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Towards an efficient validation 
of dynamical whole‑brain models
Kevin J. Wischnewski1,2, Simon B. Eickhoff1,2, Viktor K. Jirsa3 & Oleksandr V. Popovych1,2*

Simulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal 
selection of parameters, which determine the model’s capability to replicate empirical data. Since 
the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, 
we evaluate several alternative approaches to maximize the correspondence between simulated 
and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance 
of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), 
Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO). To 
compare them, we employ an ensemble of coupled phase oscillators built upon individual empirical 
structural connectivity of 105 healthy subjects. We determine optimal model parameters from 
two- and three-dimensional parameter spaces and show that the overall fitting quality of the 
tested methods can compete with the GS. There are, however, marked differences in the required 
computational resources and stability properties, which we also investigate before proposing CMAES 
and BO as efficient alternatives to a high-dimensional GS. For the three-dimensional case, these 
methods generated similar results as the GS, but within less than 6% of the computation time. Our 
results contribute to an efficient validation of models for personalized simulations of brain dynamics.

Following the ground-breaking work of Biswal et al.1, neuroimaging research has experienced a shift in attention 
towards resting-state brain activity2,3. The discovered similarity between the task-evoked functional networks 
and the corresponding connectivity patterns observed from human brain activity at rest strongly motivated the 
investigation of the latter1,4,5. A multitude of study approaches and applications of the resting-state dynamics 
have been developed. They aimed at understanding the brain architecture and function on the one hand and at 
a differentiation between individuals in health and disease on the other hand6–12. A promising avenue to achieve 
both of these goals is provided by numerical simulations of complex spatio-temporal brain activity patterns via 
dynamical whole-brain models13–19.

The data-driven dynamical models allow for the incorporation of anatomical information about the human 
brain into the simulation of its dynamical properties. In other words, they enable researchers to investigate the 
relationship between brain structure and function with a particular focus on the question whether and how 
the latter emerges from the former and how they correlate13–19. Additionally, models offer a quick in silico 
experimental way to study and compare different brain parcellations, network configurations and parameters 
of data-preprocessing, which again contributes to a deeper understanding of the interaction between the brain 
architecture and dynamics20–22. Another advantage of the discussed modeling approach is that it allows for a 
meaningful description of complex natural phenomena by a set of interpretable parameters. The whole-brain 
models are designed to mimic human brain dynamics in a way that fairly reduces its intricacy and renders it 
accessible for deep and systematic analyses23. Differentiation between individuals in health and disease can thus 
be facilitated on the basis of biologically motivated model parameters and model dynamics. Model simulations 
can also improve the overall interpretability by performing a certain denoising, meaning that only the relevant 
dynamics and phenomena are modeled, but not the unwanted effects of random noise. In particular, model 
simulations showed a potential to reveal previously unknown characteristics of neural activity, allowing, for 
example, to distinguish between disease subtypes which cannot be identified by considering empirical brain 
imaging data only24.

Current understanding of the mechanisms underlying the observed complex patterns of collective neuronal 
dynamics and connectivity remains, however, highly fragmented, and deeper investigations are still required. 
In this effort, it is crucial to seize the full potential of the broad spectrum of available computational models25–31 
developed in the course of brain research. Notably, with a rising number of neural activity models on several 
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scales (single neurons, neuronal populations, brain regions) and their complexity, the challenge of their adequate 
validation against empirical data has become apparent. More precisely, model validation consists of adjusting 
the parameters, which have a well-founded relation to brain characteristics, e.g. global and local coupling, sig-
nal transmission delay or an excitation-inhibition balance14,15,19, in a way that the best possible correspondence 
between simulated and empirical dynamics is obtained. It is of highest relevance for recent investigations of 
personalized brain modeling, where a search for subject-specific optimal parameters is conducted32–35. Addition-
ally, the application of individualized brain models in population-based approaches offers a promising way to 
examine between-subject effects and possible parametrizations of inter-individual differences24,36.

An intuitive approach is to optimize model parameters by a systematic exploration along a dense discrete grid 
in the parameter space. This procedure, often termed grid search, has been applied in a variety of model-based 
studies16,35,37,38. On first sight, such a brute force approach may appear to be the safe way to explore the parameter 
space, but it holds several conceptual and technical challenges. Foremost, the number of parameters used in a 
grid search is typically small (such as 2–5), where in the real system adjustments can be made for many more 
parameters. Arguments are evoked that these parameters can be estimated from data, which usually assumes 
independent measurements. As joint probabilities of parameters are not necessarily limited to second orders 
(see, for instance, the work of Marder and Goaillard39), degeneracy will be a major contaminating factor for a 
proper interpretation of the simulation results. The second conceptual challenge is the extraction of data features 
used for the comparison between simulated and empirical data. The selective use of simplifying data features 
facilitates the analysis, but also imposes theory-driven filters in interpreting the results. The technical challenges 
are computational. Given that the grid is dense enough, the probability to miss important characteristics (such as 
the maximal similarity between simulated and empirical data) is low. Unfortunately, an exploration of the entire 
parameter space on a dense grid is computationally expensive and becomes unfeasible for complex models with 
many free parameters. If, for example, a machine equipped with p = 48 processors required only t  = 100 s per 
subject to perform a one-dimensional grid search covering p parameter points, then the total time consumption 
of a grid search covering pDim (= 110 592) parameter points for a model with Dim = 3 free parameters would 
roughly be given as t pDim−1 = 64 h. For a cohort of S = 100 subjects, the demands rise to S t pDim−1 , which cor-
responds to around 9 months of calculations. Another aspect, whose importance must not be neglected, is that 
the sheer mass of occurring parameter points renders the entire investigation intractable, too. That is why already 
a three-dimensional grid search with adequate granularity as, for example, in Schirner et al.35, is rather excep-
tional than usual. Additionally, the strategy of a sequential tuning of certain parameters14,36, where individual 
components are optimized separately from each other and afterwards fixed, may not always be applicable for 
multi-dimensional tasks that are not separable into low-dimensional subproblems. These aspects hamper high-
dimensional model studies in their potential to infer parameter-dependent differences between subjects. Papers 
discussing individualized simulations of brain dynamics are therefore based on models that hardly ever exceed 
five free parameters, with a majority investigating up to three variables only. Studies bringing forward desirable 
enhancements to more than 100 region-specific model parameters, as described in Wang et al.40, for example, 
currently lack feasible ways of implementation.

Previous works40–43 have already identified the so-called inverse problem of estimating optimal parameters 
from given empirical data and advocated for the use of alternatives to a thorough parameter space scan. We 
emphasize that optimal parameters usually comprise degenerate manifolds that ideally would be sampled sys-
tematically by Monte Carlo approaches32,33, but the use of mathematical optimization algorithms is often the 
more practical solution44–46. These methods enable the exploration of high-dimensional parameter spaces (under 
certain limiting assumptions), for which a grid search is impracticable. In good practice, when aware of the limi-
tations and underlying hypothesis (such as the existence of a unimodal posterior distribution), these approaches 
can be very powerful. Currently, the literature lacks an evaluation of the particular advantages and limitations 
connected to their applicability in individualized whole-brain modeling. Studies based on larger subject cohorts 
could underpin their robustness in dealing with in vivo data that feature increased complexity compared to 
purely theoretical and noise-free mathematical problems, which constitute a common field of their application.

In this work, we focus on the technical computational challenges. We implemented and tested several such 
optimization schemes which were designed to extensively explore complex high-dimensional parameter spaces 
in an adequate amount of computation time. Searching for subject-specific optima, we investigated the applica-
bility of these techniques for the validation of whole-brain models. We systematically compared their outcomes 
as well as computational costs with each other and the grid search approach. In particular, we considered a 
system of phase oscillators with delayed coupling47–49 to model the resting-state blood oxygen level-dependent 
(BOLD) dynamics, from which we extracted the simulated data feature of functional connectivity (FC). For a 
cohort of 105 subjects, the model was built upon the individual anatomical brain connectivity obtained from 
diffusion-weighted magnetic resonance imaging (dwMRI). It determined the coupling weights and time delays 
between individual network nodes. The individual model was then validated against the corresponding functional 
neuroimaging data (empirical FC) for each subject. Model parameters were optimized in order to maximize the 
model fit given by the correlation between simulated and empirical FCs. The highest possible similarity between 
these quantities was termed the model’s goodness-of-fit.

We studied four derivative-free methods as given by the Nelder-Mead Algorithm50, Particle Swarm 
Optimization51, Covariance Matrix Adaptation Evolution Strategy52,53 and Bayesian Optimization54. These 
methods were directly applied to the simulation output obtained from the numerical integration of the model 
equations. Our investigations were made for two and three free parameters in the utilized model. To better assess 
the quality of the algorithm solutions, we also included a systematic parameter variation (grid search) for each 
subject in both dimensionalities of the parameter space. It served as a good approximation of a ground truth 
provided that the grid is dense enough in the considered range of parameters. The comparison criteria considered 
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the obtained goodness-of-fit, the required computation time and the location of optimized parameters, or, more 
precisely, the spread of the algorithm solutions combined with their distance to the grid search optima.

