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Abstract

Several representativeness issues affect the available data sources in studying popu-
lations’ income distributions. High-income under-reporting and non-response issues
have been evidenced to be particularly significant in the literature, due to their
consequence in under-estimating income growth and inequality. This paper bridges
several past parametric modelling attempts to account for high-income data issues in
making parametric inference on income distributions at the population level. A uni-
fied parametric framework integrating parametric income distribution models and
popular data replacing and reweighting corrections is developped. To exploit this
framework for empirical analysis, an Approximate Bayesian Computation approach
is developped. This approach updates prior beliefs on the population income distri-
bution and the high-income data issues pressumably affecting the available data by
attempting to reproduce the observed income distribution under simulations from
the parametric model. Applications on simulated and EU-SILC data illustrate the
performance of the approach in studying population-level mean incomes and in-
equality from data potentially affected by these high-income issues.
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1 Introduction

The recent literature on income inequality has paid increasing attention to the dynamics
and the measurement of top incomes (e.g., Atkinson and Piketty 2007, Leigh 2009, Atkin-
son et al. 2011, Burkhauser et al. 2017). The slowly-rising availability of tax data for
research purposes along with findings concerning the recent rises in the share of incomes
accumulated at the very top quantiles of the distribution (e.g., Lakner and Milanovic
2016, Alvaredo et al. 2018) have jointly brought forward the multiple deficiencies affect-
ing the typical methods and data sources used to study income distributions.

A robustly evidenced shortcoming of these conventional approaches involves the lim-
ited quality of publicly-available household survey data, the most commonly used data
source on the subject, in capturing the magnitude and trends of the income shares of the
highest incomes in their population (e.g., Deaton 2005, Burd́ın et al. 2014, Jenkins 2017,
Higgins et al. 2018, Lustig 2019).

Typically these measurement and coverage issues around the upper tail of a popula-
tion’s income distribution imply non-random missing information in the data (i.e., the
errors are more likely or larger in magnitude for higher incomes) and therefore induce
bias into any resulting distributional estimate. When ignored, this can have many clear
policy implications as it leads to underestimation of income growth and inequality at the
population level, along with a biased reading of their relationship and dynamics. This
has motivated a vast literature on correction and estimation methods to overcome this
data issue for the study of income distributions.

An important implication of this almost universal problem of missing or misreported
high incomes is that any empirical strategy seeking to overcome it requires a decision
on the magnitude and distribution of such errors affecting the data. As put forward by
Bourguignon (2018), adjusting for measurement errors on high incomes requires a value
for some or all of three key parameters: the income level beyond which measurement
errors are to be corrected, the true population share of incomes above this level, and the
share of undercovered population incomes.

Although external data sources can be instrumentally used to formulate informative
choices for these parameters (e.g., Atkinson and Piketty 2007, Chapter 2, Bustos 2015,
Blanchet et al. 2018, Jorda and Niño-Zarazúa 2019, Flachaire et al. 2022), correcting for
measurement or coverage errors on high incomes is conditioned by the uncertainty around
them. Broadly speaking, the precision with which inference can be made on a popula-
tion’s income distribution depends on the uncertainty around the form and magnitude of
measurement or coverage errors affecting the available data.

This paper proposes a new empirical strategy bridging several previous results in the
income inequality literature. Firstly, a parametric modelling approach is developped in
the interest of integrating within a single framework all assumptions about the form of
the population’s income distribution and the form of the measurement or coverage issues
affecting the available data. This parametric framework allows for exploiting several pre-
viously explored parametric corrections for high incomes data issues in making inference
at the population level.
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Secondly, a Bayesian estimation strategy allows for inference on the population’s in-
come distribution through data presumably affected by representativeness issues on the
upper tail. This strategy extends the Approximate Bayesian Computation approach re-
cently explored in Kobayashi and Kakamu (2019) and Silva (2023) in the context of
income distributions. In exploiting this approach to estimate income distributions under
the proposed parametric framework, the magnitudes and forms of the representativeness
issues may be uncertain. Past knowledge on the possible nature of these under similar
settings poses information that may be used in dealing with this uncertainty through the
use of informative prior beliefs.

Finally, several applications over simulated and household survey data from the Eu-
ropean Union’s Statistics on Income and Living Conditions (EU-SILC) illustrate the per-
formance of the proposed approach in controlled and observational settings. These appli-
cations evidence the several biases that hinder making inference on a population’s income
distribution if high-income representativeness issues affecting the available data are ig-
nored. Additionally, the presented estimates suggest the presence of both high-income
under-reporting and high-income non-response issues in selected EU-SILC samples. This
results in population-level estimates of average incomes and inequality that are at higher
levels and with higher uncertainty than their sample counterparts.

The following section presents an overview on the common causes and corrections for
data errors on high incomes explored in the previous literature. Section 3 develops a
parametric framework integrating popular forms of such data errors to parametric income
distributions. The fourth section introduces an Approximate Bayesian Computation rou-
tine for inference on a population’s income distribution through the proposed parametric
framework and under magnitudes and forms for high-income data issues that might be
uncertain. Section 5 presents simulated and EU-SILC data applications of the method
under typical parametric forms. The sixth and final section of the paper presents conclud-
ing remarks with proposals for future work in studying high-income data issues through
the proposed approach.

2 Dealing with ‘missing rich’ issues

In modelling income distributions, the use of parametric models is a standard. Some work
has fruitfully explored the use of non- or semi-parametric methods for income distribution
analysis (e.g., Jenkins 1995), yet there is vast evidence of parametric models fitting real
data on incomes better than these alternatives in many different settings (e.g., Darvas
2019, Jorda et al. 2021).

The usual modelling step involves assuming that individuals’ incomes yi are distributed
across its population following some three- (i.e., Θ ⊆ R3) or four-parameter (i.e., Θ ⊆ R4)
distribution yi ∼ fy(.;θ) , θ ∈ Θ. Popular choices for fy(.;θ) include the Generalized
Beta family of distributions (e.g., see McDonald 1984, Jenkins 2009,Graf and Nedyalkova
2014, Chotikapanich et al. 2018, Jorda and Niño-Zarazúa 2019), in particular the four-
parameter Generalized Beta distribution of the second kind (GB2, which is taken as
illustratory reference in what follows) and the three-parameter Singh-Maddala (Burr XII)
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distribution, and the Double Pareto Log-Normal distribution.

There are several virtues to the parametric approach aside from its generally good fit
to real data on incomes. Of particular relevance is its flexibility with respect to the for-
mat of data available. Several estimators following parametric expressions for microdata
or bracketed/grouped data from incomes following yi ∼ fy(.;θ) are available for most
distributions such as Generalized Method-of-Moments (GMM), Maximum Likelihood Es-
timation (MLE), or Bayesian inference methods.

A central consideration required in analysing data prone to high-income representa-
tiveness issues is that the distribution of observed incomes yObsi will very unlikely follow the
form of the population’s income distribution yi ∼ fy(.;θ). Within a parametric approach,
however, the observed distribution can be derived under assumed parametric forms for
the errors affecting the data. Jointly modelling the population income distribution com-
ponent fy(.;θ) and the high-income issues is an attempt at separating which aspects of
the data reflect those of the population income distribution and which aspects are due to
the high-income problems considered.

In describing the nature of the ’missing rich’ (MR) problem, Lustig (2020) points at
the many different issues affecting the upper tail of the observed income distribution in
usual data sources. In the context of survey data, the main focus of this paper, one
first source of observed MR may arise from noncoverage errors in the sampling design
itself as a consequence of the sparseness and irreplaceability of high income households.
High-income households are generally so few and so dissimilar between themselves that
households on any part of the upper tail of the distribution may have a zero probability
of inclusion in the achieved survey sample.

A second possible source for MR in survey data involves reporting issues either in
the form of unit or item nonresponse (i.e., high-income households refusing to respond to
the survey or particularly to the items concerning their income level, respectively) or in
the form of under-reporting of income levels when responding to the survey. Even if the
sampling scheme is designed to be representative of the income distribution of the entire
population of interest, unit or item non-response may yield an achieved sample which is
not and particularly so when this nonresponse occurs more significantly for households on
the upper tail of the income distribution. In a similar way, with income under-reporting
the achieved survey sample may yield an income distribution which is not representative
of the population’s true income distribution if under-reporting is particularly present for
high-income households.

Finally, a third possible source can be found within the data provision procedures
commonly used by the institutions in charge of distributing publicly-available household
survey datasets. In the interest of statistical disclosure control, it is common for such
publicly-available datasets to contain a measure of household incomes which is top-coded
(i.e., right-censored) meaning that reported incomes above a certain threshold cannot be
observed as measured and only an indicator of being above this income threshold is pre-
sented.

Deriving parametric distributions for the sample distribution of incomes yObsi observed
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under simple forms of measurement errors is the focus of early literature in the field. Mod-
els obtained from simple two-parameter distributions ’distorted’ through classical mea-
surement errors (i.e., independent of incomes) brought forward implications that would
be in strong contrast with recent empirical observations: classical measurement errors can
yield sample inequality estimates that overestimate inequality at the population level (e.g.,
see Krishnaji 1970, Hartley and Revankar 1974, Hinkley and Revankar 1977, Van Praag
et al. 1983, Ransom and Cramer 1983, Chesher and Schluter 2002).

More recent literature, in change, has focused in characterizing under-reporting phe-
nomena affecting income data. The robustly evidenced progresiveness of under-reporting
with respect to income levels has resulted in more appropriate nonclassical parametric
expressions for these measurement errors (e.g., see Gottschalk and Huynh 2010, Bour-
guignon 2018, Blanchet et al. 2022, and Flachaire et al. 2022) and has consistently found
that high-income under-reporting yields sample inequality measures that underestimate
inequality at the population level. This recent exploration of high-income under-reporting
has given way to what are known as replacing corrections: incomes pressumed to be
under-reported in the data are replaced by imputations from external data sources such
as administrative tax data or by imputations from a model for the under-reporting mech-
anism. The ’corrected’ data is then treated as a representative sample of the population’s
incomes following fy(.;θ).

Another source of MR issues, that of missing observations, has also been treated un-
der parametric approaches. The case of item non-response has received significantly more
treatment than the more complex case of unit non-response (e.g., see Brunori et al. (2022)
for a recent survey). The main aspect determining how to proceed concerns the distinc-
tion between observations Missing Completely at Random (MCAR), Missing at Random
(MAR), or Missing Not at Random (MNAR), following the works of Rubin (1976), Rubin
(1977), and Greenlees et al. (1982). In the MCAR case the probability of a unit/item
being missing in the data is independent of any characteristics of the unit and is constant
across all units, inducing no particular biases to any distributional estimates from the
data. The MAR case allows this probability to change with the characteristics of the
unit but requires it to be independent of the unit’s income level. Finally, the more com-
plex MNAR case allows this probability to also change with the unit’s income level and
is therefore the only mechanism capable of representing the empirically evidenced neg-
ative relationship between response probabilities and income levels in survey data (e.g.,
Bollinger et al. 2019, Hlasny 2020).

