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Abstract: Fleas are obligatory blood-sucking ectoparasites of medical and veterinary importance. The
identification of fleas and associated flea-borne microorganisms, therefore, plays an important role
in controlling and managing these vectors. Recently, Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been reported as an innovative and effective
approach to the identification of arthropods, including fleas. This study aims to use this technology
to identify ethanol-preserved fleas collected in Vietnam and to use molecular biology to search
for microorganisms associated with these fleas. A total of 502 fleas were collected from wild and
domestic animals in four provinces in Vietnam. Morphological identification led to the recognition
of five flea species, namely Xenopsylla cheopis, Xenopsylla astia, Pulex irritans, Ctenocephalides canis,
and Ctenocephalides felis. The cephalothoraxes of 300 individual, randomly selected fleas were tested
using MALDI-TOF MS and molecular analysis for the identification and detection of microorganisms.
A total of 257/300 (85.7%) of the obtained spectra from the cephalothoraxes of each species were
of good enough quality to be used for our analyses. Our laboratory MALDI-TOF MS reference
database was upgraded with spectra achieved from five randomly selected fleas for every species of
Ctenocephalides canis and Ctenocephalides felis. The remaining spectra were then queried against the
upgraded MALDI-TOF MS database, which showed 100% correspondence between morphology
and MALDI-TOF MS identification for two flea species (Ctenocephalides canis and Ctenocephalides
felis). The MS spectra of the remaining species (three P. irritans, five X. astia, and two X. cheopis)
were visually generated low-intensity MS profiles with high background noise that could not be
used to update our database. Bartonella and Wolbachia spp. were detected in 300 fleas from Vietnam
using PCR and sequencing with primers derived from the gItA gene for Bartonella and the 165 rRNA
gene for Wolbachia, including 3 Bartonella clarridgeiae (1%), 3 Bartonella rochalimae (1%), 1 Bartonella
coopersplainsensis (0.3%), and 174 Wolbachia spp. endosymbionts (58%).

Keywords: MALDI-TOF MS; molecular identification; morphological identification; fleas; flea-borne
microorganisms; Vietnam

1. Introduction

Fleas are considered as hosts for a wide range of human pathogens. The most severe
infection by fleas is a plague that is caused by the bacterium Yersinia pestis [1]. Fleas are
still known worldwide as important vectors of several other zoonotic pathogens, including
Rickettsia typhi, the agent of murine typus, and Bartonella henselae, the agent of cat-scratch
disease (CSD) [2,3].

In Vietnam, Xenopsylla cheopis (Rothschild, 1903) and Xenopsylla astia (Rothschild, 1911)
fleas play an important role in the transmission of bubonic plague from rodents to other
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rodents and to humans [4]. The first two outbreaks of human plague occurred in Nha
Trang (1898) and Saigon (1906) (now known as Ho Chi Minh City) [4]. Recently, plague foci
have occasionally arisen in the Central Highlands of Vietnam, with 472 confirmed plague
cases, leading to 24 deaths [5]. Pulex irritans (Linnaeus, 1758) is a vector of various zoonotic
pathogens including plague, murine typhus, and Rickettsia felis infection [2]. Additionally,
P. irritans has been described as a potential vector of B. hensalae, the agent of CSD and
B. quintana, the agent of trench fever [6]. The infestation of dogs with the human flea P.
irritans due to Bartonella spp. has been reported in Southeast Asia (SEA) [7]. Meanwhile,
the Ctenocephalides species are ectoparasites with a global distribution and are vectors of
various pathogens [8], many of which are also well known to infect humans [9].

Despite the reports of murine typhus, plague, rickettsial and Bartonella infections [5,10,11],
studies on fleas and their associated microorganisms have been poorly investigated in
Vietnam [12]. However, there are 51 flea species and subspecies that have been described.
Among those, one new species of the Peromyscopsylla himalaica flea was recently found in
Vietnam for the first time [13]. The accurate identification of most fleas is an essential step
in studying and surveying flea-borne diseases. Undoubtedly, the list of Vietnamese flea
fauna remains incomplete and is likely to be extended if further investigations on fleas are
carried out [13]. However, the presence of standard taxonomic keys and reference data
specific to Vietnamese flea species are currently lacking, which makes the morphological
identification of fleas more difficult and sometimes nigh impossible. The identification of
flea species entirely based on morphological aspects that require extensive entomological
expertise, therefore, remains challenging for Vietnamese researchers. Over the last two
decades, molecular approaches have been used for the identification of arthropods and
their associated microorganisms. Nevertheless, these approaches have various drawbacks,
including being time-consuming and costly, as well as requiring primer-specific targeting
and reference sequence availability in GenBank.

