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ARTICLE

Multisensory correlation computations in the
human brain identified by a time-resolved encoding
model
Jacques Pesnot Lerousseau 1,2,3✉, Cesare V. Parise4, Marc O. Ernst2 & Virginie van Wassenhove 3

Neural mechanisms that arbitrate between integrating and segregating multisensory infor-

mation are essential for complex scene analysis and for the resolution of the multisensory

correspondence problem. However, these mechanisms and their dynamics remain largely

unknown, partly because classical models of multisensory integration are static. Here, we

used the Multisensory Correlation Detector, a model that provides a good explanatory power

for human behavior while incorporating dynamic computations. Participants judged whether

sequences of auditory and visual signals originated from the same source (causal inference)

or whether one modality was leading the other (temporal order), while being recorded with

magnetoencephalography. First, we confirm that the Multisensory Correlation Detector

explains causal inference and temporal order behavioral judgments well. Second, we found

strong fits of brain activity to the two outputs of the Multisensory Correlation Detector in

temporo-parietal cortices. Finally, we report an asymmetry in the goodness of the fits, which

were more reliable during the causal inference task than during the temporal order judgment

task. Overall, our results suggest the existence of multisensory correlation detectors in the

human brain, which explain why and how causal inference is strongly driven by the temporal

correlation of multisensory signals.
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The brain can integrate information coming from different
sensory modalities in a unified percept: seeing a face pro-
nouncing the syllable “ka” dubbed with the sound “pa”

yields a distinct multisensory percept “ta”1. The integrative
properties of multisensory perception are currently best explained
in terms of optimal decision making using the Bayesian cue
combination framework2–7. Ernst & Banks8 first demonstrated
that multisensory integration tends to be statistically optimal, in
that it exploits all available sensory information, including
redundant multisensory cues, to maximize the precision of sen-
sory estimates. However, not all sensory signals should be inte-
grated as not all simultaneous sensory inputs correspond to the
same source in the distal world. Hence, a condition for optimal
multisensory integration is to solve the “correspondence
problem”9, that is, detect redundancies in the continuous flow of
multisensory inputs.

Given that information (i) is transduced by separate senses, (ii)
converted in heterogeneous neural codes, and (iii) conveyed with
variable latencies and hierarchical processes: how does the brain
infer which information should be selectively integrated?

Auditory and visual signals that contain redundant informa-
tion are typically generated by a common underlying physical
cause and as such, they tend to correlate in time and space10–16.
Accordingly, a large body of literature demonstrates improved
multisensory integration when the constituent unimodal signals
correlate in time and space17–23. These findings point to spatio-
temporal correlation as the primary cue for solving the corre-
spondence problem. Indeed, an important body of neurophy-
siological work has thoroughly described the neural tuning
properties in many (sub)cortical regions to be sensitive to the
spatial and to the temporal coincidence of multisensory inputs24.
Multisensory neurons provide well-suited implementations for a
recent Multisensory Correlation Detector model25. The Multi-
sensory Correlation Detector (Fig. 1) detects and selectively
integrates correlated audiovisual signals through a set of temporal

filters and elementary operations. Its outputs, MCDCORR and
MCDLAG, depend on the temporal correlation and order of the
incoming auditory and visual signals, respectively. While being
compatible with Bayesian ideal observer models, the Multisensory
Correlation Detector also quantitatively describes the dynamics of
sensory information processing. Whereas Bayesian models are
mostly static and provide a snapshot of the overall response26,27,
the Multisensory Correlation Detector is a dynamic model in which
both inputs and outputs are time-varying signals. These properties,
combined with its biologically plausible nature28,29, make the
Multisensory Correlation Detector better suited for testing against
intrinsically dynamic neurophysiological responses.

To explore this, we developed a time-resolved encoding model
approach combined with time-resolved non-invasive neuroima-
ging (magnetoencephalography, MEG) to test the neurophysio-
logical plausibility that such algorithms are implemented in the
human brain.

First, we replicated the original behavioral experiment of 25,
and had participants observe sequences of auditory clicks and
visual flashes with varying temporal structures. Participants were
recorded non-invasively with MEG in two separate blocks
(Supplementary Fig. 1) testing two tasks. In a causality judgment
task, participants judged whether the audiovisual sequences ori-
ginated from the same source. This task probed the correlation
detection of the model whose output is represented by MCDCORR.
In the temporal order judgment task, participants reported which
of the acoustic or visual events appeared first in the sequence to
probe the output of the lag detector (MCDLAG). Crucially, iden-
tical audiovisual sequences were tested in both tasks.This
experimental design thus maintained a constant and identical
flow of feedforward multisensory inputs in both tasks, while
manipulating the endogenous task requirements.

Thegainofourapproach is thatwedonotsolely test thebehavioral
outcomes of temporal order or causality judgments30,31; rather, we
test the presumed computations implicated in resolving temporal
order or causal inference. Additionally, because Multisensory Cor-
relationDetector is temporally-resolved, weuse temporally-resolved
neuroimaging to dissociate the outcomes of correlation and lag
computations. This is all the more important as seminal fMRI work
aimingatdissociatingorder and simultaneityperceptions inhumans
failed to find selective differences in brain regions implicated in the
twotasks32.This suggests that computationaldifferences areunlikely
to be found in the location ofmacroscopic brain networks but rather
in the subtle dynamical properties of those networks. In our study,
and for each individual sequence of audiovisual stimuli presented to
the participants, the Multisensory Correlation Detector makes
quantitative predictions for both behavioral and neurophysiological
responses,whichwe systematically testedagainst empirical evidence.

Below, we first validate our behavioral protocol in light of
participants’ causal and temporal order judgments for the same
set of audiovisual sequences. We then illustrate differences of
brain activity in the two tasks through classic analyses of MEG
signals and finally demonstrate algorithmic differences by
applying a time-resolved encoding model approach.

