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EPILEPSY

Delineating epileptogenic networks using brain
imaging data and personalized modeling in drug-
resistant epilepsy
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Precise estimates of epileptogenic zone networks (EZNs) are crucial for planning intervention strategies to treat
drug-resistant focal epilepsy. Here, we present the virtual epileptic patient (VEP), a workflow that uses person-
alized brain models and machine learning methods to estimate EZNs and to aid surgical strategies. The struc-
tural scaffold of the patient-specific whole-brain network model is constructed from anatomical T1 and
diffusion-weighted magnetic resonance imaging. Each network node is equipped with a mathematical dynam-
ical model to simulate seizure activity. Bayesian inference methods sample and optimize key parameters of the
personalized model using functional stereoelectroencephalography recordings of patients’ seizures. These key
parameters together with their personalized model determine a given patient’s EZN. Personalized models were
further used to predict the outcome of surgical intervention using virtual surgeries. We evaluated the VEP work-
flow retrospectively using 53 patients with drug-resistant focal epilepsy. VEPs reproduced the clinically defined
EZNs with a precision of 0.6, where the physical distance between epileptogenic regions identified by VEP and
the clinically defined EZNs was small. Compared with the resected brain regions of 25 patients who underwent
surgery, VEP showed lower false discovery rates in seizure-free patients (mean, 0.028) than in non—seizure-free
patients (mean, 0.407). VEP is now being evaluated in an ongoing clinical trial (EPINOV) with an expected 356

prospective patients with epilepsy.

INTRODUCTION

Epilepsy is among the most common neurological disorders. The
identification of the brain regions [epileptogenic zone (EZ)] in-
volved in the genesis of seizures is necessary before any epilepsy
surgery. This identification is based on noninvasive data: magnetic
resonance imaging (MRI), positron emission tomography (PET),
electroencephalography (EEG), magnetoencephalography (MEG)
and, frequently, based on intracerebral recordings, stereoelectroen-
cephalography (SEEG) in particular. Numerous works have shown
that epileptogenic regions are more often organized in a network
rather than originating from a single epileptic focus (I, 2). SEEG
data indicate that epileptogenic networks follow a hierarchical orga-
nization, with maximal epileptogenicity in the EZ network (EZN)
(1). Many methods have been proposed to quantify these EZNs. The
epileptogenicity index (EI) quantifies the EZN on the basis of both
the spectral and temporal properties of SEEG signals (3). The sub-
sequent connectivity EI (cEI) (4) combines functional connectivity
measure with EI for improving sensitivity of estimation, especially
of seizures with slow onset patterns. Statistical parametric mapping
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was proposed to map EI from SEEG signals anatomically onto the
patient’s MRI (5). Three biomarkers then introduced for EZ iden-
tification included fast activity in the frequency band of 80 to 120 Hz
together with a very slow transient polarizing shift and voltage de-
pression (6). A support vector machine was used to identify a spe-
cific time-frequency pattern in the EZ that included a combination
of sharp transients or spikes preceded by multiband fast activity
concurrent with suppression of lower frequencies (7).

Clinical practice requires sophisticated diagnostic approaches
and the expertise of trained clinicians to integrate and analyze in-
formation from multiple modalities and then determine the EZN.
Therefore, methods of causal inference are needed to provide better
EZN estimates by naturally integrating multiple modalities to iden-
tify the underlying latent mechanisms, which can provide better es-
timates than those obtained by observation alone. Virtual brains are
data-driven dynamical brain network models, which are composed
using noninvasively estimated anatomical connectivity from indi-
vidual participants. The Virtual Brain (TVB) (8) is a neuroinfor-
matics platform for the construction and simulation of virtual
brains that can provide the required functionality for EZN estima-
tion and make it possible to perform causal inference on the full
brain scale.

Here, we introduce the virtual epileptic patient (VEP) workflow,
which uses personalized virtual brain models simulated with TVB
and machine learning methods by integrating patient-specific ana-
tomical with functional data to aid in clinical decision-making by
estimating the EZN and further optimizing surgical strategy. The
full brain models are built in a patient-specific space defined by
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T1-weighted MRI data (T1-MRI). Neural models are built for each
node, which is each vertex of 260,000 in high-resolution neural field
models (NFMs) and one brain region of 162 in low-resolution
neural mass models (NMMs). Diffusion-weighted MRI (DW-
MRI) is used to define a patient’s specific connectivity between
the nodes. We previously demonstrated that patient-specific nodal
connectivity information can improve the estimation of parameters
(9, 10). Inferring virtual brain model parameters such that the sim-
ulated data match the patient’s seizure organization further increas-
es patient specificity. This inference process identifies the EZN
using techniques from machine learning, particularly through
Markov chain Monte Carlo sampling. This method generates
many random samples of model parameters and virtual brain sim-
ulations and evaluates these for consistency with empirical data (the
patient’s functional data from SEEG recording). Inferences can be
further improved by integrating prior knowledge about the possible
spatial distribution of the EZN, such as that obtained from the
spatial extent of MRI-visible anatomical lesions or metabolic abnor-
malities revealed by PET imaging, as well as from seizure semiology,
to reduce uncertainty and to finesse the ill-posed problem of param-
eter estimation. After the first proof of concept of the VEP (11), we
studied and tested different modeling methods (12-15), model in-
version methods (16-21), and surgery strategies (22, 23).

Here, we present a complete and extensively tested VEP work-
flow to identify EZNs that could potentially be used in clinical prac-
tice. We demonstrate in a representative use case how to estimate
the patient’s EZNs using virtual brain modeling derived from indi-
vidual T1-MRI, DW-MRI, and SEEG recordings. Furthermore, we
performed virtual surgery to predict the outcome of the patient’s
real surgery. The VEP was tested using a cohort of 53 retrospective
patients in the current study. We also developed the concept of de-
generacy for uncertainty quantification and subsequent proper use
in the clinical context using four types of patients. The VEP work-
flow provides a foundation for further improvements in both brain
modeling and epilepsy studies and is now being evaluated prospec-
tively in a clinical trial (EPINOV NCT03643016) recruiting 356 pa-
tients with epilepsy.

