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Min-Max DEVS Modeling and Simulation

The representation of timing, a key element in modeling hardware behavior, is realized in hardware description languages including ADLIB-SABLE, Verilog, and VHDL, through delay constructs. The use of delays in the literature may be organized into four classes. Under the first category, the mean values are utilized as precise delay elements in the simulators. VHDL adopts this view to characterize transport delays, where a single value is utilized, rise and fall delays, and inertial delays. In describing the lifetime of a state, also termed time advance function, DEVS proposes to use precise delay elements. Under the second category, termed min-max delay, a delay is represented through an interval, implying that the value of the delay is not known precisely and that any of the values in the interval represents a possible value for the actual delay. In the third category, a delay is expressed in the form of a stochastic distribution. The use of fuzzy models of delays constitutes the fourth category. In the real world, however, precise values for delays are very difficult, if not impossible, to obtain with certainty. The reasons include variations in the manufacturing process, temperature, voltage, and other environmental parameters. Consequently, simulations that employ precise delay values are susceptible to inaccurate results. This paper proposes an extension to the classical DEVS by introducing min-max delays for use in both internal and external transition functions. In the augmented formalism, termed Min-Max-DEVS, the state of a hardware model may, in some time interval, become unknown and is represented by the symbol, φ. The occurrence of φ implies greater accuracy of the results, not lack of information. Min-Max-DEVS offers a unique advantage, namely, the execution of a single simulation pass utilizing min-max delays is equivalent to multiple simulation passes, each corresponding to a set of precise delay values selected from the interval. This, in turn, poses a key challenge efficient execution of the Min-Max-DEVS simulator.

INTRODUCTION

Hardware Description Languages (VHDL, Verilog, ADLIB, etc.) and logic gate simulators use the concept of delay [START_REF] Breuer | Diagnosis and reliable design of digital systems[END_REF][START_REF] Giambiasi | Silog: A practical tool for digital logic circuit simulation[END_REF] to represent timed behaviors. Different classes of delay models have been introduced [START_REF] Breuer | Diagnosis and reliable design of digital systems[END_REF][START_REF] Giambiasi | Silog: A practical tool for logic digital network simulation[END_REF][START_REF] Ghosh | On the need for consistency between the VHDL language constructs and the underlying hardware design[END_REF][START_REF] Walker | On the nature and inadequacies of transport timing delay constructs in VHDL[END_REF][START_REF] Smaili | Discrete event simulation with fuzzy dates[END_REF] to allow different kinds of temporal analysis. Delay models can be regrouped into four categories. Models of the first categories are characterized by the fact that values associated with the delay are mean values considered in the model as a precise value [START_REF]Introduction to VHDL[END_REF][START_REF] Navabi | VHDL: analysis and modeling of digital systems[END_REF][START_REF] Friedman | Logical design of digital systems[END_REF]. Theses delay can be preprint SIMPAT 2006 pure transport delays (characterized by only one value) [START_REF]Introduction to VHDL[END_REF][START_REF] Navabi | VHDL: analysis and modeling of digital systems[END_REF], rise-fall delays (characterized by two values in Boolean models) [START_REF] Calma | [END_REF][START_REF] Abromovici | Digital systems testing and testable design[END_REF], or inertial delays (with one or two values) [START_REF] Brzowzowski | Advances in asynchronous circuit theory. Part II: Bounded inertial delay model[END_REF]. The second category regroups models that represent the delay by a time interval in which all points correspond to a possible value of the real delay, these models are called min-max models [START_REF] Breuer | Diagnosis and reliable design of digital systems[END_REF][START_REF] Giambiasi | Silog: A practical tool for logic digital network simulation[END_REF]. The third category corresponds to probabilistic models; the delay is represented by a stochastic variable with a distribution of probability [START_REF] Magnhagen | Probability based verification of time margins in digital design[END_REF]. The fuzzy models of delays [START_REF] Smaili | Discrete event simulation with fuzzy dates[END_REF][START_REF] Dubois | Processing fuzzy temporal knowledge[END_REF] constitute the fourth category; the imprecision knowledge on delay values is represented by a distribution of probability.

In the DEVS formalis m [START_REF] Zeigler | Theory of modeling and simulation[END_REF], Zeigler introduced the concept of the lifetime of a state (called time advance function) which corresponds to the concept of precise delay values in digital circuits. This life time is defined by a function giving a precise value corresponding to the concept of precise delay value in the digital circuit simulation field. For the simulation of system models during a design process, the delay values can not be knwon with precision (the scatterng of parameters due to the manufacturing process, for example). For a classical simulation with precise delay values the user must choice a precise value into the distribution of possible delay values (for example, in databooks of integrated circuits, the manufacturer gives one delay value corresponding to the mean value of possible delays). In an analysis process of a real system several measurements are realized in order to obtain a mean value for different delays.

