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Abstract8

Spontaneously fluctuating brain activity patterns that emerge at rest9

have been linked to brain’s health and cognition. Despite detailed descrip-10

tions of the spatio-temporal brain patterns, our understanding of their11

generative mechanism is still incomplete. Using a combination of compu-12

tational modeling and dynamical systems analysis we provide a mechanis-13

tic description of the formation of a resting state manifold via the network14

connectivity. We demonstrate that the symmetry breaking by the connec-15

tivity creates a characteristic flow on the manifold, which produces the16

major data features across scales and imaging modalities. These include17

spontaneous high amplitude co-activations, neuronal cascades, spectral18

cortical gradients, multistability and characteristic functional connectiv-19

ity dynamics. When aggregated across cortical hierarchies, these match20

the profiles from empirical data. The understanding of the brain’s resting21

state manifold is fundamental for the construction of task-specific flows22

and manifolds used in theories of brain function such as predictive cod-23

ing. In addition, it shifts the focus from the single recordings towards24

brain’s capacity to generate certain dynamics characteristic of health and25

pathology.26

1 Introduction27

The human brain at rest exhibits remarkable richness of neural activity struc-28

tured both in time and space. Early computational modeling studies explored29

how these spontaneous fluctuations are constrained and how their organisation30

is shaped by the anatomic connectivity [1–4] enabling to start disentangling31

the mechanisms of the resting state dynamics in silico. A substantial body of32

work has related the emergent activity patterns at rest to the brain functional33

networks involved in task conditions [5, 6], and shown that the spatio-temporal34
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variability of resting-state activity possesses functional significance [7–9], rel-35

evance to cognitive task performance [10], consciousness levels [11], changes36

during ageing [12, 13], mental disorders [14], and neurodegenerative diseases37

(e.g. Alzheimer’s dementia; [15]). The structure of the resting state dynam-38

ics changes over time [16] and is characterized by a range of properties such39

as metastability [17, 18], event-like coactivations [19–21] and traveling waves40

[22]. However, our understanding of the mechanisms underlying these spatio-41

temporal patterns of the brain activity at rest is still incomplete [23] and whole42

brain network models have a crucial role to play on that front [24].43

There is general agreement that the resting brain operates near critical-44

ity [25]. This is supported by a large range of analyses performed on simu-45

lated and empirical data using network based measures (functional connectivity,46

functional connectivity dynamics), information theoretical measures (entropy,47

ignition) and descriptions of spatiotemporal dynamics (avalanches, cascades).48

Modeling efforts provide further evidence for the close relationship between the49

empirical data features and the properties of the structural network, local dy-50

namics, coupling strength, neural gain [4, 13, 26–31]. The resting state dynamics51

can then be understood as noise-driven fluctuations of brain activity, operat-52

ing near criticality and constrained by the brain connectivity [2, 32]. However,53

none of the above qualifies as a description of a mechanism. Descriptions of54

mechanisms require formulation in terms of causal activities of their constituent55

entities and render the end stage, in our context the resting state dynamics,56

intelligible by showing how it is produced [33]. To explain is thus not merely to57

redescribe one regularity (e.g. functional connectivity dynamics, or maximiza-58

tion of entropy) as a series of several (such as near-criticality, cascades, ignition).59

Rather, explanation involves revealing the productive relation between causal60

activities linked to their constituent entities.61

In this paper we aim to remedy this situation and provide this explanation62

using Structured Flows on Manifolds (SFMs) [34–38]. SFMs is a mathematical63

framework explaining how low dimensional dynamics, reflecting generative sets64

of rules underlying behavior, emerges in high-dimensional nonlinear systems,65

specifically dynamical systems on networks modeling macroscale brain dynam-66

ics. When properly linked to the network’s constituent entities (functional nodes67

and connectivity), we will demonstrate how their causal activities lead to the68

formation of brain’s resting SFM, comprising all its dynamic signatures (see69

Figure 1). If we distill the previous reports of brain resting state data analysis70

from the dynamical systems point of view, we arrive at the following main em-71

pirical signatures that should be part of the end stage of a successful mechanistic72

description: bistability of single region activation [39–41], low-dimensionality of73

the global system dynamics in state space [7, 42, 43], cascade propagation [44],74

multistability of recurrent coactivation spatial patterns [18, 45] and their non-75

trivial temporal dynamics or intermittency [21, 32, 46]. These signatures will76

constitute the key features of what we will describe as structured flows on the77

low dimensional resting state manifold.78
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79

Figure 1: Structured flows on manifolds as focus of resting state
characterization. With respect to the structure of the connectivity of the
dynamical system, we consider spectrum defined by the two symmetrical limit
cases: fully connected and fully disconnected network. Driven by noise, the
disconnected system exhibits fully statistical, high-dimensional dynamics - it
explores the whole state space in a equidirectional manner. On the other hand,
the dynamics of the fully connected system is fully constrained corresponding to
a SO(n) hypersphere with zero flow. The dynamics on the sparsely connected
system leads to an object in between - a low-dimensional attractive manifold
with an associated flow (SFM). It is this object we wish to put in the center of
interest and characterize. While the SFM object remains the same, connections
are made to data of various modalities with the help of suitable data features.
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2 Results92

In what follows we employ whole-brain modeling to study the low dimensional93

manifold and the associated structured flows of the spontaneous resting state94
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dynamics, and how these relate to the structural connectome. We constructed a95

brain network model (BNM) in the Virtual Brain [47] using the two-dimensional96

mean-field model of an ensemble of quadratic integrate-and-fire neurons ([48];97

MPR) to govern the regional dynamics coupled with a connectome derived from98

a subject from the Human Connectome Project [49]. We applied Balloon-99

Windkessel model [50] to the simulated neuronal mass activity to generate100

realistic BOLD signals. From these, we computed the Dynamical Functional101

Connectivity (dFC) that captures the changes in the system’s dynamics on the102

slow time scale, which we compared with empirical recordings. The fast neu-103

ronal activity is decomposed in a 2N-dimensional state space using Principal104

Component Analysis (PCA) to unveil the low-dimensional manifold on which105

the system evolves (see Materials and Methods for more details).106

When driven by noise, the network of the bistable MPR nodes has the ca-107

pacity to exhibit realistic dFC when the network input is scaled appropriately108