The development of an alternative tool enabling the rapid, reliable, and affordable
identification of fleas is, therefore, needed. Matrix-Assisted Laser Desorption/Ionization
Time-Of-Flight Mass Spectrometry (MALDI-TOF MS), a useful tool that relies on the
analysis of protein fingerprints, has revolutionised clinical microbiology diagnostics. More
recently, MALDI-TOF MS has been used successfully to identify arthropods such as fleas [6].
Specifically, MALDI-TOF MS makes it possible to distinguish between fleas that are infected
and not infected with Borrelia and Bartonella spp. [6]. This study aimed to identify flea
species captured from small wild and domestic mammals in Vietnam and their associated
microorganisms using morphological, molecular, and MALDI-TOF MS methods.

2. Materials and Methods
2.1. Study Sites, Flea Collection and Morphological Identification

The collection areas included four provinces: Binh Dinh (13°37’ N; 108°59 E); Gia Lai
(13°11’ N; 108°41’ E); Dak Lak (12°49" N; 108°27" E); and Dak Nong (12°40’ N; 107°44’ E).
Field-collected flea specimens were captured between June and October 2021 in the Central
and Highlands areas of Vietnam. QGIS Version 3.10 was used to build the map of Vietnam
displaying the collection regions and the Vietnamese layers were downloaded from DIVA-
GIS at the following link: https://www.diva-gis.org/datadown (accessed on 5 October
2022). All specimens were collected by an entomological team from IMPE-QN from the
skin of rodents and domestic animals (cats and dogs) using forceps (Figure 1A,B).

The handling of wild animals in this study was carried out following the guidelines ap-
proved by the American Society of Mammalogists (http://www.jstor.org/stable /1383033,
accessed on 2 March 2023) [14]. Morphologically, fleas were first identified at species level
using dichotomous keys [15] by an entomological team from IMPE-QN, Vietnam. Fleas
from the same host were counted and then stored in the same tube containing 70% ethanol
and placed at room temperature. Flea specimens were then transferred to the Institut
Hospitalo-Universitaire (IHU) Méditerranée Infection in Marseille (Marseille, France) for
MALDI-TOF MS and molecular analysis. In the laboratory, all flea specimens were then
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morphologically verified, again by entomologists, using a magnifying stereomicroscope
(Zeiss Axio Zoom.V16, Zeiss, Marly le Roi, France) and taxonomic keys [15,16]. Morpho-
logical identification was only conducted if all distinguishing features were clearly visible.

Figure 1. (A) Map of Vietnam showing the flea collection sites. (B) Field photographs of the wild
rodents and domestic animal sampling collection beginning with type of trap used, trap preparation,
trap setting, and pet owners’ support.

2.2. Flea Dissection and Specimen Preparation

Fleas were individually removed from 70% ethanol and rinsed twice in distilled water
for five minutes. Each flea was dissected into three parts (cephalothorax, dorsal, and ventral
part of abdomen) using a sterile surgical blade and placed in 1.5 mL Eppendorf tubes,
as previously described [17]. The cephalothorax of each flea and the dorsal half of the
abdomen were subjected to MALDI-TOF MS and molecular biology analyses, respectively.
The ventral halves of the abdomen were frozen at —20 °C for backup.

2.3. DNA Extraction and Validation of Morphological Identification Using Molecular Analysis

The dorsal abdomen parts of all fleas were incubated at 56 °C overnight in 180 uL of
G2 buffer (Qiagen, Hilden, Germany) and 20 uL of proteinase K (Qiagen, Hilden, Germany).
DNA was individually extracted from 200 pL of the incubation solution using an EZ1 DNA
tissue kit (Qiagen), according to the manufacturer’s recommendations. The eluted DNA
extraction was then stored at —20 °C.