Results
The Multisensory Correlation Detector explains the behavioral
responses in temporal order and causal judgments, by cap-
turing the influence of the temporal structure. The probability
of responding “same cause” in the causality judgment task and
“visual first” in the temporal order judgment task was predicted
based on the time-averaged MCDCORR output and MCDLAG using
a generalized linear mixed-model33 with a logistic link function.
Importantly, stimuli were chosen prior to the experimental work
to probe largely uncorrelated judgments of causality and temporal

Fig. 1 The Multisensory Correlation Detector is a set of low-pass filters
(filled grey boxes), which compute the temporal correlation (MCDCORR,
blue) and the temporal lag (MCDLAG, red) between incoming
multisensory signals. The model is biologically plausible as it integrates
signals based on their cross-correlation in time and implements Bayesian
optimal cue combination. LPF: low-pass filter.
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order (see Methods). This was confirmed in the present results, as
average causality and temporal order judgments were only weakly
correlated across participants and sequences (β= 0.267 ± 0.08,
p < 0.05). The 3 parameters of the Multisensory Correlation
Detector, controlling the time constant of the low-pass filters, were
fitted using both tasks whereas the 2 parameters of the linear
model were task dependent (see Methods). Results showed that
the temporal structure of the stimuli systematically affected
behavioural responses in both the causality and the temporal order
judgment tasks (Fig. 2). MCDCORR activity was a good predictor of
the causality judgments (β= 1.80 ± 0.05, p < 10−15, R2= 0.92).
The positive β indicates an increased probability of responding
“same cause” when MCDCORR increases. Similarly, MCDLAG sig-
nificantly predicted the temporal order judgments (β=
1.02 ± 0.04, p < 10−15, R2= 0.81). Interestingly, MCDCORR was a
better predictor for the behavioural causality judgments than
MCDLAG for the behavioural temporal order judgments (linear
model comparing R2 in both tasks, β= 0.108 ± 0.05, p < 0.05, see
individual fits in Supplementary Fig. 3). This suggests a possible
asymmetrical dependency between causal inference and temporal
order.

Evoked responses elicited by causal judgments predict beha-
vioral outcomes on a single-trial basis. We hypothesized that if
causality and temporal order judgments were mediated by mul-
tisensory correlation detectors, the same audiovisual sequences
should elicit distinct patterns of brain activity corresponding to
the predicted outcomes of the MCDCORR and MCDLAG compu-
tations, namely temporal correlation (needed for causality judg-
ment) and lag calculation (needed for temporal order judgment),
respectively. To test this, we contrasted brain activity obtained in
response to the presentation of all audiovisual sequences in
causality and temporal order judgment blocks. This contrast is
informative for task-related brain activity: since identical audio-
visual sequences were used in causality judgment blocks and in
temporal order judgment blocks, feed-forward inputs were

identical in both tasks. Hence, any differences observed in
this contrast will reveal algorithmic differences imposed by
the task.

In this contrast, we wanted to capture multisensory-specific
activity. However, brain responses to multisensory events contain
both unisensory-specific and multisensory-specific signals34,35,
which causes a superposition problem at the sensor levels. To
solve this issue, we isolated the brain responses evoked by the
multisensory operations from the responses elicited by unisensory
stimulation: we removed the weighted sum of brain activity
independently recorded in passive unisensory localizers (pre-
sentation of auditory alone or visual alone sequences) from the
multisensory evoked activity recorded in causality and temporal
order judgment blocks. This approach is compatible with
heuristics used in fMRI36 in that the weights were fitted with a
linear regression (see Methods). We then contrasted the
unisensory-free, i.e. multisensory-specific, evoked responses
elicited by the same audiovisual sequences in the two tasks.

Statistical significance between conditions was assessed by
spatiotemporal cluster permutation, controlling for multiple
statistical comparisons at multiple latencies and samples (see
Methods). This analysis revealed two bilateral significant clusters
(the first is reported in Fig. 3; the second in Supplementary Fig. 4,
individual values in Supplementary Table 3). The first bilateral
cluster peaked around 700 ms following the onset of the
audiovisual sequence ([260–1250 ms] in the left sensors;
[540–1025 ms] in the right sensors, Fig. 3A). During this time
window, the amplitude of the evoked response was significantly
higher for causality than for temporal order judgments. This
result was robust to two possible biases: first, the unisensory-free
data may be biased by the weighting process and second, the lack
of randomization of the response choice (fixed across blocks and
participants) may contribute to the effect. We contend that this
non-randomization could have introduced a motor response and/
or decisional bias in our results. We demonstrate the persistence
of this significant cluster of activity without removing the
unisensory-specific activity (see Supplementary Fig. 5) and when

Fig. 2 Psychophysical results. A Audiovisual sequences. Stimuli were sequences of five clicks and flashes whose temporal statistics were manipulated so as
to optimize the model predictions for the temporal correlation and for the temporal lag (see Methods). B The MCDCORR activity significantly predicts the
causality judgments in the causality judgment task (mixed-effect logistic regression, p < 10−15). C The MCDLAG activity significantly predicts the temporal
order judgments in the temporal order judgment task (mixed-effect logistic regression, p < 10−15). Each point corresponds to a different audiovisual stimulus.
Given that the same six audiovisual stimuli were used for both tasks, points with the same colors in the left and right panels represent the participants’
responses to the same stimuli in the two tasks. Error bars represent 2 s.e.m. (standard error of the mean, N= 13). Note that values of MCDCORR and
MCDLAG differ from participant to participant because of the fitting procedure, but the error bars are smaller than the size of the points.
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decomposing the task contrast analysis by response choice (see
Supplementary Fig. 6).

A linear regression model (Fig. 3B, C) revealed that this evoked
response was significantly correlated with MCDCORR

(β= 9.66 ± 4.03 fT, p < 0.05) in causality but not in temporal
order judgments (β= 2.37 ± 3.76 fT, p= 0.53, interaction
p < 0.05). The positive β indicates an increased evoked activity
when MCDCORR increased. The regression with MCDLAG was not
significant (p > 0.05).

To assess the behavioral relevance of this activity, we
performed a single-trial logistic regression on the probability of
participants’ responses given the activity in the cluster (Fig. 3D).

A statistical model with the multisensory evoked activity, the task
(causality vs. temporal order), and the interaction between both,
outperformed all simpler models (see Methods). Given the
significant interaction (β=−0.32 ± 0.159 pT, p < 0.05), we looked
at the main effect of evoked activity in both tasks. We found that
the evoked activity in this cluster could predict single-trial
responses in the causal inference task (β= 195 ± 128 fT, p < 0.05)
but could not predict participants’ temporal order in the temporal
order judgment task (β= 19.0 ± 15.2 fT, p= 0.90).