For theses reasons, in order to obtain more realistic simulation models, we propose the Min-Max DEVS formalism which generalizes the concept of min-max delays, coming from the field of digital circuits. The aim of Min-Max-DEVS is to model and simulate real systems for which the delays values are not known with accuracy and not as in [START_REF] Seong | Real time DEVS simulation: Concurrent time-selective execution of combined RT-DEVS model and interactive environment[END_REF] to do real-time simulations. The interpretation of Min-Max-DEVS is also very different from that of Timed Automata (T.A.) [START_REF] Alur | A theory of timed automata[END_REF][START_REF] Paillet | Discrete event calculus models a high level specification for discrete event systems[END_REF][START_REF] Giambiasi | From timed automata to DEVS models[END_REF]. T.A. has been introduced for high level specifications of discrete event systems and for accurate temporal simulations. In T.A. the concept of temporal window allows us intervals, in which some events can be taken into account, to be defined. For a best understanding of the meaning attach to Min-Max-DEVS, we recall the meaning of ambiguous delay in the domain of digital circuits, the minimum delay corresponds to the faster circuit and the maximum delay corresponds to the slower one. All the transitions of states, in the possible real circuits, are between these two limits. It is for that the state of a gate model in the min-max interval is an unknown state, noted φ. The interpretation of φ is:

-Some circuits have already had a state change, -Some circuits don't have even a state change. In fact, the s imulation of a model with min-max delays corresponds to the simulation of all the possible circuits with only one stage of simulation. The simulation results can give large time periods with the unknown state, someone can think that this kind of results gives less information than a Boolean model. It is wrong because an unknown state gives us the information that with the knowledge that we have on the delays it is impossible to predict the behavior of the real systems in these time periods. A Boolean simulation, using mean values of delays, gives for these states a Boolean value which is false in some time intervals.

After a brief recall of classical delay models and of the DEVS formalism, we present the Min-Max-DEVS formalism and its operational semantics. The most difficult problem to solve is to obtain a fast simulation technique, knowing that with min-max delays, all the possible precise models are to be simulated during only one stage of simulation.

Recall

Delay Models

The simp lest type of delay used in the digital circuit field is the pure transport delay. A gate model is composed of an ideal logic gate followed by a transport delay (Fig. 1). This delay is defined by one value, which represents a mean value of real delays for the considered category of gates. This delay has an anticipatory semantics, every input event will be realized on the output, so events are only delayed. 

Fig. 1. A gate model

Let us consider a transport delay with a value of 12 time units (t.u.) and the following input sequence of events (0�1 at t=60), (1�0 at t=65), (0�1 at t=70) and (1�0 at t=74). All these events are delayed of 12 t.u. as we can see on the Fig. A rise-fall delay is defined by two precise values corresponding to a mean value for each possible state change (0�1 and 1�0), the delay depends on the state change. In [START_REF] Giambiasi | Silog: A practical tool for logic digital network simulation[END_REF]20,[START_REF] Ghosh | A preemptive scheduling mechanism for accurate behavioral simulation of digital designs[END_REF] the s imulation algorithm of this delay gives us its semantics that is a preemptive semantics. Some inputs events will be canceled.

As an example, for a rise-fall delay defined by the following values (R-rise=20 t.u. and R-fall=10 t.u.). On the Fig. 3, we can see that the input pulse between 60 and 65 corresponding to two input events is cancelled on the delay output. There is preemption of these two events because the time interval between them is short. The problem with these delays (transport or rise-fall delay) is that we assume we know a precise value of the delays of the real gates, which is evidently impossible because it depends on the environment and on the manufacturing process. In fact, the delay values are the mean values of real delays.

For a more precise representation of real gates, probabilistic and fuzzy models have been introduced [START_REF] Magnhagen | Probability based verification of time margins in digital design[END_REF][START_REF] Smaili | Discrete event simulation with fuzzy dates[END_REF][START_REF] Dubois | Processing fuzzy temporal knowledge[END_REF]. These categories of delays have not widely used because the simulation algorithms are complex and heavy and it is not easy to obtain a probability distribution function for the delay.

Another category of delay models uses a time interval to define possible values of the delay. In this time interval, each point corresponds to a possible value of a real delay. These models are widely used because they represent the imprecise knowledge about real delays and they have very fast simulation techniques. These delay models are called ambiguous delays or min-max delays [START_REF] Breuer | Diagnosis and reliable design of digital systems[END_REF][START_REF] Giambiasi | Silog: A practical tool for logic digital network simulation[END_REF].

