, under H0 : Rθ0 = r, we have that

LMT = T l̂
′⊤
T (θ̂p0T )Î−1l̂

′
T (θ̂

p0
T )

d→ χ2
p0 ,

LRT = 2T
(̂
lT (θ̂T )− l̂T (θ̂

p0
T )

)
d→ χ2

p0 as T → ∞,

where Î is a weakly consistent estimator of I. One can take, for instance,

Î = −l̂
′′
T (θ̂

p0
T ) or Î =

1

T

T∑
t=1

ℓ̂′t(θ̂
p0
T )ℓ̂′⊤t (θ̂p0T ). (27)

In the latter case, we have LMT = 1⊤L̂⊤
(
L̂⊤L̂

)−1
L̂1, where L̂ is a p× T matrix whose

row t is ℓ̂′t(θ̂
p0
T ) and 1⊤ = (1, . . . , 1) ∈ RT . Note that LMT = T × R2, where R2 denotes

the coefficient of determination in the regression of 1 on ℓ̂′t(θ̂
p0
T ).

4 The QSDT GARCH(1, 1)− T model

In this section, we illustrate our general results on an extension of one of the most popular
SD volatility models, namely, the βT GARCH(1, 1) of Harvey and Chakravarty (2008).

4.1 An extension of the βT GARCH(1, 1)

Assume the volatility model yt =
√
ftϵt, where

ft+1 = ω + α
ν + 1

ν − 2 + ϵ2t
ϵ2t ft + βft (28)

with ω > 0, α > 0 and β ≥ 0 to ensure positivity and avoid triviality. Harvey and
Chakravarty (2008) show that (28) is the updating equation of an SD model when the
i.i.d. sequence (ϵt) follows a standardized Student’s t distribution Tν with ν > 2 degrees
of freedom (and variance 1). Note that ν plays two roles in this model: it determines
the shape of the density of the innovations ϵt and bounds the effects of large shocks ϵt
on future values of the conditional variance (i.e., ft+1) when ν < ∞. It is convenient to
reparametrize (28) in terms of ξ = 1/ν, i.e.,

ft+1 = ω + α
1 + ξ

1− 2ξ + ξϵ2t
ϵ2t ft + βft (29)

with 0 ≤ ξ < 1/2 so that the GARCH(1, 1) appears as a special case of (29) when ξ = 0.
In the sequel, we keep the downweighting mechanism of the above βT GARCH(1, 1)

model but disconnect the updating equation of the conditional variance and the density
of the innovations. To do so, we also assume ϵt ∼ T1/ξ, but we introduce an additional
parameter ζ in the updating equation that is not related to ξ. We also consider the
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possibility of introducing a vector Xt of positive exogenous variables. The model, called
the QSDT GARCH(1, 1)− T model, is parameterized as follows:3

ft+1 = ω +ϖ⊤Xt + α
1 + ζ

1− 2ζ + ζϵ2t
ϵ2t ft + βft, (30)

where ϵt
i.i.d.∼ T1/ξ with 0 ≤ ξ < 1/2 and ϖ ≥ 0 is a parameter vector of the same

dimension as Xt. In the absence of exogenous variables, this model is identical to a βT
GARCH(1, 1) model when ξ = ζ and a standard GARCH(1, 1) model with standardized
Student’s t innovations when ζ = 0.

When ζ < 0 or ζ > 1/2, Equation (30) does not define a proper volatility model
because when ϵ2t ≃ 2− 1/ζ, ft+1 in (30) can be infinite or negative.

Note also that when ζ = 1/2 and ϖ = 0, the volatility model is degenerate since
ft+1 = ω + 3αft + βft is then constant. To ensure positivity and non-degeneracy of the
volatility equation, we could impose 0 ≤ ζ < 1/2. However, to avoid ζ on the boundary
of the parameter space when testing the null hypothesis ζ = 0 (i.e., that the true model
is a GARCH(1, 1)− T model), we also consider the alternative specification

ft+1 = ω +ϖ⊤Xt + αΨ

(
1 + ζ

1− 2ζ + ζϵ2t

)
ϵ2t ft + βft (31)

with −1 < ζ < 1/2 and Ψ : R → [0,∞) of class C2. To approximately recover (30) when
ζ ≥ 0, one can choose for Ψ a smooth approximation of the absolute value function. For
instance, one can set Ψ(x) =

√
x2 + c for some small c > 0 or

Ψ(x) = x
1− e−cx

1 + e−cx
(32)

for some large c > 0. The latter function is equivalent to |x| when |x| or c is large and is
equivalent to cx2/2 when |x| is small. More generally, assume that

Ψ(x) ≤ c1(|x|+ 1), Ψ(x) ≥ c2|x|c3 , |Ψ′(x)| ≤ c4 (33)

for some positive constants ci, i = 1, . . . , 4. In the simulations and the empirical appli-
cation, we rely on (32) with c = 1, 000. Note that in the empirical application we do not
find a single series (out of 400 stocks) for which ζ is significantly negative.

4.1.1 Stationarity and positivity conditions

Let us consider the stationarity of the general QSDT GARCH(1, 1) − T model (31)
without assuming a particular distribution for (ϵt). For the moment, we just assume that
(ϵt, Xt) is stationary and ergodic with E(ϵ2t ) = 1 and E∥Xt∥s < ∞ for some s > 0. By

3The name QSDT GARCH−T refers to the fact that the model involves two Student’s t distributions.
Indeed, the conditional log-density log p(yt|ft, θ) is a Student’s t log-density with 1/ξ degrees of freedom
while ρ(yt, ft, θ) is another Student’s t log-density with 1/ζ degrees of freedom. Consequently, the
updating equation of ft depends on ζ and not on ξ.
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the Cauchy root test, it is easy to show that there exists a stationary (ergodic) solution
to this model, explicitly given by

ft = ωt +
∞∑
i=1

a(ϵt−1) · · · a(ϵt−i)ωt−i−1, a(z) = αΨ

(
1 + ζ

1− 2ζ + ζz2

)
z2 + β,

ωt = ω +ϖ⊤Xt, when

E log
(
αΨtϵ

2
t + β

)
< 0, Ψt = Ψ

(
1 + ζ

1− 2ζ + ζϵ2t

)
. (34)

Note that, since α ̸= 0, (31) corresponds to (3) with

ψ (g(f, ϵt), X, f, θ) =
ϖ⊤X

α
+Ψtϵ

2
t f,

∂ψ(g(f, ϵt), X, f, θ)

∂f
= Ψtϵ

2
t .

