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RESEARCH ARTICLE

The European MAPPYACTS Trial: Precision 
Medicine Program in Pediatric and 
Adolescent Patients with Recurrent 
Malignancies 

Pablo Berlanga1, Gaelle Pierron2, Ludovic Lacroix3, Mathieu Chicard4, Tiphaine Adam de Beaumais5, 
Antonin Marchais6, Anne C. Harttrampf1, Yasmine Iddir4,7, Alicia Larive8, Aroa Soriano Fernandez9, 
Imene Hezam1, Cecile Chevassus8, Virginie Bernard10, Sophie Cotteret3, Jean-Yves Scoazec3, 
Arnaud Gauthier11, Samuel Abbou1, Nadege Corradini12, Nicolas André13,14, Isabelle Aerts15, 
Estelle Thebaud16, Michela Casanova17, Cormac Owens18, Raquel Hladun-Alvaro19, Stefan Michiels8, 
Olivier Delattre4,10,15, Gilles Vassal5, Gudrun Schleiermacher4,15, and Birgit Geoerger1,6

ABSTRACT MAPPYACTS (NCT02613962) is an international prospective precision medicine 
trial aiming to define tumor molecular profiles in pediatric patients with recurrent/

refractory malignancies in order to suggest the most adapted salvage treatment. From February 2016 
to July 2020, 787 patients were included in France, Italy, Ireland, and Spain. At least one genetic altera-
tion leading to a targeted treatment suggestion was identified in 436 patients (69%) with successful 
sequencing; 10% of these alterations were considered “ready for routine use.” Of 356 patients with 
follow-up beyond 12 months, 107 (30%) received one or more matched targeted therapies—56% of 
them within early clinical trials—mainly in the AcSé-ESMART platform trial (NCT02813135). Overall, 
matched treatment resulted in a 17% objective response rate, and of those patients with ready for 
routine use alterations, it was 38%. In patients with extracerebral tumors, 76% of actionable altera-
tions detected in tumor tissue were also identified in circulating cell-free DNA (cfDNA).

SIGNIFICANCE: MAPPYACTS underlines the feasibility of molecular profiling at cancer recurrence in 
children on a multicenter, international level and demonstrates benefit for patients with selected key 
drivers. The use of cfDNA deserves validation in prospective studies. Our study highlights the need for 
innovative therapeutic proof-of-concept trials that address the underlying cancer complexity.
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INTRODUCTION
Cancer remains the primary cause of disease-related 

mortality in children and adolescents (1). Comprehensive 
molecular profiling of tumors through high-throughput 
technologies identifies molecular targets and predictive bio-
markers. Together with improved understanding of tumor 
biology and development of targeted anticancer agents, these 
approaches have facilitated therapeutic approaches adapted 
to cancer molecular profiles. This “cancer precision medicine” 
approach has now been implemented to guide treatment in 
patients with advanced malignancy (2–5), including children.

MAPPYACTS (MoleculAr Profiling for Pediatric and 
Young Adult Cancer Treatment Stratification; ClinicalTrials.
gov identifier: NCT02613962) is a European international 
prospective precision medicine trial aiming to define the 
molecular profile of recurrent/refractory malignancies in 
pediatric and young adult patients in order to suggest the 
most adapted salvage treatment in the setting of further 
relapse/progression. The main objective of MAPPYACTS was 
to identify the proportion of patients who receive matched 
targeted treatments based on their individual molecular 
tumor profile at recurrence using whole-exome sequencing 
(WES) and RNA sequencing (RNA-seq). Secondary objectives 
were to describe the safety and feasibility of the on-purpose 
procedure of collecting cancer tissue in a multicentric setting  
and outcome of patients treated with matched targeted 
agents. Circulating cell-free DNA (cfDNA) analysis was 
explored as one main ancillary study to determine the fea-
sibility of noninvasive assessment of tumor-related genomic 
alterations in patients with extracerebral tumors.

RESULTS
Patient and Procedure Characteristics

From January 2016 to July 2020, 787 patients were included 
in 18 centers following informed consent. Figure 1 depicts 
the detailed study flow. Thirteen patients consented to the 
MAPPYACTS trial but did not undergo a procedure to obtain 
cancer tissue and were considered screening failures. Thus, 
774 patients underwent a biopsy, surgical tumor resection, 
and blood or bone marrow sampling as study procedure for 
cancer tissue collection. The median age at inclusion was 
11.6  years (5th–95th percentile range: 2.2; 19.8; range, 0.5–
38.5), and 59% were male. Study procedure was performed at 
a median of the first relapse or progression (range, 1–10). The 
median time since initial cancer diagnosis was 1.8 years (5th–
95th percentile range: 0.4; 9.0; range, 0.1–32.0). Main tumor 
types were sarcomas (290 patients, 37%), central nervous 
system (CNS) tumors (216, 28%), other solid tumors (181, 
23%), leukemia (54, 7%), and lymphomas (33, 4%; Table  1; 
Supplementary Table S1).

The 774 patients underwent 833 procedures for cancer 
tissue sample acquisition. Among patients with solid tumors 
and lymphomas, the procedure was performed exclusively 
for MAPPYACTS in 62%. Fifty-three patients (7%) underwent 
a second procedure and six a third procedure, most due to 
insufficient material, unsuccessful tumor sequencing, or pro-
gression on targeted treatment. Biopsy was the most frequent 
procedure performed in 55% patients; procedures were done 

in 53% from metastatic sites. Sixty-seven procedure-related 
adverse events were reported in 55 surgical or biopsy proce-
dures (6% of on-purpose and 9% of therapeutic/diagnostic 
ones), most frequently bleeding/hematoma and pneumotho-
rax. Procedure-related adverse events were grade 1 (17), grade 
2 (31), grade 3 (12), and grade 4 (7) in the 833 cases.

Molecular profiling was performed on 695 (84%) samples 
from 679 (88%) patients. For 138 samples (16%), no sequenc-
ing analysis was done, mainly because of low tumor cell 
content. Seven cases (1.1%) were considered secondary malig-
nancies (all identified by pathology review performed on the 
sample, which served for sequencing). Six cases were classified 
as likely radiation-induced, and three were with a family his-
tory of cancer (Supplementary Table S2).

Molecular Tumor Board and Clinical Molecular 
Tumor Board Recommendations

Successful tumor sequencing was seen in 632 samples from 
624 patients with WES, RNA-seq, and/or panel sequencing 
analysis (in three cases; Fig.  1 and Table  1): 91% (628/691) 
using WES or 90% (550/614) RNA-seq. Lower tumor cellular-
ity and DNA/RNA quality were the main reasons for unsuc-
cessful tumor sequencing.

Profiling coupled with pathology review suggested a revi-
sion of the initial diagnosis in 12 patients (1.9%) and in eight 
cases through the identification of specific gene fusions (Sup-
plementary Table S2). Genetic counseling was recommended 
for 51 of 674 patients with a potentially relevant germline 
WES finding (7.6%).

