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I want to tell you? Maximizing revenue in first-price
two-stage auctions

Galit Ashkenazi-Golan1 · Yevgeny Tsodikovich2,3 · Yannick Viossat4

Abstract
A common practice in many auctions is to offer bidders an opportunity to improve 
their bids, known as a best and final offer stage. This improved bid can depend on 
new information either about the asset or about the competitors. This paper examines 
the effects of new information regarding competitors, seeking to determine what 
infor-mation the auctioneer should provide assuming the set of allowable bids is 
discrete. The rational strategy profile that maximizes the revenue of the auctioneer is 
the one where each bidder makes the highest possible bid that is lower than his 
valuation of the item. This strategy profile is an equilibrium for a large enough 
number of bidders, regardless of the information released. We compare the number 
of bidders needed for this profile to be an equilibrium under different information 
structures. We find that it becomes an equilibrium with fewer bidders when less 
additional information is made available to the bidders regarding the competition. It 
follows that when the number of bidders is a priori unknown, there are some 
advantages to the auctioneer not revealing information and conducting a one-stage 
auction instead.
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1 Introduction

We analyze two-stage auctions. In the first stage, the bidders submit sealed bids that
are evaluated, and the best ones are chosen. The corresponding bidders move on to the
second stage, the Best And Final Offer (BAFO) stage, where they are only allowed to
increase their bids. The winner in the auction is chosen based on the BAFO stage bids
and pays his bid (first-price auction).

Two stages are common in procurement auctions, especially those relating to con-
struction contracts. For example, the Federal Transit Administration recommends a
BAFO stage in its manual1 as a means to conclude the auction and receive improved
offers. A BAFO stage is also used in the UK and France as the final stage of procure-
ment auctions (Noumba and Dinghem 2005), appears in large-scale infrastructure
projects around the world (Sauvet-Goichon 2007; Merrifield et al. 2002), and some-
times is used as a tie-breaking stage (Rintala et al. 2008). Furthermore, it is the US
government’s preferred method of buying goods, as suggested in Chelekis (1992) and
illustrated in Roll (2000), Finley (2001) and others.

The World Bank, in a procurement guide entitled “Negotiation and Best and Final
Offer (BAFO)”2 states that:

“BAFO is appropriate when the procurement process may benefit from Bid-
ders/Proposers having a final opportunity to improve their Bid/Proposal,
including by reducing prices, clarifying or modifying their Bid/Proposal, or
providing additional information. It is normally particularly effective when mar-
kets are known to be highly competitive and there is strong competitive tension
between Bidders/Proposers.”

Then the guide lists the objectives of the BAFO stage—the two main aims being
to increase understanding by bidders of the auctioneer’s requirements and to enhance
competition among bidders who havemade a proposal. Our paper relates to the second
aim and studies the ability of the BAFO stage to enhance competition. We found no
evidence in the literature for this effect. On the contrary, we show that adding a BAFO
stage may even reduce the profit of the auctioneer.

This paper was inspired by a consulting job. An auctioneer3 was seeking advice
on what additional information to privately provide to the bidders before the BAFO
stage in order to maximize her revenue. The auctioneer, an Israeli governmental body,
estimated that potential competitors are used to auctionswith aBAFOstage. Therefore,
the auctioneer wished to preserve this structure of the auction and optimize only
the information aspect.4 The additional information she now has (compared to the
beginning of the auction) is the first-stage bids, which can either be fully shared with

1 Best Practices Procurement Manual, Federal Transit Administration, November 2001.
2 http://pubdocs.worldbank.org/en/663621519334519385/Procurement-Guidance-Negotiation-and-

Best-Final-Offer.pdf.
3 Hereafter, as customary in auctions, the auctioneer will be referred to as a female “seller” and the bidders 
as male “buyers”, although in procurement auctions the roles are reversed.
4 In fact, the auction concluded with a big gap between the winner and the runner-up, but that was due 
to significant investment in efficient design by the winning competitor, which allowed it to submit a very 
competitive bid.
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the finalists, be partially shared (e.g., their first-stage ranking but not the bids), or not
at all.

In general, such information can help bidders learn either their private values or the
level of competition. While extensive literature has examined the former information
effect (e.g., Pesendorfer and Swinkels 2000; Swinkels 2001), little is known about
the latter. Our paper fills this gap in the literature by considering which information
if any, should be given to bidders between stages to maximize revenue. To isolate the
problem of how to stimulate competition via information, we chose a model of private
valuations. Naturally, if there are common unknown components to the valuation,
additional information teaches each bidder not only about the competition but also
about his private value, which can significantly affect future bids. Hence, in our model,
information about the other bids and bidders does not affect valuations. It only affects
beliefs regarding the second-stage bids and how competitive the rest of the bidders
might be.

This information can trigger two opposing effects. On the one hand, information
about competitors can drive prices up, in scenarios where a bidder learns his opponent
is a strong one and therefore must bid aggressively in the second stage to win. On the
other hand, the possibility of future information can reduce bids in the first round. A
bidder may choose to submit a lower bid in the first stage and increase it only if he
finds himself facing a strong competitor. Otherwise, the smaller initial bid becomes
the final one, increasing his profit while decreasing the revenue of the seller.

The main goal and contribution of this paper are to provide a theoretical answer
to a practical question and to deduce the conditions under which each of the above-
mentioned effects is dominant.More precisely, we seek to determinewhen the strategy
profile that maximizes the revenue of the seller is an equilibrium, and when it is the
unique equilibrium for different information structures.

We show that the strategy profile that maximizes the revenue of the seller is an equi-
librium for a large enough number of bidders, regardless of the information released
between the stages (Theorem 1). We compare the number of bidders required for this
strategy profile to be an equilibrium across different information structures. We find
that the less information5 is given to the bidders, the fewer bidders are required tomain-
tain this strategy profile as an equilibrium (Corollary 1). As a result, while designing
the auction and committing to an information structure, there are some advantages for
the seller to prefer an auction without revealing information between the stages, as
the number of participating bidders is still unknown. This challenges the conventional
wisdom that a BAFO stage is always beneficial.

Our result may appear to be in conflict with the linkage principle (Milgrom and
Weber 1982;Milgrom 1985) which states that committing to reveal information before
or along the auctionbenefits the auctioneer (even if the information is “bad”).As argued
by Milgrom andWeber (1982), revealing information decreases the uncertainty of the
participants in the auction regarding the actual value of winning the auction, thus
mitigating the winner’s curse and leading to more competitive bidding. In our model,
the bidders are certain regarding their valuation, and therefore there is no contradiction

5 Information structures are pair-wise compared using an adaptation of Blackwell (1951) to our model. See
Definition 1.
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between the linkage principle and the advantage we find in releasing no information.
This is in linewith the experimental results ofHaruvy andKatok (2013),who compared
sealed-bids and open-bids auctions and showed that the surplus of the seller is larger
when withholding information.

We conjecture that the revenue-maximizing equilibrium remains the unique equi-
librium under fewer bidders when less information is provided. This strengthens the
claim that whenever the number of bidders is not too small, providing additional
information between stages is not to the advantage of the seller, as it gives bidders
an opportunity to play an equilibrium where they bid less. As is frequently the case
(see, for example, Quint and Hendricks 2018), the uniqueness of this equilibrium can
only be proven in special cases. We provide such proof in Appendix B for a simple
scenario6 and test this hypothesis for a more complicated scenario using a computer
simulation.

The implication of our results, at least for a large number of bidders, is that informa-
tion provided before the BAFO stage might decrease the revenue of the seller. Hence,
when the sole purpose of the BAFO stage is to encourage competition, providing no
information tends to be better for the seller. It also renders the BAFO meaningless.
Since the bidders learn nothing between stages, the optimal strategy is to bid the same
amount in both stages. In such situations, there is an argument for avoiding the BAFO
stage altogether, which can reduce costs and prevent delays (Ahadzi and Bowles 2001;
Dudkin and Välilä 2006).

This result holds as long as the bidders are rational, which is a standard assumption.
We show in Lemma 2 that increasing the bids even without additional information is
sub-optimal: if it is profitable for the bidder to submit a better offer in the second stage
without receiving additional information, he might just as well submit it in the first
stage and increase his chances of winning, as nothing changes between the stages.
In practice, however, bidders might use such sub-optimal strategies, as the following
question from theFAQsection of thewebsite of theUSFederal TransitAdministration7

demonstrates:

Q: Is it permissible for an offeror to lower its price for the Best and Final
Offer (BAFO) without any basis for the change, other than trying to beat out
the competition, or does the price reduction have to be based on changes or
other clarifications discussed during the presentation?We are participating as an
offeror and have been asked for a BAFO.
A: Yes, the basis for change may be solely the desire to increase your chances
of winning the contract award by lowering your price. If the contract you are
competing for is a cost-reimbursement type contract, the procuring agency may
well ask you for your rationale in lowering the original cost estimates to do the
work. [...]

Our analysis differs from common practice in the auction literature. Instead of
finding equilibrium strategies in a given auction or finding the optimal mechanism

6 We consider only pure strategies and compare only the two extreme information structures: revealing all 
the information or revealing none.
7 https://www.transit.dot.gov/funding/procurement/third-party-procurement/best-and-final-offer.
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for specific settings, we solve an implementation problem. In our work, a particular
strategy profile, the revenue-maximizing profile, is desired and we construct an infor-
mation structure in which this profile is an equilibrium in a two-stage auction with
discrete bids and sufficiently many bidders. For a small number of bidders, multiple
equilibria can exist, including equilibria with mixed actions or relatively low bids. The
example in Sect. 4.1 shows that the optimal information structure in an auction with a
small number of bidders depends on the fine details of the value distribution.