Using the first inequality of (33), it can be seen that condition (i) of Lemma 1 is satisfied
when

E log− |1− 2ζ + ζϵ2t | <∞ (35)

and that (ii) is equivalent to (34). Note that the moment condition (35) is very mild.
Indeed, (35) is always satisfied when ζ ≥ 0 or when the distribution of ϵ2t has a bounded
density. On the other hand, (35) for ζ < 0 precludes a distribution of ϵ2t with a mass
at 2 − 1/ζ. Note that (34) is also a necessary condition for stationarity when (ϵt) is
i.i.d., which shows that Lemma 1 provides sharp stationarity conditions, at least in this
framework.

4.1.2 Invertibility of the filter

We now assume that (ϵt) is an i.i.d. sequence and that conditions (33)-(34) hold true.
When E∥Xt∥r < ∞ for some r > 0, all conditions of Lemma 2 are satisfied, which
shows that the stationary solution of the QSDT GARCH(1, 1) − T model is such that
E|yt|s <∞ for some s > 0. Assume also that

θ = (ω, α, β, ζ,ϖ)⊤ ∈ Θ ⊂ [ω, ω]× [α, α]× [β, β]× [ζ, ζ]× [ϖ,ϖ] (36)

with 0 < ω < ω, 0 < α < α, 0 ≤ β ≤ β < 1, 0 ≤ ζ ≤ ζ < 1/2 and 0 ≤ ϖ ≤ ϖ
(componentwise). Since we have

ψ(yt, Xt, ft, θ) =
ϖ⊤Xt

α
+Ψ

 1 + ζ

1− 2ζ + ζ
y2t
ft

 y2t ,

condition (i) of Lemma 3 is satisfied when ∥Xt∥ and yt admit a small-order moment.
Since

∂ψ(yt, Xt, ft, θ)

∂f
= Ψ′

 1 + ζ

1− 2ζ + ζ
y2t
ft

 1 + ζ(
1− 2ζ + ζ

y2t
ft

)2 ζ
y4t
f2t
,
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the uniform invertibility condition (ii) is satisfied when

E log

c4α 1 + ζ(
1− 2ζ + ζ

y2t
f

)2 ζ
y4t
f

+ β

 < 0, (37)

where f = ω/(1 − β) is a lower bound for the time-varying volatility. Note that the
expectation of the left-hand side of (37) cannot be computed exactly because the sta-
tionary distribution of (yt) is generally unknown, but it can be easily evaluated by means
of simulations. To relax the constraint ζ ≥ 0 or to obtain a more stringent identifiability
condition (in particular, to account for a non-cubic parameter space Θ), the supremum
involved in condition (ii) of Lemma 3 can be computed numerically.

4.1.3 Derivatives of the filter

With the notation (36), (9) holds with

At =


1
ψt
ft

α∂ψt

∂ζ

Xt

 ,
∂ψt
∂ζ

= y2tΨ
′

 1 + ζ

1− 2ζ + ζ
y2t
ft

 3− y2t
ft(

1− 2ζ + ζ
y2t
ft

)2 .

Assume 0 ≤ ζ ≤ ζ < 1/2. We thus have 1 − 2ζ + ζ
y2t
ft

≥ 1 − 2ζ > 0. Since ft ≥ ω > 0,
it can be seen that E ∥At∥s < ∞ for some s > 0 when ∥Xt∥ and yt admit a small-order
moment. Therefore, E log+ ∥At∥ < ∞, and (i) of Lemma 4 is satisfied. Similarly, it can
be seen that the other conditions of that lemma hold true.

4.2 Statistical inference

We now consider the estimation of the QSDT GARCH − T model. We thus assume the
standardized Student’s t conditional distribution

p(y | f, θ) = 1√
f
pν

(
y√
f

)
, (38)

pν(ϵ) =
1√

π(ν − 2)

Γ
(
ν+1
2

)
Γ
(
ν
2

) (
1 +

ϵ2

ν − 2

)− ν+1
2

, (39)

where pν(ϵ) is the standardized Student’s t distribution (with mean 0, unit variance and
ν > 2) and denoted as Tν in short. Setting ξ = 1/ν and imposing 0 ≤ ξ < 1/2, the
Gaussian conditional distribution case corresponds to ξ = 0. Let θ = (ω, α, β, ζ, ξ,ϖ⊤)⊤,
Θ a compact subset of (0,∞)2 × [0, 1]× (−1, 1/2)× [0, 1/2)× [0,∞)d−1 and the MLE

θ̂T = argmax
θ∈Θ

1

T

T∑
t=t0+1

ℓ(yt, f̂t(θ), θ),
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where ℓ(y, f, θ) = log p(y | f, θ) and

f̂t+1(θ) = ω +ϖ⊤Xt + αΨ

 1 + ζ

1− 2ζ + ζ
y2t
f̂t(θ)

 y2t + βf̂t(θ),

with the initial value f̂1(θ) =
∑t0

t=1 y
2
t /t0 and t0 = 5, for instance.

4.2.1 Testing the βT GARCH(1, 1) restriction

The standard βT GARCH(1, 1) is obtained when 0 < ζ = ξ < 1/2 and Ψ(x) = x. It is
thus of interest to test the null hypothesis H0 : ξ0 = ζ0. This hypothesis can be written
as H0 : Kθ0 = 0 with K = (0⊤3 , 1,−1, 0⊤d−1). Let the Wald test statistic be

W ζ,ξ
T = T θ̂⊤TK

⊤
(
KΣ̂K⊤

)−1
Kθ̂T ,

where Σ̂ is a consistent estimator of the matrix I−1(θ0) defined in Corollary 3. A direct
consequence of that corollary is that W ζ,ξ

T asymptotically follows a χ2
1 under H0. The

test of critical region {W ζ,ξ
T > χ2

1(1− α∗)} thus has the asymptotic level α∗.
Alternatively, one can use Theorem 4 and replace the Wald statistic by the score and

likelihood ratio (LR) test statistics

LMζ,ξ
T = T l̂

′⊤
T (θ̂p0T )Î−1l̂

′
T (θ̂

p0
T ), LRζ,ξ

T = 2T
(̂
lT (θ̂T )− l̂T (θ̂

p0
T )

)
.

For the Wald statistics, it is natural to take Σ̂ = Î−1, where Î is defined by (27), replacing
θ̂p0T by θ̂T .

4.2.2 Testing the GARCH − T restriction

The GARCH(1, 1)−T volatility model is obtained when ζ = 0 and Ψ(x) = x. It is thus
of interest to test the null H0 : ζ0 = 0 in the QSDT GARCH − T model defined by (38)
and (31), with −1 < ζ < 1/2 and Ψ satisfying (33). Another possibility would be to test
ζ0 = 0 in the model defined by (38) and (31) constrained by 0 ≤ ζ < 1/2. The drawback
of the latter test is that because the parameter stands at the boundary of the parameter
space under the null, the asymptotic distribution of the Wald statistic is non-standard
(see Pedersen and Rahbek, 2019 and the reference therein).