RESULTS

VEP workflow

VEP assists in the identification of the EZN based on a personalized
whole-brain network model. The model defines the brain as a
network of regions, each representing a node in the brain
network (see Fig. 1 for workflow and fig. S1 for flowchart). These
regions are delineated by the VEP atlas, a cortical and subcortical
parcellation of the brain developed for use in epileptology and func-
tional neurosurgery (24). The VEP atlas considers region sizes
adapted to EZN diagnostics for improved performance of model in-
version techniques. Using geometric information and neuroana-
tomical conventions, brain regions can be automatically labeled
based on the patient’s T1-MRI. Connections between regions are
estimated through streamline tractography from DW-MRI. Togeth-
er with the brain parcellation from the T1-MRI, this method can
provide a patient-specific structural connectivity matrix, which
defines the links between the nodes of the network. The dynamics
of each node are defined by an NMM, a system of nonlinear differ-
ential equations that represents the neural dynamics in that brain
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region. In this work, we used the Epileptor (25), a phenomenolog-
ical NMM capable of simulating seizure-like activity.

The signals generated by Epileptor models on the brain region
level are called source signals. The measured signals from the SEEG
electrodes are called sensor signals. To map the simulated sources
from the brain regions to the SEEG sensors, the electromagnetic
forward problem needs to be solved. Localizing the implanted
SEEG electrodes in patient-specific space uses the coregistration
of post-SEEG implant computed tomography (CT) with the T1-
MRI image. The source-to-sensor map, the so-called gain matrix,
is a function of the distance between the sources and sensors (26).
Brain regions, the connectivity matrix, and the gain matrix are all
defined in the patient-specific brain space, which is determined by
the T1-MRI images. Note that, in the VEP pipeline, the source space
covers the whole brain, specifically 162 brain regions defined by the
VEP atlas in the NMM, whereas the sensors only sample part of the
brain, depending on the patient-specific SEEG implanta-
tion scheme.

The model inversion module allows us to infer the free model
parameters by fitting the SEEG data features. The key free model
parameters were the excitability (xp) of each brain region and the
global connectivity coupling (K), both of which play important
roles in defining EZNs. The VEP workflow includes two indepen-
dent model inversion methods based on Bayesian inference,
namely, the optimization and sampling pipelines, which comple-
ment each other. The optimization pipeline uses the limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm (27),
given prior information and the likelihood function of the data
given parameters, to obtain a (local) maximum of the posterior dis-
tribution estimate of the model parameters, a so-called maximum a
posteriori (MAP). The low computational costs and high robustness
of this MAP method allow us to measure the sensitivity of the esti-
mated results in terms of the sampled SEEG sensor space. To do
this, 100 MAP estimates are obtained on datasets with a random
sensor removed, resulting in a distribution of epileptogenicity
values (EVs) for each region. The EV is calculated by considering
the seizure delay in the source level activity based on the posterior
of the key free parameters including x, and K. In the sampling pipe-
line, full Bayesian inference uses a self-tuning variant of the Ham-
iltonian Monte Carlo (HMC) algorithm to estimate the potential
multimodal posterior distributions of the parameters of the person-
alized NMMs (28, 29). Multiple chains start from different random
initial conditions to sample the model parameters from their re-
spective posterior distributions. Because many brain regions are
distant from the SEEG recording electrodes in epilepsy, causing
the model inversion to become an ill-posed problem, we introduced
a reparameterization technique to reorganize the model configura-
tion space to facilitate an efficient exploration of the posterior dis-
tribution space in terms of computational time and convergence
diagnostics. Unlike the prior covariance constraints based on an
eigen-decomposition as in (30), we reparameterized the configura-
tion space on the basis of the dominant linear combinations derived
from the source-to-sensor map so that the HMC algorithm could
put more weight toward efficiently exploring the dominant brain
regions in the first few linear combinations.

The inputs of the model inversion module are the data feature
and a prior. The envelope of the signal power (high-pass—filtered
signal followed by envelope smoothing) from empirical SEEG re-
cordings serves as the data feature. We illustrate the data features
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vidual brain anatomy and to define distinct brain regions according to the VEP atlas.
e length and density of white matter tracts. These are grouped according to regions

obtained from the atlas to derive a structural connectivity matrix that specifies the connection strength between brain regions. A post-SEEG implantation CT scan is used
to find the exact locations of the SEEG electrodes and construct the source-to-sensor map using the so-called gain matrix. NMMs at each source location are connected
through the connectivity matrix, and the neural source activity is simulated. The gain matrix maps the simulated source activity to the corresponding SEEG signals.
Bayesian inference methods are used to estimate the patient-specific parameters of the model based on the data features extracted from SEEG signals and priors

from added knowledge, such as analysis of the SEEG data or clinical hypotheses.
table and heatmap in the T1-MRI data. Different virtual surgical strategies can be t

from the two patients with the most common seizure onset patterns
in fig. S2 (A and B) as well as three patients with other patterns in
fig. S3. The prior can be estimated or defined by added knowledge,
such as MRI-visible lesions or the clinical EZN hypothesis based on
a combination of clinical evidence or extended data analysis from
the SEEG signal. We also designed prior estimate algorithms on
the basis of delay information from filtered SEEG signals in multiple
frequency bands during seizure onset. Please note that the aim of
introducing the different priors was to accumulate additional clin-
ical knowledge rather than to perform a methodological model
comparison as is done in dynamic causal modeling (DCM) (31).
The output of the model inversion module results in a distribu-
tion of EVs, which is determined by the key parameters from the
model inversion and the patient’s structural connectivity. Certain
excitability (x,) values, called bifurcation points, can determine
whether the corresponding regions have the potential to generate
seizures. The network configurations, including both the structural
connectivity itself and the global coupling scale (K), can vary these
bifurcation points. Thus, the definition of the EZN in the context of
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The output is the suggested EZN, which can be communicated by a distribution
ested in the personalized model to achieve the best outcome.