Our study aims at suggesting efficient and reliable algorithms for the optimization of the correspondence of 
functional connectivity within simulated and empirical data in whole-brain modeling. The intention is to point 
up the ways that have to be taken in higher dimensions, where the grid search approach becomes inapplicable 
due to insurmountable numbers of parameter constellations that would have to be evaluated. After analyzing the 
advantages and drawbacks of the tested methods, we eventually arrive at a recommendation for two particular 
algorithms that provide a favorable trade-off between the result robustness and invested computational resources.

Methods
Overview.  In this study, we worked with neuroimaging data of S = 105 healthy, unrelated subjects (age 
28.5 ± 3.4 years, 51 males) from the Human Connectome Project (HCP) S1200 public dataset release55. Approval 
for the study was given by the local ethics committee of the HCP WU-Minn and written, informed consent was 
obtained from all subjects. All methods were performed in accordance with the relevant guidelines and regula-
tions. The given datasets had been utilized for the extraction of structural and resting-state functional connectiv-
ity (SC and FC, respectively) in related works20–22. We used the obtained empirical connectomes for the model 
derivation and validation. More precisely, Schaefer’s atlas56 with N = 100 cortical regions was employed as a brain 
parcellation for the calculation of an atlas-based SC. The latter served as a basis for the underlying network in 
the dynamical model and was used to determine the coupling weights and delays between individual network 
nodes (brain regions or parcels). The model then was deployed to simulate the resting-state brain dynamics and 
eventually generate simulated FC (simFC). This in turn was fitted to the empirical FC (empFC) by adjusting up 
to three model parameters simultaneously: global coupling and delay in a two-dimensional parameter space (see 
also Cabral et al.57,58) and additionally the noise intensity when a three-dimensional scenario was considered (see 
also Deco et al.14).

Besides an extensive parameter sweep exploration on a dense grid, referred to as a grid search, we imple-
mented four mathematical optimization algorithms in order to determine the optimal parameter values which 
maximize the similarity between simulated and empirical data. We measured this similarity with the Pearson 
correlation coefficient between simFC and empFC. To compare the algorithms’ outcomes systematically with each 
other and the grid search, we focused on the following criteria: For every subject, we analyzed the goodness-of-fit 
values detected within a predefined number of algorithm executions with different initial conditions. The highest 
value as well as the standard deviation of all solutions were considered and compared across the methods. Then, 
the required computation time of the optimization algorithms was put in relation to the grid search’s demands. 
In addition, we investigated the reliability of the results by examining the location of the obtained solutions in the 
parameter space. The spread of the supposed optima detected by a given algorithm for a particular subject was 
analyzed together with the averaged distance to the respective optimal parameters found by the grid search. We 
want to highlight that, despite the important aspect of a reduced computation time, we were also concerned with 
finding stable methods that detect the global optima most reliably (which may be manifested by a low spread of 
solutions in the parameter space, for example). Our main goal was to suggest alternative ways for model valida-
tion that promise a clearly lower computational burden than the grid search combined with a favorable robust-
ness. We thus analyzed the obtained results based on the three mentioned criteria, which can be summarized as

•	 the goodness-of-fit,
•	 the necessary computation time and
•	 the location/spread of the optimized parameters.

Data preparation.  The pipeline implemented for the extraction of SC comprised four major steps: pre-
processing of raw magnetic resonance images (MRIs), calculation of a whole-brain tractography (WBT), trans-
formation of the brain parcellation images to the native space and, finally, SC reconstruction based on the brain 
parcellation. In this procedure, software tools from ANTs59, FreeSurfer60, FSL61 and MRtrix362 were applied, see 
Jung et al.21 and Popovych et al.22 for the details.

In the first step, the T1-weighted images and the diffusion-weighted MRIs (dwMRIs) were preprocessed 
(intensity normalization, denoising, motion correction, tissue segmentation, etc.) with functions from FreeSurfer 
and MRtrix3. Subsequently, a co-registration via FSL was performed. In the second step, functions from MRtrix3 
were used to compute a WBT. A set of 10 M streamlines in total was extracted by the help of a probabilistic 
algorithm63. Afterwards, linear and non-linear transformations were applied to the image of Schaefer’s atlas in 
order to transfer it from the Montreal Neurological Institute (MNI) standard space, in which it was sampled, to 
the native diffusion space. The workflow in this step involved functions from FSL. Finally, the MRtrix3 function 
tck2connectome was used to reconstruct the parcellation-based SC that comprised two matrices: one with the 
number of streamlines between individual regions, i.e. the streamline count, henceforth referred to as SC, and 
another one containing the average length of the streamlines between regions, termed path lengths (PL).

For the calculation of empFC in turn, the ICA-FIX64 preprocessed resting-state functional MRI (fMRI) data 
provided by the HCP repository were considered. Time series of the BOLD signals were extracted as mean 
signals averaged over all voxels of individual brain regions. Then, calculating the Pearson correlation for each 
pair of linearly detrended and z-scored BOLD time series from the respective cortical areas eventually yielded 
the corresponding FC matrix.

In this setting, four fMRI sessions of 1200 volumes sampled with a repetition time of TR = 0.72 s each were 
available for every subject (scans were performed twice using different phase-encoding directions on two days). 
Additionally, a concatenated BOLD signal was generated by combining the z-scored BOLD time series from the 
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mentioned sessions. We focused on the empFC matrix derived from the concatenated session for the optimiza-
tion of model parameters in terms of the best fit between simulated and empirical data.

Model simulations.  To obtain simFC, we implemented the Kuramoto model of coupled phase 
oscillators48,49,57, which is one of the simplest models used for simulating features of resting-state brain activity 
(here the phase dynamics)37. Its reduced complexity compared to other whole-brain models makes it suitable to 
investigate the immediate impact of the model parameters on the simulated dynamics. We do not suspect, how-
ever, that our insights and qualitative results depend on the selected modeling approach. We therefore worked 
with this basic model, in which each of N oscillators represented one brain region defined by the underlying 
parcellation (N = 100 for the considered atlas). Their temporal dynamics served as a basis to compute simulated 
BOLD signals that were eventually cross-correlated in order to derive the simFC matrix. More precisely, the 
model assumes that the phase dynamics of the mean BOLD signal of a brain region i ∈ {1, …, N} can be described 
by the following differential equation:

For a given time t, θi(t) ∈ [0, 2π] denotes the value of the phase that oscillates with a natural frequency fi if left 
uncoupled (kij = 0) from the other oscillators. The frequencies fi were estimated from the maximal spectral peaks 
(restricted to the frequency range from 0.01 Hz to 0.1 Hz) of the empirical BOLD time series.

Apart from intrinsic oscillations, the phase dynamics is governed by delayed interactions with the other oscil-
lators. The individual coupling strengths kij and delay values τij were determined on the basis of the empirical 
matrices SC = (SC)1≤i,j≤N and PL = (PL)1≤i,j≤N , respectively:

In this context, �·� indicates the mean over all matrix elements, excluding the zero diagonals. C and τ are 
global weighting factors that influence the strength and delay of the interactions between individual oscillators, 
respectively. These quantities can be interpreted as free parameters in the dynamical system. Additionally, it is 
possible to adjust the intensity σ of the independent noise ηi(t) which is sampled from a uniform distribution 
over [− 1, 1] and perturbs the individual oscillators. While C and σ can be regarded as dimensionless quantities, 
τ is measured in seconds.

We solved Eq. (1) numerically using Heun’s method for stochastic differential equations65 with a discrete time 
step of Δt = 0.06 s. The calculated phases were downsampled to 0.72 s in order to match the repetition time of the 
fMRI data provided by the HCP. With the model at hand, we generated simulated BOLD time series by computing 
sin (θi(t)) for all i ∈ {1, …, N} corresponding to the regions in the considered brain parcellation. As mentioned 
above, the matrix simFC was then derived from the Pearson correlation coefficients across all pairs of simulated 
time series. These featured a length of 3500 s after excluding an initial transient of 500 s. We assessed the simi-
larity between simulated and empirical data by correlating the matrices of simFC = simFC(C, τ, σ) and empFC.

Parameter optimization.  Mathematically, the search for the parameters that maximize the correspond-
ence between simFC and empFC (the model fit) can be interpreted as an optimization problem of a goal function 
F = F(C, τ, σ) that returns the Pearson correlation coefficient between the model output and the corresponding 
empirical measurement. Our knowledge about F is limited to a numerical calculation of its values (numerical 
integration of Eq. (1) and correlation between simFC and empFC) depending on the relevant model parameters 
(e.g. global coupling C, global delay τ and noise intensity σ) and the assumption of continuity. We thus supposed 
that the function F is not available in a closed form, and no claim was made about the existence of derivatives. In 
other words, we were to a great extent dealing with a black-box optimization problem. We optimized the model 
parameters by a systematic variation on a dense grid, before testing the performance of derivative-free optimiza-
tion algorithms on the same problem.

All model fitting simulations for this study were performed on the CPU partition of the high-performance 
supercomputing cluster JURECA66 at Forschungszentrum Jülich. Each computation node featured two Intel Xeon 
E5-2680 v3 12-core Haswell CPUs, and each core supported two hardware threads, so that one computation node 
(consisting of two 12-core CPUs) ultimately offered 2 × 2 × 12 = 48 threads for simultaneous computations. The 
base frequency of the CPUs was 2.5 GHz and the maximum memory bandwidth of one node was 136 GB/s. We 
refer to the work of Krause and Thörnig66 for further details about the configuration of JURECA.