Ambiguous delays

An ambiguous transport delay is defined by two values [t min , t max ] which represent the distribution of the possible real delays of the corresponding gate. In this case, the variables of a model have three possible values [0, 1, Φ]. Φ represents the unknown value due to the imprecision on delay values. In fact, when a gate model is in the state Φ, the interpretation is that some possible real gates are in the state 0 and some other are in the state 1 depending on the real value of the delay.

In fact, with this modeling we represent in one model all the possible behaviors for the different delay values. In other words, we simulate in one pass all the possible behaviors of the corresponding circuit. The simulation process consists in using 4 events: (0 to Φ), (Φ to 0), (Φ to 1) and (1 to Φ). The occurrence of the event (0 to Φ) represents the faster possible signal (faster circuit corresponding to a real circuit with the minimum delays for all its logic gates), and event (Φ to 0) represents the slower circuit. Let us consider a gate delay with the following values: d min = 3, d max = 8. On the Fig. 4 we have the output response for an input pulse (0 to 1 at 10) (1 to 0 at 50). The delay definition introduces two ambiguous intervals [START_REF] Magnhagen | Probability based verification of time margins in digital design[END_REF][START_REF] Paillet | Discrete event calculus models a high level specification for discrete event systems[END_REF] and (53, 58) in which the model is in an unknown state. The interpretation of the output signal is:

-Before 13, none possible real gate have commuted, -Between 13 and 18, some real gates are in the state 0, some others are in the state 1, -After 18, all the possible real gates are in the state 1. In the other words, the signal defined by the events (0 to Φ) and (1 to Φ) correspond to the faster possible gate; the events (Φ to 1) and (Φ to 0) correspond to the slower possible gate (see Fig. 5). 

Review of the DEVS Formalism

According to the literature on DEVS [START_REF] Seong | Real time DEVS simulation: Concurrent time-selective execution of combined RT-DEVS model and interactive environment[END_REF][START_REF] Zeigler | Multifaceted modeling and discrete event simulation[END_REF][START_REF] Praehofer | System theoretic formalisms for combined discrete-continuous system simulation[END_REF][START_REF] Zeigler | Theory of modeling and simulation[END_REF] the specification of a discrete event model is a structure M, given by: M= <X, S, Y, δ δ δ δ int , δ δ δ δ ext , λ λ λ λ, D>, where X is the set of the external input events, S the set of the sequential states, Y the set of the output events, δ δ δ δ int is the internal transition function that defines the state changes caused by internal events, δ δ δ δ ext is the external transition function that specifies the state changes due to external events, λ λ λ λ is the output function, and the function D:

S�R +
∪∞ represents the maximum length or the lifetime of a state. Thus, for a given state s i , D(s i ) represents the time during which the model will remain in state s i if no external event is incurred.

Zeigler introduces the concept of total states, TS, of a system as: TS= {(s, e) s ∈ S, o < e < D (s)}, Where e represents the elapsed time in state s. The concept of total states is fundamental in that it permits one to specify a future state based on the elapsed time in the present state. Potential benefits may lie in its ability to implement event filtering, wherein a planned change of state will be realized by a model only when the time that separates two key events exceeds a predefined value, and to encapsulate otherwise the mechanical event filtering at the conceptual level.

The time life function D(s i ) gives a precise value that generally corresponds to a mean value of the corresponding duration of the transient state in the real system. It is obvious that in a design process this value is very approximate. For a more realistic modeling, we propose to define the lifetime of a state by a min-max value.

Min-Max-DEVS formalism

A Min-Max-DEVS formalism is proposed instead of DEVS formalism to model systems in which the lifetime of transient states is represented with time intervals and not with mean values. The first step is to define an external min-max specification, which corresponds to a user specification. An internal specification will be associated with this user specification. The internal specification defines the operational semantics of the formalism. The external specification of Min-Max-DEVS is identical to RT-DEVS [START_REF] Seong | Real time DEVS simulation: Concurrent time-selective execution of combined RT-DEVS model and interactive environment[END_REF], but the interpretation and the operational semantics defined by the internal specification are different.

A Min-Max Discrete EVent System specification is a structure: -dmax represents the maximum time the model remains in state si, dmax corresponds to the slower real system.

M= <X, S, Y, δ δ δ δ int , δ δ δ δ ext , λ λ λ λ,

Interpretation:

As in the field of digital circuits, we introduce a min-max definition for the lifetime of transitory states because in general:

-In an analysis process, the length of the state cannot be measured with precision, only a window of possible values can be defined.

