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Abstract 

Epilepsy is a complex disease that requires various approaches for its study. In this short review, 

we discuss the contribution of theoretical and computational models. The review presents 

theoretical frameworks that underlie the understanding of certain seizure properties and their 

classification based on their dynamical properties at the onset and offset of seizures. Dynamical 

system tools are valuable resources in the study of seizures. By analyzing the complex, dynamic 

behavior of seizures, these tools can provide insights into seizure mechanisms and offer a 

framework for their classification. Additionally, computational models have high potential for 

clinical applications, as they can be used to develop more accurate diagnostic and personalized 

medicine tools. We discuss various modeling approaches that span different scales and levels, 

while also questioning the neurocentric view, and emphasize the importance of considering glial 

cells. Finally, we explore the epistemic value provided by this type of approach. 
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1 Introduction 

Any brain in most species, from flies to humans, can generate a seizure, for example, after an 

electroconvulsive shock (see [44]). In a given brain, many different mechanisms can be used to 

trigger a seizure, suggesting that many different paths can be taken to reach seizure onset [44]. In 

addition, the existence of at least 16 types of dynamotypes (dynamic signatures of seizures) in 

patients [44, 79] further increases the number of possible seizure mechanisms. Importantly, 

individuals with epilepsy display different types of dynamotypes [79], characterized by the type of 

bifurcation at the onset and the offset of the ictal event. One bifurcation can be generated by 

several underlying mechanisms, and on the contrary several bifurcations can be generated by one 

mechanism. This classification is thus based on observable dynamical features instead of specific 

identified underlying mechanisms. A given animal may display different dynamotypes [12]. 

Experimental research in epilepsy is based on the unstated assumption that one mechanism may be 

at play for a given type of epilepsy. Detailed molecular and physiological studies revealed a 

plethora of modifications in brain regions in epilepsy as compared to control [13] Which of these 

modifications are relevant to a given seizure type [44, 79] at a given time during the night and day 

cycle [4] is unknown. To add to the difficulty, the said differences may correspond to homeostatic 

alterations, i.e. the circuits underwent extensive modifications, which allow them to perform the 

same functions as before. This is known as degeneracy, the fact that different parameter 

configurations can produce the same output [58]. If degeneracy is a universal principle that applies 

to all living organisms in physiological conditions, it likely also applies to pathological activities. 

Said differently, there may be multiple ways (parameter configurations in the network) to produce 

a given type of seizure. These properties of degeneracy exist in multiscale systems [42]. In such a 

context, a computational approach can be helpful, as it allows for testing different possible 
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mechanisms in silico. The validity of a model depends on the associated objective and scientific 

question, thus only reproducing the apparent behaviours of experimental observations (e.g. 

interictal spikes and seizures) may not be informative. How a seizure is defined in the model and 

which aspects of the model are relevant and useful for the study of epilepsy are the key questions. 

It depends on the research objective in using models, and the level of description of the 

phenomenon being considered [19]. One important goal is to make predictions that can be tested 

experimentally. Predictions are particularly interesting when they point at mechanisms that were 

not expected/considered ab initio. Depending on their size and level of biophysical details, a more 

or less full parameter exploration can be done in models. For example, a parameter exploration can 

lead to predictions regarding which parameter values best explain the occurrence of a given type of 

seizure. We present here the different types of models, from single cells to networks, which can be 

used to make predictions regarding seizure mechanisms. It is important to stress that most models 

developed so far are neurocentric. We will also highlight some current efforts to incorporate glial 

cells. Finally, we discuss the complexity and the epistemic value of computational models of 

seizures. 