Therefore, we have identified a brain response, which provides
significant predictive information regarding the temporal correla-
tion of audiovisual signals on a trial-by-trial basis, and which

Fig. 3 Task related evoked activity and cortical source estimates. A. Spatiotemporal-cluster analysis contrasting brain activity evoked by the presentation
of identical audiovisual sequences but in two different tasks (causality - temporal order). Left: t-map of the significant cluster (white sensors, one sample
two-sided t-test, p < 0.05 corrected for multiple comparison) ranging from 260 to 1250ms post-sequence onset. Grey levels are t-values averaged across
significant times. Right: Temporal extent of the effect averaged over significant sensors in the cluster (grey). The top and bottom panels represent the two
polarities of a single source (positive left, negative right) B Left: root mean squared (RMS) activity in the cluster average across participants as a function of
MCDCORR in causality judgment blocks. Right: same in temporal order judgment blocks (N= 13). C Single-trial logistic regression coefficients showed that
MEG activity can predict single-trial behavioral responses in causality judgment blocks (blue, N= 13, logistic regression p < 0.05) but not in temporal order
judgment blocks (red, N= 13, logistic regression p= 0.90) D Source estimations (semi-inflated brain, N= 13) locate the effect to the right posterior
superior temporal sulcus (pSTS), the right SupraMarginal Gyrus (SMG) and bilateral superior parietal gyrus (SPG). Shaded areas and error bars represent
2 s.e.m. across participants.
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predicts participants’ causal inference. Source estimation was
obtained by applying the inverse operator on the t-values values
for each individual, and then morphing them onto the average
brain. Source estimation (Fig. 3E) located this effect in the right
posterior superior temporal sulcus, right supramarginal gyrus,
and bilateral superior parietal gyrus. As predicted by the
Multisensory Correlation Detector, at least one unit may compute
the temporal correlation (MCDCORR) between multisensory
signals, and drive the responses of participants. In our study,
this unit may be found bilaterally at the junction of the temporal
and parietal cortices. The second significant cluster of task-related
differences of activity showed no link with the overt reports (all
p > 0.9) but did reveal differences in RTs linked to the motor
responses (details are provided in Supplementary Fig. 4). Overall,
we found no robust evidence for a lag unit (MCDLAG) which
would provide order information.

The dynamics of the MCDCORR and the MCDLAG units cor-
relates with the time-resolved brain activity. The lack of robust
evidence for the MCDLAG could arise from several possible
caveats in our analysis. For instance, we estimated evoked activity
integrated over time, and not the transient responses evoked by
the fine temporal structure of the sequences. Additionally, evoked
activity reflects phase-locked changes in brain responses that are
strong and very reliable in time. Here, on the contrary, the stimuli
have different temporal structures, which add substantial time
variability in the evoked activity. Furthermore, the computation
of the temporal cross-correlation during the one-second sequence
entailed several fast iterations, following each sensory event. In
other words, the integrated accumulated evidence of temporal
jitters across audiovisual events, more than the single events, were
crucial for performing in these two tasks16. Finally, in the absence
of reference to the precise timing of the electrophysiological
response, the correlations between the behavioral responses in
causality judgments and the amplitude of the brain responses
could conflate temporal correlation and late decisional processes
that are irrelevant to the computations themselves, such as motor
preparation (although participants were asked to withhold their
answers after each stimulus presentation and until an auditory
cue prompted them to answer).

To address these main concerns, we developed a novel model-
based approach (Fig. 4A) consisting in using the dynamics of the
Multisensory Correlation Detector units (audio and visual inputs,
MCDCORR, and MCDLAG outputs) in response to the audiovisual
sequences presented in both tasks to explain MEG activity.
Specifically, encoding models have been successfully applied to
EEG and MEG recordings to understand speech processing37–41.
The basic idea is that brain activity recorded with temporally-
resolved neuroimaging can be decomposed as the convolution of
the stimulus inputs and a filter. The filter, also known as
“temporal response function”, is usually unknown, and least-
square fitted with a linear model. The quality of the resulting
encoding model is then assessed with a cross-validation
procedure with the model being fitted on one part of the data
and evaluated on the unseen part. The cross-validated correlation
between the predicted M/EEG signal based on the stimulus
convolved with the filter and the actual data is a measure of the
accuracy of the model. It allows producing a quantitative estimate
of how much variance in brain activity can be explained by the
characteristics of the stimulus.

While temporal response functions have essentially been used
to assess the encoding of stimulus properties in brain activity,
here we adapted this approach to test the encoding of
the Multisensory Correlation Detector model itself. Hence, the
cross-validated correlation gives a measure of brain activity that

can be explained, not just by the stimuli per se, but rather, by the
Multisensory Correlation Detector model itself. Specifically, we
used the modeled time-varying Multisensory Correlation Detec-
tor input and output signals in response to the stimuli. We refer
to this method as “model-based temporal response function” (see
Methods). It should be noted that this approach is related to, but
distinct from, model-based approaches in fMRI. Here, we do not
evaluate the correlation between a parameter value and a sensor/
voxel across trials but directly the correlation between the
dynamics predicted by the model and the dynamics of the MEG
response. This aspect necessitates a time-resolved model, which is
the case of the Multisensory Correlation Detector. Using the
model-based temporal response functions, the cross-validated
correlation gives a measure of the amount of data that can be
predicted on the basis of the Multisensory Correlation Detector
model. In other words, we used cross-validation correlations as a
proxy of how much brain activity looked like the predicted
Multisensory Correlation Detector signals. As a temporal
response function can be fitted for each component of the
Multisensory Correlation Detector, the model was resolved on a
per component basis.

We first applied the model-based temporal response function
method to the passive unisensory localizer responses as a proof of
concept. In the auditory-only blocks, a temporal response
function that took the auditory input component of the
Multisensory Correlation Detector model (MCDA) as predictor
was able to predict the MEG activity (R2 ≈ 2.2 %). Cluster-based
permutations revealed that the sensors best explained by the
MCDA form a bilateral central cluster (Pearson’s ⍴= 0.15,
p < 0.001, Fig. 4B). Source estimations (Fig. 4C) was obtained
by applying the inverse operator on the correlation values for
each individual, and then morphing onto the average brain. It
located this pattern in bilateral posterior superior temporal gyri,
consistent with auditory cortical sources. When applied to the
visual-only responses, a temporal response function that took the
visual input components of the Multisensory Correlation
Detector (MCDV) as predictor was able to predict the observed
MEG activity (⍴= 0.11, p < 0.001). Cluster-based permutations
revealed a significant bilateral posterior cluster of predicted
sensors. Source estimations located the pattern in bilateral
occipital cortices. These results validate the use of the temporal
response function methodology to capture basic auditory and
visual evoked responses, as well as their implementation in the
Multisensory Correlation Detector.