-In a design process, there are several possible realizations of the designed system and the manufacturing process is never perfected (all the products have slightly different features). In other words, we consider that it is impossible to obtain a precise value for the length of the transitory states of a real system and then, we define these lengths with a minimum value and a maximum value. In fact, when a model uses precise values for delays, the hypothesis is that these values are mean values.

To illustrate this specification, let us consider a very simple model of a water pump (Fig. 6), controlled by start/stop switch [START_REF] Luh | Abstracting event-based control models for high autonomy systems[END_REF]. The pump model has an input port pw and an output port w. If the water pump is turned on (pw=start), it starts pumping water trough the water pipe after a delay defined by the min-max values. If it is turned off (pw=stop), it stops pumping and the flow of water will be off (w=stopliquid) after a min-max delay. As we see, the needed time to start and to stop pumping water is expressed with time intervals (min-max delays), this is due to the fact that is impossible to obtain precise values for the system in the real world.

Formally, the external min-max specification of its discrete event model is: S={pumping, off, on, stop} X={pw}, Y={w} pw={stop, start}, w={stopliquid, startliquid} Output function: λ(on)=w=startliquid, λ(off)= w=stopliquid Where:

-XI = X x {fast, slow} The event (xj, fast) is interpreted as an event with the value x j , this event represents (as we will see in the following) the faster signal in the real world, its occurrence time defines the beginning of a temporal window in which the event xj can occur at each time (depending on the real value of the delay).

The event (x j , slow) is interpreted as an event with the value x j , this event represents (as we will see in the following) the slower signal in the real world, ending the window.

-SI = (S U Φ) Φ) Φ) Φ) x (S U Φ) Φ) Φ) Φ) x A With:
-A = {fast, slow, autonomous, passive}, -Φ Φ Φ Φ is an unknown value, -The interpretation of a model state (s i , s j , A) is:

If s i = s j , the external model is in state s i and all the possible real systems are in state s i .

If s i ≠ s j , the external model is in an unknown state, because some fast real systems are in state s j and the slower systems are still in s i.

The interpretation of a state (Φ, Φ, Α) is that the model is in a completely unknown state, representing the fact that there is, at this time, more than two possible situations in the real world. -YI = Y x {fast, slow} where:

((y j , fast), t j ) is an output event with the occurrence date t j , representing the response of the faster real system, ((y j , slow), t k ) is an output event with the occurrence date t k , representing the response of the slower real system. In the temporal window [t j , t k ], the external model is in an unknown state, this window represents all possible occurrence times of the event y j . With these definitions, we can now define the functions of the internal model. Internal transition function δ δ δ δI int :

δI int : (S U Φ ) Φ ) Φ ) Φ ) x (S U Φ) Φ) Φ) Φ) x A � � � � (S U Φ) Φ) Φ) Φ) x (S U Φ) Φ) Φ) Φ)
x A with the following rules: δI int (s i , s i , autonomous)=(s i , δ int (s i ), autonomous) with: DI(s i , s i , autonomous) = Min(D(s i )), the second element of the triplet (s i , s i , autonomous) represents the faster real system, and we apply the internal transition function to this element after the minimum delay. The internal model is now in a state (s i , s j , autonomous) which is associated with an unknown state for the external model. The length of this unknown state is Max(D(s i ))-Min(D(s i)) t.u., after this time all the real systems have had the corresponding state change.

δIint(si, sj, autonomous)=(sj, sj, passive) if sj is a passive state =(s j , s j , autonomous) if s j is an active state with: DI(si, δint(si), autonomous)=Max(D(si))-Min(D(si)).

To understand these rules, we have to consider that we model simultaneously the state changes of all the possible real systems. To obtain the previous rule, we consider the faster and the slower real systems. The model state (s i , s j , autonomous) represents that some real systems (the fast systems) have had a state change and the other are still in the previous state (the slow systems).

Let us consider now, two active states s 1 and s 2 with min-max lifetimes (Fig. 8), the model being in s 1 at t=t 1 , we have: δI int (s 1 , s 1 , autonomous) =(s 1 , δ int (s 1 ), autonomous)=(s 1 , s 2 , autonomous) and: DI(s 1 , s 1 , autonomous)=Min(D(s 1 )) at t 2 =t 1 + Max(D(s 1 ))-Min(D(s 1 )), we have: -And if no input event occurs, the next output event will be emitted at the time of the state change for the slower system corresponding to the output event (λ λ λ λ(si), slow). That is to say that the faster event must be interpreted as defining the beginning of a temporal window in which a real system can send out the considered output event, the slower event defines the end of this window: at the occurrence time of the slower output event all the possible real systems have had the considered state change.