By considering model (31), we afford to have −1 < ζ < 1/2, and thus the parameter
belongs to the interior of Θ under H0 : ζ0 = 0. Corollary 3 then entails that the Wald
test of critical region {W ζ

T > χ2
1(1− α∗)} with

W ζ
T = T θ̂⊤T e4

(
e⊤4 Σ̂be4

)−1
e⊤4 θ̂T , e⊤4 = (0⊤3 , 1, 0

⊤
d ),

has asymptotic level α∗.
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4.2.3 Testing the standard GARCH

The parameter of interest is often the volatility ft = f(θ0) with θ0 = (ω0, α0, β0, ζ0, ϖ
⊤)⊤

and Θ changed accordingly. It is then desirable to estimate θ0 without assuming (38) or
any other particular conditional distribution.

The benchmark estimator in this framework is the QMLE

θ̂QMLE = argmin
θ∈Θ

1

T

T∑
t=t0+1

y2t

f̂t(θ)
+ log f̂t(θ). (40)

As discussed in Section 3.1, one can also use an alternative QLE based on the estimating
functions theory:

θ̂T = argmin
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=t0+1

y2t − f̂t(θ)

σ̂2t (θ)
f̂ ′t(θ)

∥∥∥∥∥ (41)

for some function σ̂2t (θ) > 0 ∈ Ft−1. If σ̂2t (θ) is chosen proportional to f̂2t (θ), then the
two estimators (40) and (41) are equivalent. However, they are not equivalent if, for
instance, one takes σ̂2t (θ) = f̂t(θ).

4.3 Monte Carlo simulation

In this section, we present a Monte Carlo experiment that studies the finite-sample prop-
erties of the QSDT GARCH(1, 1) − T model as well as some models nested in this
specification.

In the simulation study, we consider three data-generating processes (DGPs) corre-
sponding to particular cases of the following QSDT GARCH(1, 1)− T model:

yt = µ+
√
ftϵt (42)

ϵt ∼ T1/ξ (43)

ft+1 = ω +ϖXt + α
1 + ζ

1− 2ζ + ζϵ2t
ϵ2t ft + βft (44)

with 0 < ξ < 1/2 and −1 < ζ < 1/2 and where T1/ξ is defined in (39). Recall that this
model is a pure βT GARCH(1, 1) in the absence of an explanatory variable and when
ξ = ζ, and it is a GARCH(1, 1)− T model when ζ = 0. The explanatory variable Xt is
taken from the empirical application and corresponds to historical data of the square of
the VIX index converted from an annual to a daily horizon.

In all simulations, we set the parameters to a rounded value of the average (over all
stocks) of the estimated parameters obtained in Section 5.1.4 More specifically, we set
µ = 0.06, ω = 0.08, ϖ = 0.13, α = 0.10 and β = 0.83. In the first simulation (i.e., Table
1), we set ξ = ζ = 0.2 so that the model is a βT GARCH(1, 1) model with a degree
of freedom of ξ−1 = 5. In the second simulation (i.e., Table 2), we set ξ = 0.2 and
ζ = 0.1 so that the model is a QSDT GARCH(1, 1)−T with a higher degree of freedom

4Unlike in the empirical application, we do not consider an AR(1) specification in the simulations.
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in the conditional variance equation than for the density of the innovations. Finally, in
the third simulation (i.e., Table 3), ξ = 0.2 while ζ = 0, so that the true model is a
GARCH(1, 1)− T model.

In all cases, four models are estimated. Three models (i.e., GARCH(1, 1) − T , βT
GARCH(1, 1) and QSDT GARCH(1, 1) − T ) are estimated by ML. The fourth model
is the QSDT GARCH(1, 1) estimated by Gaussian QML (ξ is therefore not estimated).
Note that during the optimization, the positivity of the conditional variance of the QSDT

GARCH(1, 1)− T models is imposed by replacing (44) by (31), as discussed in Section
4.

In all cases considered in this section, σ2t is proportional to f2t so that the optimal
QLE corresponds to the Gaussian QMLE, which is the reason why specific results for the
QLE are not reported below.

Each of the three tables is divided into two major parts. The top panels correspond to
the results for a sample size of 3,000 observations, while the bottom panels are for 4,000
observations.5 Each panel is again divided into two parts. The first one contains summary
statistics on the estimated parameters, while the second reports rejection frequencies of
two LRTs. Figures at the right of the name of the models are the empirical biases over
1,000 replications. Figures in parentheses correspond to RMSEs, while those in squared
brackets are the 95% coverage probabilities (i.e., percentage of 95% confidence intervals
drawn from the asymptotic distribution containing the true parameter). The second part
contains rejection frequencies of two LRTs computed from the ML estimates. The first
one is for the null hypothesis that the true model is a βT GARCH(1, 1), i.e., ξ = ζ, while
the second test is for the null hypothesis that the model is a GARCH(1, 1) − T , i.e.,
ξ = 0. Note that some of the figures reported in this part correspond to empirical sizes
or powers depending on the DGP. For this reason, for ease of reading of the results, an
asterisk is added after the name of the models that do not nest the DGP.

Some comments are in order.

• The most important result is that the bias of the MLEs of theQSDT GARCH(1, 1)−
T is negligible for the two considered sample sizes and the three DGPs.

• When the true model is a βT GARCH(1, 1) (see Table 1), the inverse of the de-
gree of freedom of innovations ξ is slightly more precisely estimated with the βT
GARCH(1, 1) model than with the QSDT GARCH(1, 1) − T , but the difference
is marginal. Indeed, the RMSE is only 0.001 higher for the latter when T = 3, 000
and almost identical when T = 4, 000. Furthermore, while the biases of ξ and ζ
are small, the RMSE of ζ is between three and four times higher than for ξ. This
is a consequence of the fact that the identification of ζ is only possible from the

5A minimum of 1,500 to 2,000 observations is often required to estimate accurately the parameters
of standard GARCH models by (Q)ML and to have a satisfactory statistical inference by means of the
asymptotic distribution of the estimator. QSD GARCH are more flexible than GARCH models. In
particular, the ζ parameter is identified only by the large observations that are underweighted in the
updating equation for ft. It is therefore natural that more observations are required than for standard
GARCH. SD models impose ζ = ξ and therefore also require less observations than QSD models because
ζ is also identified through the full conditional density of the data.
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observations for which the shocks are truncated, whereas all observations can be
used to identify ξ. Testing the null hypothesis that ξ = ζ is therefore desirable to
gain efficiency by imposing this restriction when the null hypothesis is not rejected.

• As expected, some of the parameters of the GARCH(1, 1)−T model (especially α)
are biased when wrongly imposing the assumption that ζ = 0, as shown in Tables
1 and 2.