Having ensured that the model-based temporal response
functions provided coherent results for the unisensory localizers,
we tested the experimental data on the causality and temporal
order judgments. This time, instead of using only one predictor
(MCDA or MCDV), we used all four inputs/outputs of the
Multisensory Correlation Detector. After fitting the temporal
response functions, we set all but one predictor to zero to estimate
the variance explained by each Multisensory Correlation Detector
unit separately.

In causality judgment blocks, three units explained a significant
part of the variance of the MEG activity (Fig. 4B): MCDA and
MCDV predict very similar patterns as those observed in the
localizer data, i.e. a bilateral central cluster (⍴= 0.14, p < 0.001),
consistent with an auditory evoked response topography for
MCDA and a bilateral posterior component consistent with a
visual evoked response topography for MCDV (⍴= 0.18,
p < 0.001). Critically, MCDCORR significantly predicted the MEG
response in a bilateral central cluster (⍴= 0.18, p < 0.001),
indicating that at least one component in MEG activity shows
similar fluctuations as those predicted by the Multisensory
Correlation Detector output. By contrast, MCDLAG had no
significant predictive power (⍴= 0.01, p= 0.1) on the MEG
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activity. This result was expected for causality judgment blocks, in
which participants solely evaluated the common cause of the
audiovisual sequences irrespective of their temporal order.

When we applied the same approach to the temporal order
judgment data, the temporal response function analysis provided

a very similar pattern of results: as expected, the MCDA

component predicted the activity in a bilateral central cluster
(⍴= 0.13, p < 0.001), and the MCDV component in a bilateral
posterior component (⍴= 0.16, p < 0.001). Critically, MCDLAG

significantly predicted the MEG response in a left frontal cluster
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(⍴= 0.12, p < 0.005), indicating that one component in MEG
activity shows similar fluctuations as those predicted by the
Multisensory Correlation Detector output. Source reconstruction
could not reveal any consistent source. Interestingly and
unexpectedly, despite participants engaging in a temporal order
task, the MCDCORR showed a significant bilateral central cluster
(⍴= 0.17, p < 0.001).

As the stimuli were not single events but sequences of events,
later activity could, at least partly, be related to decisional
processes based on the initial part of the sequence and not
entirely related to the temporal computations themselves. To rule
out this hypothesis, we replicated the analysis by splitting the
evoked response in two halves: an early part, from 0 to 500 ms,
and a late part, from 500 to 1000 ms (see Supplementary Fig. 7).
The results show that the temporal response functions are stable
across the two halves. This rules out the possibility that this
activity reflects decisional processes, as decisional processes are
supposed to happen only late in the sequence presentation. One
further limitation could be that 4 out of 6 stimuli are perceived
close to the 50/50 point in the temporal order judgment blocks. It
could be the case that the ambiguity of these stimuli for this task
is so great that the signals being measured in the brain are
uncertainty plus guess, rather than temporal order computations
per se. To rule out this hypothesis, we replicated the analysis in a
reduced dataset comprising only the stimuli that are ambiguous
in the temporal order judgment task (see Supplementary Fig. 8).
The results show that the temporal response functions remain
stable in this reduced dataset and that the results remain
unchanged compared to the complete dataset. This rules out the
possibility that the signal being recorded reflects only uncertainty
or guesses.

Overall, the model based temporal response function we
developed allowed the identification of a main set of brain signals,
source localized in superior temporal sulcus, posterior superior
temporal gyrus and supramarginal gyrus. All regions seemingly
compute the temporal correlation between multisensory signals,
independently of the task in our study. Source estimation also
revealed a frontal right cluster of sensors, dedicated to the
computations of the lag between multisensory signals, activated
only when participants were explicitly performing a temporal
order judgment task.

Discussion
In this MEG experiment, participants made inferences about
audiovisual sequences using two different judgments: common
cause and temporal order. Behavioral results replicated prior
observations25, in that performances followed the predictions of
the Multisensory Correlation Detector model. The temporal

structure of audiovisual sequences is taken into account by par-
ticipants in that the strength of audiovisual temporal correlation
drives the MCDCORR activity, in turn affecting causal inference
judgments. Similarly, the time lags between multisensory signals,
which drive the MCDLAG activity also drive the perception of
temporal order (Fig. 2). Second, the analysis of the MEG results
corroborates several working hypotheses regarding the need to
compute temporal correlation between multisensory signals. We
found that MEG responses elicited by the presentation of the
sequences (Fig. 3A) strongly correlate with behavior in causality
judgments, but not in temporal order judgments (Fig. 3B, C). The
likely generators of this activity were estimated in posterior
superior temporal sulcus, superior temporal gyrus and left
superior parietal gyrus (Fig. 3D), regions that are consistent with
previous results in fMRI using a similar task32 and similar
stimuli30. Third, our model-based temporal response function
analyses (Fig. 4A) strongly confirmed this result, showing that
this activity is essentially driven by the MCDCORR output inde-
pendently of the task. Furthermore, it allowed revealing a pre-
viously unknown activity, correlated to the MCDLAG output in
the temporal order judgments (Fig. 4B).

Our results reveal that the Multisensory Correlation Detector
model offers a multiscale explanatory power. The Multisensory
Correlation Detector was originally conceived to provide a bio-
logically plausible neural circuit for simultaneity and order
detection of multisensory events. The few neurons circuitry has
previously been described in the fly optic lobe28. Despite a mas-
sive scale change—from a few neurons to macroscale synchro-
nized neural populations –, we were able to find evoked activity,
which matched the Multisensory Correlation Detector compu-
tation dynamics. This model thus offers a good fit to the beha-
vioral data and to human neural activity.