δI int (s 1 ,

External Transition function δ δ δ δI ext :

To define the external trans ition function of the internal model we have to analyze the different possible cases. However, due to the fact we represent all the possible real systems; for an internal state (s i , s j , A) the slow event must be applied to the slower system, that is to say to state s i, and the fast event must be applied to the faster system, that is to say to state s j . First case: For an input event xj, the present state s1 and the next state δext(s1, e, xj) are passive states (Fig. 9).

We apply the fast event to the faster system, that is to say to the second element of the triplet: (s 1 , s 1 , passive), and the slow event to the slower system, then, we have: δIext((s1, s1, passive), e, (xj, fast))=(s1, δext(s1, e, xj), fast) DI(s 1 , δ ext (s 1 , e, x j ), fast)=Infinity, δ ext (s 1 , e, x j ) is passive by hypothesis. After this transition, the external model is in an unknown state, because some real systems have not received the external event (x j ). Then: δI ext ((s 1 , s 2 , passive), e, (x j , slow))=(δ ext (s 1 ,e, x j ), s 2 , passive)=(s 2 , s 2 , passive), at this time, the internal model is in state (s 2, s2, passive), the external model is in state s 2 and the interpretation is that all the possible real systems have had the state change due to the external event (x j). Remark 2. In the temporal window [t i , t j ] the state is unknown of the external model due to the imprecision on the occurrence times of the input events and not due to a min-max definition of the lifetime of the considered state. Second case: s i is a passive state and δ ext (s i , e, x j ) is an active state: first, we consider the occurrence of an input event ((x j , fast), t i ) followed by the event ((x j , slow), t j ) (Fig. 10) such as: t j t i < Min(D(δ ext (s i , e, x j )).

The slow event occurs before the autonomous transition of the faster system. Now, we consider that t j t i >Min(D(s 1 )) (Fig. 11).

( we apply the fast event to the faster system, and DI(s 1, s2, fast)=Min(D(s2)) if s2 is an active state (infinity if s2 is passive, previous case), and δIint(s1, s2, fast)=(s1, δint(s2), A)= (s1, s3, fast), in this case when the internal model is in state  s1, s3, fast) there is more than two possible evolutions, for that we choose for the internal transition function the following rule:

δI int (s 1 , s 2 , fast)=(Φ, Φ, passive).
If the slow event occurs before the internal transition: δI ext ((s 1 , s 2 , fast), e, (x j , slow))=(δ ext (s 1 , e, x j ), s 2 , autonomous) =(s 2 , s 2 , autonomous) with DI(s 2 , s 2 , autonomous)=(Min(D(s 2 ))-e Third case: the present state is unknown when the fast event occurs; some real systems are in s 1, the others in s2.

We suppose first that (x j , slow) occurs after the internal transition s 1 to s 2 in the slower system. In this case, when the internal model is in state (s1, s3, A) there is a great number of possible evolutions (more than two), for that we choose, for the external transition function the following rules: δI ext ((s i , s j , autonomous), e, (x j , fast))=(Φ, Φ, passive) totally unknown passive state.

We introduce the totally unknown state (Φ, Φ, passive) because at this time, there is more than two possible evolutions depending on the different lifetimes of the states and the occurrence times of the input events. This state is passive, and:

δI ext ((Φ, Φ, passive), e, (x j , (fast or slow)))=(Φ, Φ, passive)

The model remains definitely in the totally unknown state. Fourth case: two successive fast events.

For a state (s i , s j , fast), if an input event (x k , fast) occurs, we are in an analogous situation than the previous one. In fact, the model receives two successive fast events before receiving the corresponding slow event.

δI ext ((s i , s j , fast), e, (x j , fast)) = (Φ, Φ, passive) totally unknown state. After this detailed interpretation, we describe the internal model IM for the previous example (the water pump) based on its external specification.

IM=<XI, SI, YI, δI The interpretation in the real world is: when the model is in the state (off, stop, autonomous), some real systems are in the state off and some other are in the state stop, so the external model is in the unknown state. After 4 t.u., all the real systems are in state stop.

For the trans ient state on we obtain: δI The output function is : λI(off, off, autonomous)=(stopliquid, fast) λI(off, stop, autonomous)=(stopliquid, slow) λI(on, on, autonomous)=(startliquid, fast) λI(on, pumping, autonomous)=(startliquid, slow). For the external transition, to be clear, we consider that the external input events (stop, ε) and (start, ε) are given with a precise occurrence time which is denoted by the symbol ε in the value of the event (on a practical point of view, this type of event can be decomposed into two events: one fast and one slow event, with the same occurrence time). δI In some situations, the information given by this model does not represent the real system. For example, when the current state of the model is pumping and the event stop occurs at date t = 5 t.u., the next state is off; the scheduled internal event is expected at date t = t + D(off) = 5+8 = 13 t.u.. In the real world it is wrong because some fast systems have had the corresponding state change before t = 13 t.u., and the slow systems are even in the state off.