The biases introduced by MAR or MNAR missing data mechanisms in distributional
analysis have mostly been treated under the assumption that unit/item missingness is due
to non-response. Namely, the assumption that conditional on being sampled high-income
units are less likely to report their incomes (in the case of item non-response) or any
information at all (in the case of unit non-response) than other units. This approach has
motivated the use of reweighting corrections: the empirical distribution of incomes in
the sample is reweighted by the related distribution of (imputed) response probabilities.
Like with replacing, the reweighted data is then treated as a representative sample of the
population’s incomes following fy(.;θ).

A particularly lacking aspect of the recent replacing/reweighting approaches in deal-
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ing with MR is the lack of unified parametric frameworks integrating the modelling as-
sumptions on the income distribution fy(.;θ) and those on the under-reporting and/or
non-response mechanisms. This has several consequences on the applicability and gener-
alizability of these methods.

As a model for the data directly as it is observed, a unified parametric approach can
allow for deriving expressions and estimation strategies suitable for microdata but also for
other formats such as bracketed or grouped data (under known grouping mechanisms).
Additionally, this may prove useful in dealing with the challenge that recent approaches in
the literature face concerning the choice of correction quantities (i.e., the share of missing
and/or under-reported incomes and their distribution). In general these quantities are
hand-set by the analyst or are set to match quantities given from more reliable external
data.

While setting correction quantities ad hoc relies entirely on the analyst’s knowledge
about the population’s true income distribution, setting these quantities taking external
data as reference poses several issues of its own. Firstly, it is not always the case that
more reliable external data sources on incomes are available for research purposes as there
may be access restrictions to such data or the data may suffer from MR issues of their
own such as those induced by tax evasion and tax avoidance on administrative tax data.
Secondly, even when external data is available it is generally the case that the population
coverage and income components covered differ from those in the primary data available
for the analysis and this implies that several compatibilizations must be made in trans-
fering quantities from the former to complement the latter. This compatibilizations often
come at the cost of forcing different income concepts to represent the same and of a loss
in being able to quantify the statistical uncertainty around the resulting distributional
estimates and in particular how these are affected by the inherent uncertainty concerning
the correction quantities.

The parametric framework proposed in what follows builds on the recent literature ex-
ploring replacing and reweighting corrections for MR by integrating in a single distribution
function both the population income distribution model fy(.;θ) and any assumed form
for measurement or missing data issues affecting incomes. Several formats of data and
inference may be analyzed through the scope of this framework including that of learning
about plausible values for the different MR correction quantities from the data itself and
of integrating the uncertainty around these quantities into distributional estimates such
as the Gini coefficient.

3 A parametric replacing and reweighting framework

Let individual i’s true income be denoted by yi ∼ fy(.;θ), with probability density func-
tion (pdf) fy(.;θ) and cumulative distribution function (CDF) Fy(.;θ), and consider a
sample of observed individual incomes yObs = {yObsi }Ni=1. This sample may be affected
by two types of ’missing rich’ issues: high-income under-reporting, in which case income
yObsi is observed but differs from yi following under-reporting of high incomes, and non-
response, in which case no income is observed for the individual i.

To introduce a parametric model for data under both of these possible issues, let
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ϕ(y,X;ν) a response probability function defining the probability for an individual
to report her income after being sampled from the population. In its most general for-
mulation this probability, parametrized by the vector ν, may depend on the individual’s
income yi and/or other characteristics X i,. but also on others’ incomes y and/or charac-
teristics X more generally. Additionally, denote by m(y,X;η) an income reporting
function, defining the link between i’s income yi and her income reported in the data, if
any, yObsi ≡ m(y,X;η). In particular, consider this latter function to be invertible, such
that yi ≡ m−1(yObs,X;η) is a replacing function.

Within this framework, we can relate i’s income to her observed income yObsi , if re-
ported, and to some unobservable income yNObsi , in case of non-response, following1:

yi =

{
m−1(yObsi ,X i;η) , with probability ϕ(yi,X i;ν)

yNObsi , with probability 1− ϕ(yi,X i;ν)

If no measurement or non-response issues are believed to affect the data, then this
amounts to setting (m−1(yObsi ,X i;η), ϕ(yi,X i;ν)) ≡ (yObsi , 1).

Whenever some form of measurement error is assumed to affect incomes in the data,
then this may be introduced through a specific choice for the replacing functionm−1(yObsi ,X i;η).
This function serves the purpose of introducing any replacing or imputation step where
i’s income is set as a function of her observed income.

Any m−1(yObsi ,X i;η) representing progressive under-reporting of high incomes should
imply an increasing and convex quantile ratio r(i;η) defined as:

r(i;η) =
m−1(yObs(i) ;η)

yObs(i)

,
∂r(i;η)

∂yObs(i)

≥ 0 ,
∂2r(i;η)

∂2yObs(i)

≥ 0

with yObs(i) denoting the i-th quantile of yObs. This restricts relative discrepancies between

observed yObsi and replaced m−1(yObsi ;η) incomes to be non-decreasing with incomes.

Recently popular replacing approaches can easily be expressed as deterministic forms
for m−1(yObsi ,X i;η) including:

� Piecewise linear quantile-ratio replacing (e.g., Flachaire et al. 2022):

m−1(yObs(i) ; {p̄k}K−1
k=1 , {βk}

K−1
k=1 , {δk}

K−1
k=1 ) ≡


yObs(i) , if p(i) ≤ p̄1

yObs(i) ×
∑K−1

k=1 1(p̄k < p(i) ≤ p̄k+1)× (βk + δkp(i))︸ ︷︷ ︸
Linear replacing weights

for incomes in
the k-th segment.

with δj ≤ δj+1 <∞ , j = 1, ..., K − 2, p̄K = 1, and with p(i) = Fy(y(i);θ) denoting
ordered-incomes individual yObs(i) ’s percentile in the population’s income distribu-

tion2. In absence of missing data, the sample percentile pObs(i) ≡
(i)
N
, (i) = 1, ..., N is

1For simplification reasons, all derivations in what follows are under the assumption that i’s
both response probabilities and reported income depend only on i’s income and characteristics:
m−1(yObs,X;ν) ≡ m−1(yObsi ,Xi;ν), ϕ(y,X;ν) ≡ ϕ(yi,Xi;ν)

2In what follows 1(.) represents the identity function, taking value 1 whenever the condition it takes
as argument holds true and 0 otherwise.
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also a valid estimate of Fy(y(i);θ). The central assumption under this approach is

that the quantile ratio r(i;η) =
m−1(yObs

(i)
;{p̄k}K−1

k=1 ,{βk}
K−1
k=1 ,{δk}

K−1
k=1 )

yObs
(i)

can be represented

as a continuous piecewise linear function. This piecewise representation allows for
progressive under-reporting of high incomes across segments (p̄k; p̄k+1] of the in-
come distribution at the cost of introducing 3 additional parameters (p̄k; βk; δk) per
segment.

� Linear progressive under-reporting (LPU, Bourguignon 2018):

m−1(yObsi ; p̄, δ) ≡ yObsi ×

1 + 1(yObsi > F−1
y (p̄;θ))︸ ︷︷ ︸

Indiv. with observed incomes
above p̄-th percentile under-report

×

(
δ(yObsi − F−1

y (p̄;θ))

1− δ

)
︸ ︷︷ ︸
Under-reported amount linearly

increases with true incomes with slope δ


with δ ∈ [0, 1) and with F−1

y (p̄;θ) denoting the p̄-th population income quantile.
This replacing scheme assumes that all individuals with incomes above the p̄-th
percentile under-report their incomes in the observed sample and do so in a linearly
progressive manner with under-reporting increasing by δ with every additional unit

of income. The incomes quantile ratio implied under LPU r(i;η) =
m−1(yObs

(i)
;p̄,δ)

yObs
(i)

is

strictly convex for income levels above F−1
y (p̄;θ).

� Generalized Pareto replacing: (e.g., Atkinson and Piketty 2007, Chap-
ter 2,, Jenkins 2017, Hlasny and Verme 2022, Charpentier and Flachaire
2022):

m−1(yObsi ;µ, σ, ζ) ≡ yObsi ×


1 + 1(yObsi > µ)︸ ︷︷ ︸

Indiv. with observed incomes
above µ under-report

×



(

1−
(
pi−p̄
1−p̄

))−ζ
− 1

ζ

× σ − (yObsi − µ)


︸ ︷︷ ︸

Observed incomes are
replaced by corresponding percentile

under a Generalized Pareto dist.


where (µ, σ, ζ) are respectively the location, scale, and shape parameters of a Gen-
eralized Pareto distribution GPD(µ, σ, ζ) with CDF given by:

Fy(yi;µ, σ, ζ) =

1−
(

1 + ζ(yi−µ)
σ

)− 1
ζ
, if ζ 6= 0

1− e−( yi−µσ ) , if ζ = 0
, yi > µ

Under this replacing scheme, any income above a level µ is assumed to be under-
reported. True incomes are assumed to follow a Generalized Pareto distribution
(or some specific case such as the Pareto I (i.e., GPD(σ

ζ
, σ, ζ) , ζ > 0) or Pareto

II (i.e., GPD(µ, σ, ζ) , ζ > 0)) above this income level. In absence of missing
data issues an individual in the pi-th sample percentile with pi > p̄ (equivalently,

yObsi > µ) has true income corresponding to the
(
pi−p̄
1−p̄

)
-th quantile on this Pareto
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distribution. Similarly to LPU, the incomes quantile ratio implied under Generalized

Pareto replacing r(i;η) =
m−1(yObs

(i)
;µ,σ,ζ)

yObs
(i)

is strictly convex for income levels above µ,

representing progressiveness of the under-reporting.

These common replacing schemes all exploit the assumption that under-reporting is a de-
terministic function of individual incomes (or their sample percentile/rank equivalently),
and that individuals have the same rank in the population’s income distribution as in the
observed sample. It’s also important to note that each specific replacing scheme implies
within it specific assumptions on under-reporting behaviour at the individual level.