VEP is the network of brain regions with a high degree of excitabil-
ity under a given connectivity configuration that can lead to a
seizure. (For more details, see the “Definition of EZN from a mod-
eling perspective” section in Supplementary Materials and
Methods.) An overview of the most relevant brain regions, accord-
ing to the model estimate based on the EVs, is presented in the VEP
clinical report. The report table contains the information from high-
lighted brain regions with the distribution of the estimated EVs,
their median, and the confidence values. In addition, the regions
identified by the model as belonging to the EZN are represented
in red in the three classical planes in the patient’s three-dimensional
(3D) T1-MRI images (called a heatmap), provided in a user-friendly
viewer. Furthermore, the VEP workflow provides the therapeutic
solution by a virtual surgical strategy based on the estimated
EZN. Different surgical strategies can be tested to find a minimal
resection area to achieve seizure freedom for the patient while min-
imizing the risk of functional deficits.

In sum, we assumed that brain activity could be captured by
whole-brain network models, where the dynamics of brain

30of 14

£202 ‘22 Joquisides uo B10°90Us 195 MMM//SANY WO PaPE0 JUMOC



SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

regions interact with each other. Both the parameter setting (such as
excitability) on each node and connectivity between nodes play im-
portant roles in generating seizure activity. Bayesian model inver-
sion provides a natural way to combine prior knowledge and
functional data (SEEG data) to obtain the posterior of the parame-
ters and then further to estimate the EZN and virtual surgery. Last,
we built a patient-specific brain model from this patient’s anatom-
ical and functional data.

Validation on high-resolution synthetic data

Synthetic data can provide the ground truth of the EZN, which we
cannot obtain from empirical data. The ground truth of the EZN
defines the brain regions demonstrating seizure activities on the
source level of the simulated datasets. Thus, synthetic data can be
a useful tool for validating VEP pipelines by allowing investigators
to compare the ground-truth EZN shown in the simulations with
those inferred from the model inversion module. The simulation
module of the VEP workflow for generating the synthetic testing
data includes both NMMs in low spatial resolution and NFMs in
high spatial resolution, where each node element of the model rep-
resents an average of ~16 cm? and ~1 mm? of the cortical surface,
respectively. NMMs have proven their efficiency in capturing the
main features of brain functional behaviors by accounting for inter-
actions between brain regions (11). In epilepsy, they can capture the
main features of seizure generation and propagation while consid-
ering the underlying connectivity of the network characteristics of
seizures. Their low computational cost makes model inversion and
parameter inference possible. NMMs can be used for both the sim-
ulation and model inversion modules.

NFMs implement field equations representing neural activity in
continuous space (32), increasing the resolution by a factor of 1000
compared with the discrete point representation of brain regions in
NMM:s. Neural fields allow the use of detailed connectivity, consid-
ering both local, between neighboring points on the field, and global
connections, along white matter fibers. Another important advan-
tage of neural field modeling is to provide more realistic source-to-
sensor mapping by considering both the orientation and distance
between the dipoles and the sensor. Supportive evidence comes
from the experimental literature, which has shown that the
current dipole is mainly attributable to pyramidal cells in the corti-
cal gray matter and is aligned perpendicular to the surface (33).

We validated the VEP using synthetic data generated by the
NFMs. We used the 6D Epileptor on each of the 260,000 vertices
representing the cortical mesh. The EZN was set to cover three
brain regions in the left hemisphere. Figure 2A illustrates the time
series in the selected source signals and the signal power, which is
mapped on the basis of the brain high-resolution meshes. We ob-
served complex spatial patterns within a brain region in which the
seizure onset and offset times were not necessarily synchronized.
We generated synthetic SEEG sensor data using the gain matrix
while considering both the orientation and distance of the dipoles
with respect to the sensors (Fig. 2B). The envelope function of the
synthetic SEEG data provided the data feature for the VEP model
inversion. Here, the VEP inversion module was based on the
NMM, with a lower dimensional model (2D Epileptor), which cap-
tures the envelope function, and a low-resolution gain matrix,
which considers only the distance between the nodes and sensors
(Fig. 2C). On the basis of the distribution of EVs, the EZN was de-
clared. Both the optimization (Fig. 2D) and sampling pipelines

Wang et al., Sci. Transl. Med. 15, eabp8982 (2023) 25 January 2023

(Fig. 2E) identified the ground-truth EZN. To avoid bias from
prior knowledge the sampling pipeline used a noninformative
prior, that is, we used the same prior distribution with low mean
excitability for all brain regions. The clinical table based on the dis-
tribution of EV's shows the optimized results from datasets with dif-
ferent SEEG spatial samplings (Fig. 2D). The sampling pipeline
used a noninformative prior in which all the brain regions followed
the same prior distribution. The posterior distribution of EV's from
the sampling pipeline was based on 16 chains starting from eight
different optimized initial conditions. Each HMC chain created
500 samples (Fig. 2E). The heatmap projected on the patient’s
T1-MRI shows the spatial mapping of the EZN (sagittal, axial,
and coronal view images shown in Fig. 2F).