DNA samples from molecularly identified fleas were subjected to standard PCR
in an automated DNA thermal cycle to amplify a 540-base pair (bp) fragment of the
mitochondrial ITS2 gene, as described previously [18]. For all specimens for which we did
not obtain a sequence using the ITS2 gene, we used amplification of a 1000 bp fragment of
the mitochondrial ITS1 gene [18]. Ctenocephalides felis (Bouché, 1835) DNA was utilized as a
positive control, while a combination without DNA was employed as a negative control.
Purified PCR products were sequenced in the same manner as previously described [18].
All sequences were clustered and processed using the ChromasPro software (Version
1.7.7) (Technelysium Pty. Ltd., Tewantin, QL, Australia), and were then compared to the
reference sequences available in GenBank (http://blast.ncbi.nlm.nih.gov/ (accessed on
31 January 2023)).
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2.4. MALDI-TOF MS Analysis

Sample preparation Cephalothoraxes from each flea were individually placed in
1.5-mL Eppendorf tubes and dried at 37 °C overnight. To each tube, 40 uL of high-
performance liquid chromatography (HPLC) grade water was added and incubated at
37 °C overnight, as previously described [19]. The cephalothorax was ground up in a mix
of 20 uL of 70% (v/v) formic acid (Sigma) and 20 uL of 50% (v/v) acetonitrile (Fluka, Buchs,
Switzerland), with a small amount of 1.0 mm diameter glass beads (Sigma, Lyon, France) us-
ing a tissue layer machine (Qiagen). The cephalothorax was crushed at a frequency of 30 Hz
for one minute three times, as in a previous protocol [20]. After centrifugation, 1 uL of the
supernatant of each sample was spotted in quadruplicate onto a MALDI-TOF MS steel plate
(Bruker Daltonics, Wissembourg, France) and overlayered after drying at room temperature
with a matrix solution composed of 1 uL of saturated alpha-cyano-4-hydroxycinnamic acid
(Sigma France), 50% acetonitrile (v/v), 2.5% trifluoroacetic acid (v/v) (Sigma-Aldrich Co.,
Ltd., Gillingham Dorset, UK), and high-performance liquid chromatography (HPLC) grade
water, as previously described [21]. The target steel plate was air-dried at room temperature
for a few minutes before being deposited into the Microflex LT MALDI-TOF MS apparatus
(Bruker Daltonics, Germany) for analysis. The quality of the matrix, sample spotting, and
operation of the MALDI-TOF MS machine were administered using the cephalothorax of a
C. felis flea reared in our laboratory as a positive control.

2.5. MALDI-TOF MS Parameters

The obtained protein mass profile from the flea cephalothorax was visualised using a
Microflex LT MALDI-TOF (Bruker Daltonics, Bremen, Germany) mass spectrometer with
FlexControl software (Version 3.3; Bruker Daltonics), with detection in positive ion linear
mode at a laser frequency of 50 Hz in a mass range of 2-20 kDa.

2.6. Spectral Analysis

The flexAnalysis Version 3.3 software was applied to assess spectral quality, repro-
ducibility, and specificity. Poor quality spectra, i.e., those with low intensity (3000 AU),
non-reproducibility, and background noise, were excluded from the study. By comparing
the average spectral profiles (MSP, main spectrum profile) obtained from four places on
each flea cephalothorax, according to species, using MALDI-Biotyper v3.0 software (Bruker
Daltonics, Billerica, MA, USA), the reproducibility of MS spectra was ascertained [22].
The reproducibility and specificity of MS spectra were evaluated using gel-view, principal
component analysis (PCA), and cluster analysis (MSP dendrogram). ClinProTools v2.2
with the manufacturer’s default settings was used to perform gel-view and PCA. The MSP
provided by MALDI-Biotyper v3.0 software was compared to clustering based on protein
mass profile (i.e., their mass signals and intensities) in the cluster analysis [22].

2.7. Reference Database Creation and Blind Test

The reference MS spectra were created using spectra from the extracted cephalotho-
raxes of each flea species using MALDI-Biotyper software v3.0. (Bruker Daltonics) [23].
MSPs were generated using an unbiased algorithm and data from peak position, intensity,
and frequency [23]. MS spectra of cephalothoraxes from ten specimens of two flea species
(five C. canis and five C. felis) identified morphologically and molecularly were added to our
homemade MS spectra database [20]. This DB already consisted of the spectra of specimens
belonging to eight flea species (Archaeopsylla erinacei, C. felis, Ctenocephalides canis (Curtis,
1826), Leptopsylla taschenbergi, Nosopsyllus fasciatus, Pulex irritans, Stenoponia tripectinata,
and Xenosylla cheopis), which had been preserved in various conditions [17,20,24]. The ten
MS spectra of the remaining three flea species (three P. irritans, five X. astia, and two X.
cheopis), which were low-quality spectra, were not added to our house MS reference spectra
database as reference spectra. A blind test against the updated database was performed
with the remaining specimens of both C. canis and C. felis flea species. The log score values
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(LSVs) obtained from the MALDI-Biotyper software v.3.3, which ranged from 0 to 3, were
used to estimate the reliability of species identification.