Grid search.  At first, we considered a two-dimensional (2Dim) parameter space in which the noise intensity 
was fixed at σ = 0.3. The global weights for coupling C ∈ [0, 0.945] and delay τ ∈ [0, 94] were tuned along a set of 
64 × 48 = 3072 discrete, equidistant points. The selected parameter range for the considered model was suspected 
to include the optimal model parameters of the best correspondence between simulated and empirical data, 
which was confirmed by post-simulation analyses22. Furthermore, the considered grid granularity was selected 
as a trade-off between the computational costs and a favorable density that allowed for a close approximation 
of the goodness-of-fit values as confirmed in this study by comparing the fitting results with those of other 
optimization methods. For each tuple (C, τ), we generated simFC which we compared to the empirical data, 
resulting in a total of 322 560 (64 × 48 × 105) model simulations for the considered cohort of 105 subjects. One 
subject required approximately 100 min (≈ 1.67 h) of calculation time on a CPU node with 48 threads for paral-
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lel computations (24 cores × 1.67 h ≈ 40 core-hours). Subsequently, we performed another thorough parameter 
scan in which we also varied the noise intensity σ. This three-dimensional (3Dim) grid search was executed for 
48 × 22 × 81 = 85536 tuples (C, τ, σ) and required approximately 1200 core-hours per subject. While the indi-
vidual values for C ∈ [0, 0.94] and σ ∈ [0, 2] were equidistant, τ ∈ [0, 48] was distributed more densely for smaller 
values. For a broad exploratory investigation of the noise impact, its intensity was varied between 0 (noise-free 
scenario) and a maximal amplitude of 2, which was inspired by Deco et al.14 and indicates a very strong pertur-
bation of the system dynamics. In view of the rising computational requirements, the highest value of delay τ 
was reduced to 48, which however did not distort the results, because the parameters maximizing the model fit 
did not suggest very large delays22. The search in 3Dim comprised about 9 M model simulations for 105 subjects 
included in the study.

A few examples of the goal function F = F(C, τ) depending on the global coupling C and delay τ are shown in 
Supplementary Fig. S1, where the noise intensity is set to σ = 0.3 (in accordance with our definition of the 2Dim 
parameter space). F exhibits a different shape for every single subject, and thus, also the value and location of 
the maxima are different (dark red color). Finding the subject-specific maximum of F constitutes the model 
validation against empirical data.

In the following, we outline the investigated mathematical optimization schemes that we applied in addition to 
the grid search. The goal was, again, to maximize the goal function F for each subject in the respective (2Dim or 
3Dim) parameter space. Since most methods are traditionally formulated as function minimizers, we internally 
worked with −F: a maximization of F is equivalent to a minimization of −F.

Nelder‑Mead Algorithm.  The first method tested was the Nelder-Mead Algorithm (NMA), introduced 
more than 50 years ago by Nelder and Mead50. It is also known as the Downhill Simplex Method and belongs 
to the class of direct local search methods. Its derivative-free optimization procedure is purely deterministic, 
updating in each iteration the worst of the given trial solutions based on the ordering of the respective function 
values. More precisely, the algorithm starts with an initial set of Λ = Dim + 1 points that define the vertices of 
a simplex in the parameter space. In the most vivid case, Dim = 2, this corresponds to a simple triangle. After 
evaluating the objective function at all vertices, the algorithm replaces the vertex with the highest function value 
by a new point found through a series of transformations around the centroid of the remaining ones. These 
operations include, among others, expansions and contractions of the current simplex. Ideally, this procedure 
will create a sequence of simplices of decreasing size which accumulate around the desired optimum of F. More 
details on the strategy can be found in Lagarias et al.67 and Hicken et al.68 as well as in the Supplementary Materi-
als. We also define the utilized stopping criterion (sufficiently short simplex edges), which effectively terminated 
the optimization before reaching the maximum of 80 iterations in more than 99% of the performed algorithm 
executions. A few examples of the best goal function values depending on the number of executed iterations are 
shown in Supplementary Fig. S2.

Particle swarm optimization.  The algorithm of Particle Swarm Optimization (PSO) was the second 
method in our considerations. It is a population-based variant of global stochastic search strategies and has orig-
inally been introduced by Kennedy and Eberhart51,69. Derived from the simulation of natural phenomena such as 
bird flocking or fish schooling, it features a swarm of � ∈ N particles (we selected Λ = 60 after an internal hyper-
parameter optimization) exploring the parameter space collaboratively and exchanging information about the 
discovered function values in each step. The individual particles are given by their coordinates in the parameter 
space and can be regarded as trial solutions in the iterative optimization of the goal function. They are equipped 
with particular velocities that are repeatedly updated and therefore enable an exploratory roaming along distinct 
trajectories. Throughout the iterations, every particle remembers its individual best position, i.e. the location in 
the parameter space where an evaluation of the objective function yielded the lowest value on the particle’s way 
so far. This information is shared with the entire swarm, so that the current global best position of all individuals 
can be determined and communicated across particles based on the respective function values. In the velocity 
update, each particle then adjusts its moving direction according to the distance to both its individual most sat-
isfactory position and the global best point. The aim of this strategy is to seize the advantages of social sharing 
of information during a collaborative search. Individual best points lying close to the global one, eventually lead 
to a dense swarm with particles gathered around the suspected global optimum of F. More detailed outlines of 
the algorithm can be found in related mathematical works70–72 and in the Supplementary Materials. In roughly 
11% of the executions we performed, the optimization was terminated prematurely due to a saturation and lack 
of improvement during 50 (out of 80) consecutive iterations. A few examples of the convergence and the optimal 
F-values depending on the iteration steps are illustrated in Supplementary Fig. S2.

Covariance matrix adaptation evolution strategy.  The third algorithm under our investigation 
was the Covariance Matrix Adaptation Evolution Strategy (CMAES). Since its introduction52 and subsequent 
concretization53, it has proven robust and successful in many black-box optimization problems73–75. CMAES 
shares PSO’s feature of being a population-based optimization approach. In the evolution strategy, however, 
the underlying concept is different, and particles do not roam the parameter space on individual trajectories. 
Instead, the points from every iteration are regarded as a generation from which only the best members are 
selected to form the population for the next step. The optimization procedure starts with a particle generation 
of moderate size (default � = 4+ ⌊3 ln(Dim)⌋)76, which may be increased. We selected Λ = 24 after an extensive 
algorithm testing. Then, it works with a weighted mean of ⌊�/2⌋ solutions which yield the lowest values of the 
goal function. Afterwards, a new generation of search points is obtained by taking Λ samples from a multivari-
ate normal distribution centered around the weighted mean of these most promising points. The (co)variance 
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is determined by a matrix whose update formulas take the location of the current best points into account. In 
this way, the search distribution is adapted iteratively towards a concentration around the optimal solutions, see 
Hansen et al.76,77 and the Supplementary Materials for further details. An early termination due to saturation and 
lack of improvement of the goal function during 50 (out of 80) consecutive iterations was observed in approxi-
mately 24% of the executions we performed. A few examples of the convergence and optimal F-values generated 
by the algorithm after every iteration step are presented in Supplementary Fig. S2 for a few subjects.

Bayesian optimization.  Lastly, we also considered the strategy of Bayesian Optimization (BO). Some of its 
conceptual principles can already be found in early works78,79. However, the current form of BO as a sequential 
design strategy for global optimizations of black-box functions has been discussed in more recent papers54,80. 
Starting with a random sample of a small to moderate number of candidate solutions (Λ ≤ 10 Dim, we used Λ = 5 
to 10) in the parameter space, BO works with a probabilistic surrogate model for the goal function. Typically, 
Gaussian Process Regression81 is applied. The model is adjusted based on every new function evaluation, and 
further sampling points are found iteratively by an acquisition function. It indicates the area where the highest 
gain can be expected. One advantage of this algorithm is that it incorporates the information from all previous 
evaluations in order to estimate the shape of F. Additionally, the internal procedures can be adjusted especially 
for the case of function values perturbed by noise. Detailed descriptions of the individual steps can be found in 
algorithm-related works82,83 and in the Supplementary Materials. In our simulations, we used the C++ software 
package BayesOpt84. It allowed for the utilization of the stopping criterion in the form of a maximal number of 
iterations, which we set to 80. A few examples of the method convergence and the optimal values of the goal 
function depending on the number of executed iterations are shown in Supplementary Fig. S2.

Algorithm executions and success probability.  For all tested subjects, we first executed each method 
for Rmax = 15 times with different random initial data in the respective parameter spaces. From the individual 
runs, we extracted the highest model fitting value and the corresponding parameter constellation. The values for 
optimization were bounded to (C, τ) ∈ [0, 1] × [0, 100] in the 2Dim scenario and to (C, τ, σ) ∈ [0, 1] × [0, 100] × [0, 
2] in the 3Dim case.

Then, we also investigated how the number of algorithm executions with different initial data can influence the 
model validation results. We therefore evaluated how many runs of a given optimization method are on average 
necessary to obtain a goodness-of-fit of at least 95% of that from the grid search. In cases where the quality of the 
model validation of the grid search was not reached by a given algorithm after the default number of Rmax = 15 
runs, we performed some additional simulations to test whether a larger number of algorithm executions can 
improve the model fitting. This resulted in a total of Rmax = 24 executions for NMA and BO, see “Results”.