 

2 Modeling seizures dynamics 

Models of seizures try to reproduce electrophysiological activities, which can be recorded in 

nervous tissues. Different recording techniques providing different types of information are 

available at different scales of analysis. The patch-clamp technique allows observing the evolution 

of the membrane potential and the activity of channels. Extracellular electrodes can collect the 

local-field potential (LFP) at the micro/macro-circuit level. Large-scale non-invasive techniques 

such as electroencephalography (EEG) provide access to a more mesoscopic scale. Such readouts 
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of brain activity can be generated by models, which are usually based on differential equations, 

which capture the evolution of electrophysiological signals in time. They constitute dynamical 

systems. 

A dynamical system is a mathematical model that describes the evolution of a system over 

time. The most common type of dynamical system used in computational neuroscience is the 

ordinary differential equation (ODE) system, which describes the time evolution of a system based 

on its current state. These equations take the form of = ( )dx
dt

f x , where x  is the state of the 

system and ( )f x  is a function that describes the rate of change of x . Another common type of 

dynamical system is the partial differential equation (PDE) system, which describes the time 

evolution of a system based on both its current state and the spatial distribution of the system. 

These equations take the form of = ( , , , , )u
t

f u x y z t


, where u is the state of the system, , ,x y z  are 

the spatial coordinates, t  is the time, and ( , , , , )f u x y z t  is a function that describes the rate of 

change of u . 

These systems are based on the principles of nonlinear dynamics. In contrast to linear 

systems, which can be easily solved and have predictable behavior, non-linear systems can exhibit 

a wide range of complex and sometimes chaotic behaviors. 

A non-linear system is defined as a system in which the relationship between the inputs and 

outputs is not proportional. This means that small changes in the input can result in large changes 

in the output, and that the system can exhibit multiple dynamics or multiple outcomes for the same 

input. These behaviors are observed in a complex system such as the brain. A simulation is a 

trajectory in the phase space constituted by the variables of the system. Different types of attractors 

may (co)exist in this space, and change depending on the value of the parameters. A bifurcation 

corresponds to the appearance or disappearance of stable and unstable fixed points, limit cycles, or 
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strange attractors in the phase space. This change can be described as a divergence in the phase 

space of the system, meaning that two different types of behavior can coexist for different 

parameter values. In the study of epilepsy healthy and ictal states can be described as two 

attractors. Different mechanisms can lead to the transition from one attractor to the other, such as 

external perturbations or the presence of a slow variable driving the transition. These dynamical 

aspects can be captured and studied by phenomenological models. 

 

3 Role of phenomenological models 

Phenomenological models of seizure dynamics aim to understand basic rules of seizure genesis 

and propagation by studying the observed patterns and behaviors of seizures rather than focusing 

on the specific biophysical processes that lead to them. Said differently, a phenomenological 

model only describes the observed phenomenon, but it does not directly inform upon the 

underlying biological mechanisms. However, when phenomenological models can extract basic 

rules in terms of dynamics of the system under study, these rules can be used to constrain the 

behavior of detailed biophysical models. The Epileptor [44, 79] is a phenomenological model that 

reduces the number of variables and parameters to enable an exhaustive study of the dynamics of 

seizures. This model reproduces the most common electrophysiological signature of seizures 

found in patients and experimental models, including status epilepticus and depolarization block. 

Sixteen possible types of seizure dynamics, called dynamotypes, can be identified [79], each of 

which differs in terms of the transition between the healthy state and the seizure state. This 

corresponds to the types of bifurcation at the onset and the offset of the seizure, which can be 

displayed on a map of brain dynamics. This approach not only leads to a taxonomy of clinically 

observed seizures but also offers a theoretical framework to explain the coexistence of healthy and 
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pathological regimes and how to understand the map of brain dynamics. Moreover, it does provide 

a theoretical framework and predictions in terms of dynamics to build more detailed biophysical 

models. However, it does not inform on the biophysical mechanisms underlying seizure dynamics. 