• Similarly, some of the parameters of the βT GARCH(1, 1) model are biased when
the true model is a QSDT GARCH(1, 1)−T with ξ ̸= ζ, as shown in Tables 2 and
3.

• As expected again, the QML of the QSDT GARCH(1, 1) is less precise than its ML
version. The biases are higher than for the ML, while the RMSEs are approximately
20-25% higher.

• The coverage probabilities of the parameters of the QSDT GARCH(1, 1)− T are
satisfactory, except for ζ. For a sample size of 3,000 observations, the true value of
ζ belongs to the 95% confidence interval drawn from the asymptotic distribution in
approximately 83 to 84% (resp. 79 to 83%) of the cases for the MLE (resp. QMLE).
The results are slightly better for a sample size of 4,000 observations. Unreported
simulation results suggest that a sample size of at least 15,000 observations is needed
to perform correct statistical inference on ζ on the basis of t-tests and confidence
intervals relying on the asymptotic distribution. For the sample sizes considered in
Tables 1 to 3, standard errors of ζ are on average too small compared to the RMSE
of the estimated ζ parameter.

• While statistical inference on ζ relying on its standard error (e.g., t-tests and Wald
tests) requires a very large sample, the LRT on ζ has good finite sample properties.
Indeed, when the sample size is 4,000, the rejection frequencies of the null hypothesis
H0 : ξ = ζ in Table 1 (where ξ = ζ = 0.2 in the DGP) and of the null hypothesis
H0 : ζ = 0 in Table 3 are close to their nominal sizes. The rejection frequencies for
the other tests correspond to empirical powers. Interestingly, the LRT of the null
hypothesis H0 : ζ = 0 has very high power to reject the GARCH−T for which the
squared shocks drive the dynamic of the conditional variance (see Tables 1 and 2),
while the LRT of the null hypothesis H0 : ξ = ζ has very high power when the true
model is a GARCH(1, 1)−T (see Table 3) and decent power when the true model
is a QSDT GARCH(1, 1)− T with ξ = 0.2 and ζ = 0.1 (approximately 30% for a
nominal size of 5% and a sample size of 4,000 observations). The power of course
increases with the distance between ξ and ζ.

Finally, to help visualize the impact of a misspecification of the conditional vari-
ance, Figure 1 plots 50 observations around a large shock. The DGP is a QSDT

GARCH(1, 1)−T with ξ = 0.2 and ζ = 0.1 (as in Table 2), and the models are estimated
by ML on 4,000 observations. This figure plots the absolute value of the simulated log-
returns (thin solid red line) as well as the estimated conditional volatilities of the QSDT
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GARCH(1, 1) − T (thick solid pink line), βT GARCH(1, 1) (thin green dashed line),
GARCH(1, 1) − T (thin blue line with long dashes) and the true conditional volatility
(black solid line). It is clear from this graph that unlike the QSDT GARCH(1, 1) − T ,
the GARCH − T model overestimates the volatility during approximately two weeks
(i.e., approximately 15 observations) following the large shock (occurring at observation
1475), while the βT GARCH(1, 1) underestimates the volatility during the same period.

|yt | ft
1/2 f̂t

1/2 βT GARCH f̂t
1/2 QSDT GARCH−T f̂t

1/2 GARCH−T 

1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500

1

2

3
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5

6

7

8 |yt | ft
1/2 f̂t

1/2 βT GARCH f̂t
1/2 QSDT GARCH−T f̂t

1/2 GARCH−T 

Figure 1: Fifty observations around a large shock for a DGP corresponding to a QSDT

GARCH(1, 1) − T with ξ = 0.2 and ζ = 0.1 (as in Table 2). The GARCH(1, 1) − T ,
βT GARCH(1, 1) and QSDT GARCH(1, 1)− T models are estimated by ML on 4,000
observations.

5 Empirical Application

In the empirical application, we consider all stocks belonging to the S&P500 index for
the period spanning from 03-01-1995 (or later) to 28-02-2019. All stocks for which less
than 4,000 observations are available have been discarded, as well as a few stocks for
which one of the competing models encountered convergence problems. We are left with
400 stocks.

The application is divided in two. We first consider volatility models based on sym-
metric Student’s t densities and then extend our analysis by considering models with
skewed Student’s t densities.
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Table 1: Bias, RMSE and 95% coverage probabilities and LRT. The DGP is a βT GARCH(1, 1).
Sample size T = 3, 000 or 4, 000.

T = 3, 000

µ ω ϖ α β ξ ζ
0.06 0.08 0.13 0.10 0.83 0.2 0.2

GARCH(1, 1)− T ML* 0.000 0.022 0.031 -0.038 0.022 0.002
(0.026) (0.032) (0.045) (0.019) (0.035) (0.017)
[0.961] [0.937] [0.918] [0.289] [0.737] [0.947]

βT GARCH(1, 1) 0.000 0.008 0.011 -0.000 -0.006 -0.001
(0.026) (0.032) (0.045) (0.019) (0.035) (0.017)
[0.964] [0.960] [0.949] [0.945] [0.947] [0.956]

QSDT GARCH(1, 1) QML 0.001 0.009 0.014 0.001 -0.018 0.025
(0.031) (0.048) (0.087) (0.029) (0.066) (0.111)
[0.960] [0.922] [0.913] [0.913] [0.909] [0.793]

QSDT GARCH(1, 1)− T ML 0.000 0.007 0.011 -0.002 -0.009 -0.001 0.008
(0.026) (0.031) (0.045) (0.020) (0.039) (0.018) (0.089)
[0.963] [0.962] [0.944] [0.934] [0.950] [0.957] [0.852]
1% 5% 10%

H0 : ξ = ζ (size) 0.901 6.607 12.713
H0 : ζ = 0 (power) 81.481 92.793 95.195

T = 4, 000

µ ω ϖ α β ξ ζ
0.06 0.08 0.13 0.10 0.83 0.2 0.2

GARCH(1, 1)− T ML* 0.000 0.017 0.024 -0.039 0.027 0.003
(0.021) (0.027) (0.035) (0.017) (0.029) (0.016)
[0.970] [0.925] [0.942] [0.196] [0.684] [0.950]

βT GARCH(1, 1) 0.000 0.005 0.007 -0.000 -0.004 -0.000
(0.021) (0.027) (0.035) (0.017) (0.029) (0.016)
[0.966] [0.939] [0.955] [0.938] [0.959] [0.953]

QSDT GARCH(1, 1) QML 0.001 0.007 0.009 -0.000 -0.013 0.021
(0.025) (0.039) (0.051) (0.025) (0.049) (0.100)
[0.967] [0.940] [0.935] [0.927] [0.936] [0.804]

QSDT GARCH(1, 1)− T ML 0.000 0.005 0.007 -0.001 -0.006 -0.001 0.008
(0.021) (0.027) (0.036) (0.018) (0.033) (0.016) (0.078)
[0.967] [0.941] [0.949] [0.933] [0.942] [0.955] [0.864]
1% 5% 10%