We defined genetic somatic or germline alterations as 
“potentially actionable” when the detected molecular altera-
tion or affected pathway in the patient’s tumor or germline 
analysis would be theoretically targetable by an approved 
or investigational agent, either directly or indirectly in the 
affected pathway. With this definition, “potentially action-
able” therapeutic targets were identified among 436 of 632 
(69%) samples in 432 of 624 (69%) patients. Of 1,144 “poten-
tially actionable” findings, 533 were single-nucleotide vari-
ants (SNV; 484 somatic, 49 germline), 527 focal copy-number 
alterations (CNA; 212 amplifications/high-level gains, 315 
deletions), 59 targetable gene fusions, and 25 elevated tumor 
mutational load (Figs. 2 and 3A and B).

One to seven (median: 2) treatment recommendations 
for targeted agents as single agent or in combination were 
given per patient involving mainly inhibiting agents of WEE1 
(n = 150), mTOR (n = 123), CDK4/6 (n = 105), MEK (n = 95), 
PARP (n = 64), BET (n = 59), EZH2 (n = 38), FGFR (n = 31), and 
PD1/PDL1 (n = 31). Suggested targeted agents alone or in com-
bination for the oncogenic alterations are presented in Fig. 4.

To guide treating physicians when prioritizing targets, 
we used an algorithm based on the ESMO Scale for Clinical 
Actionability of molecular Targets (ESCAT) evidence scale 
(27) that we adapted to the pediatric cancer context. It consid-
ers biological relevance, clinical evidence, and drug availabil-
ity within clinical trials of targeting the molecular alteration. 
Forty-four of the 432 patients with potentially actionable 
alterations (10%) had a recommendation for the specific treat-
ment at relapse that we considered as “ready for routine use” 
and for which significant clinical activity had been reported 
(6–18), that is, gene fusions involving ALK (n  =  10), BRAF 
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January 2016–July 2020:
   N = 791 patients included

N = 787 patients with consent

N = 3 no consent for main study
N = 1 withdrawal of consent after procedure

N = 13 patients with screening failure (did not
undergo procedure after consent) 

N = 138 samples with no sequencing analysis done:
N = 127 tumor cell count between 0% and 30%
N = 5 no sufficient DNA/RNA
N = 3 material not sent due to patient’s
       early death
N = 1 only paraffin sent
N = 1 no germline available
N = 1 not performed since previously done
        in MOSCATO-01

N = 63 samples had unsuccessful tumor
sequencing analyses for WES or RNA-seq

N = 196 tumor samples with no “actionable’’
target in 192 patients

N = 76 patients with less than 12 months of follow-up

N = 249 patients with no matched targeted
treatment received:

N = 92 received another anticancer therapy
N = 35 controlled under previous therapy
N = 44 died within 3 months of the CMTB
N = 24 died prior to CMTB
N = 7 clinical trial not open
N = 4 legal representative refusal
N = 3 inclusion/exclusion criteria not met
N = 1 lost to follow-up
N = 39 unknown

N = 774 patients with 833 procedures
• 53 had a second procedure
• 6 had a third procedure

N = 695 tumor samples with analysis performed in 679
patients:

N = 632 samples with successful tumor
sequencing analysis in 624 patients:

N = 436 tumor samples with “actionable’’ targets in
432 patients:

N = 356 patients with more than 12 months of
follow-up

N = 107 patients treated with matched targeted treatment:
N = 95 with 1 matched targeted treatment
N = 10 with 2 matched targeted treatments
N = 2 with >2 matched targeted treatments

N = 611 WES and RNA-seq
N = 80 WES only
N = 1 RNA-seq only
N = 2 RNA-seq and gene panel
N =  1 gene panel only

N = 547 WES and RNA-seq successful
N = 81 WES successful only
N = 1 RNA-seq successful only
N = 2 RNA-seq successful and gene panel
N =  1 gene panel

N = 193 patients with 1 treatment recommendation
N = 130 with 2 treatment recommendations
N = 80 with 3 treatment recommendations
N = 29 with 4 or more treatment recommendations

Figure 1.  Study flow chart. Paired tumor and germline samples were analyzed in all patients with WES. CMTB, clinical molecular tumor board. 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/12/5/1266/3200589/1266.pdf by guest on 06 June 2023



Berlanga et al.RESEARCH ARTICLE

1270 | CANCER DISCOVERY MAY  2022 AACRJournals.org

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

ti
cs

 o
f p

at
ie

nt
s,

 s
am

pl
in

g 
st

ud
y 

pr
oc

ed
ur

es
, m

ol
ec

ul
ar

 p
ro

fi
lin

g 
re

su
lt

s,
 a

nd
 m

at
ch

ed
 tr

ea
tm

en
ts

 re
ce

iv
ed

 p
er

 tu
m

or
 ty

pe
s 

in
 th

e 
M

A
PP

YA
CT

S 
tr

ia
l

Di
ag

no
se

s
Pa

tie
nt

s
n =

 7
74

St
ud

y 
pr

oc
e-

du
re

s
n =

 8
33

Su
cc

es
sf

ul
 

se
qu

en
ci

ng
 

an
al

ys
is

n =
 6

32
 

(7
4%

)

≥1
 ac

tio
na

bl
e 

al
te

ra
tio

n
n =

 4
36

 
(6

9%
)

Re
ad

y f
or

 us
e  

al
te

ra
tio

n
n =

 4
4 

(1
0%

)

In
ve

st
ig

at
io

na
l o

r h
yp

ot
he

tic
al

a   
al

te
ra

tio
ns

 (i
n g

en
es

 al
te

re
d 

in
  

>3
 p

at
ie

nt
s)

≥1
 ac

tio
na

bl
e 

al
te

ra
tio

n a
nd

 
FU

 >1
2 

m
on

th
s

n =
 3

56
 (8

2%
)

Ta
rg

et
ed

 
m

at
ch

ed
  

tr
ea

tm
en

t
n =

 1
07

  
(3

0%
)

SA
RC

OM
AS

29
0

31
7

24
8

16
5 

(6
8)

5 
(3

)
13

9
39

 (2
3)

Os
te

os
ar

co
m

a
79

90
69

 (7
7)

56
 (8

3)
0

TP
53

, C
DK

N2
A/

B,
 E

GF
R/

ER
BB

2/
3/

4,
  

M
YC

, R
B1

, T
P5

3,
 A

KT
1/

2/
3,

 C
DK

4,
 

IG
F1

R,
 M

AP
2K

4,
 N

OT
CH

1/
2/

3/
4,

 P
TE

N

50
14

Ew
in

g 
sa

rc
om

a
71

74
56

 (7
6)

23
 (4

3)
0

CD
KN

2A
/B

, T
P5

3
21

2
BC

OR
 o

r C
IC

 sa
rc

om
a

6
6

4 
(6

6)
1 

(2
5)

0
1

0
Ot

he
r b

on
e 

sa
rc

om
a

1
2

1 
(5

0)
0 

(0
)

0
0

0
Rh

ab
do

m
yo

sa
rc

om
a 

(R
M

S)
70

77
62

 (8
1)

51
 (8

5)
0

TP
53

, F
GF

R1
/2

/3
/4

, C
DK

N2
A/

B,
  

M
YC

N,
 C

DK
4,

 P
I3

KC
A

44
14

 
Al

ve
ol

ar
 R

M
S

34
37

30
 (8

1)
22

 (7
6)