Other approaches using dynamical system theory, succeeded in capturing the phenomenon of 

seizure observed in large-scale recording such as electroencephalography [59, 5, 87]. Thanks to 

such approaches central aspects of the dynamics of seizure, such as time scale separation can be 

understood [5, 44]. Indeed, slower variables enable the transition from healthy to pathological 

states, at the onset of the seizure exhibited by the fast variable, capturing the strong oscillation 

visible in electrophysiological recording. Phenomenological models can be particularly useful 

when studying seizures at the whole brain scale [95]. 

 

4 Biophysical models 

Biophysical models cannot cover all scales, from molecules to the entire brain. They are usually 

constrained to a specific scale [17, 54] and have a specific level of description [19]. For a given 

scale, different models can have different levels of description, from the most phenomenological 

to the most biophysically detailed. A biophysical model of electrophysiological seizures is a 

mathematical representation of the electrical activity of neurons during a seizure. These models 

are based on the physiological properties of neurons, such as membrane potentials, ion channels, 

and synaptic connections, and their interactions. The most common, and historical approaches for 

the description of neuron membrane excitability are based on equivalent electrical circuit [51, 40], 

or direct properties of permeability of the membrane [56]. 

Based on these approaches, it is possible to detail some aspects of the neuron, such as its 

morphology, using multiple compartments, each with specific electrical properties according to its 
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location along the somato-dendritic axis. These models can be used to simulate the behavior of 

individual neurons and small networks of neurons. However, such models may become very 

complex, with a large number of equations, and so many parameters rendering a full exploration of 

the parameter space impractical. In this case, it becomes difficult to make predictions, as the latter 

will depend upon a specific choice of parameter values. The choice of parameters for a model can 

be directly linked to the degeneracy observed in biological tissues, which have the dual role of 

processing information and maintaining homeostatic conditions. Assessment of degeneracy as a 

framework for achieving the joint goals of encoding and homeostasis without interference is 

crucial. It is hypothesized that the complexity of biological systems, including interactions among 

multiple parameters across various levels of analysis, may offer multiple routes towards 

accomplishing these joint objectives [71]. 

Many biophysically detailed modeled have been developped [28, 6, 15, 33, 35, 34, 49, 81, 

14, 75, 21, 84], giving important mechanistic explanations on seizures generation and dynamics at 

celular level. Considering ionic mechanisms influencing excitability and leading to seizure-like 

events at cells levels have been included into computational models [3, 14, 31]. Such works give 

important insight into biophysical interactions related to seizure generation and evolution. 

However, it remains complex to be studied in terms of dynamical systems point of view as it has 

numerous variables. Thus in that direction, it is interesting to bridge phenomenological and 

biophysical point-neuron models. In the case of point neurons, the neuron’s morphology is not 

considered. Yet, point neuron models can include numerous variables influencing membrane 

excitability, such as ionic regulation [2, 18, 9], oxygen [98], sodium-potassium pump [50], 

neuron-glia coupling [63]. Such models can be reduced to a minimal number of dimensions to 

make a dynamical analysis and build the correspondence with the theoretical framework of 
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phenomenological models [18, 9]. 

To model a larger scale, it is necessary to use spiking network models, which represent 

large populations of neurons and their interactions [74, 16, 14, 75, 20, 84, 97]. Some of these 

models can be constrained by dynamical properties [62]. Other models make use of the different 

biophysical properties described for different brain regions, such as the thalomo-cortical loop or 

the hippocampus [21, 22, 89, 14, 80]. Such models are useful to understand the onset [97] and the 

propagation of seizures in populations of cells [100, 74, 16]. Spiking network models form the 

basis for building population models [99, 7]; a useful tool to study seizure network properties [73]. 

Once the model is developed, it can be used to simulate seizures under different conditions 

and test hypotheses, for example to identify potential therapeutic targets [74, 16]. 