H0 : ξ = ζ (size) 1.100 6.600 12.900
H0 : ζ = 0 (power) 93.700 97.600 98.200

Note: Monte Carlo simulation results for T = 3, 000 (top panel) and T = 4, 000 (bottom panel). Each panel
is divided into two parts. The first part is for the estimated parameters of the four models. The figures at
the right of the name of the models are the empirical biases over 1,000 replications. The figures in parentheses
correspond to RMSEs, while those in squared brackets are the 95% coverage probabilities. The second part
contains rejection frequencies of two LR tests computed from the ML estimates. Some of the figures reported
in this part correspond to empirical sizes or powers depending on the DGP. Models highlighted with an asterisk
after their name do not nest the DGP.
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Table 2: Bias, RMSE and 95% coverage probabilities and LRT. The DGP is a QSDT GARCH(1, 1)−T .
Sample size T = 3, 000 or 4, 000.

T = 3, 000

µ ω ϖ α β ξ ζ
0.06 0.08 0.13 0.10 0.83 0.2 0.1

GARCH(1, 1)− T ML* 0.000 0.017 0.025 -0.028 0.007 0.001
(0.025) (0.030) (0.042) (0.021) (0.041) (0.018)
[0.961] [0.939] [0.926] [0.506] [0.872] [0.950]

βT GARCH(1, 1)* 0.000 0.006 0.009 0.008 -0.021 -0.004
(0.025) (0.030) (0.042) (0.021) (0.041) (0.018)
[0.966] [0.964] [0.946] [0.954] [0.944] [0.944]

QSDT GARCH(1, 1) QML 0.001 0.008 0.013 0.002 -0.016 0.035
(0.029) (0.045) (0.079) (0.031) (0.059) (0.103)
[0.958] [0.914] [0.909] [0.910] [0.901] [0.817]

QSDT GARCH(1, 1)− T ML 0.000 0.007 0.011 -0.001 -0.009 -0.001 0.013
(0.025) (0.031) (0.044) (0.021) (0.039) (0.018) (0.075)
[0.965] [0.962] [0.939] [0.921] [0.939] [0.957] [0.841]
1% 5% 10%

H0 : ξ = ζ (power) 10.010 25.125 36.637
H0 : ζ = 0 (power) 56.356 73.674 80.981

T = 4, 000

µ ω ϖ α β ξ ζ
0.06 0.08 0.13 0.10 0.83 0.2 0.1

GARCH(1, 1)− T ML* 0.000 0.014 0.019 -0.029 0.012 0.001
(0.020) (0.025) (0.034) (0.019) (0.035) (0.016)
[0.969] [0.932] [0.944] [0.405] [0.843] [0.953]

βT GARCH(1, 1)* 0.000 0.004 0.005 0.007 -0.018 -0.004
(0.020) (0.025) (0.034) (0.019) (0.035) (0.016)
[0.965] [0.935] [0.944] [0.946] [0.950] [0.933]

QSDT GARCH(1, 1) QML 0.001 0.008 0.010 0.001 -0.013 0.031
(0.023) (0.039) (0.055) (0.026) (0.047) (0.092)
[0.964] [0.944] [0.942] [0.928] [0.942] [0.851]

QSDT GARCH(1, 1)− T ML 0.000 0.005 0.006 -0.001 -0.006 -0.001 0.012
(0.020) (0.025) (0.034) (0.019) (0.031) (0.016) (0.063)
[0.966] [0.945] [0.943] [0.931] [0.958] [0.956] [0.879]
1% 5% 10%

H0 : ξ = ζ (power) 13.300 29.800 40.100
H0 : ζ = 0 (power) 71.600 85.500 90.500

Note: see Table 1.
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Table 3: Bias, RMSE and 95% coverage probabilities and LRT. The DGP is a GARCH(1, 1) − T .
Sample size T = 3, 000 or 4, 000.

T = 3, 000

µ ω ϖ α β ξ ζ
0.06 0.08 0.13 0.10 0.83 0.2 0

GARCH(1, 1)− T ML 0.000 0.006 0.008 0.000 -0.005 -0.001
(0.025) (0.027) (0.037) (0.046) (0.056) (0.020)
[0.965] [0.957] [0.944] [0.949] [0.938] [0.956]

βT GARCH(1, 1)* 0.000 0.004 0.005 0.040 -0.046 -0.010
(0.025) (0.027) (0.037) (0.046) (0.056) (0.020)
[0.966] [0.954] [0.935] [0.518] [0.730] [0.903]

QSDT GARCH(1, 1) QML 0.001 0.006 0.008 0.004 -0.009 0.013
(0.029) (0.038) (0.052) (0.030) (0.043) (0.038)
[0.953] [0.924] [0.924] [0.921] [0.911] [0.834]

QSDT GARCH(1, 1)− T ML 0.000 0.005 0.007 0.000 -0.005 -0.001 0.004
(0.025) (0.026) (0.036) (0.019) (0.029) (0.018) (0.019)
[0.967] [0.958] [0.945] [0.940] [0.936] [0.953] [0.842]
1% 5% 10%

H0 : ξ = ζ (power) 92.893 97.598 98.599
H0 : ζ = 0 (size) 1.702 8.008 14.915

T = 4, 000

µ ω ϖ α β ξ ζ
0.06 0.08 0.13 0.10 0.83 0.2 0

GARCH(1, 1)− T ML 0.000 0.004 0.004 -0.000 -0.002 -0.001
(0.020) (0.023) (0.029) (0.044) (0.052) (0.019)
[0.970] [0.946] [0.956] [0.945] [0.948] [0.955]

βT GARCH(1, 1)* 0.000 0.002 0.002 0.039 -0.044 -0.010
(0.020) (0.023) (0.029) (0.044) (0.052) (0.019)
[0.970] [0.926] [0.942] [0.395] [0.646] [0.877]

QSDT GARCH(1, 1) QML 0.001 0.006 0.007 0.003 -0.007 0.008
(0.023) (0.032) (0.041) (0.025) (0.034) (0.025)
[0.968] [0.937] [0.945] [0.926] [0.945] [0.866]

QSDT GARCH(1, 1)− T ML 0.000 0.003 0.004 -0.000 -0.002 -0.001 0.003
(0.020) (0.022) (0.029) (0.017) (0.023) (0.016) (0.015)
[0.971] [0.944] [0.956] [0.947] [0.961] [0.954] [0.870]
1% 5% 10%

H0 : ξ = ζ (power) 98.300 99.500 99.700
H0 : ζ = 0 (size) 1.500 5.700 10.900

Note: see Table 1.
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5.1 Symmetric densities

A GARCH(1, 1)−T , a βT GARCH(1, 1) and a QSDT GARCH(1, 1)−T are estimated
by ML on all series of log-returns.6 The explanatory variable Xt used in the conditional
variance equation ft+1 of all models is the square of the VIX index converted from an
annual to a daily horizon.