0
TP

35
, M

YC
N,

 C
DK

4
20

10
 

Em
br

yo
na

l R
M

S
30

34
27

 (7
9)

25
 (9

6)
0

TP
53

, F
GF

R1
/2

/3
/4

, C
DK

N2
A/

B
20

3
 

RM
S 

NO
S

6
6

5 
(8

3)
4 

(8
0)

0
4

1
No

n-
RM

S 
so

ft
-t

is
su

e 
sa

rc
om

a 
(N

RS
TS

)
63

68
56

 (8
2)

34
 (5

2)
0

SM
AR

CB
1,

 T
P5

3,
 C

DK
N2

A/
B,

 N
F1

25
9

 
DS

RC
T

9
9

7 
(7

8)
1 

(1
2)

0
0

0
 

M
PN

ST
5

5
5 

(1
00

)
5 

(1
00

)
RO

S1
–G

OP
C 

(1
)

NF
1

5
3

 
Sy

no
vi

al
 sa

rc
om

a
7

9
6 

(6
7)

1 
(1

7)
0

1
1

Un
di

ff
er

en
tia

te
d 

sa
rc

om
a

8
9

8 
(8

9)
6 

(7
5)

NT
RK

3–
ET

V6
 (1

), 
NT

RK
1–

LM
NA

 (1
)

5
1

 
Rh

ab
do

id
 tu

m
or

10
10

9 
(9

0)
9 

(1
00

)
0

SM
AR

CB
1

5
0

 
Ot

he
r N

RS
TS

24
26

21
 (8

1)
12

 (5
7)

AL
K–

M
YH

9 
(1

), 
CO

L1
A1

–P
DG

FB
 (1

)
9

4

OT
HE

R 
SO

LI
D 

TU
M

OR
S

18
1

19
9

13
8 

(6
9)

93
 (6

7)
1 

(1
)

69
20

 (2
1)

Ne
ur

ob
la

st
om

a
10

4
11

7
73

 (6
2)

55
 (7

5)
0

M
YC

N,
 1

1q
, A

LK
, C

DK
N2

A/
B,

 e
le

va
te

d 
m

ut
at

io
na

l r
at

e,
 H

RA
S,

 T
P5

3
37

8

Ca
rc

in
om

a
29

30
24

 (7
7)

11
 (4

8)
RE

T–
CC

DC
6 

(1
)

TP
53

11
2

W
ilm

s t
um

or
27

29
24

 (8
3)

16
 (6

4)
0

TP
53

13
7

He
pa

to
bl

as
to

m
a

8
8

8 
(1

00
)

3 
(3

7)
0

2
1

Ot
he

r s
ol

id
 tu

m
or

s
13

15
9 

(6
2)

8 
(8

9)
0

6
2

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/12/5/1266/3200589/1266.pdf by guest on 06 June 2023



The MAPPYACTS Pediatric Molecular Profiling Trial RESEARCH ARTICLE

 MAY  2022 CANCER DISCOVERY | 1271 

CN
S 

TU
M

OR
S

21
6

22
6

18
4 

(8
2)

12
5 

(5
6)

28
 (2

2)
10

3
47

 (3
8)

Hi
gh

-g
ra

de
 g

lio
m

a
59

64
56

 (8
7)

54
 (9

6)
Se

e 
su

bs
ec

tio
ns

 m
id

-
lin

e/
no

n-
m

id
lin

e
TP

53
, C

DK
N2

A/
B,

 M
LH

1/
M

SH
1/

6,
  

el
ev

at
ed

 m
ut

at
io

na
l r

at
e,

 P
DG

FR
Aa , 

BR
AF

, N
F1

, P
I3

KC
A,

 P
IK

3R
1,

 K
DR

, K
IT

45
13

 
M

id
lin

e
24

26
24

 (9
2)

22
 (9

2)
NT

RK
1–

BC
AN

 (1
), 

NT
RK

2–
TL

E4
/

KA
NK

1/
2 

(3
)

TP
53

, C
DK

N2
A/

B
20

13

 
No

n-
m

id
lin

e
35

38
32

 (8
4)

32
 (1

00
)

BR
AF

V6
00

E  (4
), 

NT
RK

2–
NA

CC
2/

TL
E4

 (2
)

TP
53

, C
DK

N2
A/

B,
 e

le
va

te
d 

m
ut

at
io

na
l 

ra
te

, M
LH

1/
M

SH
1/

6,
 P

IK
3C

A,
 P

TE
N,

 
PD

GF
RA

a , B
RA

F,
 N

F1
, P

TE
N

25
14

Lo
w

-g
ra

de
 g

lio
m

a
23

24
17

 (7
1)

17
 (8

8)
BR

AF
–K

IA
A1

54
9 

(1
0)

, 
NF

1 
ge

rm
lin

e 
(2

), 
RO

S1
–G

OP
C 

(1
)

12
2

M
ed

ul
lo

bl
as

to
m

a
52

53
44

 (8
3)

24
 (5

5)
PT

CH
1 

(4
) m

ut
/d

el
, 

TP
53

/S
M

O 
 

w
ild

-t
yp

e

TP
53

, E
GF

R/
ER

BB
2/

3/
4,

 M
YC

20
10

Ep
en

dy
m

om
a

34
36

30
 (8

3)
7 

(2
3)

0
7

3
 

In
fr

at
en

to
ria

l
23

25
20

 (8
0)

2 
(1

0)
0

2
1

 
Su

pr
at

en
to

ria
l

11
11

10
 (9

1)
5 

(5
0)

0
5

2
At

yp
ic

al
 te

ra
to

id
  

rh
ab

do
id

 tu
m

or
10

11
6 

(5
5)

6 
(1

00
)

NT
RK

3–
SP

EC
C1

L 
(1

)
SM

AR
CB

1
6

3

CN
S 

ge
rm

 ce
ll 

tu
m

or
s

7
7

5 
(7

1)
4 

(8
0)

0
3

0
Ch

or
oi

d 
pl

ex
us

  
ca

rc
in

om
a

6
6

5 
(8

3)
4 

(8
0)

0
2

0

Ot
he

r C
NS

 tu
m

or
s

25
25

21
 (8

4)
7 

(6
7)

0
5

2
LE

UK
EM

IA
54

57
46

 (8
1)

38
 (8

1)
1 

(3
)

32
1 

(1
)

B-
ac

ut
e 

ly
m

ph
ob

la
st

ic
 

le
uk

em
ia

20
20

18
 (9

0)
15

 (8
3)

0
CD

KN
2A

/B
, K

RA
S,

 N
RA

S
14

0

T-
ac

ut
e 

ly
m

ph
ob

la
st

ic
 

le
uk

em
ia

14
15

13
 (9

7)
12

 (9
2)

0
CD

KN
2A

/B
, N

OT
CH

1/
2/

3/
4

10
1

Ac
ut

e 
m

ye
lo

id
 le

uk
em

ia
17

19
12

 (6
3)

9 
(6

9)
ID

H1
R1

32
L

6
0

Ot
he

r l
eu

ke
m

ia
3

3
3 

(1
00

)
2 

(6
7)