The parameters of the models should be adjusted and refined as new experimental data is 

obtained, particularly when the predictions are not validated, or the modelling approach. However, 

sometimes the modeling approach and the ingredients incorporated into the model must be 

reconsidered. Therefore, it is sometimes difficult to determine whether the difference with the data 

comes from a problem of parameter choice or from the nature of the model itself. This is especially 

difficult to distinguish when the model is complex, with numerous dimensions. Indeed, attempting 

to model large networks of cells implies dealing with a very high dimensional space (determined 

by the number of differential equations and their parameters). In that case, it is not easy to study the 

structure underlying the dynamics (phase space) and, if relevant, to perform a bifurcation analysis. 

To apprehend such large-scale systems, it is first necessary to define the read-out - which 

measurement - that will be used to assess the activity of the model. Typical measures include the 

population firing rate and statistics of membrane potentials (mean and standard deviation). These 

measurements can become the variable of the model at a larger scale. To decrease the complexity 
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of these networks, a solution consists in modeling directly the firing rate or the mean membrane 

potential. This approach used in large-scale models is discussed in the next section. It follows the 

idea of reduction of the microscopic complexity while going from lower scales to the whole brain 

(see figure 1). 

 

Figure 1: Cartoon of bottom-up approach in building model of electrophysiological activities. The 

complexity of single neuron cells can be reduced to minimal models to capture membrane 

excitability. These models can be used as a building block to constitute networks. The complexity 

of network dynamics can be reduced by capturing some aspects with mean-field approaches. To 

build a whole-brain model, mean-field models are connected, each representing a large group of 

cells of a region of the brain. 

 

5 Large-scale models 

Mean-Field models are used to study the collective activity of a large number of neurons by 

averaging their activity, such as the mean membrane potential or firing rate. These models can be 

derived from single-neuron models or based on the assumption that a single neuron can represent 

the mean activity of a population of neurons. 

Wilson and Cowan’s historical model has been used to study focal epilepsy and the path 

toward depolarization block at the population level [60]. Subsequent developments [61, 8, 1], 

allowed refining the specific properties of the populations considered, including ion concentration 

dynamics [1]. 

Mean-Field models simplify the analysis, reducing the number of variables and allowing 

for a bifurcation analysis and comparison with phenomenological models. However, this 
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simplification also results in the loss of information regarding certain internal dynamics and 

collective effects, which may be acceptable for characterizing seizures [41, 1]. The temporal 

dissection of seizures, including transitions to and from the ictal state, is also possible through the 

variation of parameters or slow variables [44, 1]. A variable operating at a slow time scale may be 

required to enable the transition between healthy and ictal states. At a lower scale, this slow 

variable may represent homeostatic responses or emerging properties of the network. The results 

of this scale of analysis are relevant to human EEG recordings, allowing the study of interactions 

between regions, such as thalomo-cortical interactions [59], and network properties [87]. 

These models can be connected to create a large-scale network that can account for 

whole-brain dynamics [32]. Whole-brain models have direct clinical application, mainly 

concerning the identification of the epileptogenic zone of pharmacoresistant patient that undergoes 

resection surgery [47, 83, 45, 55, 95, 26]. Different approaches exist in this direction, with 

different type of data from the patient and different dynamical model. Thus, efficient method have 

been developed using ECoG data, with bistable dynamical model [83]. This study develops 

patient-specific dynamical network models of epileptogenic cortex using a bi-stable switch. By 

conducting simulations with this model, the study identifies nodes with short transition times as 

highly epileptogenic, which can be surgically resected to reduce the overall likelihood of a seizure. 

In this retrospective study, the proposed computational approach accurately predicts surgical 

outcomes (81.3% on 16 patients) and suggests alternative resection sites in patients with 

unsuccessful outcomes. Another work developed a model-based framework to study the ictogenic 

brain networks [36], finding that conventional makers do not always predict the best resection 

strategy. By analyzing ECoG recordings from epilepsy surgery patients [36], and then sEEG data 

in a second study [52], they validated their framework data and observed that it can predict better 
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surgical strategies and provide quantitative prognoses for patients. 