The stationarity and invertibility conditions seem to be satisfied for all series according
to conditions (ii) of Lemma 1 and (ii) of Lemma 3 evaluated at the MLE estimates of
the parameters.

The first two columns of Table 4 contain the rejection frequencies at the 5% nominal
level (over the 400 stocks) of two LRTs. Interestingly, the null hypothesis H0 : ζ = 0 is
rejected in approximately 90% of the cases, suggesting that downweighting large shocks
in the conditional variance of these US stocks is empirically relevant.

These results naturally call for the use of an SD model rather than a GARCH
dynamic. However, the null hypothesis H0 : ξ = ζ is rejected in more than 50% of
the cases (again at the 5% nominal level) suggesting that the additional flexibility of the
QSDT GARCH(1, 1)−T over the βT GARCH(1, 1) is empirically relevant. Furthermore,
all the estimated ζ values are positive, and thus specification (30) can be used instead of
(31).

Table 4: Rejection frequencies (at 5%) of two LRTs and a goodness-of-fit test for
the models with symmetric Student’s t densities

LRT PIT test
H0 : ξ = ζ H0 : ζ = 0 GARCH − T βT GARCH QSDT GARCH − T

53.5 89.5 40.0 46.0 45.7
The figures reported in the table are rejection frequencies over the 400 stocks and a
nominal size of 5%. The figures in the two columns under LRT are for the LRT whose
null hypothesis is reported just above. These hypothesis are tested on the MLEs of the
QSD model. The figures reported in the three columns under the PIT test χ2 test are
for the PIT test applied on the residuals of the corresponding model.

The difference ξ̂− ζ̂ is plotted in Figure 2 for the 400 US stocks (sorted in alphabetical
order of the ticker name). A full (resp. empty) circle corresponds to a significant (resp.
insignificant) difference (according to an LRT at the 5% nominal level). For all (but one)
stocks for which ξ̂ ̸= ζ̂, ξ̂ > ζ̂, suggesting that the downweighting of the βT GARCH(1, 1)
is too strong.

To visualize the added value of theQSDT GARCH(1, 1)−T model over theGARCH−
T and βT GARCH(1, 1) models, we randomly selected a stock for which both the null
hypotheses H0 : ξ = ζ and H0 : ζ = 0 are rejected. We choose Centene (whose ticker is
CNC), a multi-line healthcare enterprise.

The MLEs of parameters entering the conditional variance equation of the three
models obtained for daily log-returns of CNC during the period spanning from December
2001 to the end of February 2019 (i.e., 4330 observations) are reported in Table 5 together

6To account for possible serial correlation in the data, an AR(1) specification is used for all series.
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Figure 2: ξ̂− ζ̂ for the QSDT GARCH(1, 1)−T estimated on the 400 US stocks. A full
(resp. empty) circle corresponds to a significant (resp. insignificant) difference (according
to an LRT at the 5% nominal level).
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with the log-likelihood values and the two LRT statistics of the tests presented above
(with the corresponding p-values in squared brackets). Interestingly, the estimated ξ
parameters of the GARCH(1, 1)− T and βT GARCH(1, 1) do not differ much and are
approximately equal to 0.25, which corresponds to a degree of freedom of the Student’s
t distribution close to 4. The log-likelihood of the βT GARCH(1, 1) is very close to the
one of the GARCH(1, 1) − T model but slightly lower. Given that the two models are
not nested, LRTs cannot be used to discriminate between these two models. Importantly,
while ξ̂ is also close to 0.25 for the QSDT GARCH(1, 1)− T model, ζ̂ is approximately
0.05 (and therefore 1/ζ̂ is close to 20), suggesting that the βT GARCH(1, 1) downweights
the large shocks far too much.

To help visualize the differences between the three models, news impact curves (NICs)
are plotted in Figure 3. An NIC measures how new information is incorporated into the
conditional variance. Since the QSDT GARCH(1, 1)−T nests the other two models, we
can write the NIC of the three models as the function mapping the shocks ϵt to 1+ζ

1−2ζ+ζϵ2t
ϵ2t ,

where ζ = 0 for the GARCH(1, 1) − T model and ζ = ξ for the βT GARCH(1, 1).
The NIC of the GARCH(1, 1) − T model corresponds to the green dashed line. For
the βT GARCH(1, 1) and QSDT GARCH(1, 1) − T models, three NICs are plotted,
evaluated at the 5, 50 and 95% quantiles of the 400 estimated values of ζ. For theses two
models, the median of 1/ζ̂ are respectively 5.0702 and 9.4805. The NICs of the QSDT

GARCH(1, 1) − T (resp. βT GARCH(1, 1)) model correspond to the blue solid (resp.
red dotted) lines. The NICs evaluated at the median are highlighted in bold. We see
from Figure 3 that the NICs of the QSDT GARCH(1, 1)−T stock lie between the NICs
of the other two models and that there is more heterogeneity in the NICs of the QSDT

GARCH(1, 1)− T model.
To see the impact of different NICs on the estimated conditional volatilities, the

absolute value of the daily log-returns of CNC (thin solid red line) as well as the estimated
conditional volatilities of the GARCH(1, 1) − T (thin blue line with long dashes), βT
GARCH(1, 1) (thin green dashed line) and QSDT GARCH(1, 1) − T (thick solid pink
line) estimated by ML (on the full period) are plotted for the sub-period spanning from
the beginning of March 2008 to the end of April 2008 in Figure 4. The box highlights
a period of several days around a large shock (i.e., an absolute return of approximately
25 %) and for which we see large differences between the estimated conditional standard
deviations of the three models. In line with what we observed in Figure 1 for simulated
data, the conditional volatility of the GARCH(1, 1)−T model is much higher than that
of the βT GARCH(1, 1) for several days after the shock while the conditional volatility
of the QSDT GARCH(1, 1)− T lies between the two.

As pointed out by a referee, the ability of the QSDT GARCH(1, 1)−T to outperform
the other two models in most cases does not mean this model adequately captures the
main features of the data. Indeed, it may be that the QSDT GARCH(1, 1) − T model
describes the data better than the βT GARCH(1, 1) and GARCH(1, 1)− T models but
that these three models do not capture well the dynamics in the conditional variance
or the shape of the distribution for some quantiles (such as the tails or the degree of
asymmetry of the distribution). Several tests are available to test a specific type of mis-
specification. To avoid the problem of multiple tests we prefer a global misspecification
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Table 5: MLEs of the parameters of the conditional variance equation of the
GARCH(1, 1) − T , βT GARCH(1, 1) and QSDT GARCH(1, 1) − T for CNC during
the period spanning from December 2001 to the end of February 2019 (i.e., 4,330 obser-
vations).