Moreover, while the literature suggests that a second-price sealed-bid auction is
optimal (in terms of revenue for the auctioneer) for our setting (Myerson 1981), this
type of auction is not widely used. Two-stage auctions, however, are common. The
optimal two-stage auction design when the values might be correlated was explored
in Perry et al. (2000), who considered a model where the second stage is a second-
price sealed-bid auction. The optimal information to be released by the auctioneer
in a two-stage auction where the second stage is a second-price sealed-bid auction
was investigated by Ganuza (2007). Our research is therefore restricted to the more
common auction structure, where the second stage is a first-price sealed-bid auction.
As far as we know, this model, particularly the question of the optimal information
structure, has not previously been explored.

The remainder of the paper is organized as follows. This introduction is followed
by a short survey of related literature and findings regarding multi-stage auctions
and auctions with a large number of bidders. Section2 formally presents the model
and the various information structures. In Sect. 3 we present two useful equivalence
lemmas,whichhelp simplify the analysis of auctionswhere information is not revealed.
Section4 demonstrates the model through three examples and sets the ground for the
main results, which are presented in Sect. 5. Section6 includes the concluding remarks
and a discussion of the remaining open questions. To improve readability, long proofs
are relegated to Appendix A.

A partial answer regarding the uniqueness of the equilibrium is given in Appendix
B. We then provide several additional results in slightly different settings than the
main model of the paper. In Appendix C we present a more general but less intuitive
assumption regarding the joint distribution of the private values that remains consistent
with our results. Finally, in Appendix D we discuss auctions with a continuum of
private values and possible bids. We show that in the continuous case, for any number
of bidders, there is no symmetric efficient equilibrium in pure strategies when all
information is revealed between the stages. Thus, in the continuous case, as in the
discrete, there are good reasons for not revealing information.

1.1 Related literature

This paper examines multi-stage auctions, particularly those that involve a sufficiently
large number of bidders.When a large number of bidders participate in an auction, it is
intuitively clear and theoretically understood that, under rather general assumptions,
the strong competition drives the revenue of the auctioneer up (Wilson 1977), followed
by Milgrom (1979), showed that in a first-price sealed-bid auction with affiliated
values, as the number of bidders increases, the winning bid converges to the value
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the winner attributes to winning the auction. This mechanism is not only efficient but
leaves the entire economic surplus in the hands of the auctioneer.8

The importance of the number of bidders to the revenue of the auctioneer was
highlighted by Bulow and Klemperer (1994), who showed that the marginal revenue
provided byone extra bidder could exceed the one fromchoosing the optimal allocation
mechanism. Another reason for analyzing auctions with many bidders was stated in
Wilson (1985) andNeeman (2003): it allows for lighter assumptions regarding bidders’
knowledge of features such as the exact number of bidders or the distribution of their
valuations. Often, bidders only need to know that there is a large number of participants
in the auction. Furthermore, in many settings, the exact equilibrium strategies are hard
to compute, whereas the asymptotic strategies are more straightforward, as illustrated
by Bali and Jackson (2002) among others.

Our results show that it might be preferable to withhold information and maybe
even conduct a single-stage auction instead of a multi-stage. This is true in our setting
and particularly relies on the assumption of private values. Without it, there are other
reasons to employ a two-stage auction. One such reason is for screening purposes:
the auctioneer screens out bidders that do not meet some minimum quality or price
standards. In the second stage, she runs an English auction among the remaining
bidders. Thus, the purpose of the first stage is to ensure that the good provided meets
the minimum requirements, and the only remaining issue, the price, is settled in the
second stage.

Screening can also serve the purpose of limiting competition to encourage bidders
to participate in an auction with entry costs. For example, in indicative bidding (Ye
2007; Quint and Hendricks 2018) the seller asks bidders to submit non-binding first-
stage bids to evaluate their interest in the good. She then chooses the best bidders to
proceed to the second stage, in which they prepare their “real” bid. Since preparing the
second-stage bid is costly (requires time, effort, learning about the asset, and so on),
it is important to reassure the bidders that their chances of winning are high enough
to justify the entry cost. This cost also discourages bidders from bidding high just to
qualify, as they are not sure that they want to participate in the second stage.

Multiple stages can also help bidders learnmore about their own private values. This
happens when the bidder does not know for certain his own valuation (but rather has
an evaluation of it given his information) and the values are correlated (as in Milgrom
and Weber 1982). In this case, the information about the bids of others changes the
bidder’s own evaluation of the gain in winning the auction. In such settings, a sealed-
bid first-price auction is significantly different from an English ascending auction. In
the former, bids are placed according to initial evaluations of the values, there is no
updating, and the chances of overbidding and suffering from the “winner’s curse” are
higher. In contrast, the constant updating of a bidder’s estimation of the value during
an English auction, based on the current price and the number of buyers that quit at
each level, can reduce bids and prevent such problems (Perry et al. 2000).

Similarly, two-stage auctions can be used to extract information in asymmetric
settings, when there is one bidder more informed than the others (and possibly the

8 More about efficiency in large auctions can be found in Pesendorfer and Swinkels (2000), Swinkels 
(2001), Bali and Jackson (2002), Fibich and Gavious (2010) and the references therein.
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seller), such as in the case of privatization auctions (Caffarelli 1998; Perry et al. 2000;
Dutra and Menezes 2002; Commission 2007). This can work even with non-binding
first stage bids (Boone and Goeree 2009), since the more informed bidder has an
incentive not to bid too low and be eliminated when the asset is costly, and by doing
so, reveals some of his information. In particular, when the second stage is a second-
price auction between the two highest bidders, Hernando-Veciana and Michelucci
(2018) showed that in equilibrium the more informed bidder submits his private value
in both stages.

2 Themodel

We consider a two-stage auction with private valuations. In the first stage, all bidders
submit their bids. The two highest bidders proceed to the second stage, called Best-
And-Final-Offer (BAFO) stage. The first-stage bids are binding in the sense that each
participant in the BAFO stage must bid at least as high as his first-stage bid. The
highest bidder at the BAFO stage wins the auction and pays his second-stage bid. In
both stages, we use a symmetric tie-breaking rule.

Formally, let N = {1, . . . , n} be the set of n � 3 bidders, V = {
v1, . . . , vK

}
the set

of possible private valuations (types) in ascending order and Fn the joint distribution
assigning types to bidders. In Assumption 1 we explain how Fn changes with n. This
assumption is slightly generalized in Appendix C.

After observing his own valuation, bidder i places his first-stage bid, b1i , chosen
from a given set of allowable bids B = {

b1, . . . , bM
}
(in ascending order). Presetting

a set of allowable bids is a common practice, as the auctioneer prefers bids to be
“rounded” or in fixed increments; moreover, this is a natural limitation as the currency
is not continuous. We assume that the set B is rich enough so that for any v j ∈ V ,
there is a bid strictly between v j−1 and v j (for this matter, v0 = −∞). The quantities
β j = max

{
b ∈ B|b < v j

}
, are thus well defined.9

The two10 bidders who bid highest in the first stage move on to the BAFO stage.
These two bidders receive information from the auctioneer regarding the results of
the first stage before the second stage starts. An information structure is a function
from the set of first-stage bids to a set of vectors of messages (one for each bidder).
Let �i be the set of messages bidder i may receive. The information structure is
� : Bn → �(�1 × . . . × �n), where as usual, for any finite set X , �(X) denotes
the set of probability distributions over X . The realized vector of messages is denoted
by (θ1, . . . , θn) ∈ �1 × . . . × �n .

In the second stage, the two bidders place a second bid (once again, within B),
the only restriction being that it must be at least as high as their first bid. Hence, a
behavioral strategy of bidder i is a function σi = (σ 1

i , σ 2
i ) with σ 1

i : V → �(B) and
σ 2
i : V ×B×�i → �(B). The strategy profile of all bidders is denoted by σ = ×

i∈N
σi

9 If we remove the richness of allowable bids assumption, the only thing lost is the efficiency of the
auction—the item might no longer go to the bidder who values it highest since the bids sometimes cannot
differentiate between bidders with different private values.
10 Our results can be generalized to cases where more than two bidders proceed to the BAFO stage.
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and for each i , the strategy profile of all bidders except i is denoted by σ−i = ×
j �=i

σ j .

The highest bidder at the second stage wins the auction (ties are broken randomly with
equal probabilities). The utility for the winner is the difference between his valuation
and the amount he pays—his second-stage bid.

We wish to compare information structures. To this end, we adjust the partial order
over experiments introduced by Blackwell (1951), which reflects the amount of infor-
mation provided by the experiment. Intuitively, an experiment A is more informative
than an experiment B if there exists a garbling function from the results of experiment
A to the results of experiment B which generates the same distribution over the results
as experiment B. For example, flipping a coin and observing the result is more infor-
mative than letting someone else do it and then report the true outcome with some
probability. This second step of telling the truth or not is exactly the above-mentioned
garbling function.

Definition 1 The information structure � is more informative than the information
structure �′ if for every bidder i ∈ N , and every strategy profile of the others σ−i ,
there exists Li : �i × B → �(�i ), such that for all θ ′

i ∈ �i and all first-stage bids
of bidder i , bi ∈ B,

Pr
�′(θ

′
i |σ−i , bi ) =

∑

b−i∈Bn−1

∑

θi∈�i

Pr
σ−i

(b−i )Pr
�

(θi |b−i , bi ) · Pr(Li (θi , bi ) = θ ′
i ). (1)

The right hand side of Eq. (1) can be written compactly as Pr�(θ ′
i |σ−i , bi , Li ).

A more natural definition might be to assume that Li depends solely on (θi , bi ) and
is independent of the strategy of the others σ−i . This is similar to other adaptations
of Blackwell (1951) to repeated games with imperfect monitoring, such as the ones
of Lehrer (1992), Hillas and Liu (2016), and Ashkenazi-Golan and Lehrer (2019).
All our results hold under this stronger definition, since it implies Definition 1. The
stronger definition, however, is less applicable as it allows fewer information structures
to be pair-wise compared. Moreover, when discussing the equilibrium strategies or a
non-informative information structure (Definition 2 below), we assume that σ−i is
known to bidder i , so fitting a garbling function to each strategy σ−i does not require
additional information that bidder i does not have.