EZN estimation using empirical patient data

Next, we applied the VEP workflow to empirical data from a right-
handed 29-year-old female patient initially diagnosed with left
frontal epilepsy. We first extracted the structural connectivity
matrix (fig. S4) and the source-to-sensor map (fig. S5) from individ-
ual TI-MRI, DW-MRI, and post-SEEG implantation CT imaging
data. Using these along with the data features (fig. S6A) of SEEG
seizure recordings as input, we ran both optimization and sampling
pipelines. Figure 3A shows the SEEG recording of one seizure, and
Fig. 3B demonstrates the distribution of the signal power among all
the electrodes in a cortical mesh, with high activity in the frontal and
insular cortex. A VEP prior algorithm calculated the sensor prior
vector on the basis of 52 different frequency bands from 10 to 110
Hz by taking into account the delay of the seizure onset in each
channel (fig. S6B). Two different methods were used to project
the prior value from the sensor to the source level: where VEP-M
directly maps the prior value of the sensor with the shortest distance
to a given source (fig. S7) and where VEP-W maps a weighted sum
of the prior values of all sensors to each source based on their dis-
tance (fig. S8). We ran the optimization pipeline with four different
prior networks: VEP-M (Fig. 3C), VEP-W (fig. S9A), the clinical
EZN hypothesis (fig. S9B), and an uninformative prior where all
regions have the same probability distribution as the healthy
regions (fig. S9C). The clinical EZN hypothesis was established by
neurologists (J.M. and E.B.) based on visual and quantitative ictal
SEEG signal analysis using the EI and integrating interictal data
and cortical stimulation results. Comparing the EZN identified
from four runs, the left central operculum, which was identified
by a noninformative prior, was not identified with the informative
priors. To investigate the influence of structural connectivity, we ran
the optimization pipeline without considering any connection
between brain regions by taking into account an uninformative
prior. In this example, we showed that both the left insula gyri
brevi and the left orbitofrontal cortex were identified as part of
the EZN only when this patient’s structural connectivity was con-
sidered (fig. S9D).

In the sampling pipeline, we ran the HMC algorithms in 16
chains starting from eight optimized initial conditions. On the
basis of the sampled parameters of the NMM, we obtained the sim-
ulation that best matched the given data features, as measured by the
marginal likelihood. The sampling pipeline used a noninformative
prior in which all the brain regions followed the same prior distri-
bution. The posterior distribution of three brain regions (Fig. 3D)
confirmed the three brain regions identified by the optimization
pipeline. We analyzed four seizures of this patient and integrated
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Fig. 2. VEP validation using high-resolution synthetic data. (A) Seizure dynamics were simulated using an NFM with an EZN of three given regions in the left hemi-
sphere: left insula gyri brevi, left orbitofrontal cortex, and left inferior frontal sulcus. Neural activity is shown on the inflated cortical mesh at four different time points. The
time series of neural activity at seven locations on the mesh are shown below the brain models in (A). (B) Synthetic SEEG data were derived by projecting the source
activity using the gain matrix. Signal power at each SEEG contact, which is color-coded in a 3D cortical mesh, revealed strong activations in the frontal lobe. (C) An NFM,
which represents neural activity continuously in space and takes into account the electrical dipole orientation normal to the surface for the forward solution, was used for
the simulation of the SEEG data. A computationally feasible reduced NMM was used for model inversion. (D) A clinical report table shows the inferred EV distribution and
obtained metrics from the optimization pipeline. The given threshold (0.5) is shown by red dashed lines. (E) Posterior distribution of EV values from the sampling pipeline.
(F) The identified EZN is shown in a patient-specific T1-MRI called the heatmap.
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shown in a preoperative T1-MRI. (F) Heatmap of the VEP results (in red) shown in a postoperative T1-MRI.

the results of the four seizures to obtain three brain regions as EZNs
(fig. S10). The EZN from the clinical hypothesis (the left insula gyri
brevi and the left orbitofrontal cortex) and from VEP (the left insula
gyri brevi and the left orbitofrontal cortex and the left inferior
frontal sulcus) was overlaid onto the presurgical T1-MRI (Fig. 3E)
and the postoperative T1-MRI (Fig. 3F). Two of three of the VEP-
identified brain regions were also identified by the clinicians. The
patient underwent resective surgery aiming the clinically defined
EZN, which resulted in a reduction in seizure frequency but did
not produce seizure freedom.

VEP virtual surgery module

The estimation of the EZN provides a diagnostic result, whereas a
therapeutic solution proposes the surgical intervention, such as the
minimum number of brain regions that can be treated to allow
seizure control while offering the best functional outcome. We
refer to the simulation of different intervention hypotheses as
"virtual surgery.” Here, we used the same patient as in the section
before and worked with the inferred parameters to implement the
identified three EZN regions in a VEP simulation (Fig. 4A). The
simulated time series and corresponding power distribution are

Wang et al., Sci. Transl. Med. 15, eabp8982 (2023) 25 January 2023

shown in Fig. 4B. For this patient, we tested two virtual surgery hy-
potheses: removing the two brain regions identified in the clinician
hypothesis (Fig. 4, C and D) and removing five brain regions, as was
done in the real surgery (Fig. 4, E and F). Comparing the time series
before and after the virtual surgery (Fig. 4B versus Fig. 4, D and F),
the seizure reduction was obvious, but the patient was not seizure-
free, which is consistent with the real surgery outcome. This patient
was not seizure-free but with a worthwhile seizure reduction after a
surgery that removed the left insula gyri brevi, the left orbitofrontal
cortex, the left F3 pars orbitalis, partially the left gyrus rectus, and
partially the left F2 rostral. Comparing the time series between the
two surgical hypotheses (Fig. 4, D versus F), we saw no notable dif-
ference between removing the two brain regions identified by the
clinicians and removing five (two plus three additional) brain
regions, as in the real surgery. This is not unexpected because
none of these three additional regions were identified as EZN,
neither by the clinicians nor by VEP. The three additional brain
regions in the real surgery were removed to provide access to the
brain regions proposed by the neurologists.