The achievement of a model-based temporal response function
for human MEG data was only made possible because the Mul-
tisensory Correlation Detector provides time-resolved biologically
plausible signals. One prerogative of classical model-based
approaches—including fMRI—is to artificially select discrete
values of the model parameters on a trial-by-trial basis. Here, we
could perform on human non-invasive neurophysiological data
what can typically only be done in animal models, namely directly
compare the dynamics of the model computations and the neural
signals on a single-trial basis. This ensures that the signals we
capture are not related to late decisional processes, but to the
computations themselves. Thus, and according to the conceptual
definitions of David Marr42,43, the type of explanation we provide
here is of an implementational nature of posited computations,
and not solely one based on an algorithmic explanation given by a
model-based approach.

Fig. 4 Stimulus- vs. Model-based temporal response functions. A Analysis pipeline. In the classic stimulus-based temporal response function approach
(top), a linear filter estimates the amount of variance explained by stimuli in the MEG activity. In our model-based temporal response function approach
(bottom), the filter is used to estimate the amount of variance explained by the model dynamics. This approach requires a time-resolved, biologically plausible,
model, which is the case of the Multisensory Correlation Detector. The method estimates the amount of MEG responses variance explained by each component
of the Multisensory Correlation Detector. For each component, a temporal response function is fitted by ridge regression such that the convolution between
single trial component activity and the temporal response function maximizes the correlation between the predicted MEG signal and the true MEG signal. In
order to avoid over-fitting, the ridge regression quality is evaluated through cross-validation. B The amount of MEG explained variance is resolved in model
components, sensors, and tasks. The table reads as follows: in the causality judgment blocks (third row), the MCDA input component (first column) explains a
significant proportion of variance in a bilateral central cluster, with a Pearson’s ⍴ = 0.16 (right). Overall, MCDA, MCDV and MCDCORR explain MEG variance
consistently across causality and temporal order judgment blocks. To the contrary, MCDLAG significantly fit the data only in the temporal order judgment blocks.
Statistical significance of the correlation between cross-validated predicted MEG and true MEG was assessed via corrected cluster permutations. Significant
sensors are highlighted in white. Error bars represent 2 s.e.m. across participants (N=13). Dots represent individual participants. C Source estimations (inflated
brain) locate MCDA in bilateral posterior superior temporal gyrus, MCDV in bilateral occipital cortices, MCDCORR in bilateral superior temporal gyrus, bilateral
posterior superior temporal sulcus and bilateral supramarginal gyrus. MCDLAG is not associated with any robust phase-locked activation.
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Finally, the model-based temporal response function approach
differs from classical temporal response function, which typically
compares brain responses to speech stimuli38,44: while temporal
response functions empirically fit the data to recover the cano-
nical response function of the sensory inputs from continuous
brain recordings, here, we provide an explicit model of the
computation that actually generates the data and which we then
try to recover in the brain signals. It should also be noted that the
model-based approach suffers less from the influence of stimulus
statistics specificities, such as the presence of strong onsets45.

Interestingly, we found possible traces of the MCDCORR com-
putations independently of whether participants were performing
the causality or the temporal order judgment. This finding sug-
gests that the computation of the temporal correlation between
signals may be a default operation present in both tasks as pre-
dicted by Multisensory Correlation Detector and that this com-
putation may be automatic, i.e. independent of specific task
demands. The possibility that multisensory integration may be a
default integrative mode for the representation of sensory signals
supports recent findings46 and is consistent with perceptual
integration of multisensory dynamic structures19,23 and speech
processing13,14. To the contrary, a reliable fit to the MCDLAG

could only be observed in the temporal order judgment task,
suggesting that reliable multisensory segregation may be more
effortful47 or modulated by nonlinear network dynamics48,49.
However, we cannot strongly conclude for the co-existence of
correlated and lag signals, or for the absence of lag signals in the
causality judgment because of methodological constraints due the
presence of correlation between the MCDCORR and other subunits
of the Multisensory Correlation Detector. Furthermore, 4 out of
6 stimuli were perceived as ambiguous with regard to the tem-
poral order judgment. Such a high level of uncertainty could have
reduced the detectability of the MCDLAG effect on the MEG
recordings.

A recent debate has taken place over whether multisensory causal
inference recruits frontal regions or solely anterior parietal
cortex46,50–52. The lateral prefrontal cortex has been reported
multiple times as a key region for multisensory convergence and
multisensory conflict resolution53–56. It is also a region suggested to
play a key role in reverse hierarchical learning following multi-
sensory training19,23. One discrepancy between previous results
could be explained by differences in the method of analysis as most
previous studies reporting strong frontal effects relied on multi-
variate analyses. For instance, one recent study50 found the impli-
cation of the lateral prefrontal cortex in encoding causal decision in
a causal inference task but only when relying on a multivariate
decoding approach. Alternatively, as seen in the Multisensory
Correlation Detector, cause and order result in two distinct signals,
which may follow separate paths: as a result, while the output
serving causal judgment (MCDCORR) is readily captured by the
model, the output serving temporal order (MCDLAG) may require
additional steps to yield behavioral decision. This observation is
consistent with the fact that temporal order and simultaneity
judgments do not readily correlate intra-individually57. It is also
consistent with previous MEG work which, using both univariate
and multivariate analyses, showed the implication of prefrontal
cortices in the temporal aspects of multisensory integration19,23.
Further, the implication of prefrontal cortices in temporal order
judgements is also consistent with their known role in the temporal
sequencing of events58 and in decision-making tasks that involve a
mixture of feedforward and feedback processes59.

Overall, our work bridges three complementary approaches to
understand how the human brain solves the correspondence
problem and perform multisensory integration: (i) computational
models, derived from animal electrophysiology, (ii) behavioral
work in human, and (iii) non-invasive human electrophysiology.

The analytical tool we introduce is an important step to bridge
animal and human work60 and to test biophysically sound models
across species.

Methods
Participant details. Thirteen participants (10 females, mean age 25.8 y.o., range
[22-34 y.o.]) took part in the study. All were right-handed, had normal hearing and
normal or corrected-to-normal vision. Prior to the experiment, all participants
provided a written informed consent in accordance with the Declaration of Hel-
sinki (2008) and the local Ethics Committee on Human Research at NeuroSpin
(Gif-sur-Yvette, France). The sample size was determined on the basis of the
original paper describing the psychophysical task and main effects25, (N= 5) and is
comparable to studies using similar stimuli and paradigms (for example46). A
sensitivity analysis is available in Supplementary Fig. 9. Additionally, we conducted
post-hoc observational power analysis based on Monte-Carlo simulations61 on our
two main behavioral results, namely the effect of MCDCORR on causality judgments
and the effect of MCDLAG on temporal order judgments. The simulations showed
that the generalized linear modeling approach with our sample size and our
observed effect sizes shows excellent power (95% CI [99.63, 100.0] and [99.80,
100.0]). There is currently no gold standard to evaluate sample size for MEG data,
so we used the common sample size in the field.