[44]. The noise together with the network input drives the switching between109

up- and down-state of the individual nodes, while the network mediates the co-110

ordination reflected in the functional connectivity. In the following sections, we111

explore how the manifold of the resting state activity arises from the networked112

interactions, how it shapes the multistability of the functional connectivity in113

the simulated BOLD, and how it relates to empirical observations.114

2.1 Symmetry breaking: working point for dFC115

To assess the impact of the symmetry breaking by the connectome, we simu-116

lated 10 minutes of spontaneous activity for a range of values of the coupling117

scaling parameter G and noise variance σ, and applied PCA to the source signal118

Ψ(t) and dFC to the BOLD (Figure 2). We used the variance accounted for119

(VAF) of the first two PCA components as an estimate for the dimensionality120

of the system’s dynamics in the state-space (Figure 2D), and the variance of the121

upper triangle of the dFC matrix as a measure of the fluidity of the system’s122

dynamics—that is the propensity to dwell in specific brain states (defined by the123

functional connectivity) and shift and return between several such states (Fig-124

ure 2A). In addition, using Kolmogorov-Smirnov distance between the centered125

distributions of the values of the upper triangle of the dFCw in the empirical126

and simulated data, we have verified that the region of the parameter space127

where dFC is most similar to the one derived from empirical data overlaps with128

the region with the highest fluidity, Figure 2A.129

For low values of G, the system exhibits high-dimensional dynamics as re-130

flected in the low variance explained by the first PCA components and low131

values of the variance of the off-diagonal values of dFC with the mean around132

0—reflecting the absence of recurrence in the system dynamics (Figure 2B,C).133

Note, that the explained variance for each PCA component is equal to 1/N134

(in this case N = 84 nodes of the network), and the projection in panel D135

reflects the independent infrequent switching of two nodes, each captured by136

one PCA component. Around the value of G = Gw = 0.525 and σw = 0.030137

(working point) the variance explained by the first two components of the PCA138
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increases substantially, and so does the fluidity of the dFC as the characteristic139

intervals of FC invariance (on-diagonal nonzero blocks) appear together with140

similarity across time (high off-diagonal correlations). Past the working point141

(G > 0.6) the explained variance in PCA drops as well as the off-diagonal dFC142

correlations, signifying increase in dimensionality of the spontaneous dynamics.143
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Figure 2: Brain network model and symmetry breaking. The brain
network model is simulated for varying levels of global coupling parameter G
and noise variance σ to produce both time-series of the state space variables
r(t),V(t), and the BOLD signal. For each combination of G and σ we compute
the sliding window dFCw matrix from the simulated BOLD signal, and quantify
the ”switching index” of the dFC as the variance of the upper triangle (A).
Kolmogorov-Smirnov distance of the centered (mean-subtracted) distributions
of the values of the upper triangle of the dFC computed from empirical and
simulated resting state BOLD time series. The region of parameter space where
the distributions are closest overlaps with the region with high fluidity of dFC
(B). For selected values of (G, σ) we show the sliding window dFCw (C), edge
based dFCe (D) and the projection of r(t) time series in the first two PCA
components (E) annotated with corresponding fractional variance accounted
for (VAF). In the working point around G = 0.54 and intermediate values of σ
the system exhibits recurrence in the large-scale dynamics as captured by non-
zero switching index, and reduction of dimensionality as captured in the increase
in explained variance by the first PCA components and the asymmetry in the
respective projection. For values of G below or above the working point, the
systems loses the fluidity property as reflected in the absence of the off-diagonal
blocks on the dFC, and exhibits high-dimensional dynamics.
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2.2 Network dynamics165

Before we delve into the characterization of the low-dimensional manifold, let166

us first describe the network dynamics in detail. For the MPR model, the dy-167

namical profile of an isolated node in the bistable parametrization consists of168

an unstable fixed point (saddle node) and two stable fixed points: down-state169

stable node and up-state focus (Figure 3A). Considering the uncoupled system,170

that is, the joint dynamics of the N populations (nodes) in the absence of any171

inter-population synaptic coupling, the phase flow is represented by 2N stable172

fixed points that contain all possible combinations of the populations firing at173

either their low or high mean firing rates (down or up state, respectively). Start-174

ing from an initial condition, the system will settle into the nearest accessible175

such fixed point, a stable network state composed of a corresponding combina-176

tion of regions in their up or down state. Thus, the dynamics of the uncoupled177

system in phase space can be thought of as being driven by a potential energy178

landscape with multiple stable local minima representing the stable attractor179

states of the network. In fact, the uncoupled system, as such, is invariant under180

permutation of the indexes of the populations, such that these latter attractor181

network states are distinguished only in terms of the respective number of nodes182

in up and down states. The global dynamics of the system, thus, collapses in183

finite time onto this stable attractor state composed of a finite set of stable184

equilibrium points that is invariant under shuffling of indexes of the nodes.185

The associated global phase flow can be decomposed into N projections onto186

the identical 2D phase planes of individual populations, depicted in Figure 3A.187

Viewed from this perspective, the structure of the basins of attraction of the188

2N stable system equilibrium points redundantly inherits, in higher dimensions,189

the relative structure of the basins of attraction of the two stable fixed points190

of an individual population. For an isolated node, varying the external input191

Ii changes the size of the basins of attraction of the stable fixed points. This192

modulates the probability of switching between the two states when driven by193

noise as captured by the mean escape times (Figure 3A, see Methods for more194

detail). For a connected node, the external input Ie depends on the state of the195

neighboring nodes (see Equation 4), fluctuating as they transition between the196

up- and down-state. On the network level, given right scaling of the network197

connections, this enables the cascades of up- and down-state switching at the198

fast time-scale, and the co-fluctuation of the BOLD signal (Figure 3B).199

To understand better the dynamical underpinning of the increase of fluidity200

of the dFC we assess the characteristics of the co-fluctuations of the BOLD201

signal and the cascades in the source signal. For the co-activations, we start202

from the edge time series which is defined as pairwise dot product of z-scored203