Other methods uses intracranial EEG, and personalized workspace and structural 

connectivity. In particular, the virtual epileptic patient (VEP) is a workflow to use personalized 

whole brain network modelling and machine learning methods for the diagnosis and treatment of 

epilepsy [45, 55, 95, 43]. VEP uses both personalized anatomical data to define the working space 

and patient’s connectome, and functional data to further refine the parameters of the models ((see 

figure 2) for VEP workflow). Its first use is in the presurgical evaluation of drug-resistant epilepsy 

by identifying the regions most likely to generate seizures. A study was conducted to assess the 

performance of VEP in estimating the epileptogenic zone and predicting surgical outcomes. The 

study involved retrospectively in a cohort of 53 patients with pharmacoresistant epilepsy, and by 

comparing the regions identified as epileptogenic networks by VEP to the ones defined by clinical 

analysis. VEP reproduced the clinically defined epileptogenic regions with a precision of 0.6, 

where the physical distance between epileptogenic regions identified by VEP and the clinically 

defined ones was small. Compared with the resected brain regions of 25 patients who underwent 

surgery, VEP showed lower false discovery rates in seizure-free patients (mean, 0.028) than in 

non–seizure-free patients (mean, 0.407) [95]. VEP is now being evaluated in an ongoing clinical 

trial (call EPINOV) with an expected 356 prospective patients with epilepsy [55, 95, 43]. They 

also have developed the concept of degeneracy for uncertainty quantification and subsequent 

proper use in the clinical context using four types of patients [95]. This framework has also been 

further applied to study the dynamics of status epilepticus, and in particular how the propagation 

propagation depends on the structural connectivity and the global state of the network [26]. Such 

approach use The Virtual Brain (TVB) simulator, populated with phenomenological models of 

regional excitability [44]. 
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Figure 2: The VEP workflow. A virtual epileptic patient is to build a personalized whole brain 

network model (in the middle, bottom left) from the patient’s data (top). T1-weighted MRI was 

done to obtain brain geometry data and to define distinct brain regions according to the VEP atlas 

[94](top left). Tractography was done to estimate the length and density of white matter fibres 

from diffusion-weighted MRI (top middle), which establishes the connectome (blue lines in the 

personalized model) that specifies the connection strength. Intracranial recordings during seizure 

activity were used to further refine the parameters of the personalized models, including 

epileptogenic zone approximation. The presonalized brain model can be used to simulate the 

consequences of different epileptogenic zone hypotheses (red areas show epileptogenic zone 

regions) and corresponding SEEG recordings, and these simulated data can subsequently be used 

to predict brain activity and behaviour under various conditions. Different virtual surgical 

strategies can be tested in the personalized model to achieve the best outcome. 

 

Brain dynamics are mostly linked to the electrophysiological activity of neurons. However, 

it is important to note that neurons are not the only contributors to brain activity. 

 

6 Beyond neurocentrism 

The neuron dogma is the fundamental concept in neuroscience that states that the brain is 

composed of individual cells called neurons and that these neurons are the basic functional unit of 

the brain. Neurons are connected to one another through specialized structures called synapses, 

where information is transmitted from one neuron to another. This principle of communication 

through synapses is considered as the fundamental mechanism of neural computation and 

information processing in the brain. If the neuron doctrine has been a powerful framework to 
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accumulate knowledge about brain structure-function relationships, it provides a very reductionist 

view of the brain. Although we all know that glial cells are integral to brain function, they are 

barely integrated into conceptual frameworks to understand how the brain works. 