Multisensory correlation detector model. The Multisensory Correlation
Detector (Fig. 1) stems from the idea that the multisensory correspondence
problem is computationally similar to the problem of visual motion detection
(are the two visual objects present at two different places at two different times or
is it one single moving object?). The proposal is that the computation of the cross-
correlation in the time domain is the main mechanism underlying the percep-
tion of visual motion and auditory localization. Parise & Ernst (2016) therefore
proposed an adaptation of the famous “Hassenstein-Reichardt detector” to the
correspondence problem in multisensory perception. The Multisensory Corre-
lation Detector is composed of two unisensory input units, a set of low-pass
filters, and two multisensory output units. The low-pass filters smear and delay
inputs from one sensory modality relative to the other, such that it computes the
correlation across all possible delays. This operation approximates temporal
cross-correlation. The two output units code for the two aspects of a temporal
cross-correlation between the two input signals: the correlation unit (MCDCORR)
code for the strength of the correlation, and the lag unit (MCDLAG) code for the
sign and size of the lag. Formally, the Multisensory Correlation Detector is
composed of a first filtering stage, where time-varying visual and auditory signals
(SA(t), SV(t)) are independently low-pass filtered, and a subsequent integration
stage, where the two signals are combined through linear operations (multi-
plication or subtraction). Low-pass filters were modelled as exponential func-
tions with τmod denoting the modality-dependent time constant and ∗ denoting
the convolution operator:

f modðtÞ ¼ te
�t

τmod ð1Þ

MCDAðtÞ ¼ f AðtÞ � SAðtÞ ð2Þ

MCDV ðtÞ ¼ f V ðtÞ � SV ðtÞ ð3Þ
Each subunit (MCDS1, MCDS2) of the detector independently combines

multisensory information by multiplying the filtered visual and auditory signals as
follows:

MCDS1ðtÞ ¼ ðMCDAðtÞ � f AV ðtÞÞ �MCDV ðtÞ ð4Þ

MCDS2ðtÞ ¼ ðMCDV ðtÞ � f AV ðtÞÞ �MCDAðtÞ ð5Þ
The response of the subunits are eventually multiplied or subtracted:

MCDCORRðtÞ ¼ MCDS1ðtÞ �MCDS2ðtÞ ð6Þ

MCDLAGðtÞ ¼ �MCDS1ðtÞ þMCDS2ðtÞ ð7Þ

Experimental design. The main MEG experiment (Supplementary Fig. 1) con-
sisted of 10 consecutive recording blocks of 8 min each, whose order was
counterbalanced across participants. Three blocks tested participants on a
causality judgment, and three blocks tested participants with a temporal order
judgment. Importantly, the same audiovisual sequences were used in both tasks
in order to maintain a constant flow of feedforward multisensory inputs while
manipulating the endogenous task requirements. Each bloc was composed of 25
repetitions of the 6 possible audiovisual sequences. A total of 75 presentations of
each stimulus sequence were thus tested in each task. Four additional recording
blocks consisted of participants passively hearing (A localizer, 2 blocks) or
viewing (V localizer, 2 blocks) one constitutive modality of the audiovisual
sequence. Each localizer block was composed of 25 repetitions of the 6 possible
stimuli (auditory or visual part of each stimuli), yielding a total of 50 pre-
sentations of each A and V stimuli (2 × 3 × 25 × 6+ 2 × 25 × 2 × 6= 1500 trials
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in total). The goal of localizer blocks was to model unisensory responses and
source estimates that were orthogonal to the brain activity recorded during the
task. Participants were asked to take breaks as often and as long as they wanted
to between blocks. Prior to the MEG acquisition, participants were briefly
familiarized with the task and the stimuli by performing three causality judg-
ments and three temporal order judgments on audiovisual sequences which were
not used in the experiment thereafter. Participants did so with the help of the
experimenter and received feedback on their performance. No feedback was
provided in the remainder of the experimental session. The experiment lasted for
approximately 90 minutes.

In the causality judgment blocks, participants judged whether the auditory and
the visual sequences were causally related or not, i.e. whether they were produced
by the same common cause or not25. In the temporal order judgment blocks,
participants judged which of the auditory or visual sensory modality was leading in
time. In both causality and temporal order judgment blocks, participants
responded via button presses: in the causality judgment blocks, they used the right
index finger for “same cause”, and the right middle finger for “different cause”; in
the temporal order judgment blocks, they used the right index finger for “sound
leading”, and the right middle finger for “vision leading”. In both causality and
temporal order judgment blocks, trials consisted of audiovisual sequences
separated by inter-trial time intervals pseudo-randomly selected between 500 and
900 ms. In a given trial, following the presentation of the sequence, participants
were asked to withhold their answers until an auditory cue (10 ms, 1000 Hz pure
tone) prompted them to answer. The time interval between the end of a stimulus
and the auditory cue was randomly chosen between 800 and 1200 ms. The order of
the stimuli was pseudo-randomized, so that none of the sequences were presented
more than three times consecutively.

Stimuli. Stimuli were designed and presented using Matlab (R2012a, Mathworks
Inc.) with Psychtoolbox-362 on a PC (Windows XP). Six audiovisual stimuli were
used in the experiment and each consisted of a one-second sequence of 5
auditory bursts and 5 visual flashes (see Supplementary Table 1). Sounds were
10 ms bursts of pink noise, whose intensity linearly ramped-on for the first half
of the time, and off for the second half. The sampling frequency used was
44.1 kHz. The sound pressure level was set to a comfortable hearing level,
around 70 dB, for all participants. Visual events were 10 ms flashes, delivered by
a white LED. To ensure spatial congruence, the LED was directly fixed on the
speaker facing the participant. The LED and the speaker were controlled by the
same sound card, allowing near-perfect timing and temporal congruence
between sound and vision.