GARCH(1, 1)− T βT GARCH(1, 1) QSDT GARCH(1, 1)− T

ω 1.1278 0.9857 0.9833
(0.1932) (0.1850) (0.1842)

ϖ 0.8074 0.6570 0.6890
(0.1573) (0.1469) (0.1493)

α 0.1574 0.2256 0.2015
(0.0266) (0.0283) (0.0320

β 0.5394 0.5076 0.5577
(0.0603) (0.0621) (0.0590)

ξ 0.2593 0.2568 0.2584
(0.0136) (0.0135) (0.0137)

ζ 0.0479
(0.0270)

Log-Likelihood -9630.6 -9630.8 -9626.4
H0 : ξ = ζ 8.812

[0.003]
H0 : ζ = 0 8.4169

[0.004]

Note: The figures at the right of H0 : ξ = ζ and H0 : ζ = 0 are the values of the LRT
corresponding to the specified null hypothesis (with the p-value below in squared brackets).

test, namely the goodness-of-fit test proposed by Diebold, Gunther and Tay (1998).7

They show that under the null hypothesis of correct specification, the probability inte-
gral transform (PIT) series {ut}Tt=1

i.i.d.∼ U(0, 1) so that ut
i.i.d.∼ (1/2, 1/12) and therefore∑T

t=1 ut ∼ N(T/2, T/12) as T → ∞, which suggests rejecting the null of correct speci-
fication at the 5% nominal level when |(

∑T
t=1 ut − T/2)|/

√
T/12 > 1.96. This result is

only true when the PIT series is observed without error, while in practice, it is computed
from the cumulative distribution function of the residuals. Since the MLEs of the models
considered in this section are asymptotically Gaussian under the assumption of correct
specification, we can apply Pierce’s (1982) theorem to derive the asymptotic distribution
of

∑T
t=1 ut conditional on the MLEs of the model fitted on the data. More details on the

PIT test as well as the results of a small Monte Carlo simulation study that shows its
7Let us assume the true model is a QSDT GARCH - T model as described in Section 4.1, with

ζ ̸= ξ, but one estimates a βT GARCH model that imposes ζ = ξ. Wrongly imposing ζ = ξ may have
various consequences on the residuals: standardized residuals might not follow the assumed distribution,
standardized residuals might not be i.i.d. or both. It is precisely because we do not know in advance
whether the potential misspecification of the SD models will be seen in the unconditional density of the
standardized residuals or in the presence of serial correlation in these standardized residuals (or their
powers) that we use a global test of misspecification on both aspects.
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Figure 3: News impact curves for the MLEs of the QSDT GARCH(1, 1)− T (blue solid
lines), βT GARCH(1, 1) (red dotted lines) and GARCH(1, 1) − T (green dashed line)
evaluated at the 5, 50 and 95% quantiles of the 400 values of ζ̂. The NICs evaluated at
the median are highlighted in bold.

good finite sample properties are reported in Appendix C in the online supplement.
The rejection frequencies (over the 400 stocks and for a nominal size of 5%) of the

above PIT test (accounting for estimation error) are reported in the last three columns of
Table 4 (under PIT ) for the three models considered in this section. The results clearly
suggest that the three models are rejected in more than 40% of the cases, which calls for
the use of a different model.

5.2 Skewed densities

The distribution of daily stock returns is known to have heavy tails (as illustrated in the
previous section) and is also often found to be left-skewed, as shown, for instance, by
Giot and Laurent (2003) and Harvey and Lange (2016). It is also known that negative
shocks have a deeper impact on the volatility than positive shocks of the same magnitude
(so-called leverage effect). Hansen and Lunde (2005) find that the leverage is actually
empirically more relevant than tails for forecasting volatility.

Harvey and Lange (2016) are the first to consider a skewed distribution in the context
of SD volatility models. More specifically, they propose an SD model in which the inno-
vations are assumed to follow an asymmetric generalized t distribution. In this section,
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Figure 4: Absolute value of log-returns and estimated conditional volatility of the
GARCH(1, 1) − T , βT GARCH(1, 1) and QSDT GARCH(1, 1) − T estimated by ML
for the ticker CNC (Centene). The graph only shows the sub-period spanning from the
beginning of March 2008 to the end of April 2008.

we consider a constrained version of this density corresponding to the non-standardized
skewed Student’s t (ST ) of Zhu and Galbraith (2010) with degree of freedom 1/ξ and
asymmetry parameter κ, which we denote as ST1/ξ,κ. If yt =

√
ftϵt and ϵt follows a

ST1/ξ,κ distribution, the log-likelihood can be written as

log p (yt | ft, θ) = ln(δK1/ξ)−
1

2
ln (ft)−

(
1/ξ + 1

2

)
ln

(
1 +

ξϵ2t
4κ2t

)
, (45)

where Kv ≡ Γ((v + 1)/2)/[
√
πvΓ(v/2)] (with Γ(·) the gamma function), κt = κ (resp.

1− κ) if ϵt ≤ 0 (resp. ϵt > 0) and

m = 4
1−ξ

[
(1− κ)2 − κ2

]
K1/ξ

δ2 = 4
1−2ξ

[
κ3 + (1− κ)3

]
−m2.

Importantly, the ST density is symmetric when κ = 1/2 and left-skewed (resp. right
skewed) when κ > 1/2 (resp. κ < 1/2). Interestingly, Zhu and Galbraith (2010) show
that the skewed Student’s t distributions of Hansen (1994) and Fernandez and Steel
(1998) can be recovered as special cases of the above ST density.
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While Harvey and Lange (2016) consider the asymmetric generalized t distribution
in the context of an SD model for the log of the conditional variance (i.e., in the spirit
of an EGARCH model), we report below the specification of an SD model for the condi-
tional variance when the innovations follow the above ST1/ξ,κ distribution.8 This model,
denoted βST GARCH(1, 1), takes the form

ft+1 = ω + α
(1 + ξ)

4κ2t + ξϵ2t
ϵ2t ft + βft. (46)

When κ > 1/2, the ST density is left-skewed, and in this case, the βST GARCH(1, 1)
produces volatilities that are smaller after negative shocks than after positive shocks of
the same magnitude. Indeed, when κ = 0.6, κ2t = 0.62 when ϵt ≤ 0 while κ2t = 0.42 when
ϵt > 0. Unfortunately, this contradicts the leverage effect. This issue does not affect
the larger class of QSD models because the updating function ρ can be disconnected
from log p (yt | ft, θ).9 To preserve the flexibility and generality of the ST density, an
ST1/ξ,κ distribution can be assumed for the innovations ϵt, while ρ (yt, Xt, ft, θ) can be
chosen to be the log-likelihood of an ST density with different parameters, i.e., a ST1/ζ,τ
distribution, which leads to the following QSDST GARCH(1, 1)− ST model:

ft+1 = ω + α
(1 + ζ)

4τ2t + ζϵ2t
ϵ2t ft + βft, (47)

where τt is defined similarly to κt. A value of τ < 0.5 can therefore produce a leverage
effect, irrespective of the value taken by κ.