In this paper, we compare more informative information structures to less
informative ones. In particular, we compare informative information structures to non-
informative ones.11 In the context of this paper, the bidders may use their information
when deciding on their second-stage bids. In equilibrium, a bidder optimizes his gain
at the second stage given the joint distribution of values, his value, his first-stage bid,
his opponents’ strategies, and the signal he observes between the stages. Given these,
a bidder who proceeds to the second stage rationally forms his beliefs regarding his
opponent’s bid at the second stage based on Bayes’ Rule, and then he best responds
to these beliefs. An information structure is non-informative if all signals conveyed
with positive probability do not affect these beliefs.

11 Often referred to as “with information” and “without information”, respectively.
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Definition 2 Suppose that bidder i with private value vi is selected to proceed to
the second stage after bidding b1i , and let Bopp

i be the random variable that repre-
sents the bid of the other bidder in the second stage. An information structure � is
non-informative if the conditional distribution of Bopp

i does not change due to the
information relayed to bidder i . More precisely, if ∀Fn,∀σ−i ,∀θi ∈ �i ,∀b ∈ B :

Pr(Bopp
i = b|Fn, vi , b1i , σ−i , θi ) = Pr(Bopp

i = b|Fn, vi , b1i , σ−i ), (2)

where σ−i is the strategy profile of everyone but bidder i . We implicitly assume that
we condition only on events of non-zero probability, so given Fn, vi , b1i , σ−i , bidder
i has a non-zero probability to proceed to the second stage (and it happened) and the
∀θi ∈ �i part refers only to messages with non-zero probability given the first-stage
bids.

Otherwise, the information structure is informative.

A non-informative information structure is such that the message from the auction-
eer does not change the belief of bidder i regarding the distribution of the second-stage
bids of the other finalist. The simplest non-informative information structure is that
where for all i , �i is a singleton and the same message is conveyed to the bidders
regardless of the actual bids. In Lemma 1 we present a simplifying characterization
of non-informative information structures by showing that an information structure
is non-informative if and only if the information to bidder i is independent of the
first-stage bids of the others (it can depend on his own bid).

From Definition 1, it is clear that the most informative information structure is the
one that reveals all the first-stage bids to the finalists, which is all the information that
the seller has. We refer to this structure as the fully-informative information structure.
Given the bid of bidder j , bidder i can update his belief about j’s private value and,
combined with σ−i , his belief regarding j’s second-stage bid.

What we are examining here is the effect of the number of bidders and the infor-
mation structure on the equilibrium strategies and the equilibrium payoff. Therefore,
and although Lemma 2 and Theorem 2 are true in general, the solution concept we
study is symmetric equilibrium, i.e. an equilibrium where all bidders with the same
private value use the same strategy.

It remains to specify how the joint distribution of valuations changes when the
number of bidders changes, that is, how Fn changes with n. Clearly, this is not an
issue if the valuations are i.i.d. Otherwise, it is essential to add an assumption on the
conditional distribution of the other valuations given a particular bidder who has the
highest private value.

Let Fn be some distribution and for every k ∈ {1, . . . , K }, we denote by Dk the
event that the types of all bidders are at most vk . Given Dk , and given that the valuation
of a specific bidder i is vk , we denote by δki (Fn) the minimal probability of each other
bidder to have the type vk , given the types of some of the other bidders.More precisely,
the minimization is done in the following manner: given Dk , given that bidder i has
a valuation vk , and given the valuations of every possible subset of bidders that does
not include (another specific) bidder j , the latter has a probability of at least δki (Fn)
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to have the type vk , we denote,

δki (Fn) = min
j∈N min∅�=E⊆N\{i, j}Pr( j has type vk |Dk, i has type vk,

all types of bidders in E are known)

The bound over all the players is δk(Fn) = min
i∈N δki (Fn) and the uniform bound over

all k is defined by δ(Fn):=mink δk(Fn).
For our results to hold valuations can be correlated, but not too correlated in the

sense that type vk cannot be ruled out for bidder j , regardless of the types of all the
other bidders. For example, when the valuations are i.i.d. (with full support over V ),

δk(Fn) = pk∑

j�k
p j , where p j is the probability of each bidder to have type v j , and

δ(Fn) = min
k

pk∑

j�k
p j .

We assume that as n increases, these lower bounds are bounded away from 0:

Assumption 1 The family of distributions Fn has uniform full support, i.e.

δ:= lim inf
n→∞ δ(Fn) > 0. (3)

As demonstrated above, this condition is fulfilled when the valuations are i.i.d. with
full support over V , since δ = δ(Fn) = min

k

pk∑

j�k
p j > 0.

We condition on Dk to focus on the bidders with the highest realized type since 
typically, when the number of bidders is large or when the bids are increasing with the 
valuation, in equilibrium, a bidder with a high private value always outbids a bidder 
with a low private value. A bidder with a private value vk (for k < K ) has a positive 
probability to win only when Dk occurs. We formalize this reasoning in the Results 
section (Sect. 5).

The intuition behind the uniform full support assumption can be taken from the 
following pathological example. Assume Fn is such that it assigns to one of the bidders 
the highest type and to the rest the lowest type. The high-type bidder knows that he 
is the only one, and can bid a very low bid that is still higher than the value of the 
others. This remains true regardless of n or the design of the auction. To ensure that 
this high-type bidder feels competitive pressure to increase his bid as the number of 
bidders increases, the expected number of other high-type bidders should not go to 0 
with n. This is the case under the uniform full support assumption since the expected 
number of type k bidders is at least nδ.

Our results still hold with slightly weaker assumptions than the uniform full support 
assumption, as long as the valuations keep a certain level of randomness and never 
become too correlated. Such weaker assumptions tend to be less elegant and harder 
to verify, as can be seen in Appendix C, where we provide one possible relaxation of 
the uniform full support assumption. This concludes the description of the model on 
the bidders’ part.

10



As for the seller, she utilizes her role as a mechanism designer that chooses an
information structure to maximize her expected payoff in the resulting auctions. We
assume that the bidders adopt equilibrium strategies in the auction based on the infor-
mation structure and neither use weakly dominated strategies nor bid their valuation
or above.12 Hence, she wishes each bidder to bid his highest possible bid, i.e. his
corresponding β i in both rounds. Such a strategy will be referred to as the revenue-
maximizing strategy and denoted by σ ∗. The strategy profile in which all bidders
use the revenue-maximizing strategies is called the revenue-maximizing profile and is
denoted by�∗. Themain questions that we explore in this paper are when�∗ is indeed
an equilibrium and when it is the unique one (minding the restriction to non-weakly
dominated strategies that never bid above the private value).

3 Equivalences in auctions without information

We start our analysis with two useful lemmas regarding non-informative information
structures, which significantly simplify their analysis. First, we show that the signals
conveyed to bidder i in a non-informative information structure cannot depend on the
bids of the others. In Definition 2 we only prohibited them from depending on the
distribution of the second stage bid of the opponent. In theory, this still allowed them
to depend on low (“losing”) bids. We show that is not the case.

A direct result of this independence is Lemma 2, which states that in a non-
informative information structure, a strategy that changes the bids in the second stage
is weakly dominated by one that does not. Hence, when considering only equilibria in
non-weakly dominated strategies, it is possible to assume that bidders do not change
their bids in the second stage, which makes this stage redundant. This significantly
simplifies the analysis, as it effectively turns this auction into a single-stage first-price
auction.

Lemma 1 An information structure� is non-informative if and only if for every bidder
i with private value vi that bids b1i in the first stage, the distribution of the i th element
of �, given b1i and conditioned on bidder i reaching the second stage, is independent
of all the other bids.

Proof See Appendix A.1. ��
Using this lemma we can establish that the least informative information structures

are the non-informative ones (clearly, they are all equivalent). Indeed, suppose that �′
is a non-informative information structure. According to the lemma, the signals that
bidder i receives are independent of the bids of the others, so for each θ ′

i ∈ �i , the left-
hand side of Eq. (1) is Pr�′(θ ′

i |σ−i , bi ) = ∑
b−i∈Bn−1 Prσ−i (b−i )Pr�′(θ ′

i |b−i , bi ) =
Pr�′(θ ′

i |bi ). For each information structure � we can define Li according to

12 For bidder i , bidding vi or higher in the first round is weakly dominated. Bidding vi or higher in the
second round is also weakly dominated unless player i knows that some other player j made a first-round
bid b1j � vi . In that case, there is no risk for bidder i in bidding b21 = vi (if this is an allowable bid) or

even b2i > vi as long as b2i < b1j . Allowing for such behaviors would however lead to a rather spurious
multiplicity of equilibria.
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Li (θ, bi ) = Pr�′(θ ′
i |bi ) (independent of θ ) for which the right-hand side of Eq.(1)

reduces to Pr�′(θ ′
i |bi ), and the equation holds.

A direct result of this lemma is that in a non-informative information structure, the
bidders do not need to wait for the information given by the seller if their second-
stage bid depends on it. After choosing his first-stage bid, a bidder already knows
the distribution of the signals he is going to obtain (as it is independent of the other
bidders), so he can mimic this information structure himself and select his second-
stage bid before starting the auction. By submitting this (higher) second-stage bid
already in the first stage (and not changing it afterward), he increases his chances of
being selected for the second stage without affecting the expected payoff if selected.
This logic, which makes the second stage redundant, is summarized in the following
lemma.

Lemma 2 If � is non-informative, then each strategy in which the second bid differs
from the first is weakly dominated by a strategy in which the second bid equals the
first.