0
2

0
LY

M
PH

OM
A

33
34

16
 (4

7)
15

 (9
4)

9 
(6

0)
13

0 
(0

)
Ho

dg
ki

n 
ly

m
ph

om
a

6
6

0 
(0

)
0 

(0
)

0
0

0
An

ap
la

st
ic

 la
rg

e-
ce

ll 
ly

m
ph

om
a

15
16

9 
(5

6)
9 

(1
00

)
AL

K–
NP

M
1/

TF
G/

TR
AF

1 
(9

)
8

0

Ot
he

r n
on

-H
od

gk
in

 
ly

m
ph

om
a

12
12

7 
(5

8)
6 

(8
6)

0
5

0

Ab
br

ev
ia

tio
ns

: D
SR

CT
, d

es
m

op
la

st
ic

 sm
al

l r
ou

nd
 ce

ll 
tu

m
or

; F
U,

 fo
llo

w
-u

p;
 M

PN
ST

, m
al

ig
na

nt
 p

er
ip

he
ra

l n
er

ve
 sh

ea
th

 tu
m

or
; N

OS
, n

ot
 o

th
er

w
is

e 
sp

ec
ifi

ed
.

a Hy
po

th
et

ic
al

 ev
id

en
ce

-le
ve

l a
lte

ra
tio

ns
.

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/12/5/1266/3200589/1266.pdf by guest on 06 June 2023



Berlanga et al.RESEARCH ARTICLE

1272 | CANCER DISCOVERY MAY  2022 AACRJournals.org

8

TP53 Alterations
Somatic_mutation
Germline_mutation
Deletion_or_Loss
Amplification_or_Gain
Resistance_Somatic_mutation
Targetable_fusion
Diagnostic_fusion

Pathology

Sub_Pathology
Non-midline
Midline
Supra
NA

Matched
Yes
No
NCFUP

HGG
EPD
MB
Other CNS
LGG
ATRT
CNS GCT

0 20 40

CDKN2A
CDKN2B
PDGFRA
BRAF
PTCH1
NF1
PTEN
NTRK1/2/3
FGFR1/2/3/4
C11orf95
EGFR/ERBB2/3/4
KRAS
PIK3CA
SMARCB1
KDR
KIT
MYC
MYCN
TSC1/2
MSH2
PIK3R1
ATM
ATRX
MN1
SMO
AKT1/2/3
ARID1A
BRCA1/2
BRD4
CDK4
CIC
CTNNB1
MSH6
NRAS
HRAS
ALK
EZH2
MDM2
MLH1
NOTCH1/2/3/4
RB1

4

0
29%
17%
16%
10%
13%
8%
8%
7%
6%
5%

5%
5%
5%
4%
4%
4%
4%
4%
3%
3%
3%
3%
3%
3%
3%
2%
2%
2%
2%
2%
2%
2%
2%
2%
1%
1%
1%
1%
1%
1%
1%

6%

ATRT EPD
Supra Midline Non-midline

HGG LGG MB OtherG
C

T

Figure 2.  Oncomap of potentially actionable alterations and canonical fusions in CNS tumors in 118 patients with 119 samples. Tumor types with five 
or fewer samples are grouped together in “Other.” Only alterations identified five or more times within the whole study are reported here. ATRT, atypical 
teratoid rhabdoid tumor; EPD, ependymoma; GCT, CNS germ cell tumor; HGG, high-grade glioma; LGG, low-grade glioma; matched, matched therapy 
received according to recommendations; MB, medulloblastoma; NA, not applicable; NCFUP, follow-up < 12 months; Other, other CNS tumors; subpathol-
ogy, pathology subtype; supra, supratentorial.

(10), NTRK1/2/3 (9), ROS1 (2), COL1A1/PDGFB (1), and RET 
(1), pathogenic mutations in BRAF (4), NF1 (2), and IDH1 (1), 
or mutation or deletion in PTCH1 (4) in selected tumor types 
(Table 1). Nineteen of them (42%) were previously unknown 
(Supplementary Table S3). Most alterations (909/1,144; 80%) 
were considered on the “investigational” level, which refers to 
oncogenic events for which the relevance of matched experi-
mental treatments has been reported with limited activity 
or is being explored in the clinical setting. These alterations 
included gene amplifications, fusion, or activating mutations 
in MYCN/MYC (43), KRAS/NRAS/HRAS (42), FGFR1/2/3/4 
(27), PIK3CA/PIK3R1/2 (23), ALK (15), and deletions or del-
eterious mutations in TP53 (215), CDK2NA/B (157), NF1 (33), 
SMARCA4/SMARCB1 (27), PTEN (25), and RB1 (11; Table 1). 
Ten cases were found with mutations in NTRK (3), SMO (3), 
ALK (3), and NRAS (1) that may be associated with treatment 
resistance; all except one had previously received the specific 
NTRK, SMO, ALK, or BRAF/MEK inhibitors, respectively, 
and benefited from the procedure at treatment failure.

These retained treatment suggestions were then discussed 
in the clinical molecular tumor board (CMTB) between experts 
in new drug development, experts in tumor diseases, and the 
treating physician considering the patient’s history and other 
treatment options that may be of relevance to the patient.

Patients’ Treatment and Follow-up after 
CMTB Recommendations

Following CMTB recommendations, patients with a mini-
mum follow-up of 12 months (censored in September 2020) 
were analyzed. Three hundred fifty-six of the 432 patients 
with “potentially actionable” alterations had a minimum 
follow-up of 12 months and 107 (30%) of them had received 
122 matched targeted therapies (range, 1–4/patient). Four-
teen (11%) therapies were considered “ready for routine use,” 

97 (80%) were “investigational,” and 11 (9%) “hypothetical.” 
Sixty-four (52%) treatments were administered as a single 
agent, 45 (37%) in combination with chemotherapy, and 13 
(11%) combined with another targeted therapy. Sixty-eight 
(56%) of these treatments were performed within a phase I/II 
trial, 49 of them (72%) within AcSé-ESMART (NCT02813135).

Of the 249 patients with potentially actionable alterations, 
main reasons for not receiving the suggested matched treatment 
were death prior to the CMTB (n  =  24, 10%) or within the 3 
months that followed (n = 44, 18%), other nonmatched therapies 
(n = 92, 37%), or effective ongoing therapy (n = 35, 14%). Sixteen  
of the 44 patients (36%) with ready for routine use suggestions had 
received the recommended matched treatment previously—14 
prior to the study procedure and two after the procedure and 
before the CMTB; in four of them, a second- or next-generation 
matched agent was administered after the CMTB.

Outcome of Patients Treated with 
Matched Therapies

Disease response was not evaluable in four patients because 
matched targeted treatment was received after complete 
tumor resection, and data were missing for nine patients. In 
109 cases with evaluable or measurable disease and response 
evaluation, 18 were reported to have had partial response [PR; 
17% objective response rate (ORR); 95% confidence interval 
(CI), 10%–25%) and 27 stable disease (SD; 25%), leading to 
a 41% disease control rate (DCR; 95% CI, 32%–51%). Median 
treatment duration for the 45 patients with controlled dis-
ease was 129 days (range, 58–697 days).