Figure 1 illustrates a comparative example of the quantile ratios r(i,η) under these
three common forms for m−1(.;η). The respective parameter values η are set to represent
a same progressive under-reporting pattern: LPU affecting observed incomes from the .75-
th percentile of the income distribution upwards. A first observation is that a piecewise
linear approximation to this under-reporting pattern introducing six parameters in η in
total (i.e., a linear approximation with two segments) is not flexible enough to correctly
represent it. Secondly, replacing under a Generalized Pareto tail all incomes above the
.75-th percentile can represent the reference LPU pattern accurately, except for the top
of the income distribution. Finally, this similarity across GPD and LPU schemes suggests
the latter as the more stable and parsimonious alternative of the two.

Figure 1: Quantile ratios under common replacing schemes

0.5 0.6 0.7 0.8 0.9 1.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

pi

r (
i ,

�

)

LPU
Piecewise linear
GP replacing

Note: Three common replacing schemes: LPU, piecewise linear quantile ratio, and Generalized Pareto replacing
(GP in legend), as applied to a same income distribution following yi ∼ GB2(2.257, 17393, 1, 1.033) (see following
sections for details on the GB2 distribution) and affected by LPU with p̄ = .75 (represented by the dashed vertical
line) and δ = .67. The piecewise linear approximation was calibrated to fit this LPU pattern at the p̄1 = .75 and
p̄2 = .9375 sample percentiles. The GPD coefficients ζ and σ were estimated conditional on µ being the .995-th
sample quantile as a typical empirical practice (e.g., see Jenkins (2017)) and imposing finite variance (ζ < 1

2 ).
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Further choices for m−1(yObsi ,X i;η) may exploit other individual characteristics X i

to represent larger heterogeneities in under-reporting patterns. A popular choice when
data on individual consumption is available without reporting errors of its own is to
define the income reporting function as an Engel curve (e.g., see Pissarides and Weber
1989, Lyssiotou et al. 2004, Hurst et al. 2014). Additionally, a stochastic component may
be introduced in the definition of m−1(yObsi ,X i;η) to allow for heterogeneity in under-
reporting behaviour across individuals with same level of incomes (e.g., Flachaire et al.
2022).

Concerning the modelling assumptions for the response probabilities ϕ(yi,X i;ν), the
several possible types of missing data mechanisms may be considered, following Rubin
(1976). If income non-response follows a random process which is unrelated to incomes
y and other characteristics X, then the mechanism corresponds to a MCAR process. In
the MCAR case, we observe incomes yObs = {yObsi }Ni=1 which are a random sample of the
population’s incomes and therefore no particular bias is induced by the missing data. A
simple MCAR mechanism is such that ϕ(yi,X i;ν) ≡ ϕ(yi,X i; p) ≡ p , p ∈ (0, 1], where
all individuals are just as likely to report incomes after they have been sampled.

A second potential mechanism concerns the case where non-response in incomes are not
random but where the misingness can be fully explained by other non-missing characteris-
tics of the individuals and/or by the observed incomes, i.e., ϕ(yi,X i;ν) ≡ ϕ(yObsi ,X i;ν).
This mechanism represents an MAR process and is an appropriate representation for sce-
narios of item non-response, where sampled individuals report information about their
characteristics X i but not about their income, as long as their unobserved income yNobsi

is unnecessary to account for the non-random non-response probabilities. MAR mecha-
nisms are usually dealt with in analysis through multiple imputations of incomes for those
individuals in the data with missing incomes but observed characteristics.

Finally, it may be the case that response probabilities may not be fully accounted for
from observed information. For instance, it may be the case that the reason why individ-
uals do not report their incomes in the data has everything to do with their unobserved
level of incomes yNObsi . This corresponds to the MNAR scenario and is particularly com-
plex to deal with, as it may include non-random unit non-response mechanisms, where
sampled individuals do not report neither incomes nor characteristics and where their
unobserved incomes yNObsi are a determinant of this.

Forms for ϕ(yi,X i;η) suitable for MAR mechanisms have been the focus of the recent
survey in Brunori et al. (2022). Recently popular reweighting approaches allowing for
dealing also with MNAR mechanisms can easily be expressed as deterministic forms for
ϕ(yi,X i;η) including:

� Right-truncation (e.g., Alvaredo 2011, Jorda and Niño-Zarazúa 2019):

ϕ(y(i); t, α) ≡

{
α , if p(i) ≤ t

0 , if p(i) > t

which amounts to assuming that any and all individuals above the t-th percentile
on the population income distribution will not report incomes in the data, while
anyone below this threshold will report an income with probability α. The limiting

10



case α → 1 corresponds to assuming that any unit with income below the t-th
percentiles will always report an income when sampled.

� Regional non-response reweighting (e.g., Korinek et al. 2007, Hlasny and
Verme 2018):

ϕ(yi,X i;β) ≡ eg(yi,Xi;β)

1 + eg(yi,Xi;β)

with g(yi,X i;β) being a twice continuously differentiable function of observed unit
i’s characteristics parametrized by the vector β. The comparative analysis in Hlasny
and Verme (2015) suggests a simple logarithmic form for g taking as input a lin-
ear combination of income yi and region indicator variables to be equally efficient
as more complex specifications in many scenarios. This approach infers response
probabilities for units from modelling the relationship between non-response rates
and units’ characteristics at aggregate (i.e., regional) levels, when this information
is available. The key assumption is that individual characteristics relate to indi-
vidual response probabilities in the same way that they do at the aggregate level
(i.e., that ecological inference is feasible), such that individual response probabilities
ϕ(yi,X i;β) may be properly estimated and used for the purpose of reweighting the
observed data.

� Income-proportional reweighting (e.g., Blanchet et al. 2022):

ϕ(yi; γ0, γ1, t, α) =

{
eγ0(yi)

−γ1 , γ1 > 0 , if p(i) > t

α , if p(i) ≤ t

This scheme corresponds to a non-response mechanism where individuals with true
incomes above the t-th percentile have increasingly lower response probabilities,
with the parameter γ1 representing the income elasticity of non-response (i.e., how
much response probabilities decrease with an increase in incomes of 1%). For a
given value of such elasticity, γ0 serves as an intercept to assure the continuity of
ϕ(yi; γ0, γ1, t, α) at t. Similarly to right-truncation, the parameter α represents the
(constant) response probability for units with incomes below the t-th percentile.
Moreover, this reweighting scheme includes the right-truncation ϕ(y(i); t, α) as the
limiting case γ1 → ∞. Figure 2 provides an illustratory example of how these two
cases relate and their resulting contrasts with the population’s income distribution.

Both replacing and reweighting corrections may interact within this framework in a
straightforward manner. Response probabilities are modelled as a function of true in-
comes y, yet these may differ from observed incomes yObs following an assumed form for
m−1(yObsi ,X i;η). The interaction allowing for modelling MNAR non-response mech-
anisms through observed incomes directly simply amounts to the composite function
ϕ(m−1(yObsi ,X i;η),X i;ν).

A crucial question this parametric framework allows to answer is: given i) an assumed
form for the population income distribution fy(.;θ), ii) an assumed income reporting form
m(yi,X i;η), and iii) an assumed response probability function ϕ(yi,X i;ν), then what
distribution fyObs(y

Obs
i ;θ,η,ν) will observed incomes under this framework follow?

11



Figure 2: Income-proportional reweighting schemes
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This distribution can be obtained applying the deterministic transformation m−1(.;η)
to fy(.;θ) and reweighting the resulting density by the response probabilities ϕ(.;ν),
yielding the relationship3:

fyObs(y
Obs
i ;θ,η,ν) =

Reporting function: Replacing transformation of y︷ ︸︸ ︷
fy(m−1(yObsi ;η);θ)×

(
∂m−1(yObsi ;η)

∂yObsi

)
×

Non-response: Reweighting of fy︷ ︸︸ ︷
ϕ(m−1(yObsi ;η);ν)∫

fy(m−1(yObsi ;η);θ)× ϕ(m−1(yObsi ;η);ν)×
(
∂m−1(yObsi ;η)

∂yObsi

)
dyObs︸ ︷︷ ︸

Normalizing constant

(1)

The main application of the result in (1) is that of parametrically integrating all as-
sumptions about the population income distribution and the ’missing rich’ issues affecting
the data in a model for the observed data itself. This model for the data constitutes there-
fore a standard case of continuous model expansion to accomodate for non-response or
measurement errors (e.g., see Nandram and Choi 2002, Gustafson 2005, Gelman et al.
2013, Chapter 7,). Fitting such a model to data is an attempt at identifying separately
features characteristic of the population income distribution, captured by the θ vector,
and features representing the ’missing rich’ forms pressumed to affect the data, captured
by the η and ν vectors.

There are several virtues to integrating the replacing and/or reweighting corrections

3For simplicity and without loss of generality, only forms of the type m(.;η) ≡ m(yi;η) and ϕ(.;η) ≡
ϕ(yi;η) are considered in what follows.
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considered relevant into a model to be taken to the data as-is. Firstly, because the cor-
rection quantities are completely defined through η and/or ν this approach guarantees
that all corrections are done on the income concept and population being analyzed. This
avoids the issue of manipulating these concepts to be compatible with correction quan-
tities defined in terms of different income concepts or population. On a related note,
if external data informative on the forms and magnitudes of ’missing rich’ are available
then these should be introduced by specifying adequate representantions m−1(yObsi ;η) and
ϕ(yObsi ;ν) and setting η and ν to quantify these magnitudes.

A second virtue of this integrated approach is that it makes it feasible to compute
measures of uncertainty, such as standard errors, for the estimated parameter values.
Importantly, these measures of uncertainty can allow for probabilistic assessment of the
relevance of any corrections considered, as well as allowing for considering the uncertainty
in the estimated features of the population’s income distribution that also considers the
uncertainty surrounding the corrections quantities.

Thirdly, the ’building blocks’ nature of the framework allows for exploring several
candidate forms for replacing and/or reweighting corrections leaving other components
unchanged in a straightforward manner. In particular, this allows for studying the ro-
bustness of the estimated θ to different assumptions on the form of ’missing rich’ affecting
the data.

Finally, stating the model as a properly defined parametric distribution implies that
all observed units are re-weighted under any assumed form for φ(.;ν), either directly
through the reweighting of units prone to non-response in the numerator of (1) (i.e.,
through downweighting the density at their respective level of income with respect to the
population density.) or indirectly through the correction for missing observations in the
normalization constant of (1). This ’indirect’ reweighting accomodates for the fact that
if some units are under-represented in the data due to higher non-response probabilities
then necessarily the rest of units are over-represented and therefore need to be reweighted
under any correction for these non-response probabilities.