A GARCH(1, 1)− ST , a βST GARCH(1, 1) and a QSDST GARCH(1, 1)− ST are
estimated on the same 400 stocks. To help visualize the difference between the last two
models, their MLEs of the tail parameters ξ and ζ are plotted in Panel (a) of Figure
5, while the asymmetry parameters κ and τ are plotted in Panel (b). Two conclusions
emerge from this graph. First, the estimated values of ξ and κ of the βST GARCH are
systematically very close to those of the QSDST GARCH − ST . Second, in most cases,
ξ̂ and ζ̂ are quite different. More importantly, τ̂ is far below 0.5 in all cases, while κ̂ is on
average close to 0.5 (although very often significantly different from 0.5). This suggests
that the additional flexibility of the QSDST GARCH − ST is needed in all cases.

As in Figure 3, NICs of each estimated model with a skewed Student’s t distributions
are plotted in Figure 6. Since the QSDST GARCH(1, 1)−T nests the other two models,
we can write the NIC of the three models as the function mapping the shocks ϵt to
(1+ζ)

4τ2t +ζϵ
2
t
ϵ2t , where ζ = 0 for the GARCH(1, 1) − T model while ζ = ξ and τ = κ for

8Harvey and Lange (2016) rely on a non-standardized ST density because a study of the NIC of a
βST GARCH(1, 1) derived from a standardized ST distribution shows that small shocks can lead to
negative values of ft even when the usual positivity constraints are imposed. We therefore also consider
a non-standardized ST distribution for the sake of comparison.

9Similarly but in a different context, durations are strictly positive and their conditional distribution
is known to be right skewed and fat-tailed. Modeling durations with a SD model based on a skewed and
fat-tailed distribution necessarily imposes shocks to have a bounded and asymmetric impact on future
values of the conditional durations. This might be restrictive for some series and could be tested using
a QSD version of these models.
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Figure 5: Estimates of the shape parameters of the QSDST GARCH − ST and βST
GARCH models
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the βST GARCH(1, 1). The NIC of the GARCH(1, 1) − ST model corresponds to the
green dashed line. For the other two models, three NICs are plotted, evaluated at the
5, 50 and 95% quantiles of ζ̂ and τ̂ . The NICs of the QSDST GARCH(1, 1) − ST
(resp. βST GARCH(1, 1)) model correspond to the blue solid (resp. red dotted) lines.
The NICs evaluated at the median are highlighted in bold, i.e. 1/ζ = 5.2383 and τ =
0.5002 for the βST GARCH(1, 1) and 1/ζ = 19.8381 and τ = 0.33267 for the QSDST

GARCH(1, 1)− ST . This figure clearly suggests that the QSDST GARCH(1, 1)− ST
model bounds the effect of large shocks while allowing negative shocks to have a deeper
impact on future values of the volatility.

βST  (1,1) QSDST  (1,1) GARCH(1,1)−ST 
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Figure 6: News impact curve for the averaged values (over the 400 stocks) of the MLEs
of the GARCH(1, 1)−ST , βST GARCH(1, 1) and QSDST GARCH(1, 1)−ST models.

To complement the above analysis, the rejection frequencies of the LRTs of the null
hypotheses H0 : ξ = ζ;κ = τ (i.e., QSDST GARCH(1, 1) − ST = βST GARCH(1, 1))
and H0 : ζ = 0 (i.e., QSDST GARCH(1, 1)−ST = GARCH(1, 1)−ST ) are reported in
the first two columns of Table 6, while the rejection frequencies of the PIT test presented
in the previous section are reported in the last three columns (under PIT test) for the
three models considered in this section.

The results suggest that the restriction in the βST GARCH that imposes ξ = ζ and
κ = τ is rejected in all cases, while the GARCH restriction that imposes ζ = 0 (i.e., no
bounding on the effect of large shocks) is rejected in 98.7% of the cases. Interestingly,
although the skewed Student’s t distribution is more flexible than the symmetric Student’s
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t distribution, the βST GARCH is rejected more often than the symmetric Student’s t
density considered in Section 5.1 (i.e., in 72.2% of the cases compared to 46% for the
symmetric Student’s t distribution). Importantly, the QSDST GARCH − ST model is
rejected in only 11.3% of the cases (recall that we expect already 5% of rejections because
of the multiple tests and the type I errors).

Table 6: Rejection frequencies (at 5%) of two LRTs and a goodness-of-fit test for the
models with skewed Student’s t densities

LRT PIT test
H0 : ξ = ζ H0 : ζ = 0 GARCH − ST βST GARCH QSDST GARCH − ST

κ = τ

100.0 98.8 33.1 72.2 11.3
Note: see Table 4.

6 Conclusion

SD models have received considerable attention in the time series literature. In this
paper, we relax a restriction imposed by this general class of models. Specifically, we
break the strict link between the shape of the conditional distribution of yt and the loss
function used to design the updating equation of ft. We thus arrive at a more general
family of models called QSD. This class of models allows researchers to design parameter
updating equations that are guided by a multitude of statistical loss functions beyond
the log-likelihood function.

We study the statistical properties of the QSD filter as well as the QLE, QMLE and
MLE of the parameters of this model. We show how to test the relevance of some of the
constraints in the SD models, linking ft to pt(yt|ft, θ).

We study in detail the QSDT GARCH(1, 1)−T model, a volatility model extending
the βT GARCH(1, 1) model of Harvey and Chakravarty (2008). This model relies on
a standardized Student’s t density for the innovations and the score of a standardized
Student’s t density in the updating equation of the conditional variance but does not
restrict the degrees of freedom to be the same. The additional flexibility of this model
(compared with the βT GARCH(1, 1)) is found to be significant at the 5% significance
level using a standard LRT in more than 50% of the cases (out of 400 stocks). However,
we find that this model is rejected in more than 40% of the cases when using the PIT test
of Diebold, Gunther and Tay (1998) extended to account for the estimation uncertainty.

Finally, we also propose a volatility model derived from the ST density of Zhu and
Galbraith (2010), denoted as QSDST GARCH(1, 1)−ST . Unlike pure SD models, this
volatility model allows us to introduce the leverage effect in a QSD model even when
the series are left-skewed. We show that, according to the PIT test, this model captures
the most important features of more than 88% of the stocks considered in the empirical
application.
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