Next, we investigated five virtual surgery hypotheses for another
patient who had a resective surgery outcome of seizure freedom. We
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Fig. 4. VEP virtual surgery example. The same patient as in Fig. 3 is shown. (A and B) Whole-brain simulation before virtual surgery. (A) The EZN (highlighted in red)
shows seizures in a 3D brain. The EZN includes the left insula gyri brevi, left orbitofrontal cortex, and left inferior frontal sulcus. (B) Selected simulated SEEG time series
using the EZN defined in (A) and the distribution of the signal power across contacts in a 3D brain from two different perspectives of the simulated data. (C and D) Whole-
brain simulation after virtual surgery, removing the two brain regions according to the clinical hypothesis. (C) The left insula gyri brevi and the left orbitofrontal cortex
(highlighted in blue) were virtually resected, and the left inferior frontal sulcus (highlighted in red) allowed the seizure activity to remain. (D) Selected simulated SEEG time
series after virtual surgery defined in (C) and the corresponding distribution of the signal power across SEEG contacts. (E and F) Whole-brain simulation after virtual
surgery removing the five regions according to the real surgery. (E) The left insula gyri brevi and the left orbitofrontal cortex, the left gyrus rectus, the left F2 rostral,
and the left F3 pars orbitalis (highlighted in blue) were resected both virtually and in actuality, and the left inferior frontal sulcus (highlighted in red) allowed the seizure
activity to remain. (F) Selected simulated SEEG time series after the virtual surgery defined in (E) and its corresponding distribution of the signal power across SEEG
contacts.

first built the simulated model using the VEP results for this patient
with the three brain regions identified as the EZN. The simulated
data are shown in fig. S11 (A and B). The clinical hypothesis iden-
tified seven regions in the right frontal and temporal regions as the
EZN. If all of them were to be removed, then the virtual surgery sug-
gested that there would be reduced seizure amplitude but still no
seizure freedom (fig. S11, C to E). Nineteen brain regions were
removed in real surgery to achieve seizure-free status, and the

Wang et al., Sci. Transl. Med. 15, eabp8982 (2023) 25 January 2023

virtual surgery was consistent with the outcome of the actual
surgery (fig. S11, F to H). This is not unexpected given such a
large and redundant number of regions in the surgical resection.
Then, we considered two scenarios in terms of the global connec-
tivity scale K. In the first scenario when K was large, which could
mean that the patient would be in a situation with fewer seizure trig-
gers or with some anti-epilepsy drug, removing four regions was
sufficient for seizure freedom (fig. S12A). In the second scenario
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in which K was smaller, removing a minimum of six regions led to
seizure freedom (fig. S12, B and C), but removing four regions was
not sufficient.

VEP evaluation module

The performance of the VEP workflow in estimating the EZN for
individual patients was quantified by evaluating the inferred EZN
against the clinical hypothesis or surgical resection as assessed by
postoperative MRI (Fig. 5A). The commonly used seven metrics
for the evaluation are based on true/false-positive/negative EZ clas-
sifications for each brain region on the basis of presurgical evalua-
tion. Compared with the clinical hypothesis, the predictive power of
VEPs for a cohort of 53 retrospective patients (Fig. 5B) showed good
precision (mean, 0.613) and acceptable recall (mean, 0.478) when a
fixed threshold (0.5) was set for all patients. We also calculated the
Fy 5 (mean, 0.573), which is the weighted mean of the precision and
recall with double weight on precision. If we used a personalized
threshold, then we obtained a higher precision (mean, 0.769) and
F, 5 (mean, 0.652). We also introduced two threshold-free measures:
the average precision score (with mean of 0.443) and the area under
receiver operating characteristic curve (with mean of 0.761). Al-
though a discrepancy existed between the VEP and the clinical hy-
pothesis, the physical distance of each epileptogenic region
identified by the VEP to all the EZs comprising the clinical hypoth-
esis was small (mean, 5.67 mm; Fig. 5C). We also evaluated VEP

model performances in terms of MRI-visible lesion and EZN topog-
raphy using precision and recall with fixed thresholds and using
precision and F, 5 with personalized thresholds. All measures dem-
onstrated slightly higher values in patients with normal MRI than in
those with an MRI-visible structural abnormality (fig. S13). In terms
of EZN topography, all measures demonstrated a slight difference in
the order of temporal (highest), temporal-plus (34, 35), and extra-
temporal (lowest) (fig. S14).

When the VEP results were compared with the resected brain
regions, we used the false discovery rate (FDR) as a performance
metric in which false positives become more important. With
seizure-free patients, it is reasonable to assume that the EZN was
completely removed and that thus a false-positive estimate has a
high possibility of being really outside the EZN, whereas in non—
seizure-free patients, a false-positive estimate has a high possibility
of corresponding to the nonresected epileptogenic regions that
would cause the seizures to remain. The VEP showed a very small
FDR (mean, 0.028) for seizure-free patients (Fig. 5D) compared
with the EI (where we simply projected the EI results automatically
to the VEP regions; mean, 0.149). For the non—seizure-free group,
the VEP results showed a large increase in the FDR (mean, 0.407)
compared with the seizure-free patients, suggesting that it may be
possible to better exploit the predictive power of the VEP. Please
note that a very large resection extent in some patients also contrib-
uted to the low FDR value to a certain degree.
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Fig. 5. Performance of VEP. (A) The evaluation framework includes two blocks. Top: The VEP results were evaluated against the clinical hypothesis on the basis of a
presurgical assessment by clinicians. Bottom: The VEP results were evaluated against resected brain regions in the postoperative MRI. (B) Distribution of the seven stat-
istical evaluation results for 53 patients: precision, recall, Fy 5, average precision score (APS), the area under receiver operating characteristic curve (AUC), PreCoptimar and
opFy 5. For each measure, a violin plot demonstrates the distribution of 53 patients, with each dot representing a patient. Above each violin plot is the mean value of a
statistical measure across the 53 patients. The yellow stars and black bars are mean values +SEM. (C) Histogram of the minimal distance between each identified VEP
region and the clinical hypothesis in the two groups in terms of surgical outcome, that is, seizure-free versus non—seizure-free. (D) False discovery rate (FDR) of the
epileptogenicity index (El) and VEP against postoperative MRI for 12 seizure-free patients and 13 non-seizure-free patients. Above each box plot is the mean value of

the FDR. Yellow stars and black bars are mean values +SEM.
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Interpretation of VEP