Min-Max-DEVS simulator

An interpretation of the dynamics of a Min-Max-DEVS model is given by considering the Min-Max-DEVS-simulator based on the DEVS-simulator proposed by Zeigler [START_REF] Seong | Real time DEVS simulation: Concurrent time-selective execution of combined RT-DEVS model and interactive environment[END_REF]. The DEVS-simulator employs two variables, one to represent the sequential state s of the model and one to store the occurrence time of the last event. It has also three storage cells whose values are determined by the state variables and its inputs. The first holds the time of the next internal transition tn, where tn = tl + D(S), when it is given the global model time, the simulator can compute the elapsed time since the last event e, where e = t tl, and the left time to fire the next internal transition σ σ σ σ, where σ = tn t. (done, t) (X, t) Fig. 15. Simulator of an abstract DEVS [START_REF] Seong | Real time DEVS simulation: Concurrent time-selective execution of combined RT-DEVS model and interactive environment[END_REF] The difference between the Min-Max-DEVS-simulator and the previous simulator is that the first employs two time variables tf and ts besides tl and tn to hold the occurrence time of the fast and the slow events.

The elapsed time in a state of the internal model, since the last event and the left time to the next internal event e and σ σ σ σ, are computed in the same manner than in the DEVS-simulator when it is given the global current simulation time t. As shown in algorithm 1, for correct initialization of the simulator an initialization message (i, t) has to be received at the beginning of each simulation run. When a Min-Max-DEVS-simulator receives such an initialization message, it initializes its time of last event tl by the initial date of the simulation. The time of the next event tn, is computed by adding the minimum value of the time advance D(s) to the time of the last event tl. Time tn is sent to the parent coordinator to tell it when the fast internal event should be executed by this component simulator.

An internal state transition message (*, t) causes the execution of an internal event. When a *-message is received by a Min-Max-DEVS-s imulator, it computes the output and carries out the internal trans ition function of the internal model associated, so that the new state of the internal model can be deduced. The output is sent back to the parent coordinator in an output message ((y, fast), t) or ((y, slow), t) according to the current state of the internal model (s i = s j , s i ≠ s j respectively). Finally, the time of the last event is set to the current time and the time of the next event is set to the current time plus the minimum value of the time advance function D(s j ) if all systems are in the same state, or plus the difference between the maximum and minimun value of the time advance function D(s j ) plus the difference between the occurrence time of the slow and fast event if some systems are in the state s i and other are still in state s j .

An input message ((x, fast), t) or ((x, slow), t) informs the simulator of an arrival of an input event, (x, fast) or (x, slow), at simulation time t. This causes the simulator to execute the external transition function of the internal model given (x, fast) or (x, slow) and the elapsed time e. The time of the last event is set to t and the time of the next event is set to a value determined from rules of the internal model.

Example and Simulation

Now we will model a simple example of a filling system with Min-Max-DEVS formalism. This system, a filling system, is composed of a tank with a valve, a conveyor and barrels (Fig. 16). The filling system has two inputs:

-control of the valve: val = {open, close} -control of the conveyor: in = {roll, stop} and two sensor outputs :

-barrel level: bl = {capacity} -barrel position: bp = {good} The Min-Max-DEVS formalism was chosen instead of the DEVS formalism for the reason that some lifetimes of transient states can not be known with accuracy. As an example, the necessary time for adjusting the conveyor depends on:

-the speed of the conveyor, -the length between barrels. The Min-Max-DEVS model built (Fig. 17) is very simple and easy to specify by the users. It resembles to the classical DEVS model, but the unique difference consists in the duration of transient states Adcon0 and Filling0 expressed with time intervals [START_REF] Walker | On the nature and inadequacies of transport timing delay constructs in VHDL[END_REF][START_REF] Calma | [END_REF] and [START_REF] Calma | [END_REF]20] respectively and not with precise values.

Interpretation:

The transient states of the model are Adcon0 and Filling0, where their lifetimes are expressed with time intervals. Time intervals are used in place of precise values from the real world because, for example, the needed time to adjust the conveyor belt depends on its charge of barrels; and the length between barrels is not the same, there are always slight differences. The filling phase of a barrel is represented by the state Filling0, its duration is limited by two values 10 t.u. and 20 t.u. and can not be known with accuracy, because the liquid flow is unsteady and the valves are different from one system to another one. Now we suppose that the initial state of the internal model is (init, init, passive). Let us consider the following sequence of input events (in=(roll, fast), t=10), (in barrel is expressed with the interval [210, 225] and it can not be represented by an accurate value due to that concerns liquid flow and depends on the barrel volume to be filled. This example shows that it is impossible to obtain a precise value for the length of the transitory states of the real system and then, the unique realistic solution is to define these lengths with a minimum value and a maximum value.