Making inference about the features of the population income distribution and the
’missing rich’ aspects of the data simultaneously poses several challenges. Issues of iden-
tifiability, in particular, require attention as a given model specified following (1) might
fit equally well a sample of observed incomes for very different values of the θ , η , and ν
parameters, making inference on them invalid. The type of continuous model expansion
underlying (1) to introduce uncertainty about the specific form and magnitudes of the
’missing rich’ issues affecting the data falls in line with previous empirical strategies within
Bayesian inference (e.g., see Nandram and Choi 2002). The use of prior probabilities on
parameter values under a Bayesian approach can overcome some identifiability issues.
The following section details a Bayesian inference approach for this purpose which can
exploit external information on the ’missing rich’ correction quantities in dealing with this.
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4 Parameter inference under ’missing rich’

Under the framework developed in the previous section, inference on the population’s
income distribution fy(.;θ) is made through inference on the values of the θ vector given
the sample of observed incomes yObs. This task is considerably less complex whenever
the correction quantities η and ν are given fixed values. However, it is rarely the case
that sound candidate values for these quantities are available. The central challenge in
making inference on θ is therefore to exploit the framework under an empirical strategy
that can properly estimate these parameters but also η and ν at the same time.

The goal is to learn about which values for the parameters θ ∈ Θθ ⊆ Rdim(θ), η ∈
Θη ⊆ Rdim(η), and ν ∈ Θν ⊆ Rdim(ν) are more likely to have generated the observed
data yObs than others within some region of possible values Θ ≡ Θθ ×Θη ×Θν .

In the Bayesian framework, this information takes the form of a posterior probabil-
ity distribution π(θ,η,ν|yObs) defined by two main components under Bayes’ theorem.
Firstly, all prior beliefs about the values of the (θ,η,ν) parameters must be ellicited
through a prior probability distribution p(θ,η,ν) over Θ. Secondly, for any fixed value
for the parameters (θ̃, η̃, ν̃) the model’s likelihood L(yObs|θ̃, η̃, ν̃) quantifies how likely
the observed data yObs is to have been generated from fyObs(.; θ̃, η̃, ν̃)4. π(θ,η,ν|yObs) is
then a probability distribution proportional to the prior probability distribution updated
(or reweighted, equivalently) by the likelihood function:

π(θ,η,ν|yObs) ∝ L(yObs|θ,η,ν)× p(θ,η,ν) (2)

As an evidence-weighted conversion of prior beliefs, the information contained in the
π(θ,η,ν|yObs) posterior distribution can be interpreted as all remaining uncertainty
on the values of (θ,η,ν) after having ’learnt’ from the data through the likelihood
L(yObs|θ,η,ν). Whenever the data are informative about these parameters, the posterior
distribution reflects less uncertainty around their values than that in p(θ,η,ν).

Estimating a posterior distribution π(θ,η,ν|yObs) for the model parameters faces
several complexities. As is usual in most Bayesian inference settings, it is rarely the
case that π(θ,η,ν|yObs) admits a known form given a model L(yObs|θ,η,ν) and a prior
p(θ,η,ν). This is typically circumvented by studying the posterior distribution through
samples generated to converge to π(θ,η,ν|yObs) under the Monte Carlo principle5 or the
Markov Chain Monte Carlo (MCMC) extension of this principle (e.g., see Gelman et al.
2013, Chapter 11).

A second complexity in estimating π(θ,η,ν|yObs) concerns the possible ’non-
identifiability’ of at least some of the parameters in (θ,η,ν). As an illustratory example
of this issue, consider a model specified following (1) with a parameter λθ ∈ θ ruling
the right tail of the fy(.;θ) income distribution and a replacing correction m−1(.;η)
with parameter λη ∈ η also affecting only the right tail. It can be the case that a same

4For example, in the case of yObs = {yObsi }Ni=1 being N independent observations their joint likelihood

follows L(yObs|θ,η,ν) =
∏N
i=1 fyObs(yObsi ;θ,η,ν)

5The Monte Carlo principle states that any quantity of π(θ,η,ν|yObs) which can be expressed as an ex-

pectation can be studied through a sufficiently large sample of J independent draws {(θ̃
(j)
, η̃(j), ν̃(j))}Jj=1

from this distribution (θ̃
(j)
, η̃(j), ν̃(j)) ∼ π(θ,η,ν|yObs)
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sample of incomes yObs may be equally well fit under two different parameter values

(θ̃, η̃, ν̃) ∈ Θ and (θ̃
′
, η̃′, ν̃ ′) ∈ Θ including (λ̃θ, λ̃η) and (λ̃′θ, λ̃

′
η) respectively. This can

render the model incapable of separately identifying variations in high incomes in yObs

that would occur with changes in λθ and those due to λη.

If yObs is not informative about differences in the respective likelihoods L(yObs|θ̃, η̃, ν̃)

and L(yObs|θ̃′, η̃′, ν̃ ′), then prior beliefs on these values will not be updated. The re-

spective posterior probabilities π(θ̃, η̃, ν̃|yObs) and π(θ̃
′
, η̃′, ν̃ ′|yObs) will therefore be

dominated entirely by differences in prior beliefs p(θ̃, η̃, ν̃) and p(θ̃
′
, η̃′, ν̃ ′). If available,

external information about the plausibility of (θ̃, η̃, ν̃) and (θ̃
′
, η̃′, ν̃ ′) may be exploited

to set an informative prior distribution p(θ,η,ν) giving a lower prior probability to
the one set of parameter values less compatible with this external data amongst the
two. Informative priors are a way of exploiting prior knowledge to justify differences in
posterior densities for parameter values where yObs is uninformative through the model
L(yObs|θ,η,ν).

Returning to the illustratory example above, consider an application of (1) as a model
for a survey’s sample on incomes yObs = {yObsi }Ni=1 integrating a GB2 income distribution
fGB2
y (.;θ) , θ = (α, β, p, q) with an LPU form for m−1(.;η) , η = (p̄, δ). LPU affects

only the tail above the p̄-th percentile of the income distribution, while the p and q
parameters of the GB2 distribution rule its right tail. This allows for identifiability issues
as described above, as there might be configurations ’trading’ values of p and q with
values of p̄ and δ while representing two observably identical income distributions. In
this example, external information might be introduced in the form of prior probabilities
by setting the marginal prior distributions for p̄ and δ around previous empirical findings
on ’missing rich’ issues in similar settings6

Several sampling algorithms can be devised to obtain samples {(θ̃(j)
, η̃(j), ν̃(j))}Jj=1

from π(θ,η,ν|yObs) under a model following (1) and an informative prior p(θ,η,ν).
The Metropolis-Hastings (MH) algorithm defines a type of MCMC sampler suitable
for estimating parametric income distribution models in several contexts (e.g., see
Chotikapanich and Griffiths 2000, Peters and Sisson 2006, Chotikapanich and Griffiths
2008).

A standard MH sampler for the joint parameter vector φ = (θ,η,ν) is possi-
ble following algorithm (1) below. Such an MH algorithm yields as output a sample

{θ̃(j)
, η̃(j), ν̃(j)}Jj=1 resulting from a global exploration of the support of π(θ,η,ν|yObs)

through local accept-reject steps. Any j-th, j = 1, ..., J , local accept-reject step is defined
by the MH acceptance probability:

ρ(j) = min

{
1,

π(φ̃
(j)|yObs)× g(φ̃

(j−1)
, φ̃

(j)
)

π(φ̃
(j−1)|yObs)× g(φ̃

(j)
, φ̃

(j−1)
)

}
, φ = (θ,η,ν)

6For example, in their study comparing household survey incomes to linked tax return data for Uruguay
Flachaire et al. (2022) find evidence of progressive under-reporting potentially affecting the survey data
above p̄ = .50. In studying similar linked data for the Austrian case, Angel et al. (2019) find evidence of
progressive under-reporting of wages potentially affecting their survey above the p̄ = .50 percentile. The
degree of progresiveness of under-reporting can be quantified in terms of δ under a linear approximation
to the observed under-reporting patterns.
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with g(φ̃
(j)
, φ̃

(j−1)
) denoting a candidate function from which the j-th candidate value

φ̃
(j)

is sampled, given the previously retained value φ̃
(j−1)

.

Algorithm 1: A Metropolis-Hastings algorithm (MH ).

1: Initialization:
2: Until L(yObs|φ(0)) > 0:

3: Sample φ̃
(0)

from p(φ)
4: Sampling: for j = 1, ..., J do

5: Sample φ̃
(j) ∼ g(φ, φ̃

(j−1)
) from the candidate g

6: Accept and store φ̃
(j)

with probability:

ρ(j) = min


1,

∝π(φ̃
(j)|yObs) under (2)︷ ︸︸ ︷

L(yObs|φ̃(j)
)× p(φ̃(j)

)× g(φ̃
(j−1)

, φ̃
(j)

)

L(yObs|φ̃(j−1)
)× p(φ̃(j−1)

)× g(φ̃
(j)
, φ̃

(j−1)
)


. e.g., if u(j) ≤ ρ(j) where u(j) is a draw from a Uniform(0, 1) distribution

otherwise store φ̃
(j)

= φ̃
(j−1)

end

A common choice of candidate function is that of the Adaptive Random-Walk
Metropolis (AM ) algorithm (Haario et al., 2001). In this case the proposal g ≡ gΣ is
defined by the following adaptive random walk process:

(θ(j),η(j),ν(j)) ≡ φ(j) ∼ gΣ(j−1)(φ, φ̃
(j−1)

)⇒ φ̃
(j)

= φ̃
(j−1)

+ ε̃(j)

ε(j) ∼ Nd(0,Σ
(j−1))

Σ(j−1) =

{
Σ(0) , if j ≤ J0

sd × 1
(j−1)

(∑(j−1)
i=1 φ̃

(i)
φ̃

(i)′ − i× φ̄φ̄′
)

+ sd × χ× Id , if j > J0 , 0 < χ� 1

with φ̄ denoting the mean value of all draws up to and including the (j − 1)-th and with
sd suggested, following Gelman et al. (1996), to be set to sd = 2.42

d
where d is the number

of parameters in φ7.

Under this proposal distribution the j-th candidate value φ̃
(j)

is obtained by sampling
from a multivariate Gaussian distribution centered at the previously retained draw

φ̃
(j−1)

and with covariance matrix Σ(j−1). Being initially set to a given matrix Σ(0), this
covariance matrix starts adapting exploiting all past draws after a sufficiently large initial
period J0 following the sample covariance matrix. An (AM ) algorithm can thus focus
on sampling more densely in regions near values φ̃ with high posterior density and less

7The addition of the diagonal matrix χ× Id is needed with an insignificantly small but non-zero χ to
assure the non-singularity of Σ(j−1) and assure the convergence of the MCMC sampling distribution to
π(θ,η,ν|yObs).
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densely in regions of low posterior density. It is also possible to extend the scope of the

local accept-reject exploration by sampling M candidates at once from gΣ(j−1)(φ, φ̃
(j−1)

)
in the spirit of the multiple-try Metropolis sampler of Liu et al. (2000).