BOLD signal (an average over the edge time series would correspond to the204

pearson correlation). The correlation across time-points yield the dFCe matrix205

capturing the recurrence of the edge configurations,and the root sum squared206

(RSS) over the edges at each time point captures the contribution of that par-207

ticular time point to the overall functional connectivity (see Methods for more208

details). The time-points crossing the 95-th percentile threshold of the RSS are209
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considered as strong co-activation events. The neuronal cascades [44] are long210

lasting perturbations of the neuroelectric activity and are measured on a global211

level as a sum over regions of the binarized firing rate activity (at the threshold212

of 3 standard deviations). We compared these measures between the working213

point Gw, the disconnected system G = 0, the strong network coupling regime214

G >> Gw, and the empirical data (Figure 3C,D).215

In the working point Gw the co-activations include large number of edges216

(Figure 3D) and the RSS follows the number of cascades up to a short delay217

corresponding to the delay of the BOLD signal. Moreover, some of the strong218

co-activations re-occur partially in time as reflected in the non-zero elements219

of the dFCe matrix. The same profiles can be observed in the empirical data,220

namely in the simultaneous EEG and fMRI recordings. On the other hand,221

the characteristic spatial and temporal structure is lost outside of the working222

point, that is either for the weakly coupled system (G << Gw), or for too strong223

coupling (G >> Gw).224

To quantify how the co-activation events contribute to the characteristic225

similarity across time, we compare the correlation of the edge vectors during the226

events, during the non-events, and between events and non-events. As a result227

we observe an increased similarity of the edge vectors during the events both in228

the empirical data and in the simulations in the working point Gw. Again, this229

property is lost for too weak (G << Gw) or for too strong coupling (G >> Gw).230

Together, these results show, that the system has a similar dynamical profile231

in the working point Gw as observed in the empirical data with respect to the232

network-carried fluctuations on both the fast and slow timescales (as captured233

by dFC and cascades respectively).234
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235

Figure 3: Network dynamics. (A) The network input I modulates the
probability of a noise-driven transition between the down- and up-state. (B)
Example of a cascade—coordinated increase in activity translating to a delayed
correlated peak in the BOLD signal. Below we compare the network dynamics
in and outside the working point, and the empirical data. In both empirical
data and the working point (G = 0.54), the BOLD co-activations follow the
neuronal cascades with a latency (C), and show distinct spatial profiles which
are recurrent in time (D): edge time series on the (top panel) captures the
spatial profiles of the co-activations, the similarity across time is captured by
the dFCe matrix (middle panel), and the distributions of correlation between
co-activation events (CA) and non-events (nCA) is compared (bottom panel).
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2.3 Manifold of the resting state and characteristic sub-247

spaces248

Having characterized the dynamics of the system in the working point with an249

appropriate measure, we proceed with the description of the manifold on which250

it evolves—that is to show that this behavior is low-dimensional and constrained251

to a specific subspace. To relate cascades and co-activations to the trajectories252

of the system in the 2N-dimensional state space, we first select time intervals253

with similar functional connectivity. Starting from the edge time series for254

the magnitude of co-fluctuations, we clustered the time points using k-means255
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(k=5). This separated the high-activity intervals (majority of the nodes in the256

up-state), low-activity intervals (majority of the nodes in the down-state), and257

the co-fluctuation events (Figure 4A).258

Next, we identified the trajectories of the system underlying each cluster259

in the low dimensional projection of state space. For each cluster, we have260

selected the corresponding time points in the state space of the system, and261

projected them into the first two principal components of the PCA computed262

on the complete time series. We have observed that while the corresponding263

subspaces overlap partially in the projection (Figure 4B, colors correspond to264

the clusters), the activity within the clusters concentrates to different subspaces.265

This concentration in different subspaces is reflected in the distance between the266

centroids of the cluster time points in the PCA projection.267

While the cluster activity overlaps in the projection in the components of268

the PCA computed from the whole time series, the co-activation trajectories be-269

come clearer by choosing different basis to span the low-dimensional space, that270

is, to compute the PCA from the time points corresponding to the individual271

co-activation events. To project the trajectories of the events observed at the272

slow time scale of the BOLD on the manifold, we have shifted the BOLD signal273

by the characteristic lag, and for each BOLD time point belonging to the cluster274

we selected the corresponding time points in r(t), and convolved the resulting275

data with a Gaussian kernel to smoothen out the noisy fluctuations (see Meth-276

ods for details). We then spanned the subspace corresponding to the first two277

PCA components of the co-fluctuation trajectory and overlayed the smoothened278

trajectory over the density plot of the full r(t) time series. The density plots279

(shades of red, Figure 4C) of the example events show a separation of the event280

subspace marked by the peak in the RSS (shown in yellow in Figure 4C) on281

the smoothened trajectory from the rest of the manifold. This suggests that282

the event subspace is relatively stable, allowing the system to dwell in it long283

enough to cause the significant peaks in the slow BOLD signal, and that the284

intermediate states are less stable than the event subspace or the rest of the285

manifold and visited only transiently.286

Although the linear embedding of the whole time-series does not separate287

the event trajectories well when applied to the r(t) time series, the event trajec-288

tories concentrate in the high-activity subspace spanned by the first two PCA289

components of the BOLD signal (Figure 4D) .290

Together, these results chart the low-dimensional manifold of the system in291

the working point regime, associating the subspaces with specific flows. The292

fluid dynamics as characterized in the previous section then arise from the slow293

transitions between the low- and high-activity subspaces, where the latter sup-294

ports the strong co-activation events which are reflected in the dFC.295
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A B
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#1 #2

#3 #4 #5

296

Figure 4: Manifold subspaces and characteristic dynamics. (A) The
edge-based dynamic functional connectivity dFCe of a simulation of the model
in the working point (top) shows the off-diagonal structure of similarity of the
system’s activity across time. The edge time series (middle) shows the time evo-
lution of the functional connectivity of the simulated BOLD signal between each
of the node pairs, and exhibits the characteristic co-activation events defined as
time points with the root sum squared (RSS, bottom) crossing the thershold of
95th percentile. Dividing the edge-time series into 5 clusters (k-means, shown
in the colorbar under the dFC) has separated the event and non-event time
points, and also differentiated the events based on their respective similarity.
(B) The time intervals in r(t) corresponding to the 5 clusters were selected; in
the first panel the centroids of the time points of the individual clusters are
marked with a cross in the projection to the first two principal components of
the whole time series, following panels show the projection of the r(t) intervals of
particular clusters. Cluster #2 captures the high-activity subspace, cluster #4
corresponds to the low-activity state, and the clusters #1, #3, and #5 capture
the co-activation events. (C) Local trajectories in the manifold subspaces: the
time series of the three example events (a,b,c, marked in the panel A bottom)
was projected to the first two components of PCA applied to each time seg-
ment individually. The smoothened trajectory marks the advance of the system
through the event and out of it, and is colored by the value of RSS (yellow at the
peak of the event blue at the beginning and the end). (D) The event trajectories
on the manifold. The trajectory of the simulated BOLD signal is projected in
the space defined by the first three PCA components with the events colored
by the RSS value (yellow at the peak of the event).
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2.4 Fixed point skeleton and structured flow322