Several simulations can be carried out to determine a set of values for every active state of the external model, until obtaining an optimal configuration of the system according to the speed of the conveyor, distance between barrels, etc. Remark 3. Someone can think that this ambiguous model that specifies the filling system is less accurate than a c lassical DEVS model because sometime the simulation results remain in the unknown value whereas the classical DEVS model will give an exact value. In fact, the information given by the Min-Max-DEVS model is more accurate because it indicates with the given values of delays (which are more realistic than a mean value) it is impossible to know the state of the real system.

Conclusion

In this paper we have introduced the concept of ambiguous delay in the DEVS formalism. This concept is well knwon and used in the field of digital circuits to represent the imprecise knowledge on real gate delays. In fact, in the past other approaches have been proposed in order to represent imprecise knowledge of the real world. One of them is based on probabilistic models [START_REF] Dubois | Processing fuzzy temporal knowledge[END_REF], another on fuzzy-logic models [START_REF] Smaili | Discrete event simulation with fuzzy dates[END_REF][START_REF] Zeigler | Theory of modeling and simulation[END_REF]. For example, in prerformance analysis of manufacturing systems, random generated values are used to define the duration of tasks in place of min max values. In this case, this kind of random approach is usefull because the probability distributions can be known and the basic models have a small number of states. For complex systems with a great number of transitory states, these approaches (probabilistic and fuzzy) bring expensive and complex simulations and do not necessary give more information than in the min-max approach (because the probability or possibility d istributions of delays are generally unknown). Moreover, the min-max approach can be considered as the best compromise between a precise model and a powerful simulation.

Due to the pratical orientantion of this papers, we have not presented all the analysis done to define the functions of the internal model and the formal demonstrations needed to validate the simulation algorithm. In this algorithm, the basic pratical rule is: fast events are applied to the faster model (minimum delay) and slow events are applied to the slower model (maximum delay). In order to avoid a combinatory explosion, we have chosen to introduce the totally unknown state, in which the model remains definitely. In this case the analysis of the simulation results concludes on the fact that the knowledge on the delay values is too imprecise to obtain exact information on the system behavior.

The Min-Max DEVS simulator carries out a single simulation which is equivalent to multiple simulation passes in which the lifetime of transitory states corresponds to all the possible values of the real system. Thanks to the semantics of the internal model which allows this feature.

Our current work concerns the development of a simulator of coupled Min-Max-DEVS models. On a conceptual level, we are studying the transformation for Timed-Automata in min-max models in order to validate high-level specification by simulation and to apply model-checking methods to Min-Max-DEVS models.
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 3 Fig. 3. Rise-Fall delay
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 4 Fig. 4. Ambiguous delay

  D>, where: -X, S and Y are the same sets than in classical DEVS -the state lifetime function D: i ) = (d min , d max ) where -d min is the minimum time the model remains in state s i , d min corresponds to the faster real system.

Fig. 6 .

 6 Fig. 6. Water pump Internal transition function: δ int (on)=pumping with D(on)=(6, 12) δ int (off)=stop with D(off)=(6, 10) External transition function:

Fig. 7 .

 7 Fig. 7. State graph of the water pump model using Min-Max-DEVS Now, we define the internal model with its operational semantics. Internal min-max Model and Operational Semantics: Given a user specification of a Min-Max-DEVS: EM= <X, S, Y, δ δ δ δ int , δ δ δ δ ext , λ λ λ λ , D>, We associate with this specification, an internal model as follows: IM= <XI, SI, YI, δ δ δ δI int , δ δ δ δI ext , λ λ λ λ I, DI>,
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 28 Fig. 8. Internal transition function of the internal modelOutput function λ λ λ λI:As in classical DEVS, an output event is emitted before the activation of the internal transition function:λ λ λ λI(s i , s i , A)=(λ λ λ λ(s i ), fast) λ λ λ λI(s i , s j , A)=(λ λ λ λ(s i ), slow)The interpretation of the output event (λ λ λ λ(s i ), fast) is: -This event occurs when the faster possible real system has a state change.-And if no input event occurs, the next output event will be emitted at the time of the state change for the slower system corresponding to the output event (λ λ λ λ(si), slow). That is to say that the faster event must be interpreted as defining the beginning of a temporal window in which a real system can send out the considered output event, the slower event defines the end of this window: at the occurrence time of the slower output event all the possible real systems have had the considered state change.External Transition function δ δ δ δI ext :To define the external trans ition function of the internal model we have to analyze the different possible cases. However, due to the fact we represent all the possible real systems; for an internal state (s i , s j , A) the slow event must be applied to the slower system, that is to say to state s i, and the fast event must be applied to the faster system, that is to say to state s j . First case: For an input event xj, the present state s1 and the next state δext(s1, e, xj) are passive states (Fig.9).We apply the fast event to the faster system, that is to say to the second element of the triplet: (s 1 , s 1 , passive), and the slow event to the slower system, then, we have: δIext((s1, s1, passive), e, (xj, fast))=(s1, δext(s1, e, xj), fast) DI(s 1 , δ ext (s 1 , e, x j ), fast)=Infinity, δ ext (s 1 , e, x j ) is passive by hypothesis. After this transition, the external model is in an unknown state, because some real systems have not received the external event (x j ).
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 10 Fig. 10. External transition function -transition from a passive state to an active state