The temporal structure of the audiovisual sequences was a key factor in the
experiment. The temporal structure was designed to make the causal and order
judgments vary independently. Indeed, in order to study the unique contribution of
neural sources to causality and temporal order judgments, it is critical to (1) use the
same stimuli and (2) to have uncorrelated judgments across stimuli (i.e., stimuli
associated with a given causality judgment should be systematically associated with
a given temporal order judgment). For that, we drew 106 random audiovisual
sequences and computed the time-averaged values of MCDCORR and MCDLAG for
each sequence, with the parameters reported in25. We then selected six sequences
among these 106 to elicit a large range of responses of MCDCORR and MCDLAG

values, while maintaining the correlation between MCDCORR and MCDLAG low
(Pearson’s correlation between MCDCORR and MCDLAG across the six sequences
below 0.2). Pretests were run to ensure that causality and temporal order
judgments were indeed uncorrelated. In the present experiment, the two judgments
are weakly correlated across participants and sequences (β= 0.267 ± 0.08, p < 0.05),
thus allowing contrast analysis on the task.

MEG data acquisition. Brain magnetic fields were recorded in a magnetic-shielded
room using a 306 MEG system (Neuromag Elekta LTD, Helsinki). Participants
were seated in upright position under the MEG dewar, facing a white LED,
mounted on a head-speaker placed 90 cm away. They were explained with the task
and stayed in contact at all times with the experimenter via a microphone and a
video camera. They were asked to refrain from blinking during the presentation of
the audiovisual sequences. MEG recordings were sampled at 1 kHz and band-pass
filtered between 0.03 Hz and 1 kHz. Four head position coils (HPI) measured the
head position of participants before each block. Three fiducial markers (nasion and
pre-auricular points) were used for digitization and anatomical MRI (aMRI)
immediately following MEG acquisition. Electrooculograms (EOG, horizontal and
vertical eye movements) and electrocardiogram (ECG) were simultaneously

recorded. Prior to the session, 2 minutes of empty room recordings were acquired
for the computation of the noise covariance matrix.

Anatomical MRI acquisition and segmentation. The T1-weighted aMRI was
recorded using a 3-T Siemens Trio MRI scanner. Parameters of the sequence
were: voxel size: 1.0 × 1.0 × 1.1 mm, acquisition time: 466 s, repetition time TR:
2300 ms and echo time TE: 2.98 ms. Cortical reconstruction and volumetric
segmentation of participants’ T1-weighted aMRI was performed with FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/). This includes: motion correction, average
of multiple volumetric T1-weighted images, removal of non-brain tissue, auto-
mated Talairach transformation, intensity normalization, tessellation of the gray
matter white matter boundary, automated topology correction and surface
deformation following intensity gradients. Once cortical models were complete,
deformable procedures could be performed including surface inflation and
registration to a spherical atlas. These procedures were used with MNE_python63

to morph current source estimates of each individual onto the FreeSurfer average
brain for group analysis.

MEG data preprocessing. Data preprocessing was done in accordance with
accepted guidelines for MEG research64. Signal Space Separation (SSS) was carried
out using MaxFilter to remove external interferences and noisy sensors. Signal-
space projections were computed by independent component analysis (ICA) to
correct for eye blinks and cardiac artifacts. Next, raw data were band-pass filtered
between 1 and 40 Hz and down-sampled to 250 Hz. All pre-processing steps were
done using MNE_python 0.24.

MRI-MEG co-registration and source reconstruction. The coregistration of
MEG data with the individual’s structural MRI was carried out by realigning the
digitized fiducial points with MRI slices. Using. MRILAB (Neuromag-Elekta
LTD, Helsinki), fiducials were aligned manually with the multimodal markers
visible on the MRI slice. An iterative procedure was subsequently used to realign
all digitized points (about 30 more supplementary points) distributed on the
scalp of the participants were digitized, with the scalp tessellation using
MNE_python tools.

Individual forward solutions for all source reconstructions located on the
cortical sheet were next computed using a 3-layers boundary element model65,66

constrained by the individual aMRI. Cortical surfaces were extracted with
FreeSurfer and decimated to about 10,240 vertices per hemisphere with 4.9 mm
spacing. The forward solution, noise and source covariance matrices were used to
calculate the depth-weighted (parameter gamma= 0.8) and noise-normalized
dynamic statistical parametric mapping (dSPM)67 inverse operator. This unitless
inverse operator was applied using loose orientation constraints on individuals’
brain data by setting the transverse component of the source covariance matrix to
0.4. The reconstructed current orientations were pooled by taking the norm,
resulting in manipulating only positive values. The reconstructed dSPM estimates
time series were morphed onto the FreeSurfer average brain for group analysis and
common referencing.

MEG data processing and evoked activity. All preprocessed MEG data were
epoched from −200 ms to +1800 ms around the onset of the first event in each
sequence. Epochs contaminated by artifacts were rejected based on the peak-to-
peak amplitude (2.10−11 T for magnetometers and 9.10−9 T cm−2 for gradi-
ometers). Across participants, an average of 98.9% of epochs were kept in the
analyses. Sensors were then interpolated using the function EvokedArray.as_-
type of MNE_python: each triplet of planar gradiometer, axial gradiometer and
magnetometer was mapped onto a single virtual magnetometer, reducing the
data space from 306 to 102 sensors without discounting signal or information.
Epochs were averaged for each participant across experimental blocks and
conditions of interest.

In order to focus on multisensory and task-related effects, we first removed
unisensory evoked responses from the multisensory brain responses. In order to
do this, we fitted a linear regression to the evoked responses elicited by
audiovisual sequences in the causality and temporal order judgments blocks
using, as predictors, the brain activity evoked by the unisensory (A,V) localizers.
The formulae below summarizes this operation in which: mMEGCJ(n, t)
designates the unisensory-free evoked activity in causality judgment blocks of
the sensor n at time t; mMEGTOJ(n, t) designates the unisensory-free evoked
activity in temporal order judgment blocks of the sensor n at time t; MEGCJ(n, t)
the raw evoked activity in causality judgment blocks of the sensor n at time t;

Table 1 Fitted parameters of the Multisensory Correlation Detector for each participant.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13