2.8. PCR Detection of Microorganisms in Fleas

The Eurogentec Takyon qPCR kit (Takyon, Eurogentec, Seraing, Belgium) was used in
real-time PCR (quantitative PCR) according to the manufacturer’s protocol using a PCR
detection system called CFX Connect™ Real-Time (Bio-Rad). The qPCR reaction contained
10 uL of Master Mix Roche (Eurogentec, Belgium), 0.5 uL of each primer probe and UDG,
3 pL of sterile distilled water, and 5 puL of the extracted DNA. DNA from flea specimens
was screened to detect microorganisms using specialised primers and targeted probes,
including bacteria from the Anaplasmataceae family, Rickettsia spp., Borrelia spp., Bartonella
spp., and Coxiella burnetii (Table 1). DNA positive for bacteria from the Anaplasmataceae
family were re-checked using Wolbachia spp. specific real-time PCR using the 165 rRNA
gene. Negative specimens for Wolbachia spp. were then retested with standard PCR using
the gene 235 Anaplasmataceae amplifying a 485 bp fragment. The DNA from Rickettsia
montanensis, Anaplasma phagocytophilum, Bartonella elizabethae, Borrelia crocidurae, and Coxiella
burnetii was used as a positive control, and DNA from C. felis breeding in our laboratory,
which was free of the bacteria analysed, was used as a negative control. When the cycle
threshold (Ct) was <36, the samples were considered to be positive [25].

Table 1. Sequences of the primer sets used for fleas and flea-borne pathogen detection using qPCR
and standard PCR.

. . Targeted . Primers (5'-3') and Probes (Used for qPCR
Microorganisms Sequence/Amplicon . . References
. Screening or Sequencing)
Size (bp)

f TGACAGCGTACCTTTTGCAT

23S r_GTAACAGGTTCGGTCCTCCA
A p_6FAM-GGATTAGACCCGAAACCAAG

naplasmataceae [26]

f ATAAGCTGCGGGGAATTGTC

235 (485) r_TGCAAAAGGTACGCTGTCAC

Rickettsia spp.

f GTGAATGAAAGATTACACTATTTAT
gItA(RKNDO3) r_GTATCTTAGCAATCATTCTAATAGC [27]
p_6FAM-CTATTATGCTTGCGGCTGTCGGTTC

f GGCTTCGGGTCTACCACATCTA

Borrelia spp. ITS4 r CCGGGAGGGGAGTGAAATAG 28]
p_TGCAAAAGGCACGCCATCACC
f GATGCCGGGGAAGGTTTTC
ITS?2 r GCCTGGGAGGACTTGAACCT
Bartonella spp. p_GCGCGCGCTTGATAAGCGTG 9]

f ACGTCGAAAAGAYAAAAATG

gitA (1000 bp) r_GTAATRCCAGAAATARAAATC

Coxiellia burnetii

f CGCTGACCTACAGAAATATGTCC
IS30A r_GGGGTAAGTAAATAATACCTTCTGG [30]
P_CATGAAGCGATTTATCAATACGTGTATG

Wolbachia spp.

Wol-301-f (5'-TGGAACTGAGATACGGTCCAG-3')
235 rRNA Wol-478-r (5'-GCACGGAGTTAGCCAGGACT-3) [31]
Wol-347-p ((FAM-AATATTGGACAATGGGCGAA)

W-Spec_f (5'-CATACCTATTCGAAGGGATAG-3')

165 rRNA (rrs) W-Spec_r (5-AGCTTCGAGTGAAACCAATTC-3)

[26]

Following qPCR, Bartonella-positive specimens were subjected to amplifying and
sequencing of a 1000 bp fragment of the g/tA rRNA gene. We randomly selected ten speci-
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mens that were Wolbachia spp.-positive following qPCR and subjected them to amplification
and sequencing of a 438 bp fragment of the 165 rRNA gene.

The attained sequences of Bartonella spp. and Wolbachia spp. were clustered and
analysed with the ChromasPro software (Version 1.7.7) (Technelysium Pty. Ltd., Tewantin,
QL, Australia), and were then compared to the NCBI's reference sequences database, which
is available in GenBank (http://blast.ncbinlm.nih.gov/, accessed on 2 March 2023). The
neighbour-joining (NJ) method with 1000 replicates was developed for phylogenetic tree
analysis. MEGA software version 7.0 (https://www.megasoftware.net/, accessed on 2
March 2023) was used to align the DNA sequences.