Proof See Appendix A.2. ��
We conclude that in a non-informative information structure, all strategies that 

change the bid in the second stage are weakly dominated by strategies that do not. If 
we limit our discussion to only non-dominated strategies, all bidders use the same bid 
in the first and second stages, hence only the first stage matters. As a result, a non-
informative information structure can be analyzed as a first-price single-stage auction, 
as in the examples to follow.

4 Examples

We present three simple examples to illustrate the model and provide key insights 
into our results. The examples demonstrate how the revenue-maximizing information 
structure depends on the number of bidders.

The first example (Sect. 4.1) demonstrates that when different information struc-
tures are compared, the results vary with the number of bidders. We show that with a 
small number of bidders, the optimal information structure for the auctioneer depends 
on the exact distribution of valuations. In particular, the fully-informative information 
structure can be better. However, with a larger number of bidders a non-informative 
information structure becomes optimal. The next question we address is how large 
the number of bidders needs to be to ensure that the non-informative structure is 
optimal. The second example (Sect. 4.2) suggests that this number is not necessarily 
very large. Moreover, we show that for a large enough number of bidders, both infor-
mation structures are equivalent: under both structures, the only equilibrium is the 
revenue-maximizing strategy profile.

The third example (Sect. 4.3) adds a positive correlation between the private values 
to the model presented in Sect. 4.2. We show that this additional correlation increases 
the competitive pressure on the bidders and therefore reduces the number of bidders 
required for �∗ to become an equilibrium in all information structures.
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Fig. 1 Possible private values and bids for the example described in Sect. 4.1

4.1 Small number of bidders

Suppose there are n = 3 bidders, two valuations V = {vL = 0.01, vH = 1}, and four
possible bids B = {0, 0.33, 0.66, 0.99}. The probability of each bidder having a high
valuation is p = 0.01, independent of the other bidders. Clearly, a bidder with a low
valuation bids b1 = 0 in all equilibria, and the rest of the discussion refers only to the
actions of bidders with the valuation vH .

We compare the two extreme information structures: a non-informative information
structure and the fully-informative information structure. Claim 1 shows that the non-
informative structure is not revenue-maximizing: there is no symmetric equilibrium
where a bidder with a high valuation bids higher than b2 = 0.33 with a positive
probability. The unique symmetric equilibrium, in this case, is the one where a high
valuation bidder bids b2 = 0.33 in both stages.

Claim 1 In a non-informative information structure, the only symmetric equilibrium
in non-weakly dominated strategies is that where a high valuation bidder submits the
bid b2 in both stages.

Proof Fix an equilibrium. Asmentioned above, it is easy to see that in this equilibrium,
all low-type bidders must bid 0 in both stages. Now consider a bidder with a high
valuation.When bidding 0.99 at any stage, his profit cannot exceed 0.01.When bidding
0.66 at any stage, his profit cannot exceed 0.34. When bidding 0 in both stages, his
profit cannot exceed 1

3 . However, when bidding 0.33 in both stages, both opponents
have low valuations with probability 0.992, so the profit is at least 0.992 · 0.67, which
is much higher. Finally, when bidding 0 in the first stage and 0.33 in the second stage,
his profit is lower than when bidding 0.33 in both stages (same profit if selected, but
lower probability of being selected, as discussed in Lemma 2). Therefore, a bidder
with a high valuation must bid b2 = 0.33 in both stages. Conversely, it is easily seen
that this results in equilibrium. ��

In the fully-informative case, all equilibria are such that a high-type bidder never
bids b1 (because this would imply a gain less than 1

3 in that case), and bids 0.66 ormore
with positive probability in the second round (if the second round bid was always b2

for all high type bidders, then deviating and bidding b3 in the second round when the
other bidder has the valuation vH is a profitable deviation). Hence, any equilibrium
of the fully-informative model (there are several) is better for the seller than the best
equilibrium without information. In this example, revealing information benefits the
seller.

Note that changes to the joint distribution of the values affect this observation.
For example, if the dependency is such that a bidder with a high valuation induces
a very high probability of an opponent having a high valuation as well, the informa-
tion becomes irrelevant to determine the types of the others and can only serve as a
coordination device.
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Fig. 2 Possible private values and bids for the example described in Sect. 4.2

4.2 Large number of bidders

Suppose that there are n � 3 bidders, two private values, V = {vL = 0.3, vH =
1}, and five possible equally-spaced bids B = {0, 0.2, . . . , 0.8}. Each bidder has a
probability p of having private value vH , independently of the other bidders. In �∗,
a bidder with private value vL bids 0.2 and a bidder with private value vH bids 0.8.
If everyone is bidding according to �∗, there is no profitable deviation for a bidder
with private value vL regardless of the information structure, so we consider only a
high-type bidder.

In the non-informative information structure, �∗ is an equilibrium if and only if
a high-type bidder has no profitable deviation. Of all possible deviations, the most
profitable is where he bids the lowest bid that is above vL in both stages. The expected
profit fromdeviating is the gain (1−0.4) times the probability that there is no high-type
bidder who outbids him. The expected equilibrium payoff is the gain fromwinning the
auction (1 − 0.8) times the probability of being chosen among all high-type bidders
(who also bid 0.8) which can be found as we later see using Eq. (A.5). The condition
for �∗ to be an equilibrium is therefore

(1 − 0.8)
1 − (1 − p)n

np
� (1 − 0.4)(1 − p)n−1. (4)

For each probability p to have the private valuation vH , there exists a minimal n for
which this inequality holds, denoted by NN I , and it remains true for every n > NN I .
This NN I is the minimum number of bidders required for �∗ to be an equilibrium.
Naturally, NN I decreases with p. When p is small, a high-type bidder can bid the
lower bid because there is a high probability that he is the only high-type bidder and no
one will outbid him. When p is large, there is a high probability that other high-type
bidders exist and bid 0.8, and a lower bid is bound to lose.

A similar computation can be done for any information structure. For example, in
the fully-informative structure, the most profitable deviation from �∗ for a high-type
bidder is to bid 0.4 in the first stage and raise his bid in the BAFO stage only if the
other bidder outbid him in the first stage. The condition for �∗ to be an equilibrium
is

(1 − 0.8)
1 − (1 − p)n

np
� (1 − 0.4)(1 − p)n−1 + 1 − 0.8

2
(n − 1)p(1 − p)n−2.

(5)

Observe that to satisfy this inequality a larger n is needed compared to N N I  . Again,
this inequality can be solved for each p to obtain N I , the minimum number of bidders 
required for �∗ to be an equilibrium in this information structure.
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Fig. 3 The minimum number of bidders for �∗ to become an equilibrium when no information is given
before the BAFO stage (NN I ) and when all bids are revealed before the BAFO stage (N I ) for the auction
presented in Sect. 4.2. For larger probabilities, both functions continue to decrease towards the minimal
possible number of bidders in this model, n = 3

The general result is proved in Theorem 1 – for n large enough, �∗ is the unique
equilibrium regardless of the information structure. The values of NN I and N I as a
function of p are summarized in Fig.1. As Corollary 1 suggests, N I is always larger
than NN I . When the probability of being a high-type bidder is not extremely small,
the required number of bidders is around 10 for both types of information structures,
and when the probability of being a high-type bidder is around 0.5, it is around 5.

In this example, we assumed that each bidder has a probability p to have the private
value vH , independently of the others. Typically, this is not the case and evaluations
tend to be positively correlated: if one bidder associated a high value to the item, it
increases the probability that others will associate a high value to it too. This positive
correlation exerts additional competitive pressure which reduces the required number
of bidders for�∗ to become an equilibrium.We exemplify thismechanism in Sect. 4.3.

4.3 Dependent private valuations

In this section, we study the effect of possible correlation of private values on the
required number of bidders for �∗ to become an equilibrium. Our basic settings are
identical to those of Sect. 4.2: there are n � 3 bidders, two private values, V = {vL =
0.3, vH = 1}, and five possible equally-spaced bids B = {0, 0.2, . . . , 0.8}. With
probability q ∈ [0, 1] the bidders are correlated (this event is denoted byQ) in which
case all of them have the private value vH with probability p or all of them have the
private value vL with probability 1− p. Otherwise, the valuations are independent and
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each bidder has the private value vH with probability p. When q = 0, this is exactly
the setting of Sect. 4.2.

We chose this distribution of private values as it is convenient: it adds only one addi-
tional parameter and is easily scaleable for every n. Moreover, the ex-ante probability
of each bidder to have the private value vH is qp+ (1−q)p = p and it is independent
of q. Thus, it demonstrates the effect of positively correlated private values without
over-complicating the model or artificially increasing the probability of each bidder
having a high valuation.

As before, in �∗, a bidder with private value vL bids 0.2, and a bidder with private
value vH bids 0.8. If everyone is bidding according to �∗, there is no profitable
deviation for a bidder with private value vL regardless of the information structure, so
we consider only a high-type bidder. Although his updated belief regarding the event
Q is unchanged, since Pr(Q|vH ) = qp

qp+(1−q)p = q, the ex post probability of any

particular other bidder to have the probability vH is q + (1 − q)p > p.
The expected equilibrium payoff of a high-type bidder is therefore

q
1 − 0.8

n
+ (1 − q)(1 − 0.8)

1 − (1 − p)n

np
,

regardless of the information structure. When there is no information, the payoff when
deviating (and bidding 0.4) is (1−q)(1−0.4)(1− p)n−1, since only whenQ does not
occur the bidder has a chance of winning. The strategy profile �∗ is an equilibrium
without information if this deviation is not profitable:

q
1 − 0.8

n
+ (1 − q)(1 − 0.8)

1 − (1 − p)n

np
� (1 − q)(1 − 0.4)(1 − p)n−1. (6)

Comparing this equation to Eq. (4) we see that both the LHS and the RHS of Eq. (6)
are now smaller. However, the decrease in the LHS is smaller than the one of the RHS,
hence, whenever Eq. (4) holds, so does Eq. (6). This is expected, as the correlation
between the private values increases the equilibrium payoff compared to this deviation
payoff. Moreover, for a fixed p it is straightforward that the difference between the
LHSand theRHSofEq. (6) is increasingwithq . To conclude, the higher the correlation
between the bidders, the lower the number of bidders required for �∗ to become an
equilibrium.