τV (ms) 130 137 120 152 142 141 122 123 114 109 103 119 122
τA (ms) 84 80 58 110 92 73 50 53 52 52 54 64 74
τAV (ms) 519 490 562 1147 882 1087 748 372 764 779 799 779 770
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MEGTOJ(n, t) the raw evoked activity in temporal order judgment blocks of the
sensor n at time t; MEGA(n, t) the raw evoked activity in the A block of the
sensor n at time t; MEGV(n, t) the raw evoked activity in the V blocks of the
sensor n at time t. Parameters βA(n) and βV(n) were fitted by linear regression on
a per sensor (n), per participant and per block across all time points and all
stimuli.

mMEGCJ ðn; tÞ ¼ MEGCJ ðn; tÞ � ðβAðnÞMEGAðn; tÞ þ βV ðnÞMEGV ðn; tÞÞ ð8Þ

mMEGTOJ ðn; tÞ ¼ MEGTOJ ðn; tÞ � ðβAðnÞMEGAðn; tÞ þ βV ðnÞMEGV ðn; tÞÞ
ð9Þ

Statistics
Multisensory Correlation Detector model fitting. The analysis was mainly focused
on behavioral ratings considering that reaction times (RTs) were delayed in the task
due to participants having to wait for a prompt to deliver their answers.

We used the same fitting procedure as the original paper25. The probability of
responding “same cause” in the causality judgment task was predicted using the
MCDCORR values, and the probability of responding “visual first” in the temporal
order judgment task was predicted using the MCDLAG values. The MCDCORR

and MCDLAG values were time-averaged in a 3s-long time window starting from
the first impulse—three times the duration of each sequence —, in order to have
one value of each per trial. These values were then z-scored across stimuli to
allow comparing more easily the effects of each on behavior and on MEG
activity. The unnormalized values can be found in Supplementary Table 2. These
time-averaged values were then entered as fixed effects in a mixed-effect logistic
regression on the probability of responding “same cause” or “visual first”, with a
random intercept for each participant. There were 7 parameters to fit: 3
parameters for the Multisensory Correlation Detector model (the time constants
of the low-pass filters), and 2 parameters for the cumulative gaussian for each
task (controlling the intercept and the slope). The parameters were all fitted
together: the 3 parameters of the Multisensory Correlation Detector were fitted
using both tasks whereas the 2 parameters of the mixed-effect logistic regression
and the random slopes per participant were task independent. The fit consisted
of a particle swarm algorithm followed by Matlab optimization algorithm
fminsearch to maximize model’s log likelihood. Since both methods are sensitive
to starting parameter values, the procedure was repeated 10 times and the
chosen parameter values are those providing the best fit (Table 1). Reported
p-values are Satterthwaite approximations obtained using R (R Core Team,
2000) with the lmerTest68 and lme469 packages. Difference of goodness-of-fit
between model units was assessed using a paired t-test on the R2 across
participants.

MEG spatio-temporal clusters. Evoked response fields (ERFs) in each task were
tested by contrasting the unisensory-free activity for each audiovisual sequence
in the causality and temporal order judgment blocks. The significance of the
contrasts was assessed using non-parametric pairwise two-tailed permutation
tests across time and sensors, which provided corrected p-values for multiple
comparisons. The null hypothesis is that the MEG amplitude should be the same
whatever the task. The statistic of interest in the t-value of the paired t-test
contrasting the task across participants and stimuli. Spatio-temporal clusters
were defined on the basis of temporal adjacency and covariance matrix by
regrouping samples whose T-statistic was larger than 2.6, corresponding to a
p-value ≤ 0.01 for a T-test with 77 degrees of freedom (13 participants x
6 sequences– 1). Cluster-level statistics were then calculated by taking the sum of
the t-values within the cluster. We used random permutations to build the null
distribution of the cluster-level statistics. On each permutation (N= 10 000),
task labels were randomly shuffled across trials70. Only spatio-temporal clusters
with permutation corrected p-values ≤ 0.01 are reported.

MEG x behavior correlation. The activity in each cluster was correlated with
behavioral responses to assess how relevant this differential activity was to
participants’ response. We fitted generalized linear mixed-models on the prob-
ability of a response with a logistic link function. The root mean squared (RMS)
evoked activity in the cluster was set as a fixed effect, and the participant was set
as the random effect. All models were fitted on single trial evoked activity per
participant.

Model-based temporal response functions. Temporal response functions are
encoding models of MEG activity37 and rely on the assumption that MEG
activity can be expressed as a linear convolution between the input stimuli and a
filter. The filter is typically unknown and therefore estimated by a least-square
ridge regression. We extended this method by using the Multisensory Correla-
tion Detector model signals as input instead of the stimuli. We refer to this
method as “model-based temporal response function”. Technically, the relation
between the Multisensory Correlation Detector signals and the MEG is modelled
as follows:

MEGðn; tÞ ¼ ∑i∑
tmax
τ¼tmin

TRFðn; i; τÞ �MCDði; t � τÞ þ εðn; tÞ ð10Þ

Where: MEG(n, t) is the MEG activity at of the sensor n at time t,TRF(n, i, τ) is
the value of the temporal response function for the sensor n, the Multisensory
Correlation Detector unit i, at lag τ,MCD(i, t-τ) is the value of the Multisensory
Correlation Detector unit i at time t–τ, ε(n, t) is the residual error at time t for
the MEG sensor n.

The residual error ε(n, t) is minimized for each sensor n using least-square
regression. Note that we fit one temporal response function per MEG sensor and
per Multisensory Correlation Detector component. The parameters of the
Multisensory Correlation Detector model were estimated from the behavioral data
and left untouched at this stage of the analysis. Overfitting was handled by using a
standard procedure of cross-validation: at each iteration, we fitted temporal
response functions on all participants and all stimuli except for one stimulus of one
participant (78-folds cross-validation). We evaluated the performance of the
temporal response function for each component of the Multisensory Correlation
Detector separately by Pearson’s ⍴ between predicted activity and real MEG
recordings. Finally, ⍴ scores were averaged across all folds and tested against 0 with
a two-tailed t-test. The output of this test was corrected for multiple comparison
using spatial cluster permutations (N= 10 000, threshold T= 2.6).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study have been anonymized, defaced and
converted to the BIDS format71 using MNE-BIDS 0.872. Source data are provided with
this paper. The behavioral and MEG data generated in this study and the custom codes
used to analyze the data have been deposited in the OpenNeuro database under accession
code https://openneuro.org/datasets/ds003922.
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