For patients with ready for routine use alterations, ORR 
was 38% (5/13; 95% CI, 18%–65%); all treatments were admin-
istered as single agents. Lower-level evidence recommenda-
tions (“investigational” and “hypothetical”) resulted in a 14% 
ORR (13/96; 95% CI, 32%–51%). The ORR for patients with 
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investigational alterations was 14% (12/86; 95% CI, 7%–23%), 
and for those with hypothetical alterations, it was 10% (1/10; 
95% CI, 0%–44%). This study population treated with a matched 
targeted agent and chemotherapy combination had an ORR of 
18% (8/44; 95% CI, 8%–33%), those of single-agent matched 
targeted treatment of 13% (5/39; 95% CI, 4%–27%), and those of 
targeted therapy combinations of 0% (0/13; 95% CI, 0%–24%).

Associated Ancillary Studies
Tumor Mutational Burden

Tumor mutational burden (TMB) was recalculated retro-
spectively on harmonized raw data in the first 451 enrolled 
patients with solid malignancies and 452 successfully 
sequenced WES tumor samples. A median of 0.6 mutations 
per megabase (mut/Mb; range, 0–195.3 mut/Mb; Fig. 5) was 
found. Seven patients exhibited  >10 mut/Mb [three high-
grade glioma (one of them >100 mut/Mb), three neuroblas-
toma, one medulloblastoma], and three were in the context 
of a probable, previously unknown constitutional mismatch 
repair deficiency involving MSH2, MLH1, and MSH6 genes. 
Five tumors displayed microsatellite instability (Supplemen-
tary Fig. S1).

cfDNA and Circulating Tumor DNA

To explore the role of liquid biopsies and the possibility 
of detecting tumor-specific molecular alterations in advanced 
pediatric diseases, plasma samples at the time of tumor tis-
sue collection were obtained in all cases. Among the first 500 
enrolled patients, cfDNA extracted from the plasma of 234 
patients with extracerebral solid tumors was analyzed (Sup-
plementary Fig. S2). Nine had technical failure, and 225 were 
considered for further analysis. cfDNA quantities showed sig-
nificant differences among different cancer types (ANOVA test: 
P = 1.4e−03), with the highest cfDNA quantities observed in the 
43 patients with neuroblastoma compared with the 182 other 
tumors (Wilcoxon test: 3e−04; Fig. 6A). The circulating tumor 
DNA (ctDNA) content in cfDNA, as evaluated by bioinformat-
ics methods, also varied significantly between cancer types 
(ANOVA test: P = 2.35e−05), with highest values in patients with 
neuroblastoma compared with other disease types: median 35% 
ctDNA content (range, 0%–95%) versus median 16% (range, 
0%–86%), respectively (Wilcoxon test: 1.4e−08; Fig. 6B).

Among 190 patients for whom tumor WES analysis was 
deemed successful, cfDNA WES was considered successfully 
sequenced in 128 of 190 samples (67%) and was more frequent 
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Figure 3.  Oncomap of potentially actionable alterations and canonical fusions in sarcoma in 213 patients with 215 samples (A) and other solid tumors 
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in patients with metastases than localized disease (66% vs. 
47%, respectively,  χ2 P value: 0.04). Among these 128 cfDNA 
samples, cfDNA WES showed both somatic CNAs and SNVs 
in 51 cases, whereas in the remaining 77 cases, only somatic 
SNVs were observed. Detailed analysis of the SNVs indicated 
that among the 128 cases, a median of 15 somatic SNVs (range, 
0–103) were common to plasma and tumor, with a median of 
six somatic SNVs (range, 0–127) observed only in tumor and 
a median of one somatic SNV (range, 0–460) only in plasma, 
with no significant differences between different tumor types 
(Supplementary Fig.  S3). In this patient group (190 patients 
with extracerebral solid tumors and successful tumor WES 
analysis), a total of 94 SNVs were considered potentially action-
able. Of these, 71 SNVs observed in the tumor were also 
identified in plasma by cfDNA WES (76%; Fig.  6C and D). 
Importantly, among 14 of these patients, 35 somatic SNVs in 
potentially actionable genes were observed by cfDNA WES that 
were not detected by tumor WES (median per patient 1; range, 
1–13). This included, among others, an ALK p.Arg1275Gln 
mutation seen only in the plasma (Fig. 6D).

Concerning the 35 patients for whom tumor WES was 
either not done (n = 16) or unsuccessfully sequenced (n = 19), 
cfDNA WES was considered successful in 11 patients (34%), 
with a total of 12 SNVs targeting actionable genes identified 
in five patients.

DISCUSSION
MAPPYACTS reports the feasibility and outcome of an 

international precision medicine trial in pediatric and young 
adult patients performing on-purpose cancer tissue collec-
tion for molecular characterization of recurrent or refractory 

malignancies. The study is the first to explore the role of liq-
uid biopsy for cfDNA analysis in this population.

Consistent with our preliminary monocentric experiences 
(19, 20) and other reports (19, 21–26), 69% of patients in 
MAPPYACTS had one or more genomic alterations in their 
tumor that we considered “potentially actionable” through 
targeted agents. Importantly, the study procedures proved 
safe, and 30% of the patients subsequently underwent a 
matched targeted treatment.

We show that 4% of all defined potentially actionable gene 
alterations in 10% of patients were considered “ready for rou-
tine use,” and the matched single-agent targeted treatment 
resulted in a 38% ORR in patients receiving this treatment 
after the CMTB, which was significantly higher than in lower-
level evidence treatments (14%). In addition, out of 12 evalu-
able patients who received such a matched treatment prior to 
MAPPYACTS inclusion, seven had a PR and two a CR (75% 
ORR), resulting globally in a 56% ORR (95% CI, 37%–73%) for 
matched therapies for this highest evidence–level category. 
This is in line with recent data of the INFORM registry (26). 
Most of them are identical to our highest-level alterations, 
albeit we have not considered for example HRAS/KRAS and 
ALK mutations because of the limited clinical activity of MEK 
and ALK inhibitors in patients with these alterations (35–38). 
Importantly, in half of our patients, the identified high-level 
evidence gene alterations were not identified in previous rou-
tine molecular diagnostics, underlining the importance of 
more comprehensive molecular profiling in matching rare 
genomic alterations with available effective targeted therapies. 
Search for high-level evidence gene alterations should now be 
part of front-line molecular diagnostics and will allow us to 
introduce active new targeted agents into standard treatment. 
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An additional direct clinical impact through profiling and 
pathology review was found in 3.0% of patients with diagnos-
tic modifications, mainly through detection of gene translo-
cations in CNS tumors and sarcomas, or a secondary cancer 
diagnosis. In the INFORM registry, a change or refinement of 
diagnosis was identified in 8.2% of cases, which can in part be 
explained through the inclusion of samples at diagnosis (26). 
These observations again confirm the importance of perform-
ing selected gene DNA analysis as well as RNA-seq ± methyla-
tion in diagnostically challenging cases.

Furthermore, we detected mutations known to refer resist-
ance to targeted therapies in 10 of our patients; nine of them 
had progressed on the specific targeted treatment, highlight-
ing the clinical relevance of considering molecular profiling 
at targeted treatment failure to define resistance mechanisms 
and adapt future salvage strategies.