To calculate a probability of reaching 95% of the goodness-of-fit of the grid search for a given number of runs, 
we started with randomly selecting R = 1, 2, …, Rmax goodness-of-fit values out of the available solutions of a given 
algorithm. After comparing the selected values to the threshold, we assigned either 0 (for failure, i.e. the grid 
search result was not reached by any of the selected values) or 1 (for success, i.e. grid search result was reached 
by at least one of the selected values) to the current set of R goodness-of-fit values. This procedure was repeated 
500 times for every choice of R, subject and optimization algorithm. For every method, we then computed the 
mean success rate (from all 500 trials) for each subject and then averaged it over all subjects for every value of 
R. This gave us a subject-independent estimate of the probability to reach the threshold with R algorithm runs. 
We henceforth refer to this quantity as a success probability. In such a way we evaluated the expected number 
of optimization runs needed by every considered method to reach a certain success probability of the model 
fitting quality comparable with the grid search results. This number of runs played a crucial role in comparing 
the actual time requirements of the individual algorithms, where the computational resources were calculated 
for the number of runs needed to reach the same success probability.

Cost function �cost.  For a systematic evaluation and comparison of the tested optimization algorithms, 
we defined a cost function �cost that combines several individual properties of the algorithms including the 
goodness-of-fit, the computation time and the location of the optimized parameters that can be used to assess 
the quality of the optimization. The components of the cost function represent the features along which we esti-
mated every method’s advantages and limitations. In this procedure, we assigned each algorithm a certain cost 
value for every subject and interpreted lower costs as better results.

To construct �cost, we specify the notation that we will use in the following. For each subject and algorithm, 
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of dimension 5 × Dim that contains the parameter values corresponding to the five highest correlations between 
simFC and empFC discovered in the exhaustive parameter space scan. Again, the last column listing the noise 
intensities was removed in the 2Dim case. The cost function �cost can then be constructed from its individual 
components as explained below.

1.	 The first factor considers the highest goodness-of-fit value that a particular algorithm discovered based on 
its 15 executions. Since the model fit is measured by the Pearson correlation coefficient between empFC 
and simFC, this quantity is limited to the range [− 1, 1]. Then the simple difference 1 − max{Fiti}, 1 ≤ i ≤ 15, 
reflects higher Fit values as lower costs.

2.	 For the second factor, we took the spread of the objective function values (i.e. the detected goodness-of-fit 
values) into account. We therefore computed the standard deviation (SD) of the 15 model fits for every 
algorithm and subject. This quantity assigns higher costs to methods that tend to converge to local maxima 
besides the global ones, reflected by a higher variance in the respective goodness-of-fit values.

3.	 The third component incorporates the computation time required for the number of algorithm executions 
necessary to reach a success probability of 80% (see previous section).

4.	 As the next important ingredient of �cost, we considered the spread of the optimized parameters across rep-
lications. We therefore computed the mean Euclidean distance between the 15 solutions of a given algorithm 
in the parameter space (normalized to [0, 1]Dim). In this setting, a lower spread indicates a higher stability 
of the respective method, while larger values hint at a convergence to more than one (local) optimum.

5.	 Finally, the distance of the algorithm solutions to the optima found by the grid search plays a role in the cost 
function. For the latter method, we extracted five parameter points per subject (GridPoints) that provided 
the highest goodness-of-fit values and which approximated the global optimum, as mentioned above. We 
then computed the average pairwise Euclidean distances between the 15 algorithm solutions on one side 
and the five grid search solutions on the other side. This term was included in the cost function in order to 
evaluate how much the calculated algorithm solutions deviate from the approximate ground truth given by 
the results of the grid search. Additionally, we aimed at making more precise differentiations in cases where 
the algorithms converge to more than one solution.

For better interpretability, the calculated values were normalized to the interval [0, 1] by dividing by the cor-
responding maxima (calculated over all algorithms for a given component in the respective parameter space).

We multiplied the mentioned components in order to obtain the final values of �cost for each algorithm and 
subject. In summary, we obtained a 105 × 4 matrix (subjects × algorithms) containing all values. The complete 
form of the cost function is the following:

In addition to the mere distribution of costs, we also evaluated for how many subjects a given method 
performed better than the others. To compute this quantity, we compared the costs of all algorithms for every 
subject individually. In other words, we sorted the cost function values assigned to the four methods (NMA, PSO, 
CMAES and BO) in ascending order and selected the algorithm featuring the minimal value as the favorable 
method for the particular subject. Repeating this procedure for the entire cohort yielded a vector of 105 subject-
specific algorithm recommendations. The method gathering most of the recommendations (subjects) can be 
regarded as the winner of the competition.

Results
To explain and analyze the characteristics of the investigated optimization methods, we will pursue the following 
presentation flow. We start with an illustration of their performance for one subject, where we briefly address 
the three evaluation criteria (see Sect. “Overview” in “Methods”) along which the individual methods may differ 
from each other.

Then, we turn to analyzing the algorithms more systematically based on their results across all subjects. These 
investigations will be guided by the three criteria from above, too. With the help of the cost function �cost, we 
ultimately take all methods’ particular advantages and limitations into account and identify the most favorable 
approaches.
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Examples of the model validation for one subject.  In the illustrative example in Fig. 1, we observe 
that all methods are able to find the area of the highest similarity (global optimum) between simulated and 
empirical FC, which can be verified by the results of the grid search (dark red color). The highest values (out of 
15 runs) of the detected goodness-of-fit and the corresponding optimal parameters may, however, vary to small 
extent across the considered methods (Table 1). A possible cause of this effect may be the stochastic impact of 
the noise included in the model that influences the results. Most methods in the considered example outperform 
the grid search slightly (between 0.3% and 2.5%) with respect to the goodness-of-fit values, except for CMAES 
(− 0.7%). However, this does not necessarily imply that the global optimum in the parameter space has been 
missed here; the solutions are rather perturbed by noise. Therefore, the values may be somewhat below the 
goodness-of-fit obtained by the grid search, despite the fact that the optimal parameters have correctly been 
identified within the dark red region. 

Figure 1.   Examples of the algorithms’ solutions in the 2Dim parameter space. All plots illustrate the outcome 
for the same subject. As indicated in the legends, the results of the 2Dim parameter optimizations via NMA 
(NMA2D), PSO (PSO2D), CMAES (CMAES2D) and BO (BO2D) are visualized by colored symbols (diamonds, 
squares, triangles and circles, respectively). For each method, 15 optimal parameter points obtained from 15 
algorithm executions with random initial conditions are indicated. The background fill of the plots illustrates the 
shape of the parameter space as discovered by the grid search, see also Fig. S1. It shows the similarity (Pearson 
correlation) between simulated and empirical FC on a color scale reaching from dark blue (low similarity) to 
dark red (high similarity). The figure was created with MATLAB R2018a (www.​mathw​orks.​com).

Table 1.   Optimal parameter points, goodness-of-fit and the used computation time for the examples 
presented in Fig. 1. The indicated parameter values (coupling and delay) and the goodness-of-fit pertain to the 
best solution (highest goodness-of-fit) found across all 15 algorithm runs for the four optimization methods 
(NMA2D, PSO2D, CMEAES2D, BO2D). For the grid search in 2Dim (GS2D), the best parameter constellation 
obtained from a single parameter space scan is shown. The invested core-hours (core-h) for GS2D and 
the optimization methods represent the required resources for one thorough scan and all 15 runs in total, 
respectively.

Optimal coupling C Optimal delay τ Goodness-of-fit Invested core-h

GS2D 0.2850 0.0000 0.3779 0040.0

NMA2D 0.3323 0.8381 0.3789 0017.5

PSO2D 0.3134 0.8941 0.3814 1378.8

CMAES2D 0.3283 0.9082 0.3753 0395.9

BO2D 0.3072 0.0070 0.3873 0015.1

http://www.mathworks.com
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For the 3Dim case, we refrained from showing the complete outcome of the grid search for illustrative pur-
poses, but rather included only the five best points that yielded the highest fitting according to the exhaustive 
parameter space scan (Fig. 2). For the other optimization algorithms, the highest detected goodness-of-fit values 
again fluctuate around the result of the grid search (Table 2). In this example, PSO and CMAES outperform the 
exhaustive scan (up to 5.4%), whereas NMA and BO generate slightly lower values (between − 0.4% and − 4.1%).

Importantly, the invested computational resources vary greatly across the algorithms in the presented exam-
ples (Tables 1, 2). While 15 executions of either PSO (3447.0%) or CMAES (989.8%) surpass the requirements 
of a two-dimensional grid search clearly, NMA (43.8%) and BO (37.8%) already demonstrate speedup factors 
higher than 2. In the 3Dim case, the gains seem to be even more pronounced. All methods except for PSO require 
less resources for 15 independent optimization runs than one thorough grid search. CMAES (25.3%) appears 
to be nearly 4 times faster, whereas NMA (1.7%) and BO (1.4%) reach speedups close to 60 and 73, respectively.