Implementing the (AM ) algorithm requires being able to compute the like-
lihood function L(yObs|θ,η,ν). For a model following (1), the joint likelihood
for a sample of independent microdata yObs = {yObsi }Ni=1 can be computed as
L(yObs|θ,η,ν) =

∏N
i=1 fyObs(y

Obs
i ;θ,η,ν). However, a computable likelihood function

may not be available in several contexts, such as when data on incomes is only available
at group level (e.g., see Kobayashi and Kakamu 2019, Eckernkemper and Gribisch 2021).
A more general MCMC sampling algorithm, requiring only being able to simulate data
from a model following (1) is available through the Approximate Bayesian Computation
(ABC) approach (e.g., see Kobayashi and Kakamu 2019, Silva 2023).

ABC constitutes a class of simulation-based Bayesian inference methods which approx-
imate the unavailable likelihood L(yObs|θ,η,ν) through simulating data. This approxima-
tion requires a way to assess how closely the observed data yObs resembles data simulated
from the model ỹObs ∼ fyObs(.; θ̃, η̃, ν̃) for any given parameter values (θ̃, η̃, ν̃) ∈ Θ8. Fol-
lowing Silva (2023), this comparison may be done by representing yObs and ỹObs through
their respective empirical Generalized Lorenz curves (GLC, Shorrocks 1983) defined as9

GLCObs
k =

∑k
i=1 y

Obs
(i)∑N

i=1 y
Obs
(i)︸ ︷︷ ︸

sObsk

× 1

N

N∑
i=1

yObs(i)︸ ︷︷ ︸
µObs

=

∑k
i=1 y

Obs
(i)

N
, k = 1, ..., N , GLCObs

0 = 0

with sObsk denoting the cumulative income share up to the k-th observation in the ordered
sample and µObs denoting the sample average income.

Given the observed-data GLC, denoted {GLCObs
k }Nk=1, and the analogue GLC from a

simulated sample, denoted {GLCObs
k (θ̃, η̃, ν̃)}Nk=1, the overall degree of discrepancy be-

tween both empirical income distributions may be summarized by the following unidi-
mensional metric:

d(yObs, ỹObs) = d({GLCObs
k }Nk=1, {GLCObs

k (θ̃, η̃, ν̃)}Nk=1)

=
N∑
k=1

|(GLCObs
k −GLCObs

k−1)− (GLCObs
k (θ̃, η̃, ν̃)−GLCObs

k−1(θ̃, η̃, ν̃)|

which corresponds to the empirical Wasserstein-1 distance (Kantorovich, 1939) in the case
of microdata10. Explored in the context of ABC by Bernton et al. (2019), this distance
summarizes the absolute discrepancies between all order statistics across observed and
simulated data |yObs(i) − ỹObs(i) | , i = 1, ..., N .

In approximating L(yObs|θ,η,ν) for an ABC implementation of the (AM ) algorithm,
parameter values (θ̃, η̃, ν̃) ∈ Θ yielding simulated data ỹObs resembling yObs more closely

8For simplicity, it is assumed in what follows that simulated data are in the form of independent
microdata ỹ = {ỹObsi }Ni=1.

9For a grouped-data formulation see Silva (2023).
10See the derivations in Appendix A for a grouped-data implementation of this discrepancy.
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under d(., .) than others should be given larger importance. This is commonly introduced
exploiting a kernel function Kτ giving increasingly larger weight to parameter values with
a lower discrepancy ε ≡ d(yObs, ỹObs). A common ’smooth’ kernel for this purpose is the
Gaussian kernel (e.g., see Ratmann 2010):

Kgauss
τ (ε) =

1

τ
× 1√

2π
× exp

{
−1

2

( ε
τ

)2
}
, ε ≡ d(yObs, ỹObs)

. Under this kernel the ABC discrepancies are weighted following a Normal distribution
centered at zero (i.e., highest weight is given to values (θ̃, η̃, ν̃) ∈ Θ exactly reproducing
yObs), and with a standard deviation of τ .

The bandwidth parameter τ rules the strictness of the ABC approximation to
L(yObs|θ,η,ν) by defining how the weights Kgauss

τ (ε) decrease with an increase in the
discrepancy ε. The approximation is exact when τ → 0, as only parameter values
which exactly reproduce the observed income distribution are given a non-zero weight,
and τ → ∞ amounts to considering any and all parameter values in Θ equally likely
to have generated the observed data (i.e., the likelihood is approximated as a flat function).

Following Silva (2023), an ABC (AM ) algorithm with these settings can be devised
extending the Marjoram et al. (2003) ABC implementation of the (MH ) algorithm.
Algorithm (2) below presents a possible implementation, denoted (ABC-AM ) in what
follows.

At any j-th step, the (ABC-AM ) algorithm draws M candidate parameter values

{φ̃(m)}Mm=1 from the adaptive proposal gΣ(j−1) , simulates a single income distribution from
the model for each such candidate, and computes their respective discrepancies with
respect to the observed income distribution. The candidate with the lowest discrepancy

is then taken as the j-th candidate φ̃
(j)

, along with its associated ABC discrepancy ε̃(j),
in the same spirit as Clarté et al. (2021). Finally, the MH accept-reject rule is computed
with respect to the ABC approximation Kτ (ε̃

(j)) of the likelihood.

Introducing the ABC approximation Kτ (ε̃
(j)) to the likelihood L(yObs|θ̃(j)

, η̃(j), ν̃(j))
implies sampling from an ABC approximation to the target posterior distribution
πτ (θ,η,ν|{GLCObs

k }Nk=1). This posterior distribution might differ from that in (2) for
several reasons. One first source of differences lies on the quality of the approximation.
The main determinant of this is the choice for the bandwidth parameter τ . In practice,
the choice for this bandwidth results from calibrating the sampling algorithm through
several initial runs balancing strictness of the approximation and computational cost.

The second main source for differences between πτ (θ,η,ν|{GLCObs
k }Nk=1) and

π(θ,η,ν|yObs) concerns the possible loss of information due to summarizing the
data through the GLC and not through the microdata directly. If what can be
learnt about (θ,η,ν) from the data represented through the GLC is less than what
can be learnt from microdata then their respective estimated posterior distributions
will differ even when the ABC approximation to the likelihood is exact (i.e., when τ → 0).

Together, the parametric framework for income distributions under ’missing rich’
issues developed in the previous section along with the Bayesian empirical strategy
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Algorithm 2: An AM ABC (ABC-AM ) algorithm.

1: Initialization:
2: Set Σ(0) , J0 , M , τ
3: Until Kgauss

τ (ε̃(0)) > 0:

4: Sample (θ̃
(0)
, η̃(0), ν̃(0)) ≡ φ̃(0)

from p(φ̃)

5: Generate {GLCObs
k (φ̃

(0)
)}Nk=1 by simulating from fObsy (.; φ̃

(0)
)

6: Generate ε̃(0) = d({GLCObs
k }Nk=1, {GLCObs

k (φ̃
(0)

)}Nk=1)
7: Sampling: for j = 1, ..., J do

8: Sample {φ̃(m)}Mm=1 ∼ gΣ(j−1)(φ, φ̃
(j−1)

) from the candidate gΣ(j−1)

9: Generate {GLCObs
k (φ̃

(m)
)}Nk=1 by simulating from fObsy (.; φ̃

(m)
) , m = 1, ...,M

10: Generate ε̃(j) = min
m∈{1,...,M}

d({GLCObs
k }Nk=1, {GLCObs

k (φ̃
(m)

)}Nk=1) and candidate

φ̃
(j)

= arg min
φ̃

(m)

{d({GLCObs
k }Nk=1, {GLCObs

k (φ̃
(m)

)}Nk=1)}Mm=1

11: Accept and store (φ̃
(j)
, ε̃(j)) with probability:

ρ(j) = min

{
1,

Kgauss
τ (ε̃(j))× p(φ̃(j)

)× gΣ(j−1)(φ̃
(j−1)

, φ̃
(j)

)

Kgauss
τ (ε̃(j−1))× p(φ̃(j−1)

)× gΣ(j−1)(φ̃
(j)
, φ̃

(j−1)
)

}

. e.g., if u(j) ≤ ρ(j) where u(j) is a draw from a Uniform(0, 1) distribution

otherwise store (φ̃
(j)
, ε̃(j)) = (φ̃

(j−1)
, ε̃(j−1))

if j > J0 then
12: Update Σ(j)

end

end
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presented in this section allow for a broad range of applications. The following sec-
tion illustrates some of the main income distribution analysis possible under this approach.

5 Applications and examples

5.1 Applications on simulated data

Simulated-data applications can give insight on the performance of the ABC approach
in making inference on (θ,η,ν) in a controlled setting exploiting a model following (1).
Consider a hypothetical population’s income distribution following a GB2 distribution
yi ∼ fGB2

y (.;θ) ≡ GB2(α, β, p, q), with parameters α, p, and q ruling the shape of the dis-
tribution and β ruling the scale11. Typically, these parameters are the focus of the analysis
of the income distribution. However, if the available data yObs is presumably affected by
any of the ’missing rich’ forms considered in the previous sections, additional parameters
ruling assumed parametric forms for these issues must also be introduced into the analysis.