Degeneracy, the ability of structurally different elements to yield the
same function or behavior, is a natural property of the brain system
(36, 37). In the context of VEP workflow, degeneracy occurs when
the different parameter sets (different EZNs) in the underlying
brain modeling lead to the same seizure patterns, which we can
observe in SEEG recordings, or one parameter set can lead to the
different seizure patterns due to different brain states. We investi-
gated two main reasons for degeneracy: (i) insufficient SEEG re-
cordings and (ii) high dimensionality and nonlinearity of the
brain’s intrinsic nature. The first investigation helped us to better
understand the risk of identifying false EZNs from the SEEG imple-
mentation, whereas the second investigation used degeneracy to
improve our interpretation of the VEP results for clinical use.

We used the same high-resolution synthetic data from our first
example patient, from whom we had three regions in the EZN. We
demonstrated the VEP performance from the sampling pipeline
with removed electrodes (Fig. 6A). We used the weighted average
F1 score to quantify VEP performance based on the posterior dis-
tributions of EVs for each dataset with removed electrodes (fig.
§15). On the basis of the F1 score, the most important electrode,
Ia', targeted two of three EZN regions (the left insula gyri brevi
and the left inferior frontal sulcus). Then, the second most
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important electrode, FT"', was targeted in one EZN region, followed
by some electrodes in the neighborhood of the EZN. Electrodes OR’
and R/, targeted in the same region (the left orbitofrontal cortex),
have different effects due to different implantation locations and
orientations and also due to their combination with other elec-
trodes. In terms of model prediction, missing both is worse than
missing one of them. Then, we demonstrated how to use the VEP
sampling pipeline to verify the possible sufficient implanted elec-
trodes for a given EZN. We started to build the possible sufficient
implanted electrodes by adding them one by one according to the
sorted important electrodes (Fig. 6A). On the basis of the F1 score
and shrinkage of VEP performance (Fig. 6B; posterior distributions
of EVs in fig. S16), we identified a sufficient implantation set of four
depth electrodes. If electrode OR' in this set was replaced by elec-
trode R, then there was another possible sufficient implantation set
with six electrodes (Fig. 6B; posterior distributions of EVs in
fig. S17).

Next, we used the concept of degeneracy for a proper interpre-
tation of VEP within the clinical context. We assumed that the im-
plantation of SEEG electrodes was not the cause of degeneracy here.
We illustrated the results from the sampling HMC pipeline of the
VEP on the empirical SEEG recordings from four patients in four
cases. In case 1, the patient only showed one seizure type from the

CR

o Y PP

Fig. 6. VEP performance on selected electrodes and the importance of SEEG electrodes. The same patient as in Figs. 2 to 4 is shown. (A) VEP performance based on
weighted average F1 score on the datasets in which the given electrodes were removed. We classified the electrodes into four groups according to F1 score, with different
colors, consistent with electrodes colors in the 3D brains in the right panel. For example, orange corresponds to the lowest F1 score, and its electrode la' has the most
important role in identifying the EZN. The EZN includes three regions: the left insula gyri brevi, the left orbitofrontal cortex, and the left inferior frontal sulcus, which are
highlighted in red. (B) VEP performance based on weighted average F1 score when using only the data features from the selected electrodes. The selected electrodes are
listed in the horizontal axis. Black dots show the shrinkage in the VEP performance. The two blue bars correspond to the possible combination with the minimal number
of electrodes with high F1 score and shrinkage values while considering OR' and R’, respectively. The corresponding SEEG implantation schemes are shown in the
right panel.
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SEEG recordings, and VEP identified only one EZN in Fig. 7A. In
this case, the observed SEEG data strongly suggest a single EZN with
confidence, although other EZNs may exist according to not-yet-
observed recordings. In case 2, the same observed SEEG data
suggest several possible EZNs (for example, two possible EZNs in
Fig. 7B). In this case, both identified EZNs were capable of explain-
ing the observed SEEG recording due to degeneracy, that is, the dif-
ferent parameter sets of VEP with these different EZNs can generate
the similar data features as those from SEEG recording. For clinical
decision-making to specify a more reasonable EZN, we need addi-
tional data features such as inter-ictal data and the topography of an
epileptogenic brain lesion. In our methodology, we can put these
pieces of information as informative priors or integrate them as
data features. In cases 3 and 4, the patients’ SEEG recordings dem-
onstrate different types of seizures. Case 3 illustrates a patient who
has two types of seizures, and the VEP identified a different EZN for
each type (Fig. 7C). A possible hypothesis here is that a larger EZN
exists such that different types of SEEG recording could lead us to
discovery of a subset of this EZN. In case 4, the VEP identified the
same EZN from two different types of seizure recordings (Fig. 7D).
A hypothesis here is that the same EZN produces multiple seizure
patterns because of the nonlinearity of the complex brain system,
such as the different initial conditions due to the different
brain states.