Another crucial aspect of the method performance is the algorithm’s susceptibility with respect to local optima 
and the spread of solutions. We tested this by restarting the optimization for Rmax = 15 random initial conditions 
as mentioned above and highlighted the spread of the obtained solutions by 15 corresponding markers in the 

Figure 2.   Exemplary parameter optimization in the 3Dim case. The outcomes (optimal parameter points) 
for all tested methods are combined in one plot. Besides the solutions in the 3Dim parameter space (larger 
markers), projections to 2Dim plains are presented (smaller markers). For the grid search in 3Dim (GS3D), five 
parameter points are considered (black crosses). In terms of the model similarity to empirical data, these points 
represent the five best solutions out of all values calculated on the parameter grid. As indicated in the legend, the 
results of the 3Dim parameter optimizations via NMA (NMA3D), PSO (PSO3D), CMAES (CMAES3D) and 
BO (BO3D) are visualized by colored diamonds, squares, triangles and circles, respectively. For each algorithm, 
15 markers are shown (plus projections) which indicate the solutions of 15 runs executed at random initial 
conditions. The figure was created with MATLAB R2018a (www.​mathw​orks.​com).

Table 2.   Optimal parameter points, goodness-of-fit and the used computation time for the results presented 
in Fig. 2. The indicated parameter values (coupling, delay and noise) and the goodness-of-fit pertain to the 
best solution (highest goodness-of-fit) found across all 15 algorithm runs for the four optimization methods 
(NMA3D, PSO3D, CMAES3D, BO3D). For the grid search in 3Dim (GS3D), the best parameter constellation 
obtained from a single parameter space scan is shown. The invested core-hours (core-h) for GS3D and 
the optimization methods represent the required resources for one thorough scan and all 15 runs in total, 
respectively.

Optimal coupling C Optimal delay τ Optimal noise σ Goodness-of-fit Invested core-h

GS3D 0.2400 3.0000 0.8000 0.3310 1200.0

NMA3D 0.3287 0.2883 0.7079 0.3173 0020.2

PSO3D 0.1603 7.5195 0.5717 0.3489 1382.5

CMAES3D 0.1603 0.1554 0.5230 0.3479 0303.3

BO3D 0.2358 0.0042 0.6991 0.3298 0016.4
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parameter spaces in Figs. 1 and 2 for 2Dim and 3Dim, respectively. In the considered examples, the solutions 
do not always aggregate in a relatively small, distinct area, which especially becomes obvious in the 3Dim case 
(Fig. 2; Table 2). Instead, they may be distributed across a broader region within the parameter space. NMA, as 
a local search method, demonstrates a large susceptibility to local optima, to give an example. For CMAES, by 
contrast, the solutions converged to a specific area of the parameter space, where they form a dense cluster. We 
discuss the stability of the considered optimization methods as well as the other comparison criteria in more 
detail later below.

Group‑level analysis.  Goodness‑of‑fit.  To evaluate the performance of the investigated optimization 
methods in more detail, we compared the detected goodness-of-fit values across all subjects. Here, we observed 
that the fitting quality is higher in 3Dim than in 2Dim, regardless of the applied algorithm (Fig. 3). The averaged 
improvement is around 8.6%. Moreover, the goodness-of-fit values obtained by the optimization methods for 
individual subjects can compete with those calculated by the extensive parameter optimization on a dense grid 
(Fig. 4). The medians of the individual relative differences to the grid search solutions evaluated across subjects 
range from − 0.3% to + 11.3% for optimizations in the 2Dim parameter space and from − 5.1% to + 3.8% in the 
3Dim case (Fig. 4). Among the methods, the order NMA < BO < CMAES < PSO can be observed (Fig. 5).

From the first component (goodness-of-fit) of the cost function �cost, we see that the differences between the 
algorithms are not very pronounced in terms of the distribution of costs (Figs. 6A, 7A and, for the exact values, 
Supplementary Table S1). Nevertheless, PSO appears to produce the best results across all 105 subjects under 
investigation (Figs. 6F, 7F and Supplementary Table S1). Regarding the recommendations, it clearly dominates 
with 80% in the 2Dim case and the other methods cannot keep up with PSO here. In the 3Dim case, CMAES 
attracts slightly more than 30% of the subjects, but it still does not reach the performance of PSO (62%). It is 
remarkable that NMA does not even receive a single recommendation, meaning that it is always outperformed 
by at least one other method with respect to the detected goodness-of-fit values.

When analyzing the spread (standard deviation, SD) of the 15 model fits obtained for each subject and 
method, i.e. the second component of the cost function �cost, we found that CMAES appears to demonstrate the 
best results, followed by PSO in 2Dim and by BO in 3Dim (Figs. 6B, G, 7B, G; Supplementary Table S1). NMA 
again reveals the poorest performance in both considered parameter spaces.

So, when compared to the other methods, PSO demonstrated an advantage in detecting the highest individual 
goodness-of-fit value within 15 executions. However, the solutions generated by CMAES have the lowest variation 
across 15 replications, indicating a stronger robustness against outliers and a higher stability of the fitting results.

Optimizing the number of algorithm executions.  We observed above that the quality of the model 
validation (goodness-of-fit) of the grid search may on average not be reached for some of the considered optimi-
zation algorithms even after Rmax = 15 executions. This is the case for NMA in both considered dimensionalities 
and for BO in 3Dim (see Fig. 4). To test whether a larger number of algorithm runs can improve the model fit-
ting, we thus performed some additional simulations for NMA and BO, leading to a total of Rmax = 24 executions, 
which we took into account when analyzing the behavior of the success probability (see “Methods”).

Performing the discussed calculations, we found the following (Fig. 8): The success probability is a mono-
tonically increasing function of the number of executed runs. The growth rate (slope of the curves), however, 
decays with a rising number of algorithm executions. NMA needs 4 initializations in 2Dim to reach a success 
probability above 50% and 16 runs to surpass 80%. PSO in turn manages to reach 80% (and 50%, of course) 
with only 1 initialization. For CMAES, a success probability of 50% is achieved within 1 run, compared to 10 
runs for 80%. BO requires 2 executions to reach 50% and 9 to surpass a success probability of 80%. In the 3Dim 

Figure 3.   Distributions of the goodness-of-fit values for all tested approaches and dimensionalities. The 
considered methods and the respective parameter space’s dimension are indicated on the horizontal axis (GS2D, 
NMA2D, PSO2D, CMAES2D, BO2D in 2Dim and GS3D, NMA3D, PSO3D, CMAES3D, BO3D in 3Dim) 
along with the detected goodness-of-fit values on the vertical axis. Violins show the distributions of the highest 
model fit detected for all subjects. The medians (across subjects) of the relative increase between the results in 
2Dim and 3Dim are indicated in the plots together with p-values of the Wilcoxon signed-rank test. Statistically 
significant differences are marked with an asterisk (the significance level of 5%, p < 0.05, has been Bonferroni-
corrected for multiple comparisons).
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case, by contrast, NMA needs at least 16 executions for 50%, but it cannot guarantee a success probability of 
80% within the maximal number of Rmax = 24 performed runs. PSO’s required number of runs is 1 for 50% and 
2 for 80%. Interestingly, CMAES seems to perform better in 3Dim than in 2Dim. While a success probability of 
50% is achieved within 1 run in either dimensionality, 3 runs already seem to suffice for 80% in 3Dim, which is 
much less than in 2Dim. Lastly, BO requires 2 executions to reach 50%, while 17 runs are needed to surpass a 
success probability of 80%.

Figure 4.   Goodness-of-fit values for individual subjects and optimization approaches. As indicated in the 
legends, colored curves illustrate the outcome (subject-dependent goodness-of-fit) for each method in the 
(A–D) 2Dim (NMA2D, PSO2D, CMAES2D, BO2D) and (E–H) 3Dim (NMA3D, PSO3D, CMAES3D, BO3D) 
cases. The subjects are sorted in ascending order, based on the maximal fitting values detected by the grid search 
(black curves) in 2Dim and 3Dim (GS2D and GS3D, respectively). The medians (across subjects) of the relative 
differences between the results of the optimization algorithms and the grid search are indicated in the plots 
together with p-values of the Wilcoxon signed-rank test. Statistically significant differences are marked with an 
asterisk (the significance level of 5%, p < 0.05, has been Bonferroni-corrected for multiple comparisons). The 
figure was created with MATLAB R2018a (www.​mathw​orks.​com).

Figure 5.   Comparison of the considered methods with regard to the detected goodness-of-fit values across 
all subjects. For every optimization technique and subject, the highest goodness-of-fit value is considered. The 
medians of the relative differences between any two methods are indicated in the cells which are highlighted in 
color. To this end, the goodness-of-fit values of the approaches listed on the vertical axis (lines) are subtracted 
from those of the methods indicated on the horizontal axis (columns). Results that proved statistically 
significant in the Wilcoxon signed-rank test are marked with an asterisk (the significance level of 5%, p < 0.05, 
has been Bonferroni-corrected for multiple comparisons). The figure was created with MATLAB R2018a (www.​
mathw​orks.​com).
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From the success probability’s level of saturation (Fig. 8) we found that the observed success probability 
improvements were only marginal between 15 and 24 runs for NMA and BO. We can thus conclude that a 
larger number (Rmax = 24) of executions did not improve the performance of these techniques considerably. In 
particular, we did not consider performing additional executions for PSO and CMAES and continued to focus 
on the standard 15 runs for all tested mathematical optimization algorithms unless otherwise indicated (needed 
computation time, see next paragraph).