Assume that microdata samples from this population’s income distribution may be
jointly affected by high-income under-reporting following an LPU scheme with parameters
(p̄, δ) and high-income non-response following a right-truncation scheme with parameter
t where t� p̄. Noting that under this joint scheme12:

∂m−1(yObsi ; p̄, δ)

∂yObsi

=
1

1− δ × 1(yObsi > F−1;GB2
y (p̄;α, β, p, q))

and∫
fGB2
y (m−1(yObsi ; p̄, δ);α, β, p, q)× ϕ(m−1(yObsi ; p̄, δ); t)×

(
∂m−1(yObsi ; p̄, δ)

∂yObsi

)
dyObs = t

, a model for the observable data yObs can be obtained applying (1)13:

fyObs(y
Obs
i ;θ, p̄, δ, t) =

fGB2
y

(
m−1(yObsi ; p̄, δ);θ

)
×
(
∂m−1(yObsi ;p̄,δ)

∂yObsi

)
× ϕ(m−1(yObsi ; p̄, δ); t)∫

fGB2
y (m−1(yObsi ; p̄, δ);θ)×

(
∂m−1(yObsi ;p̄,δ)

∂yObsi

)
× ϕ(m−1(yObsi ; p̄, δ); t)dyObs

=
fGB2
y

(
yObsi + 1(yObsi > F−1;GB2

y (p̄;θ))×
(
δ(yObsi −F−1;GB2

y (p̄;θ))

1−δ

)
;θ
)
× 1(yObsi ≤ (1− δ)F−1;GB2

y (t;θ) + δF−1;GB2
y (p̄;θ))

t× (1− δ × 1(yObsi > F−1;GB2
y (p̄;θ)))

(3)
Equation (3) expands the GB2 distribution to allow for LPU (whenever p̄ � t and

δ > 0) and for non-response in the form of a right-truncation (whenever p̄� t < 1). For

11The GB2 distribution GB2(α, β, p, q) has pdf:

yi ∼ fGB2
y (yi|α, β, p, q) =

αyαp−1
i

βαpB(p, q)
(

1 +
(
yi
β

)α)p+q , (yi, β, α, p, q) ∈ R5
+

where B(p, q) denotes the Beta function, defined as B(p, q) =
∫ 1

0
tp−1(1 − t)q−1dt. See Chotikapanich

et al. (2018) for other parametric expressions under this distribution such as the Gini coefficient.
12In what follows, F−1;GB2(.;α, β, p, q) denotes the quantile function of the GB2 distribution.
13For simplicity of notation, θ = (α, β, p, q) in what follows.
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illustratory purposes, a first experiment of interest consists in estimating the posterior
distribution π(θ, p̄, δ, t|yObs) using the (ABC-AM ) algorithm through this model over
a sample of N simulated incomes yObs = {yObsi }Ni=1. In particular, this exercise is most
interesting when the simulated data is effectively affected by LPU and right-truncation
forms of ’missing rich’ jointly.

Benchmark parameter values can be set to
(
α, β

1000
, p, q

)
= (2.3, 10, 1.75, 1.25) and

(p̄, δ, t) = (.5, .15, .99) in this interest14. These correspond to a population income
distribution with an average income of 15054 and a Gini coefficient of 0.348. Data
simulated under this setting corresponds to a sample from a GB2 distribution which
starts being affected by LPU above the median with a slope of δ = .15 and which contains
no observations for units above the .99-th population’s income distribution percentile.

Data can be simulated in this specific case by sampling N
1+t

incomes from the GB2
distribution and applying the LPU and right-truncation transformations under the
benchmark values. This yields a single random sample of N observed incomes. The
sample used in this exercise was generated in this way, for a hypothetical population of
10000 units (i.e., N = 9900). Figure 3 below illustrates how a sample generated under
this setting relates to the theoretical observed incomes’ distribution fyObs under (3) and
to the respective complete population’s fGB2

y income distribution.

Several conditions must be considered in elliciting a joint prior probability distribution
for the model parameters p(θ, p̄, δ, t). Firstly, this joint prior distribution can be set as
the product of several marginal prior distributions:

p(θ, p̄, δ, t) = p(α)× p
(

β

1000

)
× p(p)× p(q)× p(p̄)× p(δ)× p(t)

Secondly, given the high flexibility of the GB2 distribution it is possible to represent
virtually any specific case of this distribution in a constrained range of parameter values.
In this sense, the marginal prior distributions for the GB2 parameters were set as follows:

α ∼ p(α) ≡ Gamma(1, 1)

β

1000
∼ p

(
β

1000

)
≡ Gamma(5, 2)

p ∼ p(p) ≡ Gamma(1, 1)

q ∼ p(q) ≡ Gamma(1, 1)

. This amounts to prior beliefs on the shape parameters α, p, and q following a
right-skewed Gamma distribution with mode at the value 1 and to prior beliefs on β

1000

following another right-skewed Gamma distribution with mode approximately at the
value 8.

14The benchmark value for β being 10000, it is here scaled by 1000 in the interest of numerical stability
when applying (ABC-AM ).
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Figure 3: Population, theoretical, and sample densities for model (3)
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Note: Three density curves describing the population’s GB2 income distribution (GB2 in legend), the observed
incomes density function following (3) (fyObs in legend), and kernel density estimate from the estimating sample

generated from this model (N = 9900) (fỹObs in legend). Benchmark parameter values taken as
(
α, β

1000 , p, q
)

=

(2.3, 10, 1.75, 1.25) and (p̄, δ, t) = (.5, .15, .99), with the left-most vertical dashed line representing the population’s
p̄-th income percentile and the right-most vertical dashed line representing the right-truncation point.

Thirdly, reflecting a strong prior belief on the presence ’missing rich’ issues in the data,
the (p̄, δ, t) parameters were given the following prior distributions:

p̄ ∼ p(p̄) ≡ Beta(8, 5)

δ ∼ p(δ) ≡ Beta(1, 5)

(1− t) ∼ p(1− t) ≡ Beta(1, 25)

These reflect empirically-relevant values for the literature using right-truncation forms
for non-response (e.g., see Jorda and Niño-Zarazúa 2019) and that exploring high-income
under-reporting in survey data (e.g., see Flachaire et al. 2022). Importantly, these
prior beliefs also give considerable probability to the ’complete data’ scenario where no
under-reporting or non-response issues affect the sample. This is, it is also made likely
a priori that the observed income distribution may be correctly represented by a single
GB2 distribution without introducing ’missing rich’ phenomena.

Finally, several constraints may be imposed on the ellicited joint prior distribution to
further constrain the parameter space. Imposing restrictions for finite variance on the
GB2 income distribution amounts to giving 0 prior probability to parameter values with
α < 2

q
and α < −1

p
. Additionally, because under-reported incomes have no relevance
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if they correspond to a true income above the truncation point, the restriction t > p̄ is
imposed15. Figure 4 below summarizes these ellicited prior distributions for each of the
model’s parameters.

Figure 4: Prior distributions
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Three central scenarios are explored in applying the (ABC-AM ) algorithm. Firstly,
to evidence the biases that these forms of ’missing rich’ induce if the issue is not taken
into consideration, a simple GB2 distribution is fit to the data. A second scenario consists
of estimating the income distribution parameters (α, β, p, q) under (3) conditional on
fixing the correction quantities (η,ν) = (p̄, δ, t) at their true values. Finally, a third
scenario consists of estimating all parameters in (3) elliciting prior uncertainty in (η,ν).
In all cases, the algorithm is set with parameters τ = 25, M = 10, J0 = 15000, and
Σ(0) = diag(.01, .1, .01, .01, .01, .01, .01), and J = 250000 MCMC samples are obtained,
discarding the initial 50000 considered as the burn-in period where the algorithm’s
adaptive terms are being calibrated. For computational ease, the simulated data taken as
estimating sample was summarized by its GLC computed at sample centiles {GLCObs

k }100
k=1.

Figure 5 below illustrates the goodness-of-fit of the resulting estimates for all three
scenarios explored, along with the estimating sample {GLCObs

k }100
k=1. The posterior

predictive distributions computed following {GLCObs
k (φ̃

(j)
)}100
k=1 , j = 1, ..., 200000

graphically match the estimating data very closely for all scenarios, with very narrow
95% highest posterior density intervals16 reflecting little uncertainty around the predicted
values. This close fit to the data even holds at the top 10% of the income distribution,
where the ’missing rich’ issues are progressively more present. An additional implication
of these results is that both the sample Gini coefficient and the sample mean income

15Formally, these restrictions impose the following joint prior distribution:

p(θ, p̄, δ, t) = p(α)× p
(

β

1000

)
× p(p)× p(q)× p(p̄)× p(δ)× p(t)×

3∏
i=1

C(i)(θ, p̄, δ, t)

with 
C(1)(θ, p̄, δ, t) = 1

(
α > 2

q

)
C(2)(θ, p̄, δ, t) = 1

(
α > − 1

p

)
C(3)(θ, p̄, δ, t) = 1 (t > p̄)

16Highest posterior density intervals are computed in what follows as the narrowest interval within the
estimated posterior distribution accumulating 95% of the mass of the distribution.
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are accurately fit in all three scenarios, as both are quantities of the GLC. Because the
GLC is determined jointly by all parameters in the model, however, this overall good fit
may hide important biases or differences in the estimated posterior distributions for each
parameter individually.

Figure 5: Posterior predictive estimates of the GLC
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uncertainty on these. 95% highest posterior density interval bounds in respective dashed
lines. Bottom: Same as top, focusing only on top 10% of the income distribution.
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Estimated ABC marginal posterior distributions for each of the income distribution
parameters in (3) are summarized in figure 6 below. As a first observation, all scenarios
yield posterior distribution estimates which significantly differ from the ellicited prior dis-
tributions, effectively updating these prior beliefs. The most relevant result is the strong
bias for all parameters affecting the estimates obtained without considering ’missing rich’
issues. In contrast, both scenarios correcting for these issues yield estimated posterior
distributions centered at their true value. Additionally, introducing uncertainty on the
(p̄, δ, t) parameters yields posterior distributions for the income distribution parameters
which reflect higher uncertainty than the respective estimates obtained under the known
true values for these.

Figure 6: Estimated ABC marginal posterior distributions for income distribution param-
eters
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For the scenario where (p̄, δ, t) are also to be inferred from the data, figure 7 below
summarizes the estimated posterior distributions for these parameters. The estimates
showcase a significant update of the ellicited prior distributions, with posterior distri-
butions centered at the true values for these correcting quantities. This result provides
support of the ABC approach as a fruitful empirical strategy for parametric inference
on income distributions through data affected by ’missing rich’ issues of uncertain
magnitude.

Figure 7: Estimated ABC marginal posterior distributions for ’missing rich’ parameters
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One additional illustration that this exercise provides concerns the impact of cor-
recting for ’missing rich’ issues in making inference on income growth and inequality
at the population level. Figure 8 presents the posterior predictive distributions of
the population’s mean income and Gini coefficient, both determined by the (α, β, p, q)
coefficients alone. These distributions evidence a significant under-estimation of both
growth (through the mean income) and inequality (through the Gini coefficient) when
the ’missing rich’ issues are neglected. Only the scenarios estimated under corrections
through (p̄, δ, t) achieve estimates closely reproducing the true value at the population
level. Despite all three estimates closely reproducing the estimating sample GLC, the
bias affecting parameter estimates when ’missing rich’ issues are not considered make
inference on the population’s income distribution invalid.

Figure 8: Posterior predictive estimates of population mean income and Gini coefficient
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(.5, .15, .99) correction parameters, and with prior uncertainty on these. Traceplots of the
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5.2 Real data applications:

As an illustratory example on real data, the European Union’s Statistics on Income and
Living Conditions (EU-SILC) provide an interesting household survey setting. EU-SILC
data provides information on people and households within the EU representative at the
country level, covering most countries in the EU yearly since 2005, and under a common
framework defining the exact definitions of incomes and populations to be surveyed.