3. Results
3.1. Flea Collection and Morphological Identification

A total of 502 fleas were collected from four provinces in Vietnam including 96 in
Binh Dinh, 227 in Gia Lai, 35 in DakLak, and 144 in Dak Nong. Morphologically, the fleas
identified belonged to 5 species (Figures S1 and S2), including 3 X. cheopis and 8 X. astia
collected from rodents, 4 P. irritans from dogs, and 51 C. felis and 436 C. canis collected
from cats and dogs. X. cheopis and X. astia fleas were captured from four species of rodents
including Rattus exulans, Rattus niviventer, Rattus norvegicus, and Callosciurus notatus.

3.2. Molecular Identification

To confirm our morphological identification, a total of 20 flea specimens were submit-
ted for molecular analysis using the ITS2 gene, including 2 specimens of X. cheopis, 5 X.
astia, 3 P. irritans, 5 C. felis, and 5 C. canis (Table 2).

Table 2. The number of flea species analysed for protein profiling, development of the MS reference
spectra, and validation of molecular biology.

. N° Tested N Obtalned/Teste:i N° of Good N° of Spectra MALDITOF s
Morphological and MolecularID MSID LSVs
cp o MALDI-TOF o s . Spectra/ Added to .
Identification MS/Collected (%identity; GenBank Tested DB& (Number (Low-High)
Accession Number) Identified)
.y 3/3 Pulex irritans Not .
Pulex irritans 3/4 (99-100%; KX982861) 0/3 0 applicable Not applicable
Xenopsylla 1/2 Xenopsylla cheopis Not .
cheopis 2/3 (100%; DQ295059) 0/2 0 applicable Not applicable
) 5/5 Xenopsylla cheopis Not .
Xenopsylla astia 5/8 (83.16-90%; KX982860 0/5 0 applicable Not applicable
) 5/5 Ctenocephalides felis )
Cte”ocsl’;g”l ides 48/51 (100%; MT895636, 45/48 5 Cte’zf:f(’i‘g?des 1.731-2.733
f HF583247) f
) 5/5 Ctenocephalides )
Cte”";;ﬁi”l ides 242 /436 canis (100%; 212/242 5 Ctg:s;er(iézg;zgies 1.708-2.438
MH895642)
5 flea species 300/502 257/300

ID*; identification, DB¥; database; LSVs®; log score values.

We successfully obtained nine sequences of good quality belonging to three flea species
using the ITS2 gene, namely, three specimens for P. irritans, five for X. astia, and one for X.
cheopis. The BLAST analysis indicated that fleas morphologically identified as P. irritans
and X. cheopis were 100% identical to their respective homologous sequences available in
GenBank (Accession number: KX982861; DQ295095). The sequences acquired from five
fleas that were morphologically classified as belonging to the X. astia species, however, were
more closely related to the sequences that had been deposited as X. cheopis in GenBank,
with an identity range of 83.7-84.89% (KX982860). The specimens of two flea species, C.
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canis and Ct felis, which could not be identified using the ITS2 gene, were sequenced using
the ITS1 gene. The BLAST analysis revealed that the sequences obtained from C. canis
matched with 100% identity with the GenBank reference sequence for C. canis (MT895636,
HF563590) and those obtained from C. felis were 99.84-100% similar to their respective
homologous species available in GenBank (MT895636, HF563590).