Figure 6.   Components of the cost function �cost for the 2Dim case. (A–E) Boxplots illustrate the distributions 
of the values of the components indicated in the titles (see text for details). All values were normalized by the 
respective maxima (given as one quantity over all algorithms for a given component). The individual cost values 
are shown on the vertical axes while the corresponding algorithms (NMA2D, PSO2D, CMAES2D and BO2D) 
are indicated on the horizontal axes. (F–J) For each cost component, histograms show the relative number of 
recommendations obtained by a given optimization algorithm across all subjects. This quantity was calculated 
by counting the number of subjects for which the respective algorithm is considered recommendable, i.e. where 
it provides the lowest costs among all four investigated methods. The absolute value was then divided by the 
total cohort size of 105 subjects. As before, the methods are listed on the horizontal axes. On the vertical axes, 
it is indicated for which fraction of subjects a particular method is recommended. The figure was created with 
MATLAB R2018a (www.​mathw​orks.​com).

Figure 7.   Components of the cost function �cost for the 3Dim case. As in Fig. 6, (A–E) boxplots illustrate the 
distributions of the values (normalized by the respective maxima) of the components indicated in the titles, and 
(F–J) histograms show the relative number of recommendations obtained by a given optimization algorithm 
(NMA3D, PSO3D, CMAES3D and BO3D) for each cost component. The figure was created with MATLAB 
R2018a (www.​mathw​orks.​com).
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Computation time.  The computation time that needs to be invested in order to identify the optimal model 
parameters constitutes a major difference between the individual approaches (Fig.  9). Under the simulation 
conditions used for the grid search in 2Dim, one subject required approximately 40 core-hours of computation 
time to exhaustively scan the parameter space, see “Methods”. We regarded this quantity as 100% and com-
pared the algorithms’ mean time consumption (across all executions and subjects) in 2Dim relative to it. In this 
respect, we observed that NMA (1.8%) and BO (1.9%) require little computation time for a single run, while 
CMAES (55.6%) and especially PSO (231.0%), featuring clearly more F-evaluations, are computationally more 
expensive (Fig. 9A). Therefore, the execution of 15 optimization runs for each of the latter two methods requires 
much more computational resources than a parameter sweep on a dense grid. A different situation was observed 
for the 3Dim case, where three parameters (coupling C, delay τ, noise σ) were optimized simultaneously. The 
amount of computation time necessary for the grid search drastically increases (1200 core-hours per subject, 

Figure 8.   Numbers of algorithm executions and corresponding probabilities to obtain a goodness-of-fit not 
smaller than 95% of that from the grid search in the 2Dim (A–D) and 3Dim (E–H) cases. The probabilities were 
evaluated by randomly selecting R ∈ {1, . . . ,Rmax} goodness-of-fit values from the Rmax algorithm executions 
available for every subject (Rmax = 15 for PSO and CMAES, Rmax = 24 for NMA and BO). A success was noted 
when at least one of the selected values was above or equal to the threshold. For every choice of R (i.e. the 
number of performed runs indicated on the horizontal axes), this procedure was repeated 500 times. The results 
were then averaged across all subjects in order to obtain the mean success probabilities indicated on the vertical 
axes. For the optimization methods presented in the legends (same notations as before), the plots illustrate 
the mentioned success probabilities together with the respective standard error (error bars). Additionally, it is 
indicated after how many runs success probabilities of 50% and 80% could be surpassed. The figure was created 
with MATLAB R2018a (www.​mathw​orks.​com).

Figure 9.   Computation time necessary for the execution of the optimization algorithms in relation to that 
used for the grid search (GS). (A, B) Ratios between the computation time of a single run of the optimization 
algorithms and the grid search averaged over all algorithm executions and subjects. The individual ratios are 
(A) 2Dim case: NMA2D 1.8%, PSO2D 231.0%, CMAES2D 55.6% and BO2D 1.9%; (B) 3Dim case: NMA3D 
0.1%, PSO3D 7.7%, CMAES3D 1.9% and BO3D 0.1%. (C, D) Relative computation time necessary for reaching 
80% of the success probability (see Fig. 8) compared to the time invested for the grid search. The values are 
obtained by multiplying those from the plots A and B by the respective numbers of needed runs provided in 
Fig. 8. For NMA3D, where a success probability of 80% could not be reached, 24 runs are considered necessary. 
The algorithms are indicated on the horizontal axes along with the percental values of time consumption on the 
vertical axes for the 2Dim (A, C) and 3Dim (B, D) cases. The figure was created with MATLAB R2018a (www.​
mathw​orks.​com).

http://www.mathworks.com
http://www.mathworks.com
http://www.mathworks.com


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4331  | https://doi.org/10.1038/s41598-022-07860-7

www.nature.com/scientificreports/

see “Methods”), whereas only a moderate change can be detected for one execution of the other investigated 
optimization methods. Consequently, a single run of NMA (0.1%), PSO (7.7%), CMAES (1.9%) and BO (0.1%) 
proves computationally inexpensive when compared to the extensive parameter space exploration. All methods 
except for PSO remain lucrative even if all 15 runs were necessary (Fig. 9B).

Furthermore, we investigated the algorithms’ time consumption for the number of executions that were nec-
essary, for example, to reach a success probability of 80% (Fig. 8). We thus multiplied the number of the needed 
runs with the computational costs of a single run (Fig. 9). In this setting, CMAES turned out to be the most 
expensive method in the 2Dim parameter space, requiring more than five times (556.1%) the computational 
resources of the grid search (on average per subject). PSO (231.0%) is more lucrative than CMAES, but stays 
clearly above 100%, too. By contrast, NMA and BO require less computation time than the grid search (28.8% 
and 16.9%, respectively) and therefore seem favorable in this respect (Fig. 9C). They are between 3.5 (NMA) 
and 6 (BO) times faster than the considered grid search. In the 3Dim case, all methods manifest themselves as 
resource-saving alternatives to a thorough parameter space scan on a dense grid (Fig. 9D). PSO (15.5%) appears 
to be the method with the highest demands, followed by CMAES (5.6%), NMA (2.0%) and BO (1.1%). Equiva-
lently, their speedup factors are close to 6, 18, 50 and 91, respectively. Note that we considered the maximum 
of Rmax = 24 runs to be necessary for NMA, although a success probability of 80% could not be reached within 
24 executions of this method. The actual amount of required computational resources for this approach may 
therefore be higher than indicated.

The results are further enhanced when looking at the respective component of the cost function in Figs. 6C, 
7C and Supplementary Table S1, where NMA and BO clearly outperform the population-based approaches PSO 
and CMAES. Regarding the quantity of recommendations, BO appears to be the most favorable method in either 
dimensionality (Figs. 6H, 7H and Supplementary Table S1).

We summarize and conclude that BO is the preferable algorithm for a computational speedup.

Location of optimized parameters.  In the initial examples (Figs. 1, 2), we have seen that the algorithms 
can vary greatly regarding the spread of the detected optimal parameter points in the model parameter space. 
The fourth component of the cost function is dedicated to this property and therefore describes the algorithms’ 
stability/robustness against local optima. In our analysis, CMAES turned out to have the highest stability in 
detecting global solutions in either dimensionality (Figs. 6D, 7D; Supplementary Table S1) and also appeared to 
be the recommended method for the majority of subjects (Figs. 6I, 7I; Supplementary Table S1). This property is 
crucial for the reliable validation of the models against empirical data. PSO features the second lowest median of 
costs and the second highest proportion of recommendations in the 2Dim case. It beats NMA and BO. After the 
transition to the 3Dim scenario, however, the PSO algorithm does not produce as stable results as in 2Dim. BO 
shows a clearly lower median of costs than PSO in 3Dim (i.e. a higher stability against local optima) and comes 
closer to PSO’s proportion of recommendations. NMA in turn demonstrates a weakness to avoid local optima, 
which is reflected by the highest costs and fewest recommendations in both considered dimensionalities of the 
parameter space.

Investigating the distributions of the obtained optimal model parameters across all subjects, we found simi-
larities between the considered optimization algorithms and the grid search (Fig. 10). The results presented here 
pertain to the approach of selecting the five best solutions featuring the highest goodness-of-fit values to estimate 
the parameter distributions. No qualitative changes can be noted when only one best point is considered per 
subject and method (see Supplementary Fig. S3). In Fig. 10, we observe that most of the methods identify the 
highest concentration of optimal coupling values C in the interval [0, 0.4] for the 2Dim case. NMA constitutes an 
exception, because the optimal coupling can spread to larger values for this approach (Fig. 10A, C2). A transition 
of the coupling strength towards an aggregation in the interval [0.8, 1] can then be observed for optimizations 
in the 3Dim parameter space (Fig. 10D), where also the noise intensity σ was varied as a free parameter. This 
effect is most pronounced for CMAES and BO, where skewed and nearly unimodal distributions at high coupling 
values can be noted. For other methods including the grid search, a broad and practically bimodal shape of the 
distribution of the optimal global coupling C emerges. In addition, all methods detect the clear majority of opti-
mal parameters close to small (zero) delay values τ, regardless of whether a 2Dim or 3Dim parameter space is 
considered (Fig. 10B, C, E). Finally, we found that the arrangement of optimal noise intensities σ in 3Dim shows 
a bimodal pattern, mostly visible for the grid search, CMAES and BO (Fig. 10F). The peaks are located within 
the intervals [0.2, 0.6] (small noise) and [1.5, 1.9] (large noise).