To understand how the resting state manifold arises, we start by considering the323

uncoupled system, that is, the joint dynamics of the N populations (nodes) in324

the absence of any inter-population synaptic coupling. This uncoupled system’s325

phase flow is dominated by 2N stable fixed points that represent all possible326

combinations of the populations firing at either their low or high mean firing327

rates (down or up state, respectively). Starting from an initial condition and328

in the absence of noise, the BNM will settle into the nearest accessible such329

fixed point, a stable network state composed of a corresponding combination of330

regions in their up or down state.331

The dynamical effects of the symmetry breaking in the BNM are delineated332

by the topology of the connectome. The heterogeneity of the in-degree (to-333

tal connectivity) of individual nodes of the network drives a variation in the334

relative positioning of the separatrices between the basins of attraction of the335

equilibrium points, mirrored in the variation of the corresponding projections336

onto the 2D phase planes of corresponding nodes (see Figure 3A). In conjunc-337

tion, connectivity strength and topology give rise to gradients in the relative338

attractiveness of the system’s equilibrium states. This attractiveness (or sta-339

bility) can be quantified by the largest negative real eigenvalues obtained from340

the linearization of the system about the respective equilibrium state (linear341

stability analysis).342

To map the complete manifold outside the simulated trajectories we sampled343

the stable fixed points for varying coupling scaling parameter G from the 2N344

combinations of up- and down-states, and evaluated their stability (see Methods345

for more details). We found that the number of stable fixed points in the sample346

decreases with increasing G. This decrease is due to the loss of states with mixed347

composition of up- and down-state due to the bifurcation of the down state in348

nodes with high input (Figure 5A). Projecting the r component of the fixed-349

points in the first two eigenvectors of the Laplacian confirms this thinning of the350

intermediate compositions biased towards those with higher number of nodes in351

the up-state (corresponds to the first Laplacian eigenvector λ1). Additionally,352

the stability of the fixed points was inversely proportional to the number of353

nodes in the up-state, that is in the direction of E1 the first eigenvector of the354

Laplacian (Figure 5B).355

To put this into the context of the simulated trajectories, we have next iden-356

tified the fixed points around which the simulated trajectory evolved by taking357

initial conditions from the simulated trajectory, and integrating the system with-358

out noise to the equilibrium. We have confirmed that in all instances the system359

reached a stable fixed point composed of combination of up- and down-states,360

and that the stability of these fixed points follows the same gradient in terms361

of the composition (Figure 5C).362

Furthermore, the nodes of the network exhibit a frequency gradient of the363

oscillations in the up-state (Figure 5D). This gradient reflects variability of the364

characteristic frequency in the up-state across nodes in the network. In the365

fixed-point state, if the nodes are treated as isolated systems with an input366

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2023. ; https://doi.org/10.1101/2022.01.03.474841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474841
http://creativecommons.org/licenses/by-nc-nd/4.0/


current term based on the existing network state, then367

r∗i = r∗ + δri

v∗i = v∗ + δvi
(1)

where (r∗, v∗) are the symmetric fixed-points of the network and (δri , δ
v
i ) are the368

excursions from the symmetric fixed-point and change according to the existing369

network state. These excursions depend directly on the in-strength of the ith370

node and the local states of its first neighbours.371

Following linear stability analysis of the ith system around the fixed-point372

(see Methods), the eigenvalues of the Jacobian matrix are given by373

λ1,2 = 2v∗i ±
√
Jr∗i − 4π2r∗

2

i

= 2v∗i ±
√

2Jr∗i − 4π2r∗
2

i + 2Jδri − 4π2δr
2

i − 8π2r∗δri

(2)

From the above equation, we see that the frequency of oscillations in the up-374

state of the ith node increases proportional to δri and therefore proportional to375

the in-strength of the node, which we also observe in the simulation (Figure 5D).376

Furthermore, applying the PCA projection on the empirical BOLD time-377

series, we have identified a similar separation of the event trajectories in the378

global embedding as observed in the simulations (Figure 5E). However in the379

case of the empirical data the system exhibits both the co-activations and co-380

deactivations as seen on the separation through the first PCA component.381

Lastly, symmetry breaking by the connectivity alone results in a spatial382

organization of the above described flow which is aligned with empirically ob-383

served trends (Figure 5F). In particular, per region the time spent in avalanches384

and the cumulative z-scored BOLD signal within events both decrease across385

the cortical hierarchy from the primary to paralimbic regions. The established386

principal functional gradient extracted from the empirical fMRI data is also387

aligned along this axis .388
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A B C

D E F

389

Figure 5: Mechanistic structure of the manifold. (A) Composition of
the sampled stable fixed points in terms of number of nodes in the up-state as
a function of G, normalized to G = 0. (B) Projection of the stable fixed points
into the first two leading eigenmodes of the network Laplacian E1, E2, color
coded with the value of the largest eigenvalue in the linear stability analysis.
(C) Fixed points (colored) derived by noise-free integration to equilibrium from
the trace of a simulation (black) in the working point Gw, color coded by the
value of the largest eigenvalue λ1. (D) Frequency peak in the simulated source
activity of each of the regions plotted against the node structural connectivity
in-strength. (E) Empirical BOLD time series projected into the first two PCA
components with the events colored by the RSS value (yellow in the peak). (F)
Across the cortical hierarchy, the time spent in avalanches of the r(t) time-
series (top) decreases, as does the cumulative z-scored simulated BOLD from
the event time-segments (middle). The spatial distribution of the principal
functional gradient extracted from empirical fMRI is also aligned along the
cortical hierarchy (bottom).
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3 Discussion406