Similarly and as in Eq. (5), when the bids are revealed before the BAFO stage, �∗
is in equilibrium if and only if

q
1 − 0.8

n
+ (1 − q)(1 − 0.8)

1 − (1 − p)n

np
� (1 − q)

[
(1 − 0.4)(1 − p)n−1 + 1 − 0.8

2
(n − 1)p(1 − p)n−2

]
. (7)

The same observations apply here too: the introduction of q increases the equilibrium 
payoff compared to the payoff of the deviation, and the higher the q the fewer bidders 
are needed for �∗ to be an equilibrium in the fully-informative information structure.
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Fig. 4 The minimum number of bidders for �∗ to become an equilibrium when no information is given
before the BAFO stage (NN I ) and when all the bids are revealed before the BAFO stage (N I ) for the
auction presented in Sect. 4.3, for p = 0.2

To exemplify our results, we set p = 0.2 and solve the two inequalities to compute
the minimal n for which the condition holds. The results are summarized in Fig. 2.

5 Themain result

Ourmain result is that the revenue-maximizing strategy profile is the unique symmetric
equilibrium for a large enough number of bidders and that the required number of
bidders increases with the information (in the sense of Definition 1). The intuition is
that as the number of bidders increases, the probability of being chosen for the second
stage, and ultimately winning decreases. Hence, for a large enough number of bidders,
and regardless of the information, it is optimal to bid as high as possible to increase
the chances of being selected.

Theorem 1 For any set of private values V , information structure �, and family of
distributions over V which satisfy the uniform full support assumption (Fn)n∈N (with
a lower bound δ > 0), there exists N0 such that if the number of bidders is larger than
N0, then the unique symmetric equilibrium is �∗.

Proof See Appendix A.3 ��
Our main goal is to compare information structures. More precisely, we wish to

compare the expected revenue of the seller when using two information structures that
can be pairwise compared (and in particular, the non-informative information struc-
ture and any informative one). Clearly, the revenue-maximizing equilibrium provides
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the best-expected equilibrium payoff for the seller. She, therefore, strives to design
an information structure under which the revenue-maximizing equilibrium will be the
unique one. Our next theorem states that whenever the revenue-maximizing equilib-
rium appears for some structure �, it also appears for structures less informative than
�.

Theorem 2 When �∗ is an equilibrium in an auction with some information structure
�, it is also an equilibriumwith any information structures�′ which is less informative
than �.

Thus, whenever �∗ is an equilibrium in an auction with some informative infor-
mation structure, it is also an equilibrium in an auction with any non-informative
information structure.

Proof See Appendix A.4. ��
This result can easily be generalized. A strategy profile that is an equilibrium when

information is available but not used is still an equilibrium when this information is
not available, simply because the set of available deviations is smaller without the
information. For example, if bidding b1 regardless of the type is an equilibrium in
some informative information structures it is also an equilibrium in non-informative
information structures, as the information about the bids does not change the prior
regarding the bidders’ types.

A direct corollary of this result is that a smaller number of bidders is needed to
generate the revenue-maximizing equilibrium when no information is conveyed to the
bidders. Any information provided by the seller might serve as a basis for profitable
deviations.

Corollary 1 Let � be an information structure and denote by N� the smallest integer
such that whenever there are at least N� bidders, �∗ is an equilibrium with the
information structure �. If �′ is less informative than �, then N� � N�′

.
In particular, if N I is some non-informative information structure and F I is a

fully-informative information structure, then N N I � N� � NF I .

Proof For any n � N� bidders, �∗ is an equilibrium when the information is �.
According to Theorem 2, �∗ is also an equilibrium with the less informative infor-
mation structure �′ with n bidders. It follows that N�′ � N�. ��

The required number of bidders can be computed in each auction based on the 
auction parameters (bids, private values, and Fn). We demonstrate this calculation in 
Sect. 4.2.

6 Concluding remarks

This paper sought to determine the optimal information about bids that a seller should 
disclose to the bidders so as to increase her revenue in two-stage auctions. The answer 
to this question strongly depends on the number of bidders. When the number of 
bidders is small, all the parameters of the auction need to be considered; there are
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examples where it is better to reveal information and others where it is better to
withhold it. For a very large number of bidders, the answer is that the information
structure is irrelevant, as the only equilibrium is the one where the bidders submit
their maximal bid, regardless of the information. Moreover, this strategy profile also
becomes an equilibrium for fewer bidders when no information is revealed, than under
any informative information structure.

We conjecture that this also applies to uniqueness—fewer bidders are required for
the revenue-maximizing equilibrium to be the unique equilibrium when the informa-
tion structure is non-informative. Any information revealed by the seller can create
additional equilibria. This strengthens the idea that the best tactic for information is
to reveal nothing—not only does the revenue-maximizing profile is an equilibrium
first in this case, but it also becomes the unique equilibrium first. As elsewhere (e.g.
Quint and Hendricks 2018), uniqueness can be shown only in special cases. We were
able to show that this holds for a simple example with pure strategies, which can be
generalized to a large class of two-stage auctions. The proof is given in Appendix B.
In addition, our conjecture regarding uniqueness was verified by computer simulation
on another class of auctions for a large set of parameters.

We conclude that when the anticipated number of bidders is not too small13 or
is unknown while designing the auction, there is some advantage to not revealing
information. This might allow the revenue-maximizing strategy profile to become an
equilibrium and possibly the unique equilibrium. If the sole purpose of the second
stage is to encourage competition and the valuations are private, then it is advisable
to consider simplifying the process and conducting a single-stage sealed-bid auction.
However, the main purpose of the second stage may be to discuss design (in design-
build auctions) or to enable the bidders to learn more about the item being auctioned,
either from the auctioneer or from the bids of the other bidders (when valuations have
a common-value component). In such cases, the optimal information policy regarding
first-stage bids remains to be determined by future research.
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to feel enough competitive pressure to raise his bid.
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Appendix A Proofs

A.1 Proof of Lemma 1

The first direction of the lemma is trivial. If the information is independent of the first-
stage bids, conditioning on it will not affect the second-stage bids of the opponent.
The rest of the proof deals with the second direction.

Let � be a non-informative information structure and assume by contradiction that
there exists a bidder i with private value vi that the signals he receives when reaching
the second stage depend on the first-round bids of the others. This means that there
exists a first stage bid b1i and at least two vectors of bids of the others such that when
bidding b1i against them:

• the probability bidder i reaches the second stage (the event S) is positive;
• the distribution of signals received by bidder i is different.

Without loss of generality, assume the lowest bid is b1 = 0 and denote by 0−i the
vector of bids where everyone bid 0. Clearly Pr(S|b1i , 0−i ) > 0. Let b−i be another
vector of bids such that Pr(S|b1i , b−i ) > 0 and the distribution of signals bidder i
receives when everyone bids according to b−i is different than when everyone bids
according to 0−i (such vector exists, otherwise the distribution of signals after all the
bids (that satisfy 1) is the same, in contradiction to our assumption). Thus, there exists
a signal θi ∈ �i such that Pr(θi |0−i , b

1
i ) > Pr(θi |b−i , b

1
i ).

Consider the following joint-distribution Fn (conditional on bidder i having value
vi ):

• With probability 1
2 all other bidders have the private value v1.

• With probability 1
2 all other bidders have the private value vK .

As for the strategy, each of the bidders j �= i bids in the second stage the same bid he
bid in the first stage. In the first stage, bidder j with private value v j bids 0 if v j = v1

and bids his corresponding bid in b−i if v j = vK .
Denote the maximal bid in b−i by b̃. To achieve the contradiction, we calculate the

probabilities of the events Bopp
i = 0 and Bopp

i = b̃ conditioned and unconditioned on
θi and show that conditioning on the signal θi changes the distribution of B

opp
i .

When bidder i bids b1i , the probabilities of the two possible second stage bids
conditioned on the signal θi (the conditioning on Fn , b1i , and the strategy of the others
is implicit) are

Pr(Bopp
i = 0|θi ,S) = Pr(0−i , θi ,S)

Pr(θi ,S)
= Pr(0−i )Pr(S|0−i )Pr(θi |0−i )

Pr(θi ,S)
,

and

Pr(Bopp
i = b̃|θi ,S) = Pr(b−i , θi ,S)

Pr(θi ,S)
= Pr(b−i )Pr(S|b−i )Pr(θi |b−i )

Pr(θi ,S)
.
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Without receiving the signal θi , the probability of seeing each of the possible bids
in the second stage are

Pr(Bopp
i = 0|S) = Pr(0−i ,S)

Pr(S)
= Pr(0−i )Pr(S|0−i )

Pr(S)
,

and

Pr(Bopp
i = b̃|S) = Pr(b−i ,S)

Pr(S)
= Pr(b−i )Pr(S|b−i )

Pr(S)
.

By writing these terms explicitly, it is easy to see that

Pr(Bopp
i = 0|θi ,S)

Pr(Bopp
i = 0|S)

>
Pr(Bopp

i = b̃|θi ,S)

Pr(Bopp
i = b̃|S)

. (A.1)

This strict inequality implies that the distribution of Bopp
i is not independent of θi

(otherwise both ratios would be equal to 1), which contradicts the fact that � is non-
informative.

A.2 Proof of Lemma 2

Fix Fn . Consider bidder i with a private value vi . Let σi = (σ 1
i , σ 2

i ) be some strategy of
bidder i .We prove that there exists a strategy σ̂i = (σ̂ 1

i , σ̂ 2
i ) s.t. ∀b ∈ B, σ̂ 2

i (vi , b, ·) =
b which weakly dominates σi .