Although several calibrations are done over EU-SILC samples and sample weights
for enforcing population representativeness on several dimensions, these are not done on
income variables. Recent analysis have explored ’missing rich’ phenomena on EU-SILC
data (e.g., see Hlasny and Verme 2018,Bartels et al. 2019, Angel et al. 2019, Carranza
et al. 2022, Ederer et al. 2022), suggesting this issue to be present with different
magnitudes in all countries and periods.

A key income variable in income distribution analysis on EU-SILC data is household
disposable income under the OECD-modified equivalence scale17 (HX090). This considers
all gross household incomes in the data net of regular taxes on wealth, regular inter-
household transfers paid, and regular taxes on income and social insurance contributions.

Although this aggregate variable includes definitions of income variables that are
common to all countries covered by EU-SILC, the sources from which the data is
obtained differ across cross-sectional waves of data and countries. In particular, while
some countries rely entirely on survey responses to measure these income variables,
other countries source these variable entirely or partially from administrative registers.
These differences in sources across waves and countries introduce large heterogeneities
in the quality of the data in terms of under-reporting as registers are considered more
reliable than survey responses. Additionally, the rising use of register sources determines
that for some countries some of the waves of data are sourced from surveys and other
waves are sourced from register. This can produce trends in the observed income
distributions across waves without necessarily reflecting trends of the true population’s
income distribution.

Information on non-response rates for each country and wave of EU-SILC is publicly
available through the corresponding quality reports published by the European Commis-
sion. Household non-response rates, in particular, can be informative about the overall
degree of non-response affecting an observed distribution of household incomes. These
rates are computed from a country-level household reponse rate, which is the product
of address contact rates (i.e., the share of households in the sampling frame that were
successfully contacted) and household response rates (i.e., the share of households in the
sampling frame that completed their survey after being successfully contacted).

Table 1 below summarizes EU-SILC samples for five selected countries (Austria,
Germany, France, Spain, and Italy) and for the 2005, 2007, 2011, and 2016 waves. The

17The OECD-modified equivalence scale computes a household’s size HX050 as:

HX050 = 1+0.5×(#household members aged 14 and over−1)+0.3×(#household members aged 13 or less)
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mean and Gini coefficient for household disposable income distributions summarize the
observable trends in growth and inequality across countries and waves. Because these
distributions are presumable affected by ’missing rich’ issues, these values serve as a
lower bound estimate for the corresponding population’s mean and Gini coefficient.
With many heterogeneities, all countries experienced mean income growth and, with
the exception of Italy, income inequality increased from 2005 to 2016. Finally, overall
household non-response rates show large disparities across countries and years in terms
of levels and trends, illustrating possible heterogeneities in the incidence of this issue on
the respective observed income distributions.

Table 1: EU-SILC sample descriptives for selected countries

Country Wave N Household non-response rate µObs Gini

Austria (AT)

2005 5146 0.38 20212.24 0.27
2007 6805 0.22 20405.17 0.28
2011 6182 0.23 23948.16 0.29
2016 5992 0.27 26274.72 0.28

Germany (DE)

2005 13078 0.35 18078.73 0.27
2007 14047 − 20084.84 0.31
2011 13473 0.21 21047.33 0.30
2016 13260 0.23 23424.24 0.31

France (FR)

2005 9745 0.16 18237.49 0.29
2007 10485 0.14 18423.25 0.27
2011 11348 0.18 23934.22 0.31
2016 11446 0.17 25788.05 0.30

Spain (ES)

2005 12865 0.28 12289.05 0.33
2007 12234 0.23 13520.56 0.32
2011 12993 0.22 16535.78 0.33
2016 14168 0.20 16151.14 0.34

Italy (IT)

2005 21874 0.15 16648.63 0.33
2007 20809 0.14 17422.81 0.32
2011 19234 0.25 18491.99 0.32
2016 20966 0.21 18839.71 0.32

Source: Own calculations from EU-SILC.
Note: EU-SILC samples for Austria (AT), Germany (DE), France (FR), Spain (ES), and
Italy (IT) from 2005, 2007, 2011, and 2016 waves. Only considers households with reported
household disposable income (HX090) of at least 1 euro. Household non-reponse rates as
reported in the publicly-available quality reports for each wave. Weighted-sample estimates
of mean incomes (µObs) and Gini coefficients.

Under the same settings as in the simulated data application, model (3) can be fit to
the EU-SILC samples through the (ABC-AM ) algorithm. Figure 9 below summarizes
the resulting estimates in terms of goodness-of-fit to the weighted-sample mean income
and Gini coefficient, as well as the estimated population values of these. As a first
observation, the obtained results reproduce very accurately the levels and trends of mean
incomes and Gini coefficients for all waves and countries considered.

Concerning the estimates of the population income distribution, a first observed
result is these do not match their sample counterparts for any case. This suggests that
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’missing rich’ corrections are required in order to reproduce the observed distributions so
accurately. Consequently, the estimated GB2 population income distribution parameters
imply levels of income growth and inequality above those observed in the data. These
population level estimates reproduce similar changes in mean incomes across waves
as those in the observed samples, with some increase in the uncertainty around these
quantities for the latter years in the case of France and Italy. Population estimates that
reproduce the same dynamic of mean incomes as in the observed sample can be indicative
of the total mass of incomes affecting the data due to ’missing rich’ issues changing very
little across waves.

As summarized by the Gini coefficient, the income inequality dynamics implied by
these estimates at the population level pose some contrasts with their sample counterpart.
In all cases inequality is estimated to be higher at the population level than what sample
estimates suggest. The non-overlap of the computed credible intervals across population-
and sample-level estimates of the Gini provide strong evidence of this. Another ob-
servation is that the uncertainty around the population Gini is relatively stable across
EU-SILC waves for all countries, with strong heterogeneities across countries. This
uncertainty is in some cases high enough to make inequality increases and decreases
across time equally likely, as is the case for the Austrian Gini between the 2011 and
2016 waves. In other cases, however, the estimates provide clearer evidence of significant
increases in income inequality across periods, as can be seen for France and Germany
across 2005 and 2016 waves.

Conditional on the assumed forms for ’missing rich’ issues in these applications,
the estimated parameters can suggest margins where the representativeness of the
data changes across waves. The detailed estimates in Appendix B suggest that the
right-truncation parameter t introducing high-income non-response in the model (3) is
estimated to be within the top .1% of the population income distribution in all waves and
countries. This can suggest that significant non-response issues are mostly concentrated
on households within this income group.

Concerning under-reporting issues, these estimates suggest strong heterogeneities in
the share of the population affected by progressive under-reporting and the progres-
siveness of under-reporting across waves and countries. As quantified by the estimates
for the p̄ and δ parameters these are estimated to range from .5401 to .8525, and
from .0779 to .3997 respectively across the selected EU-SILC samples. Taken together
with the estimates for t, these results illustrate that reproducing the observed income
distributions accurately under model (3) always requires jointly correcting for progressive
under-reporting of incomes above the median and for right-truncation non-responses
somewhere within the top .1% of the income distribution.
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6 Concluding remarks

Building on previous ’missing rich’ correction methods explored in the literature, a new
framework for parametric income distributions is proposed. This framework directly
deals with these corrections based on expanding pre-existing parametric distributions
with functional forms for both reporting and non-response mechanisms. As a model
for data on incomes presumably affected by ’missing rich’ this framework allows for
devising empirical strategies to infer jointly features of the associated population’s income
distribution and features of the ’missing rich’ issues in the data.

In dealing with the several constraints that must be faced by such an empirical
strategy, the ABC approach is proposed as a fruitful method. This Bayesian estimator
allows for updating prior uncertainty on the true population income distribution and the
often uncertain ’missing rich’ quantities affecting the observed data. This is achieved by
attempting to reproduce the observed GLC with simulated incomes from the specified
model.

The illustrative applications presented in this paper evidence some of the virtues of
the ABC approach for inference on the parameters of GB2 income distributions under
data affected by ’missing rich’. In a simulated-data setting, the analysis illustrates the
several biases affecting inference on a population’s income growth and inequality when
’missing rich’ issues affecting the estimating data are neglected. This experiment also
suggests the ABC approach to be fruitful in learning about uncertain ’missing rich’
quantities given informative prior beliefs about these.

Applications to cross-sectional EU-SILC data on incomes give insight on the
suitability of the framework in a typical household survey setting. The resulting
estimates imply that reproducing the observed income distributions accurately requires
considering both high-income under-reporting and non-response in all settings analysed.
The analysis also illustrates how inference on population income distributions can
be made under uncertain ’missing rich’ quantities, uncovering contrasts between some
of the observed trends at the sample level and those inferred for the respective population.

Further work seeking to understand the pitfalls of the proposed approach could
explore further setups in terms of the specified ’missing rich’ parametric forms. In
principle, if these forms are capable of representing similar patterns of under-reporting
and non-response, then estimates obtained under them should yield very similar results
at the population level.

Another possible line of analysis for future work concerns exploring this empirical
strategy in a linked-data setting. If comparing survey-sourced incomes and register-
sourced incomes evidences some form of progressive under-reporting and high-income
non-response, then estimates obtained under this framework using the survey data alone
should be found to reproduce ’missing rich’ patterns consistent with these.

In the specific case of the EU-SILC, an additional direction for future work concerns
integrating available external information on the representativeness of the observed
income distribution into the prior beliefs for the ’missing rich’ quantities. In particular,
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household non-response rates and information about the specific sources for the observed
incomes for a given wave of data and country can be exploited in setting up informative
prior probabilities. This could help in accounting for possible artificial trends arising
from changes in the sampling or income sources and not from actual changes in the
population’s income distribution.

Finally, a possible extension of this framework involves making inference on income
distributions of populations defined at aggregate levels such as regions or the globe.
Taking the mixture of all countries’ income distributions, estimates obtained accounting
for ’missing rich’ issues at the country level can be used to study patterns of income
growth and distribution on aggregate levels.
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Appendix A

Comparing income distributions through the Wasserstein dis-
tance.

When microdata on a sample of incomes {y(i)}ni=1 is available we can estimate empirical
quantiles of the distribution and base the inference on a parametric model’s parameters
for the population income distribution around fitting the model at these quantiles. This
is so because, quantiles are informative on both shape and scale of the distribution. This
allows for an ABC approach without the need of summarizing the data through a small
set of summary statistics.

The Wasserstein distance, originally developed in Kantorovich (1939), was recently
explored for the purpose of summary-free ABC inference in Bernton et al. (2019) and
Drovandi and Frazier (2021).