Using a combination of computational modeling and dynamical systems analy-407

sis we have provided a complete mechanistic description in terms of constituent408

entities and their causal activities leading to spontaneous co-activations and409

neuronal cascades in the brain’s resting state [44]. We showed how the breaking410

of the symmetry of the BNM’s connectivity gives rise to the structured low-411

dimensional dynamics in the phase space and recurrent fluctuations of the func-412
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tional connectivity (Figure 2). These fluctuations arise from network-mediated413

cascades of up- and down-state switching and capture well the empirically found414

relationship between the strong co-activation events and the recurrence struc-415

ture reflected by the functional connectivity dynamics (Figure 3). The subspace416

accessible to the brain in this regime was charted and partitioned according to417

the characteristic flow associated with each of the partition (Figure 4). Finally,418

this subspace and its associated flows arise from the rich fixed point structure419

of the system and the differential stability of the nodes in these fixed points is420

not only reflected in the propensity to state switching that reflects the corti-421

cal hierarchy, but also influences the dominant oscillation frequency (Figure 5).422

In summary, these results support our hypothesis that the recurrent functional423

connectivity states of the resting state correspond to distinct subspaces on a424

low-dimensional manifold associated with distinct structured flows.425

The central result of our work is that the symmetry breaking via the struc-426

tural connectivity carves out an attractive subspace of all the possible states427

of the brain, and that the flow on this manifold governs the characteristic dy-428

namics of the brain (that is discarding the transient towards the manifold from429

arbitrary initial conditions). In this regime, the model captures the multistabil-430

ity and noise-driven exploration of the dynamic repertoire explored previously431

in computational studies [2, 31, 32, 51, 52]. The data features extracted from432

the time series provides a link between the empirical data and the model. Here,433

the functional structure in the brain is carried by the rare high amplitude co-434

fluctuation events as it was previously demonstrated in empirical fMRI data [19,435

21, 53], and in simultaneous EEG and fMRI measurements [44]. Similarly, re-436

cent modeling study has shown the role of structural modules of the network in437

shaping the co-fluctuation events [54], which is aligned with the brain network438

as the symmetry breaking gives rise to the low-dimensional dynamics.439

The slow time scale fluctuations of the dynamical functional connectivity440

reflect the movement of the brain activity between the low- and high-activity441

subspaces of the manifold. The flow in the high-activity subspace supports442

the cascades, which in turn are reflected in the high activity coactivations. This443

movement points to the multistable rather then metastable interpretation of the444

resting state dynamics [55], and reflects the observation of switching between a445

low-amplitude incoherent and high-amplitude coherent states in empirical data446

[56]. Furthermore, the slow transitions between the high- and low-activity sub-447

spaces is compatible with the reports on the spontaneous infra-slow brain ac-448

tivity [57, 58] and the detailed reports on its spatio-temporal structure. For449

example, the slow traveling waves [22] propagating along the principal gradi-450

ent of cortical organization [59, 60] would provide a refined description of the451

trajectory through the manifold subspaces.452

The attractive subspace of the low-dimensional manifold and the associated453

structured flow arise in the presented system from the changes in the fixed-454

point structure due to the irregular connectivity. In particular, the network455

input mediates the modulation of the escape times of the noise-induced transi-456

tions. These chain into domino-like sequences [61, 62], which in turn constitute457

the neuronal cascades. On a network level, our results elaborate the previous458
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analytical results of increased entropy of the attractors in an Ising-spin network459

model for intermediate values of coupling strength [63]. The relationship to460

the dimensionality of the exhibited dynamics is such that for the low values of461

coupling strength G, where the Ising model is in the trivial state with all spins462

equal to 0, the model presented here is also driven by noise to the all-down463

state due to the significantly larger basin of attraction of the down-state, and464

the nodes make uncoordinated noise-driven excursions to the up-state reflected465

in the high-dimensionality of the dynamics. For high values of G the situation is466

opposite, and for intermediate values of G the Ising model exhibits high entropy467

of attractors, which is in our case reflected in the available states organized in468

the low-dimensional manifold with the structured flow governed by the stability469

of these states.470

Overall, the movement of the system through the subspaces of a low-dimensional471

manifold is in accordance with empirical and modeling results on recurrence and472

state clustering of resting state fMRI BOLD recordings. Using clustering algo-473

rithms to partition the BOLD time series yields statistically similar and tem-474

porally recurrent whole brain spatial coactivation patterns [18, 45] associated475

with specific dwell times and transition probabilities. However, compared to the476

clustering approaches applied to the BOLD time-series, the SFMs allows us to477

refine the partitioning of the state-space in two aspects: we unfold the subspaces478

based on the similarity of the coactivations on the level of the BOLD signal, and479

we provide a detailed description of the flow of the system in these subspaces480

e.g. in terms of the cascades. The former is in line with the recent advances481

regarding the low-dimensional representation of meso- [64, 65] and macroscopic482

[66, 67] brain dynamics, but the latter describes the origin of those subspaces483

as constrained by the connectome. Interestingly, the clustering of phase-locking484

BOLD states [43] leads to very similar low-dimensional representation of the485

resting state dynamics to our approach, with a single dominant global phase486

locked state and a number of transient partially phase-locked states related to487

functional networks. Similarly, by embedding the resting state data onto the488

task manifold extracted with the help of diffusion maps, [68] found that rest-489

ing state time-points concentrate in the task-fixation and transition subspaces,490

and only a minority of time-points reach to the cognitive subspaces of the task491

manifold.492

The description of the structured flow addresses also the fast time-scale by in-493

cluding the cascades, which we previously showed to relate to the co-activations494

observed in the BOLD signal [44]. In EEG literature, the spatio-temporal struc-495

ture of the resting state dynamics is characterized with the help of microstates—496

sensor-level transient patterns lasting on average for 60-150 ms [69]. Attempts497

have been made to relate the microstates to BOLD activation clusters [70, 71],498

but identifying the sources generating the microstates with clustering or regres-499

sion analysis has been challenging so far due to unclear relationship between the500

broadband EEG activity and the BOLD signal fluctuations [72]. To advance501

we propose to reframe the question as a search for a shared manifold of the502

neuronal activity with specific slow and fast time-scale characteristics which in503