Overall ORR of patients in MAPPYACTS was 17% and 
14% for lower-level evidence treatments, thus superior to the 
reported 4% ORR observed in pediatric phase I/II chemo-
therapy trials (27) and similar to the outcome in the targeted 
therapies era (28). The Zero Childhood Cancer Program 
reported a 31% ORR (11/35 patients); however, half of the 
patients were included at diagnosis, and the ORR for patients 
at the time of disease recurrence was not given (29).

This raises the debate on the definition of “actionable” 
or “potentially actionable” alterations, which has been used 
inconsistently throughout the programs. For this clinical 
research trial, taking into account the low numbers of high-
level evidence alterations, we wished not only to limit the 
report to clearly defined oncogenic driver events with straight-
forward treatment recommendations but also to describe 
alterations in genes that could lead to a potential benefit 
according to preclinical findings or clinical data in adult can-
cers. Importantly, 96% of our reported “potentially actionable” 
oncogenic events matched with treatment suggestions were 
considered at an “investigational” (80%) or “hypothetical” 

(16%) evidence level. Albeit these alterations are well-known 
oncogenic events, their direct targeting, alone or in combi-
nation, has not been demonstrated with significant clinical 
activity, the alteration–treatment match is currently evaluated 
in clinical trials, or their match has been suggested in preclini-
cal data, respectively. The high frequency of these often mul-
tiple alterations, absence of relevant clinical data, and lack of 
curative options in children and adolescents with relapsed/
refractory malignancies led us to run a parallel project to 
tumor profiling, which explores targeted molecules or com-
binations in molecularly enriched patient populations. The 
“Secured Access–European proof-of-concept therapeutic Strat-
ification trial of Molecular Anomalies in Relapsed or refrac-
tory Tumors” (AcSé-ESMART) platform trial (NCT02813135) 
started recruitment in July 2016, is currently open in five 
countries, and has recruited more than 190 patients, 78% of 
them referred through the MAPPYACTS trial, in addition to 
other European profiling programs. The primary objective 
is to detect signals of activity and potential new biomarkers. 
Treatment arms in AcSé-ESMART mainly address targeting 
of alterations in the cell cycle, the PI3K/mTOR pathway, 
homologous DNA repair, and immune checkpoint (30–32). 
TP53 alterations were considered investigational in MAP-
PYACTS based on data in ovarian cancer, suggesting that 
TP53 deficiency possibly associated with response to WEE1 
inhibitors (33), and which we explored in combination with 
chemotherapy in the trial. The medical need for such clinical 
trials is reflected by the fact that 56% of the matched treat-
ments in MAPPYACTS patients could be administered within 
the context of phase I/II clinical trials and 72% of them had 
been included in AcSé-ESMART. Preliminary data for the 
ongoing INFORM registry reported 28% (11% in a clinical 
trial) and the NCI–COG Pediatric Molecular Analysis for 
Therapeutic Choice (MATCH) trial (NCT03155620) 35% of 
patients treated with a matching drug (25, 34). The fact that 
most advanced cancers have no unique key drivers but rather 
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multiple oncogenic events in various cancer hallmarks (35) 
demonstrates the underlying cancer complexity to which 
current clinical trials are not yet perfectly adapted. Therefore, 
we wish to stress the importance of detailed comprehensive 
tumor board discussions for pondering the subjectivity of 
the treatment suggestions. Such discussions between physi-
cian-scientists, experts in new drug development and tumor 
diseases, as well as the treating physicians must consider the 
potential relevance of the selected targets based on current 
knowledge of tumor biology and outcome in clinical trials, 
the expertise on novel anticancer strategies, availability of 
the drug, availability of an open clinical trial, as well as other 
treatment options that may be relevant for the patient.

This consensus proposition must be shared in a compre-
hensive way with patients and parents so they may decide on 
the participation of such a treatment option given the uncer-
tainty of their outcome. We insist that whenever possible these 
experimental treatments should be administered and explored 
within investigational clinical trials to improve knowledge and 
optimize safety for these patients. Furthermore, the time point 
of integration of advanced profiling in each patient’s care is 
critical. MAPPYACTS is to date the only pediatric trial where 
the tumor sample acquisition intervention was performed 
within the study. Most of our patients were included at first 
relapse/progression and received tumor-specific first salvage 
treatment while waiting for the molecular profiling results. 
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Figure 6.  cfDNA and ctDNA ancillary study in 225 patients with extracranial solid tumors. A, cfDNA quantity per type of tumor (ng/mL of plasma, 
log10 scale). **, indicates statistically significant difference (Wilcoxon test: 3e−04). B, ctDNA fraction calculated by the Facet tool after WES for each 
type of tumor. ***, indicates statistically significant difference (Wilcoxon test: 1.4e−08). C, Example of a sequencing result for a patient with an alveolar 
rhabdomyosarcoma. On the top, copy-number profiles generated by the Facet tool, showing the same chromosome alterations identified in the tumor/
plasma. Middle, RB1 c.C1333T and TP53 c.A311G mutations were identified in tumor and plasma, whereas TP53 c.A355T was observed only in the 
plasma. Bottom, Venn diagram of SNVs detected in each type of samples with a good overlap (15 SNVs common between tumor and plasma). D, Oncoprint 
of SNVs in targeting potentially actionable genes detected in tumor (blue) and plasma (red) for 72 cases with both successful tumor and cfDNA analysis 
(only cases with at least one SNV in an actionable gene are reported here). Histograms on the top indicate the total number of SNVs in actionable genes 
in each case (blue, tumor; red, plasma); histograms on the right indicate the percentage of cases with alterations in the indicated actionable gene.
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Although theoretically it would be preferable to treat patients 
based on the sequencing results of the current relapse, avoiding 
further temporal tumor evolution, this pragmatic approach 
was deemed suitable for most patients and, as done in most 
other programs, with advanced molecular profiling (25, 26, 29).

MAPPYACTS further confirms the incidence of germline 
findings and cancer predisposition syndromes in 7% to 12% 
of pediatric patients, consistent with the data of others (19, 
26, 36–38). The variation in numbers may relate to different 
predefined lists of known predisposition genes that were 
used. Furthermore, our data may suggest that TMB may be 
higher at disease recurrence than in newly diagnosed patients, 
as reported previously in a lower number of patients (39). 
Future comparison of paired primary and relapse tumor 
samples from the same patients will be necessary to confirm 
these findings and correlate these with treatment. All findings 
support the clinical approach of performing tumor profiling 
at recurrence or treatment failure.