DISCUSSION

VEP is a multimodal probabilistic framework for a personalized
end-to-end analysis of brain imaging data from patients with
drug-resistant epilepsy. The VEP workflow provides all the neces-
sary and optimized modules using the NMMs to estimate the EZN
and provide a virtual surgery strategy in drug-resistant epilepsy. All
the modules are state of the art and well tested. Compared with tra-
ditional EZN quantification methods based on spectral analysis of
SEEG signals, such as the EI (3), cEI (4), epileptogenicity map (5),
and EZ fingerprint (7), the VEP workflow provides a successful use
of brain models. Compared with other model-based methods, such
as neural fragility (38) and dynamic network biomarker (39) based
on stability concepts in complex systems theory (16), the VEP pro-
vides the fully nonlinear system analysis of whole-brain NMMs and
works on the whole-brain source spaces instead of on the sensor re-
cording spaces alone. Here, we have provided a full definition of the
EZN from a modeling perspective and the corresponding calcula-
tions. Both the full sampling of the HMC in Bayesian inference and
the neural field high-resolution simulation are state of the art. The
current VEP has been extensively tested using a cohort of 53 retro-
spective patients and is now being evaluated prospectively in a large
French clinical trial (EPINOV NCT03643016) recruiting 356 pa-
tients from 11 epilepsy centers. The main objective of EPINOV is
to evaluate the capacity of the VEP algorithms to improve clinical
outcomes in patients suffering from focal drug-resistant epilepsy
undergoing SEEG surgery.

Other studies have shown that the EZN is highly correlated with
the brain structural lesions observed in MRI (40). In addition,
certain neurotransmitters and glucose showed hypometabolism in
the EZN, as shown by PET studies (41). These additional pieces of
prior knowledge could be integrated into the VEP workflow by de-
fining the prior distribution. DCM is a general framework that
allows for the analysis and variational Bayesian inversion of

Wang et al., Sci. Transl. Med. 15, eabp8982 (2023) 25 January 2023

NMNMs (42). Using DCM, two related studies investigated the fluc-
tuation of synaptic parameters (43) or synaptic coupling weights
(44) to understand the generation of seizure activities. Compared
with VEP, the studies using DCM were based on a small number
of cortical regions, and the nonlinear NMM was approximated by
its linearization.

Recent studies have demonstrated the advantages of brain mod-
eling in aiding epilepsy surgery by using personalized information
and by capably comparing different strategies in silico (18, 22, 23,
45—47). The virtual surgery module in the VEP workflow provides
an all-in-one solution, which uses the generative function of large-
scale brain modeling in TVB, a personalized connectome, and a
patient-specific estimate of the EZN and its parameters from the
VEP diagnostic modules. Here, we only assessed surgical resection,
but the VEP generative function has the potential to offer further
advice about the type of intervention, such as stimulation, lesionec-
tomy, or laser interstitial thermal therapy, by simulating the opti-
mized brain models under different intervention conditions by
varying its corresponding parameters.

Here, we used synthetic data to validate the VEP pipelines
because the ground-truth EZN is known by our settings. The pa-
rameter sets including the ground-truth EZN are used for generat-
ing synthetic data, and, first, we needed to distinguish them from
the estimated parameters of the model inversion and also from all
other generated parameters in virtual surgery. We are also working
on high-dimensional complex systems with many free parameters,
which lead to a high level of degeneracy; for example, multiple pa-
rameter sets can generate the same data feature as the synthetic data.
Thus, from VEP, we may obtain the estimated parameters that may
or may not coincide with the generating parameters, but, in both
cases, they can generate the data with similar data features as the
fitting data features. In this sense, validating on synthetic data can
only show the goodness of the VEP performance, but not its
weaknesses.

VEP has its limitations. Model-based approaches are usually
computationally expensive and parameter-sensitive, which poses
challenges for practical use in clinical routine that need to be ad-
dressed in the future. Additional limitations include the dynamic
nature of the epileptic disorder itself in any given patient over
long time scales, which is not considered in VEP. Such changes
may display irregular and regular daily to monthly patterns in
seizure occurrence, often revealing circadian (48, 49) and cluster or-
ganization (50). In addition, neural mass modeling approaches
reduce thousands of vertices of source activity into one node
mapped to a VEP region. Any such grouping cancels out the direc-
tionality of the current dipole of the folded cortical sheet, which
may lead to incorrect mapping from sources to sensors and thus
possibly introduce errors into the estimation of the EZN. The sol-
ution is to use model inversion on the high resolution of NFM data.
For any inference method, the huge dimensions are a big challenge
that needs to be overcome in the future. Meanwhile, we are system-
atically assessing the ability of the current VEP pipeline of the NMM
with the synthetic data from NFM to try to answer two fundamental
questions: whether the neural mass version of the VEP pipeline is
good enough to identify the ground truth, which was used in the
generated data from the NFM, and under which conditions the
VEP in the NMM version would succeed or fail.