turn are reflected in the EEG and the BOLD observables.504
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The manifold we describe is conceptually reminiscent of energy landscapes505

described in previous works [40, 41]. However, previous energy landscape mod-506

els, such as in [41], implicitly assume energy minimization and thus, by con-507

struction, encode the hypothesis that the activation of two brain regions that508

are connected via a direct structural connection is more energetically favorable509

than that of two regions that are not directly connected. We make no such510

assumption here and, instead, the effective energy landscape emerges, in the511

form of a low dimensional manifold, out of the interplay of the non-linearity in512

the local neural mass model and the connectome, thus fully embracing the the513

network impact, beyond the pair-wise interactions. In addition, previous en-514

ergy landscape analysis [40] assumed that the network changes only gradually515

by flipping one region at a time, and did not account for transitions in which516

several regions flip simultaneously. Treating the brain as a whole, the BNM517

that we presented here instead allows for such latter transitions of the system518

in state space, which may very well be due to strongly connected regions that519

are able to simultaneously influence their nearest neighbors during coactivation520

events.521

It is worth pointing that our framework covers only one part of the mecha-522

nisms that shape the brain’s manifold and the flow on it, that is the connectome.523

We have assumed identical parameters for each region, ignoring the known struc-524

tural hierarchies [73], which have been shown to improve the predictive value of525

the BNMs [56, 74, 75]. While we observed differential functional properties of526

the nodes across the cortical hierarchy [76], we didn’t recover the exact spatial527

correspondence to the established functional gradients [59]. Neuromodulation528

and the subcortical drives [77] are another missing aspect that similarly improve529

the performance of BNMs [78]. However, both of these elements are not yet es-530

tablished in the framework of BNMs, as is the impact of the connectome [24].531

Thus our goal here is not to generate in silico observables that are as close as532

possible to the empirical one, which nevertheless differ a lot depending on the533

preprocessing, e.g. see [79], but to focus on the generative mechanisms for the534

key data features across time-scales and neuroimaging modalities that render535

functional activity identifiable across subjects [12, 13, 80].536

A natural next step will be to extend the analysis to include the impact537

of the data-informed regional variance [81] which is now reachable by TVB538

through Ebrains [82]. Similarly intriguing direction for the extension of the539

framework presented here is in more refined inclusion of the subcortical struc-540

tures, especially their impact through the neuromodulation. Notably, recent541

works [77, 83, 84] exploring the role of thalamus, locus coeruleus, and basal nu-542

cleus of Meynert in shaping of the dynamical landscape of the cortical activity543

are already formulated in the dynamical systems language while incorporating544

carefully the detailed anatomical and cytoarchitectural knowledge. Integrating545

these advances in the SFM framework is a natural next step towards the origi-546

nal motivation of SFM, that is to link the mesoscopic neuronal activity to the547

behaviour, as the intricate interactions between cortex and the subcortical areas548

are one of the organizing principles of the underlying the biological mechanisms549

supporting behaviour [85].550
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Parcellation-induced variation of empirical and simulated brain connectomes551

at group and subject levels is another issue that needs to be considered [86].552

Nevertheless, we focus on general mechanisms without going on regional level553

specificities, so the choice of parcelation should not play such a role.554

In conclusion, our results show how the low-dimensional dynamics arises555

from breaking the symmetry in the brain on the level of the connectome. De-556

scribing these dynamics as structured flows on manifolds allows us to bridge the557

gap between the observational measures and the state-space trajectories of the558

system. As such, this object is well suited for comparison across different mod-559

els, scales, and neuroimaging modalities, and provides means for integration of560

the diverse descriptions of the resting state dynamics.561

4 Materials and methods562

4.1 Brain network model563

Computational brain network model [87] is used to simulate resting state activity564

under varying values of network coupling scaling parameter G. The dynamics565

of each of the network nodes were governed by the neural mass model (NMM)566

derived analytically as the limit of infinitely all-to-all coupled θ-neurons [48],567

namely for i-th node for the firing rate ri and membrane potential vi as:568

τcṙi =
∆

πτc
+ 2rivi,

τcv̇i = v2i + η − (τcπri)
2 + Jτcri + Ii,

(3)

where Ii is the input current, η is the average neuronal excitability, J is the569

synaptic weight, ∆ is the spread of heterogeneous noise distribution, and τc is570

the characteristic time.571

The N nodes are then coupled with a connectome derived from empirical572

data as573

Ii(t) = G
∑
j

Wijrj(t−Dij), (4)

where G is the network scaling parameter, Wij is the connection weight, Dij =574

Lij/S is the delay caused by propagation of the signal on a tract of length575

Lij with finite speed S. We picked the speed S = 2m/s from the biologically576

plausible range [88], and a connectivity matrix of a subject from the Human577

Connectome Project [49] in the Desikan-Killiany parcellation [89] with 84 regions578

including subcortical structures.579

The equations 3 and 4 comprise the drift a(Ψ, t) in the stochastic delay580

differential equation formulation with linear additive noise reading:581

dΨ(t) = a(Ψ(t))dt+ b(Ψ(t))dW (t), (5)

where Ψ is the state vector [ψ1, ...ψn] with ψn = [rn, Vn], dW (t) is a differential582

of a Wiener process with Gaussian increment with variance σ2, and b(Ψ, t) = 1583

is the diffusion coefficient—here constant yielding the noise term additive.584
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The model was implemented in The Virtual Brain [47] and equipped with585

BOLD forward solution comprising the Balloon-Windkessel model applied to586

the firing rate r(t) [50].587

The model parameters η = −5.0, J = 15.0, τc = 1.0, and ∆ = 1.0 were588

selected to set the nodes in the bi-stable regime in the absence of coupling [48].589

We then varied the global coupling parameter G and the noise variance σ, and590

simulated 10 minutes of resting state BOLD activity with TR = 720ms after591

discarding 10 seconds of the initial transient from random initial conditions.592

4.2 Functional connectivity dynamics593

In order to track the time-dependent changes in the functional connectivity, we594

compute the windowed dynamical functional connectivity dFCw [32, 90] and595

edge dynamical functional connectivity dFCe [44]. Starting from the regional596

BOLD time-series Bn(t) for each node n, we compute functional connectivity597

matrices FC(w) for each time window w = 1...W defined as Bn(t)|tw+τ
tw with598

window length τ = 60s and window step size t(w+1)−tw = 2s. Next we compute599

the dFCw matrix of order W as600

dFCw(i, j) = corr(FC(wi)
4, FC(wj)