Without loss of generality, we can assume that σi never bids above vi . Otherwise,
we can consider a new strategy that bids β i whenever σi instructs to bid higher than
vi and otherwise bids the same as σi . This new strategy replaces non-positive payoffs
with non-negative ones, so its expected utility is as good as σi . By applying the rest
of the proof to this new strategy, we increase the expected payoff even further.

If the rest of the bidders use the strategy σ−i , the probability of bidding b2i in the
second stage is14

Pr
σi

(b2i |vi ) =
∑

b1i �b2i
θi∈�i

b−i∈Bn−1

Pr(σ 2
i (vi , b

1
i , θi ) = b2i |θi , b1i )Pr(θi |b1i , b−i )

Pr(b−i |Fn, σ−i )Pr(σ
1
i (vi ) = b1i ). (A.2)

Conditioned on b1i the information is independent of the bids of the others so
Pr(θi |b1i , b−i ) = Pr(θi |b1i ). In addition,

∑

b−i∈Bn−1
Pr(b−i |Fn, σ−i ) = 1 so the depen-

dence on σ−i and Fn vanishes from the above expression, and the probability of
bidding b2i in the second stage is uniquely determined by vi . We can therefore define

14 As for convention, when conditioning on a zero-probability event, the whole product is zero.
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a strategy σ̂ 1
i (vi ) to be a distribution over B that chooses a bid according to the above

probabilities and σ̂ 2
i to be a strategy that chooses the first-stage bid with probability

1. It is left to show that σi is weakly dominated by σ̂i .
The expected payoff when using the strategy profile σi is

∑

b2i ∈B

∑

b1i �b2i

∑

b−i∈Bn−1

∑

θi∈�i

[
(vi − b2i )Pr(W|b2i , σ−i , b−i )Pr(σ

2
i (vi , b

1
i , θi )

= b2i |θi , b1i )Pr(θi |b1i )·
· Pr(S|b1i , b−i )Pr(σ

1
i (vi ) = b1i )Pr(σ−i = b−i )

]

where S is the event bidder i reaches the second stage andW is the event bidder i wins
in the second stage, and as proven above, the distribution of the signals is independent
of the bids of the others. The order of summation can be changed in the following
manner:

∑

b2i ∈B

∑

b−i∈Bn−1

(vi − b2i ) Pr(W|b2i , σ−i , b−i ) Pr(σ−i = b−i )·

·
⎡

⎢
⎣

∑

b1i �b2i

∑

θi∈�i

Pr(S|b1i , b−i ) Pr(σ
2
i (vi , b

1
i , θi ) = b2i |θi , b1i )Pr(θi |b1i ) Pr(σ 1

i (vi ) = b1i )

⎤

⎥
⎦

(A.3)

Up to a tie-breaking rule, the opponent of bidder i in the second stage andhis opponent’s
second stage bid are determined only by b−i and σ−i . If bidder i bids b2i in the first
round instead of b1i , he does not change the identity of his opponent nor his opponent’s
bid, and hence none of the terms in the outer summation change. On the other hand,
Pr(S|b1i , b−i ) � Pr(S|b2i , b−i ) so the inner summation in Eq.(A.3) is smaller than

∑

b1i �b2i
θi∈�i

Pr(S|b2i , b−i )Pr(σ
2
i (vi , b

1
i , θi ) = b2i |θi , b1i )Pr(θi |b1i )Pr(σ 1

i (vi ) = b1i )

= Pr(S|b2i , b−i )Pr(σ̂
1
i (vi ) = b2i ).

Therefore, the expected payoff is smaller than

∑

b2i ∈B

∑

b−i∈Bn−1

(vi − b2i )Pr(W|b2i , σ−i , b−i )Pr(σ−i = b−i )Pr(σ̂
1
i (vi ) = b2i )

which is exactly the expected payoff when using (σ̂ 1
i , σ̂ 2

i ) and the proof is complete.
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A.3 Proof of Theorem 1

Assume, by contradiction, that the result does not hold. Then the set of n ∈ N for which
�∗ is not the unique symmetric equilibrium is infinite. For each n in this set (actually,
a sequence), there exists an equilibrium in which there exists a type v j that bids β j

in the first stage with a probability less than 1. Since the number of types is finite and
the number of bids is finite, there exists a sub-sequence in which in equilibrium the
highest type that does not play his respective β in the first stage with probability 1 is
vk for some k, and the lowest bid he bids in the first stage in equilibriumwith non-zero
probability is the same, bmin < βk . W.l.o.g. we can assume that k = K . Otherwise,
in equilibrium, all bidders with types v j > vk bid their respective β j and outbid him.
His only chance for a positive profit is if there are no bidders with a higher valuation.
We can denote this event by D and the rest of the proof is identical even if k < K
when everything is conditioned on D.

Denote by q2(n) the probability that a bidder with valuation vK will bid bmin

and let qlim2 = limn→∞ q2(n) (the limit exists up to a subsequence). Also denote
q1(n) = 1 − q2(n). Let A be the expected payoff of a bidder with valuation vK

in equilibrium. Since in equilibrium in the first stage, he bids bmin with non-zero
probability, from indifference A is also the payoff when he bids bmin in the first stage
with probability 1 (and follows the equilibrium strategy in the second stage). Let B
be the payoff when he deviates and he bids βK .

We divide the remaining discussion into two cases: qlim2 < 1 and qlim2 = 1.
Case 1: qlim2 < 1.
In that case, for n large enough, there is a probability bounded away from zero that

a bidder with valuation vk bids higher than bmin . Formally, there exists q̄ ∈ (0, 1)
and N0 ∈ N such that for all n � N0: q1(n) � q̄ > 0. In both stages, no bidder bids
strictly more than βK . Thus, the probability of a bidder with valuation vK winning
the auction when using strategy σ ∗ can be (very loosely) bounded from below by 1

n .
To conclude, B � (vK − βK ) 1n .

When a bidder bids bmin in the first stage, he will move to the second stage (and
thus have some positive probability of winning) only if at most one bidder bids βK in
the first stage. Therefore,

A �
[
(1 − δq̄)n−1 + (n − 1)(1 − δq̄)n−2δq̄

]
(vK − bmin).

For large enough n, this bound converges to 0 exponentially while the lower bound
on B converges to 0 more slowly. Thus, for large enough n, A < B.

Case 2: qlim2 = 1.
Consider a bidder with a valuation of vK . If he bids bmin in the first round, his gain

if he wins the auction is at most vK − bmin . Moreover, the probability of winning is
less than the probability of proceeding to the second stage, and the latter is no larger
than 2

X+1 where X is the number of other bidders bidding bmin or more. But for any
other bidder, the probability of having valuation vK , hence to bid bmin or more, is at
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least δ. Therefore, by Lemma A.1 (below),

A � 2(vK − bmin)

nδ

[
1 − (1 − δ)n

]
� 2(vK − bmin)

nδ
.

Now consider a bidder with valuation vK bidding βK in both rounds. His gain, if
he wins the auction, is vK − βK . Since nobody ever bids above βK , his probability
of winning the auction is at least half the probability of being selected for the second
stage. This latter probability is at least equal to 1

X+1 , where X is the number of other
bidders bidding βK . Moreover, only bidders with valuation vK may bid βK , and they
do so with probability at most q1(n). Therefore, the probability that a given other
bidder bids βK is at most q1(n). Lemma A.1 (below) thus leads to the following
bound:

B � vK − βK

2
E

[
1

X + 1

]
� vK − βK

2

un
n

with

un = 1

q1(n)
(1 − (1 − q1(n))n) = 1 − (q2(n))n

1 − q2(n)
=

n−1∑

k=0

(q2(n))k −−−→
n→∞ ∞.

Therefore,

B

A
� δ

4

vK − βK

vK − bmin
un −−−→

n→∞ ∞.

So B > A for n large enough.
To conclude, bmin cannot be played in the first stage in equilibrium, and for n large

enough, �∗ is the unique symmetric equilibrium.

Lemma A.1 Consider a two-stage auction with some information structure � and n
bidders, and fix one of them. Let X be the number of bidders among the other n − 1
bidderswhobid b ormore in the first stage. Suppose that each bidder, even conditioning
on valuations of other bidders, always bids b or more in the first stage with probability
at most p, then

E

[
1

X + 1

]
� 1

np

[
1 − (1 − p)n

]
. (A.4)

The inequality is reversed if each bidder bids b or more with a probability of at least 
p.

Proof Consider this set of n − 1 bidders, let p ∈ [0, 1], and let b be a possible bid. 
Assume that the random variables X1 and X2 represent the number of bidders
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bidding b or more in two situations called respectively Situation 1 and Situation 2.
Assume that for any bidder (conditioning or not on valuations of other bidders), the
probability that he bids b or more is at most p in Situation 1 and exactly p in Situation
2. Then X1 weakly first-order stochastically dominated by X2 in the sense that for all
k, Pr(X1 � k) � Pr(X2 � k).

It follows that for any non-decreasing function f , E f (X1) � E f (X2) and the
inequality is reversed when f is non-increasing. In particular, if f (x) = 1

x+1 we

obtain E

[
1

X1+1

]
� E

[
1

X2+1

]
. In Situation 2 the bidders are independent so X2 ∼

Bin(n − 1, p) so

E

[
1

X2 + 1

]
= 1

np

[
1 − (1 − p)n

]
. (A.5)

The inequality from Eq. (A.1) follows immediately, and it is obviously reversed when
in Situation 1 the bidders bid b with probability at most p. ��

A.4 Proof of Theorem 2

Suppose that �∗ is an equilibrium in an auction with the information structure �

and assume by contradiction that bidder i has a profitable deviation from the strategy
profile �∗ in an auction with the less informative structure�′. Denote this strategy by
σ̂i = (σ̂ 1

i , σ̂ 2
i ) and let Li denote the garbling function that corresponds to the strategy

profile �∗−i .
Assume that the information structure is � and consider the following strategy. At

the first stage, bid according to σ̂ 1
i and denote the bid by b1i . In the second stage, after

receiving the signal θ , use Li (θ, b1i ) to choose a new signal at random from�. Denote
this signal by θ ′. Finally, bid as dictated by σ̂ 2

i (vi , b1i , θ
′). By using this strategy, bidder

i disregards the information provided by � and acts as if the information structure is
actually�′. Since σ̂ is a profitable deviation with�′, this is also a profitable deviation
with �, in contradiction to the fact that �∗ is an equilibrium with the information
structure �.