The Wasserstein distance between an income distribution fy with quantile function
F−1
y and a parametric distribution model for this distribution fy(.; θ) with quantile func-

tion F−1
y (.; θ) follows:

Wp(fy, fy(.; θ)) =

(∫ 1

0

d{F−1
y (λ), F−1

y (λ; θ)}pdλ
) 1

p

. In the case of p = 1 and d(x, y) = |x − y| this can be consistently estimated from the
sample of incomes {y(i)}ni=1 with empirical distribution f̂y and a simulated sample of equal

size from the model with empirical distribution f̂y(.; θ) as (e.g., Berthet et al. 2020):

W1(f̂y, f̂y(.; θ)) =
1

n

n∑
i=1

|y(i) − ỹ(i)|

This latter formulation can be interpreted as a metric comparing all sample order
statistics (i.e., all sample quantiles). In essence, this metric estimates the average
absolute difference between quantiles of the two distributions.

A metric ρ(f̂y, f̂y(.; θ)) may be specified under a similar logic comparing the first-order
differences of all empirical GLC coordinates (i.e., estimates of the quantiles by definition
of the GLC) between these microdata samples instead of order statistics directly then this
amounts simply to taking the Wasserstein distance as defined above:

ρ(f̂y, f̂y(.; θ)) =
n∑
i=1

|(GLC(y(i))−GLC(y(i−1)))− (GLC(ỹ(i))−GLC(ỹ(i−1)))|

=
n∑
i=1

∣∣∣∣( y(i)∑n
i=1 y(i)

)
×
(∑n

i=1 y(i)

n

)
−
(

ỹ(i)∑n
i=1 ỹ(i)

)
×
(∑n

i=1 ỹ(i)

n

)∣∣∣∣
=

n∑
i=1

∣∣y(i) − ỹ(i)

∣∣
n

= W1(f̂y, f̂y(.; θ))

39



This result supports the use of the Wasserstein-1 distance as a common unidimensional
discrepancy allowing for ABC inference either with microdata or grouped data summa-
rized through the GLC.

To compute the Wasserstein-1 distance on grouped data in the form of K groups’
GLC coordinates (i.e., observed incomes are split into K segments with bounds z(k) , k =
1, ..., K) we could have:

ρ(f̂y, f̂y(.; θ)) =
K∑
k=1

|(GLC(y(k))−GLC(y(k−1)))− (GLC(ỹ(k))−GLC(ỹ(k−1)))|

=
K∑
k=1

∣∣∣∣∣
(

ȳ(k) × n(k)∑K
k=1 ȳ(k) × n(k)

)
×

(∑K
k=1 ȳ(k) × n(k)

K

)
−

(
¯̃y(k) × n(k)∑K
k=1

¯̃y(k) × n(k)

)
×

(∑K
k=1

¯̃y(k) × n(k)

K

)∣∣∣∣∣
=

1

K

K∑
k=1

∣∣ȳ(k) × n(k) − ¯̃y(k) × n(k)

∣∣
=

1

K

K∑
k=1

∣∣(ȳ(k) − ¯̃y(k))× n(k)

∣∣
=

1

K

K∑
k=1

∣∣(ȳ(k) − ¯̃y(k))× n(k)

∣∣
=

1

K

K∑
k=1

∣∣∣∣∣
n∑
i=1

(y(i) − ỹ(i))× I(z(k) ≥ y(i) ≥ z(k−1))× I(z(k) ≥ ỹ(i) ≥ z(k−1))

∣∣∣∣∣
which, in the trivial case of having K = n groups (i.e., one observation per group)
corresponds to the expression for this distance on microdata.

These results suggest that in the case of grouped data we can exploit the discrepancies
between GLC curves through their first-order difference (i.e., through the approximation
to the Wasserstein-1 distance).

Geometrically, the Wasserstein-1 distance computes the average absolute difference
between the quantile functions of two distributions. When only grouped data is available,
this average distance could be approximated by first computing the area between both
empirical quantile curves within each interval of the grouped data, sum these areas across
all intervals and divide by the number of intervals. The approximation comes the fact
that in computing these areas the curves might cross within an interval and so we would
have no way of accounting for those differences which counteract within the interval (i.e.,
the absolute value is applied at the interval level in the grouped data expression above).
For a same population size n, however, the quality of the approximation always increases
with K.

Having access to microdata allows a computationally-cheap alternative in which user-
specified groups or bins can be defined for exploiting the grouped-data approximation to
the Wasserstein-1 distance. For instance, instead of grouping the data on sample deciles,
one could define broader groups for lower incomes and finer groups for higher incomes
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allowing for a particularly stricter fit on the upper tail of the distribution.
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Appendix B

EU-SILC application.

Table 2: ABC posterior distribution estimates for selected EU-SILC samples under (3)

Country Wave
θ η ν

α β
1000

p q p̄ δ t (%)

Austria (AT)

2005
4.4926 17.4491 0.7689 0.6995 0.6481 0.1394 99.9212

[3.4804;5.4754] [16.4642;18.3747] [0.5323;1.0381] [0.4948;0.887] [0.5588;0.7402] [0.0604;0.219] [99.8606;99.9774]

2007
4.2329 17.497 0.8706 0.7848 0.6917 0.1654 99.9987

[3.3264;5.6431] [16.3194;18.3236] [0.5311;1.1924] [0.5149;0.9549] [0.5881;0.809] [0.0536;0.2412] [99.996;100]

2011
4.4908 22.5277 0.6266 0.7225 0.6646 0.1145 99.9475

[3.6792;5.4883] [21.8214;23.2466] [0.4651;0.7952] [0.5291;0.8909] [0.5484;0.7882] [0.0464;0.1831] [99.9076;99.9806]

2016
4.1521 23.2533 0.7947 0.76 0.6726 0.2252 99.9989

[3.2317;5.3752] [21.3724;24.4954] [0.5194;1.1763] [0.5472;0.9347] [0.6233;0.7313] [0.1611;0.2871] [99.9969;100]

Germany (DE)

2005
4.1816 15.6159 0.8099 0.7151 0.5401 0.2318 99.9992

[3.243;5.0834] [14.7938;16.395] [0.5691;1.076] [0.5477;0.8938] [0.4771;0.6122] [0.1642;0.304] [99.9974;100]

2007
5.1701 17.1657 0.5078 0.4937 0.7639 0.2838 99.999

[4.464;5.8984] [16.7115;17.6088] [0.4107;0.6081] [0.4123;0.5753] [0.7268;0.7959] [0.2277;0.3407] [99.9966;100]

2011
4.2773 18.1032 0.6265 0.5993 0.7678 0.3997 99.9995

[3.5422;5.1335] [17.45;18.8769] [0.4699;0.8126] [0.4394;0.7026] [0.7408;0.7945] [0.3482;0.4484] [99.9982;100]

2016
4.3893 20.3698 0.5862 0.5884 0.773 0.3453 99.9995

[3.8794;4.8718] [19.8252;20.9009] [0.4868;0.6795] [0.5204;0.6677] [0.7527;0.7889] [0.3142;0.3776] [99.9985;100]

France (FR)

2005
2.9131 13.4956 1.6066 1.1055 0.6539 0.1383 99.9923

[2.3348;3.4636] [11.8554;14.9544] [1.0129;2.3224] [0.8676;1.3669] [0.573;0.726] [0.0741;0.2019] [99.9772;100]

2007
3.9296 15.6607 0.9887 0.8818 0.8525 0.1446 99.9892

[3.2279;4.6694] [15.1527;16.1589] [0.7278;1.2634] [0.6438;1.1277] [0.7985;0.9022] [0.0458;0.249] [99.9691;100]

2011
4.4173 17.8792 0.8398 0.6043 0.5919 0.0779 99.9853

[3.2817;5.1189] [16.9069;18.7775] [0.5991;1.1511] [0.464;0.748] [0.4136;0.716] [0.011;0.1361] [99.9702;99.9978]

2016
5.4397 18.4294 0.9048 0.5048 0.5747 0.2963 99.9996

[2.9187;8.3704] [16.2994;20.3333] [0.3647;1.6694] [0.2796;0.7936] [0.4268;0.7176] [0.2481;0.3755] [99.9988;100]

Spain (ES)

2005
1.6968 11.0949 2.2101 2.3738 0.7627 0.2002 99.9714

[1.2934;2.1302] [9.2004;12.9569] [1.2547;3.3318] [1.4735;3.414] [0.7141;0.8138] [0.1207;0.2806] [99.9194;100]

2007
1.6921 12.7219 2.2679 2.5442 0.7057 0.1481 99.9733

[1.2519;2.1322] [10.3523;14.8156] [1.2379;3.5877] [1.6421;3.6412] [0.637;0.7789] [0.0696;0.2237] [99.9272;100]

2011
2.5284 14.8681 1.0773 1.2021 0.8243 0.2938 99.9946

[2.1636;2.9317] [13.9019;15.8051] [0.8016;1.3675] [0.9435;1.4661] [0.7939;0.856] [0.2314;0.3629] [99.983;100]

2016
2.5723 17.8008 0.8678 1.4029 0.82 0.1248 99.9909

[2.2547;2.9011] [16.8279;18.7658] [0.7037;1.0366] [1.1189;1.6883] [0.7653;0.8743] [0.0639;0.191] [99.9731;100]

Italy (IT)

2005
3.4764 14.038 0.7882 0.7659 0.6818 0.2253 99.9889

[2.8887;4.0841] [13.2232;14.817] [0.5732;1.0109] [0.613;0.9184] [0.6362;0.7277] [0.165;0.2872] [99.9745;100]

2007
2.9708 14.818 0.9931 0.972 0.6871 0.2037 99.9596

[2.3382;3.6742] [13.5246;16.1084] [0.6399;1.4089] [0.7172;1.2408] [0.6274;0.7446] [0.132;0.2773] [99.9203;99.9933]

2011
4.1234 17.1416 0.5719 0.6735 0.6788 0.1961 99.9985

[3.4491;4.8556] [16.4914;17.757] [0.4288;0.7125] [0.5503;0.7979] [0.6229;0.7496] [0.1454;0.2515] [99.9946;100]

2016
3.3105 19.1832 0.7476 0.9856 0.5769 0.1915 99.9738

[2.319;4.7316] [18.358;20.2492] [0.381;1.1051] [0.5918;1.3342] [0.5323;0.6323] [0.0879;0.2723] [99.9444;99.9994]

Source: Own calculations from EU-SILC.
Note: Mean of ABC marginal posterior distribution estimates for all parameters of model (3) over J = 150000

samples {
(
θ(j),η(j),ν(j)

)
}150000j=1 from the (ABC-AM ) algorithm after 50000 burn-in samples. 95% highest pos-

terior density intervals in brackets. Estimates from EU-SILC samples for Austria (AT), Germany (DE), France
(FR), Spain (ES), and Italy (IT) from 2005, 2007, 2011, and 2016 waves. Only considers households with reported
household disposable income (HX090) of at least 1 euro.
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