4), (6)

where FC(w)4 is the vectorized upper part of the FC matrix.601

For the window-less dFCe [44] we start from the edge time-series [21] defined602

as Enm(t) = zn(t)zm(t) for n,m = 1 . . . N where zn(t) = Bn−µn

σn
is the z-scored603

BOLD time-series of a node n. The edge dynamical functional connectivity604

is then computed as correlation between the edge vectors at each pair of time605

points t1, t2:606

dFCe(t1, t2) = corr(Enm(t1), Enm(t2)). (7)

The co-fluctuation events (CF) are defined as time points in the edge time-607

series Enm(t) during which the root sum squared RSS =
√∑

nmE
2
nm(t) crosses608

a given threshold, here chosen as 95th percentile. Time points where RSS is609

below the threshold are then labeled as non-events (nCF).610

The avalanches were computed on the binary mask a(t) on the r(t) such611

that ai(t) = 1 ⇐⇒ z(ri(t)) > 3 where z(ri(t) is the z-score of firing rate r of a612

node i.613

4.3 Manifold subspaces614

As a first step in the analysis of the local dynamics specific to a particular615

attractive subspace, we have extracted the time-points belonging to these sub-616

spaces with k-means clustering applied to the edge time series Enm(t). We617

varied the number of clusters k and selected k = 5 at which the co-fluctuation618

events separated to distinct cluster.619

To extract the segments of r(t) corresponding to the Enm(t) time points620

we first estimated the BOLD signal lag l = 2500 ms as optimal peak-to-peak621
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alignment with r(t) smoothened by a Gaussian filter with same effective width622

(σ = 700). Then for all BOLD time points in a given cluster c we selected the623

2000 corresponding time points in r(t) and concatenate these to get the fast624

time-scale activity rc(t) in the subspace corresponding to cluster c. Each of the625

rc(t) was then projected to space spanned by the first two PCA components626

of the whole r(t) time-series to evaluate how much of the overall state-space is627

covered by individual clusters.628

The local trajectory for a given event e was computed by selecting interval629

re(t) corresponding to BOLD timepoints above the RSS threshold and three630

timepoints before and after the event. Local PCAe of was then computed from631

re(t), and the smoothened trajectory was computed by convolving re(t) with a632

Gaussian filter (σ = 100).633

4.4 Manifold sampling634

To identify the fixed point scaffold of the manifold as traced by the trajectory635

resulting from integrating the Equation 5, we sample the segments from the636

simulated trajectory (ri(t), vi(t))|ts+τmax
ts , and use them as initial conditions637

for integration of the deterministic interpretation of Equation 5, i.e. dΨ(t) =638

a(Ψ(t))dt. From each such an initial condition, we integrated the system to639

steady state equilibrium corresponding to a fixed point (r∗,v∗).640

The number of stable fixed points (r∗,v∗) of system with G = 0 is 2N641

reflecting all the combinations of up- and down-states of the N nodes. To642

sample the stable fixed points of the system with G > 0 we solve repeatedly the643

system of equations:644

0 =
∆

πτc
+ 2r∗i v

∗
i ,

0 = v∗2i + η − (τcπr
∗
i )2 + Jτcr

∗
i + Ii

(8)

using Newton-Raphson method with the initial conditions chosen randomly as a645

vector of up- and down-state fixed points of the isolated nodes, i.e. (r∗0i , v
∗0
i ) ∈646

{(r∗↑, v∗↑), (r∗↓, v∗↓)}, ∀i where (r∗↑, v
∗
↑) and (r∗↓, v

∗
↓) are the up- and down-state fixed647

points for the isolated node. For each initial condition (r∗0,v∗0) we then check648

if the corresponding solution of Equation 8 is equivalent up to the composition649

in terms of up- and down-states. If not, it is discarded, otherwise we evaluate650

the stability of the found fixed point using linear stability analysis.651

As a low-dimensional projection of the sampled manifold we have used the652

two slowest eigenmodes of the structural connectivity. These are computed as653

eigendecomposition of the graph Laplacian L = W−I, that is LU = UΛ, where654

eigenvalues λk can be interpreted as structural freqencies and the eigenmodes655

uk as structural connectome harmonics [91].656

4.5 Linear stability analysis657

We perform a linear stability analysis to identify the fixed-points obtained from658

the NR method. If each fixed-point (r∗,v∗) is perturbed by (εr, εv) , then the659
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evolution of the perturbations depend on the Jacobian matrix (J) and are given660

by:661 

ε̇r1
ε̇r2
...
ε̇rN
ε̇v1
ε̇v2
...
ε̇vN


=



2v∗1 0 . . . 0 2r∗1 0 . . . 0
0 2v∗2 . . . 0 0 2r∗2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 2v∗N 0 0 . . . 2v∗N

J − 2π2r∗1 w12 . . . w1N 2v∗1 0 . . . 0
w21 J − 2π2r∗2 . . . w2N 0 2v∗2 . . . 0

...
...

. . .
...

...
...

. . .
...

wN1 wN2 . . . J − 2π2r∗N 0 0 . . . 2v∗N


.



εr1
εr2
...
εrN
εv1
εv2
...
εvN


(9)

The stability of a fixed-point depends on the eigenvalues of the Jacobian evalu-662

ated at the fixed-point. The fixed-point is stable iff all the eigen-values of J are663

negative. Therefore, we numerically evaluate the largest eigenvalue of Jacobian664

for each fixed-point and label the point as stable if its real-part is negative.665

4.6 Fixed point sampling from simulated trajectory666

From a given trajectory of the system given as 10 minutes of ψ(t) we have667

selected a restart point t′ each 50 ms (12000 starting points altogether). For668

each of the restart point t′ we extracted the segment Ψ(t)|t
′−τmax

t′ where τmax669

is the length of the longest delay, and used as initial condition to a equivalent670

system to Equation 5 with b = 0:671

dΨ(t) = a(Ψ(t))dt. (10)