3.3. MS Spectra Analysis

The cephalothoraxes of 300 flea specimens, including 3 morphologically identified as P.
irritans, 5 as X. astia, 2 as X. cheopis, 48 as C. felis, and 242 as C. canis were randomly selected
for MALDI-TOF MS analysis (Table 2). The visualisation of the MS spectra obtained from the
C. canis and C. felis specimens showed that 93.8% (45/48) and 87.6% (212/242) of the spectra
were of high quality (peak intensity > 3000 arbitrary units (a.u.), no background noise,
and baseline subtraction correct), respectively (Figure 2A and Table 2). The intraspecies
reproducibility and interspecies specificity of the MS spectra of different specimens were
confirmed using a dendrogram (Figure 2B), gel-view, and PCA (Figure 2C,D) analysis.
According to the dendrogram, gel-view, and PCA analysis, all specimens of the same
species were on the same branches or were grouped. Conversely, the remaining species’
MS spectra were visually generated low-intensity MS profiles with high background noise
(Figure 2A). Hence, the spectra from P. irritans, X. astia, and X. cheopis were considered as of
insufficient quality and were excluded from the dendrogram, gel-view, and PCA analyses.
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Figure 2. Building the database using comparison of MS spectra obtained from diverse flea species.
Spectral alignment of five flea species using flexAnalysis software to show discriminative peaks;
representative MALDI-TOF MS spectra from the cephalothorax of X. cheopis, X. astia, and P. irritans
with low-intensity MS profiles and high background noise; representative MS spectra of C. canis and
C. felis with high-quality spectra (peak intensity >3000 arbitrary units (a.u.), no background noise with
baseline subtracted (A). Dendrogram of MALDI-TOF MS spectra of flea species collected in Vietnam.
Biotyper software v.3.0 was used for cluster analysis (B). As confirmed with PCA, the MS spectra of
various specimens demonstrated intraspecies reproducibility and interspecies specificity (C,D).
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Five representative spectra from each species were used to create the dendrogram,
which showed that all of the flea specimens from the same species were grouped on the
same branch to assess intraspecies reproducibility and interspecies specificity (Figure 2B).

3.4. MALDI-TOF MS Flea Identification

The accuracy of the MALDI-TOF MS identification of the flea specimens was assessed
by querying 247 morphologically identified specimens (207 C. canis and 40 C. felis) against
our upgraded MALDI-TOF MS reference database with five spectra per species, which was
validated using molecular biology (Table 2).

The interrogation of the spectra of 247 flea specimens showed that all matched their
counterparts in our MALDI-TOF MS database, i.e., a concordance between our morpholog-
ical identification and MALDI-TOF MS. The LSVs of the C. canis specimens ranged from
1.708 to 2.438 (a mean = 2.024 + 0.306), and those of C. felis ranged from 1.731 to 2.733 (a
mean = 2.173 £ 0.303). The spectra of the flea specimens updated in the MS protein profile
database were deposited on the website of the University Hospital Institute (UHI) under
the following https:/ /doi.org/10.35088 /rbqp-g648, accessed on 2 March 2023.

3.5. Detection of Microorganisms in Fleas

The DNA of a total of 300 fleas was screened for five bacterial groups (bacteria in the
Anaplasmataceae family, Rickettsia spp., Borrelia spp., Bartonella spp., and Coxiella burnetii)
using qPCR. Only the DNA of the bacteria in the Anaplasmataceae family and Bartonella
spp. were detected in 184 /300 (60.3%) of our specimens. The DNA of the bacteria in the
Anaplasmataceae family was detected in 174/300 (58%) of fleas (Table 3). The DNA of
Bartonella spp. was detected in 10/300 (3%) fleas with qPCR using the ITS2 gene (Table 3).
The infected specimens included C. canis, C. felis, and X. astia. Notably, five X. astia and one
C. canis were co-infected with both Anaplasmataceae and Bartonella spp. The DNA of the
bacteria in Rickettsia spp., Borrelia spp., and Coxiella burnetii was not found in any fleas.

Table 3. Microorganisms detected using real-time PCR in fleas.

Flea Species

Microorganisms Tested

X. astia C. canis C. felis Total (%)
Anaplasmataceae 5 148 21 174 (58%)
Bartonella spp. 4 10 - 7 (2.3%)
Rickettsia spp. - - - -
Borrelia spp. - - - -

Coxiella burnetii - - - _

All 174 flea specimens that were positive for the Anaplasmataceae family were then
found to be positive for Wolbachia spp. using the 16S rRNA gene. We randomly selected
ten positive Wolbachia specimens for sequencing. The analysis of the Wolbachia 165 rRNA
fragment indicated that Wolbachia spp. from X. astia, C. felis, and C. canis were between
99.69% and 100% similar to the corresponding sequences of Wolbachia pipientis (MN123077,
MN123078) as well as other sequences deposited in GenBank, such as Wolbachia endosym-
bionts of various arthropods (DQ399344). A total of seven out of ten Bartonella-positive
specimens were successfully amplified with standard PCR using a targeted fragment of the
gltA gene fragment. The BLAST analysis showed genetic distinctions in the three species of
Bartonella spp. found in our study based on the gltA gene. Specifically, the BLAST analysis
of the three sequences obtained from C. canis was between 99.2% and 100% identical to
the corresponding sequences of Bartonella clarridgeiae (KJ170239; KY913636), and three
sequences achieved from X. astia were 100% similar to the corresponding sequences of
Bartonella rochalimae (FIN645459). One sequence obtained from X. astia was 100% identical
to the corresponding sequence of Bartonella coopersplainsensis (EU111803) (Table 4).
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Table 4. Microorganisms detected using sequencing in fleas.