Appendix B Uniqueness of the revenue-maximizing equilibrium

We show that �∗ is the unique equilibrium for fewer bidders when the information
structure is non-informative, taking the case of two possible valuations, and three
possible bids, and considering pure strategies only. We conjecture that this is true in
general, regardless of the specific parameters of the auction. Partial results in another
case, based on computer simulations, are also reported.

The following proposition compares two extreme information structures: the non-
informative information structure and the fully-informative information structure.

Proposition B.1 Consider an auction with n bidders, two possible types V = {v1, v2},
and three possible bids B = {b1, b2, b3} ordered in the following way: b1 < v1 <
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Fig. 5 Possible private values and bids for the scenario described in Proposition B.1

b2 < b3 < v2. Assume that the valuations are independent and identically distributed,
with probability p of each bidder having valuation v2. If �∗ is the unique equilib-
rium in pure strategies when the information structure is fully-informative, then it
is also the unique equilibrium in pure strategies when the information structure is
non-informative.

Proof Assume w.l.o.g. that b1 = 0 and v2 = 1. Since b1 < v1 < b2 < b3 < v2,
bidders of type v1 always bid in equilibrium b1. Bidders of type v2 can choose any
of the three possible bids. In the rest of the discussion, we focus on one such bidder,
namely bidder i , and denote his utility when the strategy profile σ is used by U (σ ).
We denote by X the number of other high-type bidders, i.e. X ∼ Bin(n − 1, p). The
possible bids, private values, and revenues are illustrated in this figure:

The strategy of the proof is to show there are no counter-examples, i.e. it is impos-
sible to find parameters for which �∗ is the unique equilibrium in the informed model
but not in the non-informed model.

The non-informed model
For a counter-example, we need an equilibrium in pure strategies additional to �∗

in the non-informed model, but no additional equilibria in the fully-informed model.
Clearly, if the strategy profile in which everyone bids b1 is an equilibrium in the

non-informed model, then it is also an equilibrium in the fully-informed model. This
is because they are essentially the same—no new information is revealed before the
BAFO stage, as all bids are known and are the same regardless of private value.
Therefore in a counter-example, it cannot be an equilibrium, which means that there
exists a profitable deviation from this strategy profile. The profitable deviation can be
to bid b2 or to bid b3. However, if all other bidders bid b1, bidding b3 has no strategic
advantage over bidding b2: both guarantee a win, and the revenue is higher when b2

is bid. Thus, bidding b2 is a profitable deviation:

U (b1) = 1

n
< α = U (b2, b1−i ) (B.1)

where b1 is the strategy profile in which all bidders bid b1 regardless of type and as
usual, σ−i denotes the situation where all bidders use the strategy profile σ but bidder
i . In the previous equation, σ = b1.

The only other pure strategy profile is to bid b2 (denoted by �), so it is assumed to
be the additional equilibrium. Hence, bidding b3 is not a profitable deviation:

U (�) = αE

(
1

X + 1

)
� U (b3, �−i ) = β (B.2)
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In addition, �∗ is equilibrium in the non-informed model so bidding b2 is not a
profitable deviation:

U (�∗) = βE

(
1

X + 1

)
� U (b2, �∗−i ) = α Pr(X = 0) (B.3)

The fully-informed model
We construct an example where �∗ is the unique equilibrium with information.

Thus, there is no profitable deviation from �∗ and no other equilibrium. More pre-
cisely: bidding b2 in both stages regardless of information is not an equilibrium in the
fully-informed model. The only profitable deviation can be to employ a strategy that
uses information, which must be either σ0=“play 0 at the first bid, then best respond
to information” or σα=“play b2 at the first bid, then best respond to information”.

Isσα aprofitable deviation?The best response is to continue bidding b2 if the other
bid is 0 (there are no v2 bidders) and bid b3 if the other bid is b2 (otherwise, bidding
b2 again would result in the equilibrium strategy). To conclude, the best response is
getting β with probability 1 rather than splitting α between the two. Thus we get:

0 <
α

2
< β < α < 1. (B.4)

In addition, the strategy profile �α in which all bidders act according to σα cannot be
an equilibrium in the fully-informed model, and the only possible deviation is bidding
b3 in both stages:

U (�α) = (α − β)Pr(X = 0) + βE

(
1

X + 1

)
< U (b3, �α,−i )

= β

2
(1 + Pr(X = 0)). (B.5)

We can rearrange these inequalities from Eq.(B.2)-(B.5) as inequalities between α and
β and combine them all:

0 < αmax

⎧
⎨

⎩
1

2
,
Pr(X = 0)

E

(
1

X+1

) ,
Pr(X = 0)

1
2 + 3 Pr(X=0)

2 − E

(
1

X+1

)

⎫
⎬

⎭
< β < αE

(
1

X + 1

)
< 1

(B.6)

In addition, from the properties of expectation, it is clear that E( 1
X+1 ) < 1

2 + Pr(X=0)
2 .

Set x = E( 1
X+1 ), y = Pr(X = 0). A necessary condition for (B.6) to hold is

1

2
< x <

1

2
+ y

2
(B.7)

y < x2 (B.8)

y < (
1

2
+ 3

2
y − x)x (B.9)
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Summing (B.8) and (B.9) yields y < x
4−3x which combined with (B.7) results in

1
2 < x < 2

3 . On the other hand, (B.9) is equivalent to y(1 − 3
2 x) < 1

2 x − x2. The
right-hand side is negative in the region 1

2 < x < 2
3 whereas the left-hand side is

positive. A contradiction—σα is not a profitable deviation and β � α
2 . �

Can σ0 be a profitable deviation? The profit with the deviation is:

U (σ0, �α,−i ) = Pr(X = 0)
2

n
max

{
α,

1

2

}
+ Pr(X = 1)

1

n − 1
max

{
β,

α

2

}

The first term represents the situation where there are no high-type bidders. Then, all
bid 0 and bidder i moves to the second stage with probability 2

n . In the second stage,
he can either bid 0 and get the profit 1 with probability half or increase his bid and
win α with probability 1 (at this point bidder i knows that his opponent is a low type
bidder, as a high type bidder would have bid more than 0 in the first stage).

The second term accounts for the case that there is only one additional high-typed
bidder that bid α in the first stage. To move to the second stage bidder i needs to be
selected among the n− 1 bidders that bid 0, and then he can either bid β and win with
probability 1 (the other bidder uses a strategy that bids α in both stages) or increase
his bid to α and win it with probability 0.5.

Our previous case resulted in β � α
2 . In addition, 1

n � α and 2α
n � α so

2
n max{α, 1

2 } � α:

U (σ0, �α,−i ) � Pr(X = 0)α + Pr(X = 1)
1

n − 1

α

2
�

� Pr(X = 0)α + Pr(X = 1)
α

2
= α

(
Pr(X = 0) + 1

2
Pr(X = 1)

)
<

< αE

(
1

X + 1

)
= U (�α)

which means that σ0 is not a profitable deviation either. �
To conclude, it is impossible to satisfy all the conditions in these settings, and if

�∗ is not unique without information, it cannot be unique with information. ��
The key component of the proof is that only bidders with private valuation v2 need

to be considered and there is a relatively small number of parameters and inequalities
that lead to a contradiction. This proof can be applied to more general cases, with
more possible private values and bids, as long as these features remain.

Changing the order to b1 < b2 < v1 < b3 < v2 complicates the problem signifi-
cantly. After removing dominated strategies, there are 13 (pure) strategy profiles in the
informed model which need to be excluded from being an equilibrium. This results
in a large number of inequalities and “cases” to verify, that do not converge to such a
neat result as in the Proposition and, more importantly, cannot be easily generalized.

We, therefore, wrote a computer simulation to test our hypothesis in slightly
more general settings for different values of p, n, v1 and M , the number of possi-
ble bids (assuming that they are equally spaced, B = {0, 1

M , . . . , M−1
M }). For each
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M ∈ {4, . . . , 15} and n ∈ {4, . . . , 15}, we constructed a grid with 100 points for
(p, v1) in the domain [0.1, 0.4]× [0.09, 0.5] and calculated all possible pure-strategy
equilibria for the chosen parameters. Despite our efforts, we did not manage to find a
counter-example for our conjecture, i.e. a set of parameters for which�∗ is the unique
equilibrium (in pure strategies) with information but not the unique equilibrium (in
pure strategies) without information.

Appendix C Alternative assumption regarding the joint distribution
of the private valuations

A close examination of the proof of Theorem 1 reveals that the uniform full support
assumption can be slightly relaxed. We chose this assumption since it is both general
and easy to verify. Alternative assumptions are more general but harder to verify;
moreover, they rely on the bidding strategies and not the distributions. Here we present
one such generalization.

Instead of the uniform full support assumption, assume that there exists δ > 0 such
that for every k ∈ {1, ..., K } when a bidder has a valuation vk , conditional on Dk ,15

the following two properties hold:

• If each bidder with valuation vk bids within some range of values with probability
at most q̄ (independently from the other bidders having valuation vk), then the
probability that at most one other bidder will bid within that range is bounded
from above by

(1 − q̄δ)n−1 + (n − 1)q̄δ(1 − q̄δ)n−2.