Integrating this system to equilibrium yielded then for each restart point tr a672

fixed point Ψ∗ = (r∗,v∗). The stability of each of the fixed points Ψ∗ was673

then evaluated using the linear stability analysis as the largest eigenvalue of the674

respective Jacobian matrix.675

4.7 Escape time analysis676

The switching behaviour of a single node is driven by the stability of the up-677

and down-state fixed points in the presence of noise. We employed escape time678

analysis [92] to measure the stability of these fixed points for range of values of679

external input I. In detail, for a single node of the system given by Equation 3680

we found the up- and down-state stable fixed points (r∗, v∗)↑ and (r∗, v∗)↓, and681

the unstable saddle node (r∗, v∗)×. Next we computed the separatrix between682

the two basins of attraction by integration of the model backwards in time683

resulting in an closed curve ω. To find the characteristic escape time for a684

fixed point (r∗, v∗) we have integrated the system from the initial condition685

(r0, v0) = (r∗, v∗) for a given value of I 100 times, measuring the time tE at686

which the trajectory crosses ω for the first time. The values of I were drawn687
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from the range given by [0, Imax] where Imax = max{Ii(t), ∀i} is the largest value688

of Ii encountered in the integration of the full system in the working point.689

4.8 Empirical data and spatial analysis690

The functional gradient on empirical data was computed from the group connec-691

tivity matrix of the Human Connectome Project dataset using the brainspace692

toolbox [93]. For a simulated resting state session withGw, the time in avalanche693

was computed for each node as total time for which the ri(t) was above the694

threshold of 3 standard deviations, and the event z-score as a sum of z-scored695

BOLD signal in time-points marked as events. The nodes were then groupped696

according to the cortical hieararchy [76] projected to the Desikan-Killiany par-697

cellation.698

A parcellation-based BOLD signals of a resting-state session from a subject699

from the Human Connectome Project [94] were used to validate the separation700

of the events in the low-dimensional embedding. The data consisted of 1200701

time points sampled at 720 ms in the Desikan-Killiany parcellation [89] with 70702

cortical regions.703
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48. Montbrió, E., Pazó, D. & Roxin, A. Macroscopic description for networks840

of spiking neurons. Physical Review X 5, 021028 (2015).841

49. Van Essen, D. C. et al. The WU-Minn human connectome project: an842

overview. Neuroimage 80, 62–79 (2013).843

50. Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A. & Friston,844

K. J. Comparing hemodynamic models with DCM. en. Neuroimage 38,845

387–401. issn: 1053-8119 (Nov. 2007).846

51. Deco, G. & Jirsa, V. K. Ongoing cortical activity at rest: criticality, multi-847

stability, and ghost attractors. en. J. Neurosci. 32, 3366–3375. issn: 0270-848

6474, 1529-2401 (Mar. 2012).849

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2023. ; https://doi.org/10.1101/2022.01.03.474841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474841
http://creativecommons.org/licenses/by-nc-nd/4.0/


52. Haimovici, A., Tagliazucchi, E., Balenzuela, P. & Chialvo, D. R. Brain850

organization into resting state networks emerges at criticality on a model851

of the human connectome. en. Phys. Rev. Lett. 110, 178101. issn: 0031-852

9007, 1079-7114 (Apr. 2013).853

53. Sporns, O., Faskowitz, J., Teixeira, A. S., Cutts, S. A. & Betzel, R. F. Dy-854

namic expression of brain functional systems disclosed by fine-scale analysis855

of edge time series. en. Netw. Neurosci. 5, 405–433. issn: 2472-1751 (Apr.856

2021).857

54. Pope, M., Fukushima, M., Betzel, R. F. & Sporns, O. Modular origins of858

high-amplitude cofluctuations in fine-scale functional connectivity dynam-859

ics. en. Proc. Natl. Acad. Sci. U. S. A. 118. issn: 0027-8424, 1091-6490860

(Nov. 2021).861

55. Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the862

brain: A synthesis of neurobiology, models and cognition. en. Prog. Neu-863

robiol. 158, 132–152. issn: 0301-0082, 1873-5118 (Nov. 2017).864

56. Kong, X. et al. Sensory-motor cortices shape functional connectivity dy-865

namics in the human brain. en. Nat. Commun. 12, 6373. issn: 2041-1723866

(Nov. 2021).867

57. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity868

observed with functional magnetic resonance imaging. en. Nat. Rev. Neu-869

rosci. 8, 700–711. issn: 1471-003X (Sept. 2007).870

58. Mitra, A. et al. Spontaneous Infra-slow Brain Activity Has Unique Spa-871

tiotemporal Dynamics and Laminar Structure. en. Neuron 98, 297–305.e6.872

issn: 0896-6273, 1097-4199 (Apr. 2018).873

59. Margulies, D. S. et al. Situating the default-mode network along a principal874

gradient of macroscale cortical organization. en. Proc. Natl. Acad. Sci. U.875

S. A. 113, 12574–12579. issn: 0027-8424, 1091-6490 (Nov. 2016).876

60. Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. Large-Scale Gradients877

in Human Cortical Organization. en. Trends Cogn. Sci. 22, 21–31. issn:878

1364-6613, 1879-307X (Jan. 2018).879

61. Ashwin, P., Creaser, J. & Tsaneva-Atanasova, K. Fast and slow domino880

regimes in transient network dynamics. en. Phys Rev E 96, 052309. issn:881

2470-0053, 2470-0045. arXiv: 1701.06148 [math.DS] (Nov. 2017).882

62. Ashwin, P., Creaser, J. & Tsaneva-Atanasova, K. Sequential escapes: onset883

of slow domino regime via a saddle connection. Eur. Phys. J. Spec. Top.884

227, 1091–1100. issn: 1951-6355, 1951-6401 (Nov. 2018).885

63. Deco, G., Senden, M. & Jirsa, V. How anatomy shapes dynamics: a semi-886

analytical study of the brain at rest by a simple spin model. en. Front.887

Comput. Neurosci. 6, 68. issn: 1662-5188 (Sept. 2012).888

64. Kim, J., Joshi, A., Frank, L. & Ganguly, K. Cortical–hippocampal cou-889

pling during manifold exploration in motor cortex. Nature. issn: 14764687890

(2022).891

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2023. ; https://doi.org/10.1101/2022.01.03.474841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474841
http://creativecommons.org/licenses/by-nc-nd/4.0/
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