Since glial cells seem to play a significant role in seizures, they should be integrated in our 

search for mechanisms [10, 92]. Oligodendrocytes, which form and maintain the myelin sheath 

can also modulate seizure activity by regulating the conduction of electrical signals along axons 

[48]. Microglia, the immune cells of the brain, play a role in the inflammatory response and are 

involved in seizures by modulating the activity of neurons and astrocytes [39]. Astrocytes are 

involved in the regulation of neurotransmitters and the maintenance of the extracellular 

environment. They modulate the initiation and propagation of seizures [92]. Astrocytes are 

integral of the "tripartite synapse" that includes the pre-synaptic terminal, the post-synaptic site 

and fine astrocytic processes. Recent studies have shown that seizures may be linked to a 

dysfunction at the level of the tripartite synapse, leading to abnormal communication between 

neurons and glial cells [77]. Astrocytes also play a crucial role in mediating communication 

between capillaries and neurons, regulating blood flow and thus the delivery of important 

compounds to the parenchyma. 

This strategic placement of astrocytes, and the fact that they can be coupled to each other 

over large distances, make them ideally poised to regulate network excitability. This regulation 

can be achieved by directly modulating the availability of metabolites and neurotransmitters, as 

well as maintaining water and ion homeostasis, in particular potassium. Dysregulation of one or 

more astrocytic pathways has been shown to trigger or exacerbate epileptogenesis [93]. 

Several computational models have included some functional aspects of astrocytes in an 

indirect manner (i.e. without modeling directly astrocytes themselves). For example, to understand 
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the contribution of astrocytes to the high extracellular potassium (K+) epilepsy hypothesis, many 

models including the possibility to buffer extracellular K+ have been developed to simulate such 

type of astrocyte-dependent mechanism [85] [18]. These models depict the relationship between 

K+ concentration dynamics and the occurrence of seizures [11], [65] as well as spreading 

depression [46]. 

Most of these models focus on describing the phenomena at the cellular scale (single cell, 

circuit of a few cells), with varying levels of biophysical plausibility. This can range from 

multi-compartmental electrodiffusive models [38] to point models that possess an adequate level 

of biophysical details (i.e. numbers of variables) for bifurcation analysis [63]. However, epilepsy 

is predominantly a network-level disease. To understand the impact of astrocytic buffering failure 

on the generation of seizures, models such as [90], [66] simulate the resulting positive feedback 

loop in neuron-astrocyte interactions at the network scale. More recently this effect was captured 

by a neural mass model in a whole-brain simulation [1], a first attempt to include such biophysical 

mechanisms in whole-brain simulations. Some effort are going in this direction considering the 

role of astocytes at the mesoscopic level [88]. 

Astrocytes control the dynamics of extracellular glutamate and GABA whether it is 

through neurotransmitter recycling or via calcium-mediated glutamate release [67]. In addition, 

experimental data suggests that the astrocytic syncytium can modulate the bursting activity of 

neural networks[64]. Together these observations lead to the development of various neuron-glia 

network models of epilepsy. Focusing on abnormal astrocyte feedback action to neuronal 

networks that could disrupt the excitation inhibition balance due to gliosis [101] or highly active 

gap junction coupling [92], these models interrogate the role of glial dysfunctions in shaping the 

dynamics of bursting neuronal networks. In one such model, adding a syncytium (network of glial 
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cells) to a previously developed neural network model capable of capturing transitions to high 

amplitude oscillations upon reduced GABAergic inhibition, enabled the transition towards 

generalized seizure like dynamics [76]. 

Utilizing a Data-driven approach Grigorovsky et. al [37] introduced a hybrid neuroglial 

network in which the glia was represented as an oscillator. This network model could reproduce 

features of an important EEG-based pathological biomarker that matched well with that of the 

epileptic patients’ data. Along with the same etiology, at the mesoscopic scale, Garnier et al.[30] 

introduced a neural mass model together with astrocytic compartments to study the contribution of 

astrocytic glutamate/GABA uptake to neuronal excitability, applying bifurcation theory. 

This non-exhaustive list shows that integrating astrocytes in models allows for producing 

activities that pure neuronal models fail to produce. The complexity of the model increases, but so 

does its relevance. 