Flea Species

PerIdent (%)  X. astia C. canis C. felis Total (%)

Microorganisms Tested

Wolbachia endosymbiont 3 2 NA

Wolbachia pipiens 99.69-100 5 - NA

Bartonella clarridgeiae 99.2-100 - 3 - 3 (1%)

Bartonella rochalimae 100 3 - - 3 (1%)

Bartonella coopersplainsensis 100 1 - - 1 (0.3%)
NA; Not applicable.

Two phylogenetic tree analyses of Wolbachia spp. and Bartonella spp. were generated
from the 16S rRNA and gltA gene sequences of our amplicons, respectively. These phylo-
genetic trees indicated that the detected microorganisms were close to their homologues
available in GenBank (Figures 3 and 4).
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Figure 3. Neighbour-joining (NJ; 500 bootstrap replicates) phylogenetic tree of the 165 YRNA gene.
Wolbachia spp. () collected from Xenopsylla astia, C. felis, and C. canis. Wolbachia strains are designated
following the names of their host species.
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99 [‘ Seqtype01 Bartonella rochalimae 5-12
FN645459 Bartonella rochalimaeme Switzerland 2009
99 | ‘ Seqtype03 Bartonella clarridgeiae 300

KY913636 Bartonella clarridgeiae Chile 2017
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94
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R
0.02
Figure 4. Neighbour-joining (NJ; 500 bootstrap replicates) phylogenetic tree of the gltA gene. Bar-
tonella spp. sequences () obtained in this study.

4. Discussion

The fleas analysed in our study were collected mainly from cats, dogs, and small
wild rodents. These ectoparasites are well known to be vectors of human and veterinary
pathogens, which are considered important for public health worldwide.

In our study, the morphological identification of Vietnamese flea species revealed the
presence of five species, namely, X. astia, X. cheopis, P. irritans, C. canis, and C. felis. All of
these species were previously discovered in Vietnam and several countries in Southeast
Asia (SEA), including Laos, Thailand, and Malaysia [32-37]. X. cheopis was the species
most predominantly captured from wild rodents in Vietnam [5]. X. cheopis is best known
for being a vector in the transmission of Y. pestis, the bacterial agent of the bubonic plague
primarily responsible for two pandemics that marked human history in Vietnam [4] and
that still poses a threat to public health in endemic countries [38,39]. X. astia is also included
here because it has been identified in other plague-hit countries [40,41]. In Vietnam, the
presence of X. cheopis and X. astia plague vectors co-exist and parasitise in commensal
rodents living inside or outside dwellings but also in open biotopes (agricultural areas,
savanna grasslands) and forests [33].

Ctenocephalides canis was the dominant flea species infection in 86.9% of both dogs
and cats, followed by 10.2% C. felis, as already reported worldwide, including SEA [7,42].
These species are known as competent vectors of zoonotic pathogens such as Rickettsia felis
and Bartonella spp. [43]. C. felis is the most well-known vector of Rickettsia felis, a causative
agent of the spotted fever group rickettsiosis [44]. In SEA, the first human case of a R. felis
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infection was identified on the Thai-Myanmar border, as described in Parola et al. [45].
Since then, many human infections have been reported in Laos [46], Indonesia [47], and
Vietnam [10]. Several studies have shown R. felis in C. felis fleas in Vietnam [7,12]. However,
no Rickettsia-positive fleas were found in our specimens. Similarly, no C. felis analysed
showed evidence of the carriage of Bartonella bacteria in our fleas. In contrast, we reported
that three C. canis dog fleas were found to be infected with the B. clarridgeiae species, which
is the causative agent of CSD in humans. This bacterium was the most common species
found in cat fleas and was also detected in humans, cats, and dogs [48,49]. The human
flea, P. irritans, was collected from 0.8% (4/502) of the dogs in our study. P. irritans is
widespread globally and has also been detected in other wild animals (birds, rodents, bats,
carnivores, and ungulates) [50,51]. Furthermore, this flea plays a role in the transmission of
Y. pestis between humans [50,52]. However, it has also been identified as a vector of several
bacterial pathogens, such as Rickettsia and Bartonella species [53]. Nevertheless, no evidence
of Bartonella was found in the P. irritans fleas in our study.