Analyzing the discussed parameter distributions with the help of the cost function’s respective component, we 
found that the performance of both PSO and CMAES remains comparable in the 2Dim case, where the former 
gains more recommendations (Fig. 6J; Supplementary Table S1), and the latter demonstrates a lower median 
in the cost distributions (Fig. 6E; Supplementary Table S1). In the 3Dim case, the CMAES technique clearly 
outperforms the other algorithms (Fig. 7E, J; Supplementary Table S1). PSO and BO strive to be the next best 
method while NMA is left behind.

From the findings in this section we infer that CMAES is the most reliable method in terms of stability of 
the optimal parameters.

Relationships between the cost function components.  Before continuing, it is important to evalu-
ate whether the considered components of the cost function may demonstrate a mutual interdependence. The 
robustness of the algorithms, for example, which is reflected by the spread of the solutions and their distance to 
the optima indicated by the grid search (components 4 and 5), but also the variation of the detected goodness-
of-fit values (component 2) for a given subject, does not depend on the simulation time (Supplementary Fig. S4). 
Additionally, we did not find any strong linear relationships between the robustness of a method and its preci-
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sion, i.e. the obtained goodness-of-fit (Supplementary Fig. S5). These results underline the necessity to analyze 
the tested algorithms from different perspectives, such as the three utilized evaluation criteria (see Sect. “Over-
view” in “Methods”) and the corresponding components of the cost function, before recommending a particular 
method. Researchers may nevertheless base their choice of algorithm on the properties best suited to a given 
application. One may intend, for example, to pick the method which most reliably detects the correct parameter 
region as the one featuring the highest model fit, irrespective of any other algorithm properties. This might then 
require assigning larger weights to the cost function components 4 and 5, for instance.

Overall costs and final argumentation.  In this paragraph, we investigate the overall costs of the algo-
rithms and therefore consider the complete cost function �cost which was generated by multiplying the individ-
ual components that we discussed above. The distributions of the cost function values for the tested algorithms 
in the considered parameter spaces are illustrated in Fig. 11. Additionally, the figure shows which methods most 
frequently perform better for individual subjects and can therefore be recommended for optimizations of the 
similarity between empirical and simulated data. The exact values are provided in Supplementary Table S1. In 
the 2Dim case, the algorithms show a similar distribution of low costs (Fig. 11A; Supplementary Table S1), and 
a precise differentiation therefore seems difficult. Based on the median cost values only, NMA appears least 
favorable. This is also confirmed by the proportion of recommendations calculated as explained in “Methods”, 
which is highest for CMAES (37%), followed by BO (32%) (Fig. 11B; Supplementary Table S1). It is remarkable 
that CMAES outperforms the other methods despite the fact that it features the highest computation time and 
corresponding costs (Figs. 6C, 9C; Supplementary Table S1). This effect may be caused by CMAES’ advantageous 
results for the other components of �cost (Fig. 6A, B, D, E; Supplementary Table S1). In the 3Dim case, PSO 
demonstrates comparably high costs, i.e. a lower efficacy (Fig. 11C; Supplementary Table S1). Unlike CMAES, 
the optimization quality as reflected by the components 1, 2, 4 and 5 of �cost (Fig. 7A, B, D, E; Supplementary 
Table S1) does not seem to be high enough for PSO to compensate for the computational resources invested for 
this method. PSO thus obtained fewer recommendations in the 3Dim parameter space (Fig. 11D; Supplemen-
tary Table S1). The same is true for NMA which may have the advantage of a low computation time, but does 
not produce as stable results as the BO algorithm, for example (Figs. 6A–E, 7A–E; Supplementary Table S1). 
Regarding the proportion of received recommendations in 3Dim, BO gains the most attractiveness (47%) and 
slightly surpasses CMAES (46%).

In summary, the mere distribution of the cost function values implies that NMA and PSO are the least 
favorable of the considered mathematical optimization algorithms in both the 2Dim and 3Dim parameter spaces. 
Further differentiations covering specific characteristics of the methods can be made either by analyzing the 
individual components of �cost (Figs. 6, 7; Supplementary Table S1) or by investigating the proportion of recom-
mendations for a particular method. In the latter option, two algorithms prevalently outperform the others with 
their results. More precisely, for the clear majority of considered subjects, the best parameter optimization can 

Figure 10.   Distributions of the optimal model parameters detected by the considered techniques across all 
subjects. For each approach and subject, the five best solutions featuring the highest goodness-of-fit values are 
considered to estimate the distribution. They were selected from all similarity values computed on the 2Dim or 
3Dim parameter grids (for the grid search GS2D or GS3D) and from all goodness-of-fit values obtained by 15 
independent runs of the optimization algorithms (NMA2D, PSO2D, CMAES2D, BO2D in 2Dim and NMA3D, 
PSO3D, CMAES3D, BO3D in 3Dim). In the violin plots of one-parameter distributions for the 2Dim (A, B) 
and 3Dim (D–F) cases, the methods are indicated on the horizontal axes along with the optimized parameter 
values on the vertical axes. The plots (C1–C5) show the distributions of the optimal model parameters in the 
2Dim space, where the relative frequency of the optimal parameter values is depicted by color and the respective 
methods are indicated in the plots. The figure was created with MATLAB R2018a (www.​mathw​orks.​com).
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be observed for either CMAES or BO (Fig. 11; Supplementary Table S1). This applies to both tested parameter 
spaces. The particular constellations of recommendations for CMAES and BO, respectively, read as follows: 
37% + 32% = 69% (2Dim) and 46% + 47% = 93% (3Dim).

From the presented results we conclude that CMAES and BO are the most promising methods. CMAES 
turned out as the preferable approach in terms of stability, which is reflected by the low cost medians and high 
proportions of recommendations at the components 2, 4 and 5 of the cost function �cost. Importantly, also the 
consideration of the computational demands, which are clearly higher for the population-based approaches PSO 
and CMAES (see Fig. 9), does not prevent CMAES from outperforming the other algorithms regarding the overall 
costs and recommendations (see Fig. 11; Supplementary Table S1). BO in turn convinces with its efficient use of 
resources. Its results may not be as stable as those obtained by CMAES (see the results for the components 2, 4 
and 5 of �cost), however, especially in the 3Dim case, they rival those of PSO. Since one execution of BO in 3Dim 
is performed more than 75 times faster than one of PSO, we regard BO as a more efficient method. CMAES and 
BO thus stand out, and we recommend to use either one or both of these mathematical schemes instead of a grid 
search, especially in higher dimensions (Dim ≥ 3). A thorough parameter scan on a dense grid becomes compu-
tationally unfeasible for complex models with increasingly many parameters that have to be tuned simultane-
ously during the process of model validation. We have demonstrated that across subjects, it is possible to obtain 
robust results thanks to resource-saving alternatives, i.e. mathematical optimization algorithms. Compared to a 
thorough parameter space scan with three free parameters, CMAES and BO provided a speedup factor close to 18 
and 91, respectively. Further, the saved resources may be invested to study additional subjects in larger cohorts.

Discussion
Synopsis.  Model-based studies should not be limited by inefficient ways to optimize model parameters. 
Exponentially increasing requirements in computation time, which are intrinsic to a dense grid search, triggered 
and motivated the search for alternatives. The intention of this study was thus to investigate the performance 
of several mathematical optimization algorithms in the validation of data-driven dynamical whole-brain mod-
els. We considered four well-known derivative-free methods that covered a broad spectrum of optimization 
techniques ranging from local deterministic (NMA) to global probabilistic (BO) and population-based (PSO, 
CMAES) approaches. Our results show that optimization algorithms are indeed applicable and recommendable 
to perform a parameter-dependent maximization of the similarity between simulated and empirical neuroimag-
ing data. We verified this by comparing the output of the methods to the results of systematic parameter varia-
tions on a two- and three-dimensional grid. Our comparison criteria considered the obtained goodness-of-fit, 
the necessary computation time and the location of the optimized parameters. For the best two approaches, 
CMAES and BO, we obtained goodness-of-fit values being very close to the grid search solutions: The medians 
of relative differences across all 105 subjects ranged from − 1.5 to + 2.5% in the considered parameter spaces. 
At the same time, we were able to save a great extent of computational resources when optimizing three model 
parameters simultaneously: While CMAES already provided a speedup close to 18, BO turned out to be almost 
two orders of magnitude faster than a corresponding grid search. In that respect, BO demonstrated the most 
efficient use of resources across all tested methods. CMAES in turn produced the most stable results, which was 
reflected by the lowest spread of the detected parameter points and the corresponding goodness-of-fit values 
over 15 replications as well as by its solutions’ small distance to the optima detected by the grid search. In view 
of these results, further applications of the considered methods hold a lot of promise regarding the desire to 
facilitate the validation of higher-dimensional models.

Contextual classification.  Our efforts were in line with previous studies that analyzed and compared the 
performance of several mathematical methods for theoretical as well as experimental scenarios44–46,85,86. Similar 
to our strategy of incorporating the grid search to determine ground truth values, other researchers evaluated 
the tested algorithms’ performance on the basis of pseudo-experimental data for which the underlying param-

Figure 11.   Cost function values and recommendations pertaining to the optimization algorithms for the 2Dim 
(A, B) and 3Dim (C, D) cases. (A, C) Boxplots illustrate the distribution of costs (normalized by the respective 
maxima, i.e. one value over all algorithms in the given parameter space). The considered methods are depicted 
on the horizontal axes together with the values of �cost on the vertical axes. A few outliers for PSO (> 0.6 in 
3Dim) and CMAES (> 0.6 in 2Dim) are not included in the plots. (B, D) Histograms show the relative number 
of recommendations obtained by a given optimization algorithm (calculated as in Fig. 6). The methods are listed 
on the horizontal axes. On the vertical axes, it is indicated for which fraction of subjects a particular method is 
recommended. The figure was created with MATLAB R2018a (www.​mathw​orks.​com).
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eters were known44,46,85,86. To our knowledge, however, no systematic comparison between the performance of 
mathematical optimization techniques and a grid search has been made for purely experimental data of resting-
state brain dynamics measured by fMRI as in this study.