Quantifying energy expenditure in the brain before, during, and after seizures is also 

integral to the questions we should ask to the system. Although the debate regarding the mismatch 

between blood flow and oxygen consumption during neural activation is not settled [96], it is 

worth noting that efforts to better understand this issue by incorporating astrocytes in the 

neurovascular system have led to two main theories on how astrocytes contribute to metabolic 

support (ANLS and GSG hypothesis)[68], [78]. The astrocyte-neuron lactate shuttle (ANLS) 

hypothesis states that astrocytic glutamate uptake invokes the higher rate of the anaerobic 

metabolic pathway in astrocytes that leads to the production of lactate as a major source of 

oxidative fuel for neurons during high energy demands of glutamatergic neurotransmission [68]. 

However, this theory has proved to be controversial as it fails to provide a correct glucose–lactate 

stoichiometry ratio and justify the mismatch of the cerebral metabolic rate (CMR) of glucose and 
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oxygen and contradicts with in vitro and in vivo observations of many labs.[23] 

A more recent theory based on observations of Dinuzzo et al. [25] proposed that 

glycogenolysis inhibits glucose utilization in astrocytes thereby sparing glucose for neurons upon 

their activation. The transport of glucose across the blood-brain barrier may pose a limitation 

during activation, potentially hindering the brain’s energy supply. In order to sustain the necessary 

energy demands, neuronal glucose metabolism may rely on glycogenolysis to replace glucose 

consumed by astrocytes. This hypothesis is known as Glucose Sparing by Glycogenolysis (GSG) 

[78] and can be indirectly corroborated by a few studies. [69], [29]. 

A recent study by Dienel et al. [24] supports the latter theory and suggests a potential new 

role for glycogen in epilepsy. More work needs to be devoted to these important questions. 

Finally, glial cells play a crucial role in seizures by modulating the activity of neurons, 

maintaining the extracellular environment, and coordinating the activity of neurons. Further 

research, developing the computational modelling [57], are needed to understand the mechanisms 

of glial cells in seizures fully, and complete the full picture with robust models. But at present, it is 

already clear that glial cells are important targets for the development of new treatments for 

seizures. The development of new treatment is of course linked to the etiology of the seizures. 

The etiology of seizures is complex and can be classified into several categories [82], 

including genetic [86], structural [27], metabolic [72], and acquired causes [53]. Seizures are 

emergent properties, in fact, a readout, of what is happening in brain circuits, which have been 

reorganized by brain insults. Following the principle of degeneracy, different insults may result in 

similar seizure mechanisms, and, conversely, different mechanisms may be at play for seizures 

caused by a given insult. More research is needed to study the complex interaction that may exist at 

a given scale and between scales (see figure 3), in particular when it is becoming clear that all the 
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above-mentioned parameters may contribute to seizure mechanisms. It is essential to consider 

multifactorial aspects when building computational models. These aspects are discussed in the 

next section. 

 

Figure 3: Etiology of seizures can be understood as several underlying causes interacting at the 

same scale in addition to the relationships between scales and this complexity must therefore be 

considered so as not to be reduced to a single mechanism at a given scale. 

 

7 Complexity and epistemic values 

A complex system is defined as a system composed of many interacting components that exhibit 

emergent behaviour. In biology, complex systems are found at multiple levels, from the molecular 

and cellular levels to the ecosystem level. Typically the brain is a complex system. The brain 

includes a complex network of cells and structures that can control and coordinate most body 

functions. The complexity of the nervous tissue arises from the diverse range of cell types, the 

intricate patterns of connections between cells, and the dynamic nature of neural activities. To 

apprehend such a complex system, many different models can be built, as described in the 

preceding sections. One way of evaluating these models is to consider their epistemic values. 

Epistemic value refers to the value of knowledge or information in terms of its ability to increase 

understanding or improve decision-making. In other words, it is the value or worth of knowledge 

or information from an epistemological perspective. 