Fig. 12 .

 12 Fig. 12. External transition function -transition from an active state to an active state

  , on, off}*{pumping, stop, on, off}*{fast, slow, passive, autonomous} XI={pw} and YI={w} with pw={stop, start}*{fast, slow} w={stopliquid, startliquid}*{fast, slow} We have in the external specification δ int (off)=stop with D(off)=(6,10) The corresponding internal transition function is : δI int (off, off, autonomous)=(off, stop, autonomous) with DI(off, off, autonomous)=Min(D(off))=6 δI int (off, stop, autonomous)=(stop, stop, passive) with DI(off, stop, autonomous)=Max(D(off))-Min(D(off))=4

  int (on, on, autonomous)=(on, pumping, autonomous) with DI(on, on, autonomous)=Min(D(on))=6 δI int (on, pumping, autonomous)=(pumping, pumping, passive) with DI(on, pumping, autonomous)=Max(D(off))-Min(D(off))=6

  ext ((pumping, pumping, passive), e, (stop, ε))=(off, off, autonomous) δI ext ((stop, stop, passive), e, (start, ε))=(on, on, autonomous) The internal state graph is given on the Fig. 13.

Fig. 13 .

 13 Fig. 13. State graph for the internal model of the water pump Unlike the Min-Max-DEVS model for the water pump, when we model this system with the DEVS formalism, the lifetime of transitory states on and off is expressed with a precise value which represents a mean value in the real world (Fig. 14). The formal specification of the water pump model using DEVS formalism is : S={pumping, off, on, stop} X={pw}, Y={w} pw={stop, start}, w={stopliquid, startliquid} Output function: λ(on)=startliquid, λ(off)=stopliquid Internal transition function: δ int (on)=pumping with D(on)=9, δ int (off)=stop with D(off)=8 External transition function: δ ext (pump ing, e, pw=stop)=off with D(pumping)= infinity, δ ext (stop, e, pw=start)=on with D(stop)=infinity
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 14 Fig. 14. State graph of the water pump model using DEVS
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 16 Fig. 16. A simple filling system

Fig. 17 .

 17 Fig. 17. The external model for the filling system using the Min-Max-DEVS
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Fig. 2. Input-output sequence of a transport delay

  External transition function -transition from a passive state to an active state From this analysis, for a present passive state s 1 of the external model and a next active state δ ext (s 1 , e, x j ), we define the following rules for the external transition function of the internal model:

	XI XI	xj, fast) (xj, fast)	(xj, slow) (xj, slow)
		t i t i	t j t j		t t
	faster real system faster real system	S1 S1	S2 S2	S3 S3
	slower real system slower real system	S1 S1	S2 S2	S3 S3
	external model external model	S1 S1	unknown state unknown state		S3 S3
	Fig. 11.			

δIext((s1, s1, passive), e, (xj, fast))=(s1, δext(s1, e, xj), fast)=(s1, s2, fast)

The unknown state for intervals [START_REF] Calma | [END_REF][START_REF] Brzowzowski | Advances in asynchronous circuit theory. Part II: Bounded inertial delay model[END_REF] and [200,205] is due to the fact that it is not possible to know the precise date of events roll and open; in addition these time intervals start by fast events and finish by slow events.

For the interval [START_REF] Zeigler | Theory of modeling and simulation[END_REF][START_REF] Zeigler | Multifaceted modeling and discrete event simulation[END_REF], it is difficult to estimate the necessary duration to put barrels in the good place (estimate the lifetime of the state), because that depends on the conveyor speed and the distance between barrels. The end of the filling phase of a