Introducing regional variance may provide another fundamental
way to improve the VEP pipeline. Now, identical parameterization,
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Fig. 7. Four cases for proper interpretation of VEP in clinical use. (A to D) Each case from left to right: The example of the SEEG recording, the identified EZN(s)
highlighted in red/blue for distinguishing the different EZNs in different colors, the EV distribution for selected three regions, and the EV distribution of more selected
regions, where R/L is for the right and left hemisphere, respectively. (B and C) Two EZNs are distinguished as red and blue, which correspond to the same color in the 3D EV
distribution. (A) Case 1: One EZN identified by the VEP sampling pipeline from one type of SEEG recordings. The identified EZN includes the right amygdala and the right
hippocampus anterior. (B) Case 2: Two EZNs identified from the same SEEG recording, with high EVs of the right hippocampus anterior and posterior and the T3 anterior.
The EVs of the right amygdala show a bimodal distribution. This suggests two possible different EZNs, one with the right amygdala (in blue) and one without (in red). (C)
Case 3: Two distinct EZNs identified from two types of two different SEEG recordings with different spatiotemporal dynamics and the VEP identified a different EZN for
each recording type. For the first recorded seizure, the EZN includes the right rhinal cortex, the right collateral sulcus, the right STS anterior, and the right occipitotemporal
sulcus (in blue). The second identified EZN includes the right hippocampus anterior and posterior, the right fusiform gyrus, the right collateral sulcus, and the right insula
gyri longi (in red). (D) Case 4: One EZN identified from two types of SEEG recordings. The identified EZN includes left insula gyrus brevi, orbitofrontal cortex, and inferior
frontal sulcus.
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with the exception of the excitability parameter related to seizure
generation, is assumed across all sites of the brain. The connectivity
network is another element that can influence the regional variance
because of different connection strengths. However, the rich reper-
toire of anatomical data shows differences in cell type, cell architec-
ture, receptor density, and functional specialization between brain
areas (51, 52). Some individual-specific 23Na imaging data indicat-
ed different degrees of excitability of different brain areas, which
could be used to construct more individual-specific models (53).
This regional variance has been also demonstrated using the
power spectra and peak frequencies of functional data, such as
SEEG (24, 54). The big challenge is to find a meaningful mapping
from the empirical data to the parameters in the neural model. In
addition, because most anatomical and functional data about re-
gional variance are available only on the group level, the balance
between group and personalized information remains an important
issue.

Both scientists and clinicians are now searching for equally effi-
cient noninvasive approaches for diagnosis and treatment in the
future for patients with epilepsy who need invasive surgical implan-
tation and intervention today. Toward this purpose, the personal-
ized whole-brain network modeling could play an important role
in diagnostic and therapeutic solutions. For diagnostic solutions,
the VEP pipeline could integrate the data features of the interictal
periods such as an interictal spike or the dynamics of functional
connectivity. These data can be recorded by noninvasive recordings
such as MEG, EEG, and functional MRI. For therapeutic solutions,
brain modeling can predict and access the performance of noninva-
sive stimulations such as transcranial direct current stimulation or
temporal interference. The challenge here is to build realistic
models based on an understanding of the stimulation mechanism.
All these further adventures in high resolution, regional variance,
and noninvasive treatment are based on the VEP workflow that
we introduced here.

MATERIALS AND METHODS

Study design

The objective of this study was to develop and evaluate the VEP
workflow for estimating EZNs and predicting virtual surgery out-
comes for patients with epilepsy. To do so, we collected a dataset
comprising 53 retrospective patients with drug-resistant focal epi-
lepsy who underwent a standard presurgical protocol at La Timone
Hospital in Marseille, France. Informed written consent was ob-
tained for all patients in compliance with the ethical requirements
of the Declaration of Helsinki, and the study protocol was approved
by the local ethics committee (Comité de Protection des Personnes
sud Méditerranée 1). All patients underwent comprehensive presur-
gical assessment, which included medical history, neurological ex-
amination, neuropsychological assessment, neurological
examination, fluorodeoxyglucose PET, high-resolution 3T MRI,
long-term scalp EEG, and invasive SEEG recordings. The patients’
clinical data are given in table S1. The whole-brain models of VEP
were run on patient-specific brain space and connectome, which
were defined from noninvasive T1-MRI and DW-MRI images of
individual patients. The key parameters related to EZNs were in-
ferred from invasive SEEG recordings. To evaluate the performance
of the VEP workflow, we compared the inferred EZN from VEP
against the clinical hypothesis of 53 patients or surgical resection
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as assessed by postoperative MRI of 25 patients who underwent ep-
ilepsy surgery. Clinical hypotheses were obtained from presurgical
assessment. Surgical outcome was assessed according to Engel clas-
sification. The principles of the STARD (standards for reporting di-
agnostic accuracy studies) guidelines were followed.

Patient data

For each patient with epilepsy, the evaluation included noninvasive
T1-MRI (magnetization-prepared rapid acquisition with gradient
echo sequence, repetition time of 1.9 or 2.3 s, echo time of 2.19
or 2.98 ms, and voxel size of 1.0 mm by 1.0 mm by 1.0 mm) and
DW-MRI images (either with an angular gradient set of 64 direc-
tions, repetition time of 10.7 s, echo time of 95 ms, voxel size of 1.95
mm by 1.95 mm by 2.0 mm, and b-weighting of 1000 s/mm?; or
with an angular gradient set of 200 directions, repetition
time of 3s, echo time of 88 ms, voxel size of 2.0 mm by 2.0 mm
by 2.0 mm, and b-weighting of 1800 s/mm?). The images were ac-
quired on a Siemens Magnetom Verio 3T MRI scanner. All patients
had invasive recordings of SEEG obtained by implanting multiple
depth electrodes, each containing 10 to 18 contacts (2 mm long) and
separated by 1.5- or 5-mm contact spacing. The SEEG signals were
acquired on a 128-channel Deltamed/Natus system with at least a
512-Hz sampling rate and recorded on a hard disk (16 bits per
sample) using no digital filter. Two hardware filters were present
in the acquisition procedure: a high-pass filter (cutoff frequency
equal to 0.16 Hz at —3 dB) and an anti-aliasing low-pass filter
(cutoff at one-third of the respective sampling frequency). After
the electrode implantation, a cranial CT scan was performed to
obtain the location of the implanted electrodes.

Statistical analysis

All data are reported as mean or median values + SD or SEM, as
indicated. The model inversion model of VEP is based on Bayesian
inference, which is a statistical inference in which Bayes' theorem is
used to update the probability of a hypothesis. Thus, we used the
statistical probability to describe key components such as prior, pos-
terior, and model evidence. The performance measures that we used
are also based on a hypothesis-testing approach from statistics. De-
tailed descriptions of all related statistical analysis are provided in
their respective sections above. Primary data are provided in data
file S1.
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