MAPPYACTS is the first study to explore cfDNA analysis 
as a noninvasive technique to detect actionable alterations 
in recurrent pediatric and adolescent non-CNS solid tumors. 
Higher cfDNA quantities, and a higher content of ctDNA in 
cfDNA, were observed in patients with neuroblastoma com-
pared with other disease types, confirming previous studies of 
the feasibility of ctDNA studies in these patients with differ-
ent analytical techniques such as low-coverage whole-genome 
sequencing, WES, or droplet digital PCR (40). Other processes 
such as inflammation, systemic infection, or even pregnancy 
can lead to higher cfDNA content; however, the described 
pipeline aimed to identify tumor cell–specific genetic alter-
ations specifically. Overall, cfDNA WES led to successful 
sequencing results in 62% of cases. Unsuccessful sequenc-
ing might be linked to low ctDNA content, which might be 
observed in patients with a low overall tumor burden. Differ-
ent technical limitations might explain a low sequencing suc-
cess rate in some cases. Given the approach by cfDNA WES, 
this study is limited to the detection of SNVs. Importantly, 
in 77 of 126 cases, although no CNAs could be identified, 
somatic SNVs could be detected, based on the higher sensitiv-
ity of WES for detection of SNVs (threshold for detection: 5% 
mutated allele fractions) than CNA (threshold: 20%; ref. 41). 
Furthermore, different capture techniques between the tumor 
versus plasma analysis hampered CNA analysis. However, the 
different capture techniques were accounted for in the bioin-
formatics pipeline, enabling the reliable calling of SNVs, with 
a detection limit of 1%, as reported previously (41).

Among all detected somatic SNVs in cases with successful 
cfDNA WES analysis, 57% were seen in both the cfDNA and 
the tumor, with 31% and 11% specific to the tumor and the 
cfDNA, respectively, possibly reflecting tumor heterogeneity. 
Tumor heterogeneity has been widely reported in pediatric 
cancers, with both spatial heterogeneity of the primary tumor 
itself, or genetic heterogeneity between the primary and meta-
static sites. Based on our data, cfDNA analysis provides an 
important tool for the exploration of genetic heterogeneity in 
solid pediatric malignancies at the time of relapse. Altogether, 
somatic SNVs were detected in all analyzed tumor types, high-
lighting the importance of cfDNA WES, which might result 
in a different perspective of the disease. Although the cfDNA 
WES analysis was performed as an ancillary study and did 

not guide treatment recommendations, cfDNA WES identi-
fied 76% of all actionable alterations found in the matched 
solid non-CNS tumors. Our study underlines that in some 
instances, like neuroblastoma, where osteomedullary relapses 
are often not successfully sequenced for WES, or in patients 
without possibility of a new tumor biopsy, cfDNA extracted 
from plasma might lead to clinically relevant results. Further-
more, recent reports demonstrate the feasibility of cfDNA 
extracted from CSF for patients with CNS malignancies (42).

An additional ancillary research study in MAPPYACTS 
was the development of patient-derived xenografts (PDX). 
During the 4 years of the study, nine participating research 
laboratories have established 131 xenografts (43). The char-
acterization of the PDX and their comparison with the pri-
mary tumors are ongoing. They represent a valuable tool 
for future research studies, and most of them have been 
shared with the Innovative Medicines Initiative (IMI2) ITCC-
P4 project (https://www.itccp4.eu).

The MAPPYACTS trial was a dynamic process, undergoing 
continuous adaptation since commencing in 2016. CMTB 
interpretations and recommendations were made to the best 
of our knowledge at a given date, representing one limitation 
of the trial. Evidence levels for most targets will change based 
on current scientific knowledge, which is rapidly evolving 
and informed by ongoing research. Various and multiple 
oncogenic events that are not unique drivers in the diseases 
contribute to the complexity of cancers, and their biological 
relevance as well as their therapeutic targeting is mostly unde-
fined. In addition, a limited understanding of the function of 
gene variants of unknown significance and a lack of insight 
about posttranslational and immunologic contexts are major 
limits of current precision medicine programs.

Our study further highlights these observations. The 
sequencing efforts on pediatric tumors at relapse under-
score the low proportion of high-level evidence or “ready 
for routine use” alterations. This strongly underlines that 
high-throughput molecular profiling together with matched 
targeted therapies, innovative clinical trials, development of 
new technologies that allow cancer characterization beyond 
the genetic level, development of combination strategies, and 
analysis of the personal immune response of each patient are 
needed to overcome the current limitations.

In 2020, very high-throughput sequencing using WGS 80×, 
WES 150×, and RNA-seq has been introduced into the stand-
ard of care at relapse or treatment failure for children and 
adults in France through the Plan France Médecine Génom-
ique 2025 (PFMG2025), launched by the Haute Autorité de 
Santé (HAS) and supported by the French Ministry of Health 
within the Plan Cancer 3. However, we believe that high-
throughput molecular profiling and a better understanding of 
tumor biology, leading to matched targeted combination treat-
ments, linking to clinical interventional studies, and defin-
ing novel technologies and innovative treatment strategies,  
will be needed to improve the survival of most high-risk 
patients. This will be explored within the MAPPYACTS 2  
study that will complement the PFMG2025 project and include 
the validation of liquid biopsies and cfDNA analyses as well as 
studies on the health economic impact and psychosocial out-
comes related to these analyses and treatments. In conclusion, 
MAPPYACTS underlines the feasibility of molecular profiling 
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at the time of pediatric cancer recurrence on a multicenter 
international level. Although selected high evidence–level alter-
ations should be part of the initial diagnostic workup, cancer 
complexity justifies the continuous efforts and introduction of 
high-throughput sequencing and treatment recommendations 
as a standard of care for high-risk cancers. MAPPYACTS has 
identified future innovative diagnostic and treatment strate-
gies, including the encouraging results of cfDNA analysis in 
solid extracerebral tumors, which are deserving of validation 
in further prospective studies.

METHODS
Study Population

Eligible patients were aged  ≥6 months with recurrent/refractory 
solid tumors or leukemia, ≤18 years at cancer diagnosis, independent 
of the age at the time of disease recurrence, and potentially eligible 
for an early-phase clinical trial. In the setting of solid tumors, the 
lesion had to be accessible for biopsy or surgical resection. Patients 
were required to have adequate performance status, bone marrow, 
and organ function. Written informed consent was signed by the 
patient or parents/legal representatives, and assent of the minor 
child according to local laws to perform the procedure and molecular 
analysis of the tumor and blood sample, as well as optional ancillary 
studies, was obtained. Detailed inclusion/exclusion criteria are avail-
able in Supplementary Methods.

Study Design and Procedure
The MAPPYACTS trial recruited from February 2016 until July 2020 

in 15 French centers, Italy (from October 2017), Ireland (May 2018), 
and Spain (September 2019). Tumor biopsy or surgery of the recur-
rent/refractory malignancy, or bone marrow/blood sample if leukemia, 
was performed following written informed consent and inclusion in 
order to collect cancer tissue for molecular profiling specifically for this 
study. In parallel to the procedure, a blood sample for constitutional 
DNA extraction and cfDNA was collected. Molecular analyses were 
performed in the French National Cancer Institute (INCa)–labeled 
next-generation sequencing platforms Gustave Roussy, Institut Curie, 
and Centro Nacional de Análisis Genómico Barcelona. In the setting of 
unsuccessful tumor sample sequencing or progression during targeted 
treatment (Amendment 5), a new procedure could be offered and per-
formed after new written consent was obtained.

The trial was approved by independent ethics committees and 
national medical authorities and conducted according to the princi-
ples of the Declaration of Helsinki.

Adverse Event Reporting Related to the Study Procedure
All adverse events definitely/probably/possibly related to the 

MAPPYACTS study procedure were assessed by the local investigator 
and reported according to the Common Terminology Criteria for 
Adverse Events (CTCAE v4.0).