Working with electroencephalography (EEG) measurements, Hartoyo et al.44 and Hashemi et al.45 used math-
ematical approaches to minimize a least squares goal function that described the error between estimated and 
empirical power spectra. The estimated data were computed analytically and did not require the numerical 
solution of differential equations, therefore saving a great extent of computation time. This way of model fitting 
has been termed spectral validation by Cabral et al.87. The authors highlighted that this approach is less suited for 
obtaining an optimal quantitative fit, but should rather be used to determine a certain range of input parameters 
for which a model can explain the empirical data in phenomenological terms.

Our aim to maximize the correlation between simulated and empirical resting-state FC, by contrast, belongs 
to the so-called spatial validation and aligns with many previous studies17,18,57,88,89. Outstandingly, Wang et al.40 
proposed an alternative to a grid search when working with resting-state fMRI data. To optimize the goodness-
of-fit of a data-driven model that generated FC, the authors implemented a method derived from the expecta-
tion–maximization algorithm commonly used in dynamic causal modeling90,91. However, they worked with 
group-averaged matrices for SC as well as FC and did not perform a parameter optimization for individual 
subjects. A validation of the detected parameters in terms of estimating the distance to the optimal ones found 
in a grid search was not included, either.

A Bayesian approach closely related to the BO method which we investigated was tested for the valida-
tion of a noise-free whole-brain model that generated simulated magnetoencephalography (MEG) data42. The 
distributions of the optimized parameters from a two- and five-dimensional parameter space were thoroughly 
investigated, albeit without a systematic comparison to ground truth values. Further following the suggested 
Bayesian framework, Hashemi et al.33 used it to infer hidden characteristics of brain dynamics from optimized 
parameters in a personalized model of epilepsy spread.

Our study contributes to the existing literature by applying several mathematical optimization methods to 
combine a spatial validation based on simulated resting-state FC data with efforts of subject-specific whole-brain 
modeling. In addition, the robustness of the advocated techniques was highlighted by explicitly comparing the 
obtained results with the approximated ground truth given by the outcome of an exhaustive grid search. Given 
the topical efforts to simulate non-stationary data features such as dynamical FC, our described acceleration of 
computational operations appears even more welcome and relevant for the current brain research. As already 
envisioned by Hansen and colleagues92, models may be fine-tuned to not only fit static brain features, but also 
to account for dynamical changes in form of discrete onsets of novel behaviors, which bear an intrinsic diffi-
culty of computing time-dependent quantities. This can be reflected by continuously changing optimal model 
parameters38,93 that need to be detected (and repeatedly updated) via efficient mathematical optimization.

Limitations.  At this point, we note that there are limitations associated with the application of the tested 
optimization schemes. The choice of a proper number of maximal iterations along with another adequate stop-
ping criterion may constitute a challenge since these decisions need to be made problem-dependent. On the one 
hand, a low number of iterations can save precious computation time, but may not be large enough to capture an 
algorithm’s final point of convergence. On the other hand, a very high number of performed iterations may lead 
to a waste of computational resources when the algorithm is trapped in a local extremum, but may also enable a 
more global exploration of the parameter space. In our simulations, we chose, after an initial optimization of the 
methods’ internal parameters, to terminate the population-based approaches (PSO and CMAES) either after 80 
iterations or if their results would not improve for 50 consecutive iterations. Stopping earlier might have been 
acceptable for some subjects, but not in all cases, since sudden improvements may also occur after longer periods 
of no gain (see Supplementary Fig. S2). Therefore, additional iterations may give the algorithms a certain amount 
of time to underline their potential, converge to optimal solutions and outperform the grid search. In general, 
we recommend to perform a series of test runs with a higher number of iterations in order to explore the charac-
teristics and potential asymptotic behavior of a given method for a given optimization problem. Afterwards, the 
stopping criteria can be intensified whenever reasonable and the saved resources may be invested in additional 
algorithm runs with different initial data. Several executions are crucial, since the algorithms may demonstrate 
some sensitivity to initial data and/or do not converge to identically the same solution for different starting 
points. This particular issue is most pronounced for local search methods, but also applies to global approaches. 
In such cases, the algorithms show a high spread of solutions and fail to provide a clear tendency about the 
location of the global best point. A deterioration in convergence properties due to noisy measurements was 
reported when comparing several algorithms including PSO to each other86. Even global probabilistic methods 
turned out to be trapped in local optima mainly induced by noise fluctuations. That implies that optimization 
schemes can detect solutions of minor quality which deviate from the grid search result. More clearly, none of 
the tested algorithms provides a guarantee to find the desired optimum. Performing several runs with different 
initial conditions combined with an evaluation of the success probability might constitute an adequate solution 
to this limitation. Therefore, as presented in this study, a detailed comparison to the results of the exhaustive 
parameter sweep exploration is necessary to assess the methods’ performance before their application to more 
complex problems.

Noise impact on the observed goodness‑of‑fit.  As already indicated, we regard the grid search as an 
approximation of the ground truth (see “Methods”). However, parameter values between the grid nodes may 
yield slightly higher goodness-of-fit values than we observed. It is therefore not surprising that the optimization 
methods outperform the grid search for some subjects. The algorithms enjoy the advantage of a continuous 
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search and do not depend on a selected grid granularity to detect optimal solutions. In addition, the meth-
ods outperforming the grid search most obviously (PSO and CMAES, see “Results”) are the population-based 
approaches. Here, many parameter combinations are evaluated in each execution, and only the best solutions 
of them were selected to determine the final goodness-of-fit values depicted in Fig. 4, for example. Repeating 
this procedure in presence of a random noise that ‘kicks’ the similarity between simulated and empirical data 
to higher values from time to time may induce a cumulative effect which leads to a somewhat higher goodness-
of-fit in the end. Nevertheless, the considered parameter grid still delivers a reasonably good approximation of 
the ground truth.

Outlook: personalized modeling.  Given the algorithms, we see a huge potential for studies dealing 
with high-dimensional brain models. With the proper tools for model validation, it appears realistic to extract 
new and further insights about human brain dynamics from models that feature region-specific parameters or 
parameters associated with distinct neural populations40,44. Assigning a particular optimal point in the param-
eter space to an individual subject may be one step on the road towards possible parametrizations of inter-
individual differences and a starting point for sampling individual degenerate manifolds of optimal parameters. 
We suppose that, in biologically motivated models, the location of optimal parameters can serve as an individual 
subject’s personal profile. It becomes more distinguishable from others when the underlying model simulations 
allow for an increased variability in form of many tunable input parameters.

The application of search algorithms might therefore play a decisive role regarding personalized modeling of 
brain dynamics and its implications. Thanks to the efficiently optimized demand for computational resources, 
further studies featuring multi-dimensional parameter space explorations on large subject cohorts may be facili-
tated. In this effort, the optimization procedures allow for various ways of usage. We performed up to 24 runs of 
each considered method in a bounded relevant parameter space and analyzed the results considering quantities 
such as the spread of solutions (see “Results”). Alternatively, the algorithms may also be used as a first approach 
to shed light into a completely unknown parameter space. A moderate number of executions could be used to 
determine approximate ranges or intervals of optimal parameters. These insights in turn might serve as a basis 
for a more precise (grid) search on an essentially smaller parameter region. In this hierarchical approach, it would 
be crucial to choose a method with good global convergence properties and a high stability against local optima 
in the first step. Afterwards, a precise strategy for the local fine-tuning of the parameters in the predetermined 
target region would be essential. We assume that a combination of CMAES and NMA or BO might perform 
well in this scenario.

Summary and conclusions
We tested four mathematical optimization algorithms and aimed at an evaluation of the most appropriate one(s) 
for the fitting of dynamical whole-brain models derived from and validated against empirical neuroimaging data. 
To evaluate the quality of the algorithms’ output, we compared their performance on a phase oscillator model 
with one another as well as with a parameter space exploration on a dense grid. The results of the grid search 
served as an approximation of the ground truth with respect to the highest possible fit and the location of the 
corresponding optimal model parameters. We demonstrated that the tested methods vary greatly regarding their 
stability against local optima and the required computational resources. Two methods (CMAES, BO) turned out 
as favorable alternatives to a thorough grid search. While CMAES proved most robust in detecting global optima, 
BO compensated a slightly lower stability with the most efficient use of resources. We recommend CMAES and 
BO for optimizations starting with three free parameters, where they were around 18 and 91 times faster than 
a dense grid search, respectively. Our findings may contribute to a more efficient validation of complex models 
with high-dimensional parameter spaces and also facilitate precise and personalized modeling and analyses of 
human brain dynamics.

Data availability
Anonymized MRI data used for this study are available from ConnectomeDB (https://​db.​human​conne​ctome.​
org/). The C + + source codes of our implementations of the tested optimization algorithms are available from 
the corresponding author upon reasonable request.
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