This term comes from the best-case scenario for the bidder. If all the other bidders
have the private valuation vk with the lowest possible probability (δ), then the
number of vk-type bidders who bid in this range is a random variable X with
binomial distribution with parameters n − 1 and δq̄, and above expression is
Pr(X � 1).

• If we denote by X the number of other bidders with valuation vk , then E[ 1
X+1 ] �

[1−(1−δq̄)n ]
nδq̄ . The right-hand side is the expectation when X has the binomial dis-

tribution with parameters n− 1 and q̄δ, i.e. when the bidders are independent (see
Eq.(A.5)).

Note that this assumption is satisfied when valuations are independent with a lower
bound of δ on the probabilities of the values in the support. However, some positive
correlation typicallymakes this condition easier to satisfy—given a bidder’s valuation,
the probability of bidders with similar valuations should increase (see the example
in Sect. 4.3). A negative correlation is also possible. However in extreme cases, if a
bidder’s valuation lowers the probability of the other bidders having a similar valuation,
then the assumption does not hold.

15 Recall, Dk is when the private valuations of all bidders are at most vk .
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Appendix D Continuous auctions

The main text presents a two-stage auction model with discrete sets of valuations and
possible bids. This mirrors common practice, where the currency is discrete, and in
many cases, auctioneers require “rounded” bids (for example, bids may have to be
in increments of 10, 000$). Moreover, this assumption simplifies the analysis, as the
existence of equilibria under all information structures is ensured in this model and
the revenue-maximizing strategy profile, �∗, is well defined. In this Appendix, we
provide several results regarding the continuous case. Although not a full analysis of
the problem, our findings point to additional drawbacks of revealing information and
strengthening the claim made in the main text.

Our model is identical to the model in Sect. 2, except for the continuity of the
bids and valuations. Hence, we assume that B = [0,∞) and V = [vmin, vmax ] with
0 � vmin < vmax . We only consider the full information case (the non-informative
structure is discussed in the last paragraph of this section), and assume that the first-
round bids of the two finalists are revealed before the second round. The tie-breaking
rule in the second round is not necessarily symmetric. For example, it can favor the
bidder who made the highest first-round bid.

In this model, the β j s are not well defined and therefore neither is the revenue-
maximizing strategy profile. Instead,we study the existence of an efficient equilibrium,
i.e. an equilibrium inwhich the bidder with the highest valuations wins the item, which
in many cases also provides the highest expected payoff to the seller. We show that
under mild additional assumptions, there are no symmetric efficient equilibria in pure
strategies. This leads us to the conclusion that, as in the discrete model, there are
no advantages to a BAFO stage whose sole purpose is to increase the auctioneer’s
revenue, without providing additional information about the item being auctioned.
We note that it is not even clear that an equilibrium exists in this model. We, therefore,
prove in this Appendix that if an equilibrium exists, it is not efficient.

Consider a symmetric efficient equilibrium in pure strategies. In such an equilibrium
there exists a function f : V → B which represents the first-round bid. Since the
equilibrium is efficient, f must be strictly increasing (otherwise, the highest bidder
might not be selected for the second round). Hence, on the equilibrium path, valuations
are revealed by the first-round bids. The second-round bids can be described by the
two functions g, h : V ×V → B, where g(x, y) is the second-round bid of the bidder
who bid the highest value f (x) in the first round and h(x, y) is the bid of the runner-up,
who bid f (y) in the first round. The equilibrium is efficient, so g(x, y) � h(x, y).

For simplicity, we assume that the valuations are i.i.d. and drawn from V with a
probability distribution p(v) that is continuous and positive on V . This ensures that
the probability that a valuation falls within a particular interval of (small) length ε is
of order ε. The following Lemma provides additional properties of the equilibrium.

Lemma D.1 Let x and y be possible valuations, with x > y. Almost surely:

1. y � g(x, y) � x.
2. g(x, y) = max( f (x), h(x, y)).
3. If f (x) < y, then h(x, y) = g(x, y) � y.
4. The assumption that h(x, y) � y is made without loss of generality.
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5. If x > vmin, then f (x) < x.

Proof 1. If g(x, y) > x , the player with valuation x is bidding above his value and
should slightly decrease his second-stage bid; if g(x, y) < y, the player with
valuation y should deviate and bid slightly above g(x, y).

2. The auction rules prevent bidding below the first-round bid, so g(x, y) � f (x).
Clearly, g(x, y) � h(x, y) because the auction is assumed to be efficient, so
g(x, y) � max( f (x), h(x, y)). The reverse inequality holds because otherwise,
the winner should decrease his second-round bid.

3. Immediate from 1 and 2: g(x, y) � y > f (x) so g(x, y) �= f (x) and the only
remaining possibility is g(x, y) = h(x, y).

4. If we replace h by h̃ defined by h̃(x, y) = max(y, h(x, y)), then we still have an
equilibrium. Indeed, this does not change anything when f (x) < y by point 3,
and when f (x) > y, this does not change the equilibrium payoffs nor the possible
deviations and their payoffs. Therefore, we can assume that the equilibrium we
have is the one where h(x, y) � y.

5. If f (x) = x and x > vmin , then the bidder obtains a zero payoff though he could
obtain a positive payoff by playing as if he had a slightly lower valuation.

��
For our proof, we still need an extra assumption. Several natural assumptions are

possible. We choose to assume that the runner-up never bids above his value:

Assumption D.1 For all x, y ∈ V with x > y, we assume h(x, y) � y.

Combined with Lemma D.1 (part 4), on the equilibrium path and without loss of
generality, h(x, y) = y and by part 2, g(x, y) = max( f (x), y). It follows that g
is non-decreasing in each of its arguments and strictly increasing if both arguments
increase: x < x ′ and y < y′ imply g(x, y) < g(x ′, y′). We are now ready to show
that in this model, an efficient equilibrium does not exist, i.e. that the above properties
cannot all hold together.

Proposition D.1 In a two-stage BAFO auction with a continuous set of bids and valu-
ations, there are no symmetric efficient equilibria in pure strategies when all bids are
revealed to the bidders before the BAFO stage.

Proof Assume by contradiction that such an equilibrium exists and consider bidder n
with valuation z > vmin . Let x � y be the two highest valuations among the other
n − 1 bidders. Almost surely, x > y, which we now assume. Let ε > 0 and consider
a deviation by bidder n that consists of bidding f (z − ε) in the first round instead
of f (z) and then playing optimally in the second round. We study the gain from this
deviation in all possible cases (with non-zero probability) and show that it is positive
for ε small enough. The main two cases are the case where bidder n does not have
the highest valuation (“case A”: z < x) and where bidder n has the highest valuation
(“case B”: z > x). The full analysis of all sub-cases that occur with positive probability
is provided here and summarized in Table 1.

Case A: z < x
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Case A.1: f (x) < z − ε < z < x . As ε goes to 0, this case occurs with a probability
of order 1 (bounded away from zero). Bidder n’s equilibrium payoff is 0, as
the highest bidder wins the auction. If bidder n deviates, he is still selected
and his opponent’s second-round bid is g(x, z − ε) = h(x, z − ε), so the
deviation payoff is arbitrarily close to max(0, z − h(x, z − ε)), which is
equal to ε under Assumption D.1. Thus, the gain is of order ε.

Case A.2 Otherwise. The payoff from the equilibrium strategy is 0 and the payoff
when deviating is non-negative, so the deviation gain is non-negative.

Case B: z > x

Case B.1 z − ε > x . This occurs with a probability of order 1. The equilibrium
payoff is z − g(z, x) and the payoff when deviating is z − g(z− ε, x). The
gain from deviation is therefore

g(z, x) − g(z − ε, x) = max( f (z), h(z, x)) − max( f (z − ε), h(z − ε, x))

under Assumption D.1 this results in max( f (z), x)−max( f (z−ε), x)) �
0.

Case B.2 y < z − ε < x < z. This occurs with a probability of order ε. The
equilibrium payoff is z − g(z, x) � z − x , whereas when deviating, the
payoff is arbitrarily close to z− g(x, z− ε) � z− x . Thus, there is at most
an arbitrarily small loss from deviating. Under Assumption D.1, the gain
is actually strictly positive:

g(z, x) − g(x, z − ε) = max( f (z), x) − max( f (x), z − ε) � x

−max( f (x), z − ε) > 0.

Case B.3 z − ε < y < x < z. This occurs with a probability of order ε2. The payoff
when deviating is zero while the payoff in equilibrium is z − g(z, x) �
z − x � ε. Hence, by deviating, the bidder loses at most ε.

To summarize, under Assumption D.1, by bidding f (z −ε) instead of f (z), the bidder 
can obtain a positive profit of order ε and a loss of order ε3. Hence, for ε small enough, 
this is a profitable deviation and the functions f , g, h do not form a symmetric efficient 
equilibrium. ��

This proposition shows that with information, equilibria if they exist, cannot be 
efficient. Contrastingly, without information, the auction is equivalent to a first-price 
(single-stage) sealed-bid auction (the proof of Lemma 2 is also valid in this model), 
so there exists an efficient equilibrium. Although efficiency does not directly imply 
the best revenue for the seller, it is often the case and the lack of efficiency suggests 
that there might be disadvantages to revealing information. We conclude that there 
are good reasons not to reveal information between the stages in the continuous case 
as 
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Table 1 Summary of the 5 cases under Assumption D.1

Case Order Deviation gain

A1. f (x) < z − ε < z < x 1 ε

A2. Other cases with z < x 1 � 0

B1. z − ε > x 1 g(z, x) − g(z − ε, x) � 0

B2. y < z − ε < x < z ε g(z, x) − g(x, z − ε) > 0

B3. z − ε < y < x < z ε2 g(z, x) − z � x − z � −ε
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