Sample Analysis
Tumor cellularity in specimens from the sample used for nucleic 

acid extraction was determined by an experienced pathologist; those 
with ≥30% tumor cellularity were processed. Tumor DNA, RNA, and 
germline DNA from whole blood samples were extracted using the 
AllPrep DNA/RNA Mini Kit and DNeasy Blood and Tissue Kit.

WES
Sequencing libraries were constructed according to standard pro-

cedures from 600 ng of tumor and paired constitutional DNA. 
WES was captured using the Agilent SureSelect V5 (50 Mb), Clinical 
Research Exome (54 Mb) kit, SureSelect XT human All exon CRE 

version 1 or 2, or Twist Human Core Exome Enrichment System. 
Sequencing of subsequent libraries was performed using Illumina 
sequencers (NextSeq 500 or HiSeq 2000/2500/4000) in 75-bp paired-
end mode, aiming for a mean depth of coverage of 100×.

Bioinformatics processing was based on Illumina Pipeline 
(CASAVA1.8) or in-house pipelines consisting in alignment of 
sequencing reads on the hg19 human genome (Build37), determina-
tion of structural variants, CNAs, and variant detection, as well as 
determination of their functional impact (19, 41). In case of low cel-
lularity, gene panel sequencing could be performed (19).

RNA-seq
Libraries were prepared with TruSeq Stranded mRNA kit, PolyA 

mRNA capture with oligo dT beads 1 mg total RNA, fragmentation 
to approximately 400 bp, cDNA double-strand synthesis, and liga-
tion of adaptors, library amplification, and sequencing (2, 19). For 
the optimized detection of potential fusion transcripts, an in-house 
designed metacaller approach was used (details on sequencing and 
bioinformatics in Supplementary Methods; refs. 16–20).

Mutational Tumor Load
Sequencing library quality was estimated with fastqc and 

fastqscreen. Reads were mapped with BWA (v0.7.17 with param-
eters: -M -A 2 -E) onto the human reference genome assembly hg19/
GRCh37. SNVs and small indels were called using GATK3 (Indel 
Realigner, Base Recalibrator), samtools (fixmate, markdup, mpileup), 
and Varscan (v2.3.9) from paired normal/tumors bam files. Variant 
annotation was performed with ANNOVAR using the public data-
base released on November 7, 2019, from the 1000 Genomes Project, 
Exome Aggregation Consortium (ExAC), NHLBI-ESP project, and 
Kaviar. Functional prediction of variants was performed using the 
data set dbnsfp30a. Questionable somatic variants observed in less 
than three reads, with an allele frequency lower than 0.05, described 
in the 1000 Genomes and ExAC databases with a frequency higher 
than 0.05%, or nonexonic variants were excluded.

Somatic coding mutations were filtered according to their enrich-
ment in the tumor samples compared with the paired normal sam-
ples as reported previously (30). Mutational load was calculated as 
the number of nonsynonymous somatic variants divided by the total 
length of targeted regions by the exome capture kits with a minimum 
coverage of 10×.

cfDNA
A blood sample for study of cfDNA was collected on EDTA fol-

lowing inclusion in the MAPPYACTS study (mean delay between 
biopsy of the tumor and blood sample 3.4 days; range, 0–42 days). For 
patients with non-CNS solid tumors, cfDNA extracted from plasma 
was quantified using Qubit HS DNA assays for WES at 100×  (41). 
ctDNA content in cfDNA was calculated using the Facets tools. 
cfDNA WES successful sequencing analysis was defined as a WES 
profile resulting in any CNA and/or at least three somatic SNVs also 
seen in the tumor (Supplementary Methods).

Molecular Abnormality Reporting and Treatment Decision
Sequencing results were reviewed by a molecular geneticist, sum-

marized in a report, and discussed with the physician-scientist core 
team during weekly MTBs. A successfully sequenced tumor sample 
was considered when WES identified somatic CNAs or somatic SNVs, 
when filtering on matched germline, or when RNA-seq identified 
tumor cell–specific fusion transcripts. SNVs were retained if patho-
genic or likely pathogenic. For tumor suppressor genes, homozygous 
loss-of-function variants and focal deletions were considered; in 
genes like TP53 and ATM, heterozygous loss-of-function was also 
reported. Furthermore, heterozygous chr11q deletions encompass-
ing the homologous repair genes ATM, CHK1, MRE11A, and H2AFX 
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were also considered. For oncogenes, focal amplifications and high-
level gains were retained. Germline findings were reported in cancer 
predisposition genes, as published by Zhang and colleagues (38).

In order not to restrict reporting to only a few recurrent molecular 
events and to provide treatment recommendations for the majority 
of patients, a wide definition of molecular alterations highlighted 
in the MTBs was applied. The term “potentially actionable” refers to 
a detected molecular alteration or affected pathway in the patient’s 
tumor and/or germline analysis that theoretically would be targetable 
by an approved or investigational agent either directly or indirectly in 
the affected pathway. Prioritization was based on the clinical evidence 
of targeting the molecular alteration and considering accessibility of 
the treatment. Alterations were considered “ready for routine use” if 
the referred alteration–drug match had been associated with antitu-
mor activity, defined as >30% ORR, or improved outcome in clinical tri-
als in a given tumor type or similar indication (6, 8–14, 16, 18, 44–46). 
Oncogenic events for which the relevance of experimental treatments 
was reported with limited activity and/or is being addressed in clini-
cal trials were considered “investigational,” and those for which only 
preclinical data exist “hypothetical.” Known solvent front, gatekeeper, 
or xDFG mutations were classified as “resistance” mutations.

MTB results were then discussed with the treating physician 
in weekly CMTBs, and recommendations were summarized in a 
CMTB report that ranked therapeutic options according to available 
evidence of the retained molecular alterations but included other 
treatments relevant for the patient at this disease stage. Germline 
abnormalities were discussed in consenting patients/families; onco-
genetic counseling was suggested in case of clear pathogenicity.

Outcome Assessments
For patients receiving recommended matched targeted ther-

apy, tumor response assessed every 6 to 8 weeks from treatment 
start, according to the standard in each tumor entity [RECIST 1.1, 
Response Assessment in Neuro-Oncology (RANO), International 
Neuroblastoma Response Criteria (INRC); refs. 47–49], was recorded. 
ORR was defined as the proportion of patients who achieved a PR or 
CR and DCR as ORR and SD.

Data Sharing Agreement
Sequencing data and basic clinical annotations have been deposited 

in European Genome-phenome Archive (EGA; hosted by the EBI and 
CRG) with the data set accession code EGAS00001005935. Further 
information about EGA can be found on https://ega-archive.org 
(“The European Genome-phenome Archive of human data con-
sented for biomedical research”; http://www.nature.com/ng/journal/
v47/n7/full/ng.3312.html). Additional, more detailed clinical data 
from the clinical trial can be requested by completing the data request 
form for Gustave Roussy clinical trials (https://redcap.gustaveroussy.fr/
redcap/surveys/?s=DYDTLPE4AM) for validation by the trial steering 
committee and the sponsor prior to transfer of detailed clinical data.
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