In general, in science, the epistemic value of a piece of information is often determined by 

its ability to advance understanding or solve a problem. For example, in the field of medicine, the 

epistemic value of a new drug or treatment is determined by its ability to improve patient 
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outcomes. In order to determine the epistemic value of models, we should first evaluate their 

function, in other words, why do we build models? Research in epistemology has detailed 21 

different specific functions of models [91] that can be organised into 5 main functions: facilitate 

sensitive apprehension, facilitate intelligible formulation, facilitate theorizing, facilitate the 

co-construction of knowledge, facilitate decision and action. 

In order to determine the epistemic value of a model, one can evaluate it based on factors 

such as its reliability, validity, and usefulness. Reliability refers to the consistency and 

reproducibility of the information, while validity refers to the accuracy and truthfulness of the 

information. Usefulness refers to the extent to which the information can be applied to solve a 

problem or advance understanding. 

It is important to note that the epistemic value of a piece of information can change over 

time as new information or advances in understanding are made. Therefore, it is important to 

continuously evaluate and re-evaluate the epistemic value of existing knowledge. Additionally, the 

epistemic value of information can vary depending on the context and the intended use. For 

example, the same piece of information may be perceived as having a different epistemic value for 

a researcher in one field than for a researcher in another field. This appears particularly when 

objects and scale of studies with associated concepts of references are very different. Thus, the 

elements considered as knowledge are not evaluated in the same way according to the discipline 

and the theoretical framework of attachment. 

As described above, models may tend to be reduced to the core elements underlying the 

dynamics of pathological events such as seizures. While reductionism in brain activity models can 

provide valuable insights into the behaviour of specific components of the brain, and useful 

clinical application as describe previously, it is important to note that this approach can also have 
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limitations. For example, by focusing only on specific components or regions, one may overlook 

the important interactions and influences that occur between different parts of the brain. 

Additionally, the complexity of the brain makes it difficult to fully understand the behaviour of the 

whole system by studying only its individual components. 

Therefore, it is important to consider the limitations of reductionism in brain activity 

models and to integrate multiple levels of analysis, including molecular, cellular, systems, and 

behavioural levels, in order to gain a more complete understanding of brain function. Additionally, 

the use of multiple types of models, such as experimental, theoretical and computational, can 

provide a more complete understanding of brain activities, and in particular pathological ones, 

such as seizures. 

It is therefore interesting to complete the picture by having different models at different 

scales (from the subcellular level to whole-brain networks) and different levels of description [19]. 

For this, it is also interesting to extend by systematically considering other cells (glial cells, 

erythrocytes etc) [14, 75], but also other mechanisms of interaction (ephaptic, ionic 

electro-diffusion, etc..) [14, 70]. And finally, it would be interesting to develop models whose 

purpose is not solely focused on the modulation of neuronal excitability. In other words, 

considering that excitability is just one aspect among many characteristics that nervous tissues 

have and not focusing only on how a given mechanism modulates neuronal excitability. 

Living organisms are complex systems, from the molecular and cellular level to the 

individual. Understanding the complexity of biological systems is crucial for understanding the 

functioning of living organisms and their interactions with their environment. This applies even 

more in the healthy and pathological distinction and particularly in the case of diseases like 

epilepsy with potential multiple underlying causes. 
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8 Conclusion 

It is important to note that the complexity of the brain and of seizures, as well as the lack of 

complete understanding of the underlying mechanisms, make it challenging to develop accurate 

general computational models. However, by integrating experimental data and by using advanced 

computational techniques, the models can be refined and improved. Additionally, the use of 

multiple types of models can provide a more complete understanding of seizures and can guide the 

development of new treatments. Finally, although we tried to insist on the necessity to go beyond a 

neurocentric approach, we focused on the brain, with the unstated assumption that it is enough to 

understand the brain to understand seizures. The brain is just one organ among many that make a 

body. Our organs interact in a complex manner. How much seizure mechanisms depend on these 

interactions remains an open field. 
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