Molecular biology was used to confirm the morphological identification of five flea
species collected in Vietnam, namely, X. cheopis, X. astia, P. irritans, C. canis, and C. felis,
using either the ITSI or ITS2 gene, homologous sequences of which were available in
GenBank. The ITS1 gene was chosen to differentiate C. felis from C. canis because this
specific marker shows a unique divergence compared with other genes frequently used to
identify arthropods [54]. Nevertheless, the reference DNA barcode sequences deposited in
GenBank miss the ITS1 region or have only recently been updated [54,55], which shows the
limited range of molecular technology in the choice of targeted sequences. Furthermore, one
species, morphologically identified as X. astia, did not match the molecular identification
result. This discrepancy was due to the lack of DNA sequence information for X. astia
species in the GenBank database, which is also one of the described drawbacks of molecular
biology [56].

MALDI-TOF MS has revolutionised clinical microbiology diagnostics as a result of
its advantages in the routine identification of bacteria, archaea, and fungi [57]. Recently,
MALDI-TOF MS has emerged as an efficient approach to the rapid and accurate identifica-
tion of arthropod vectors, including fleas [6,20,55]. In our study, the high-quality spectra of
C. canis and C. felis were 87.6% and 93.8%, respectively. Unfortunately, it was not possible
to obtain good quality spectra from three flea species (corresponding to the three P. irritans
samples from dogs, five X. astia, and two X. cheopis from rodents) in order to update the
database and then identify using a blind test. The theories were excluded from our results,
for example: (1) the specimens were stored in ethanol for a long time, while all of our sam-
ples were preserved and subsequently analysed for a period of between two and six months.
Ethanol is widely used for the conservation and transportation of arthropods under field
conditions because it is less restrictive than freezing [58]. Several studies have shown the
efficacy of MALDI-TOF MS for the identification of arthropods preserved in ethanol for
between two and ten years [58,59] and even up to several decades [19]; (2) Previous data
indicated that the choice of the compartment chosen for the MALDI-TOF MS analysis, the
cephalothorax, had high-quality spectra compared to different parts of the body [6,17,20].
The limited sample size for each species (between two and five specimens per species)
might explain our spectra results.

We report, for the first time, the presence of Wolbachia spp. in three flea species from
Vietnam. Wolbachia is a genus of bacterial endosymbiont that is known to infect both
nematodes and arthropods [60]. These bacteria have been reported to enable transmission
from parents to their descendants and may alter the biology, ecology, and evolution of
its hosts by acting on feminisation, parthenogenesis, male-killing in the arthropods, and
hence cause the cytoplasmic incompatibility of spermatozoa [60]. In Vietnam, the molecular
detection of Wolbachia in natural mosquito populations and other arthropods has not been
recorded. However, information on the detection of Wolbachia spp. in arthropods, including
fleas found in the tropical regions of Laos, Thailand, and Malaysia, has been published [61].
In our study, 58% of the fleas were positive for Wolbachia spp. endosymbiont DNA. The
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prevalence of Wolbachia found in our work is higher than that identified in a study of cat
fleas in France [29], although similar results on the occurrence of the Wolbachia infection
has been established in Malaysia [61].

Bartonella species are intracellular parasites of erythrocytes in a wide range of various
mammalian and ectoparasite hosts [62]. Most of these bacterial species have been detected
in their arthropod vectors, including fleas, ticks, and lice [6,63,64], although the majority of
these arthropods’ roles as vectors have yet to be proven [65]. Herein, we showed the pres-
ence of two human pathogens of the Bartonella genus (B. clarridgeiae and B. rochalimae) [66]
and one B. coopersplainsensis in an endemic Australian rat [67]. The occurrence of Bar-
tonella from rodent and cat fleas has been reported in China [66], Thailand [68], Japan [69],
Nepal [70], Indonesia [71], and Cambodia [72]. Our results provide the first molecular
evidence for Bartonella clarridgeiae, B. coopersplainsensis, and B. rochalimae in rodent and dog
fleas from Vietnam and suggest their related flea-borne diseases.

Bartonella clarridgeine has been suspected to be an additional agent of CSD, and its
pathogenic role in humans has been demonstrated in Ireland [73] and the United States [74].
B. clarridgeiae is also known as a veterinary pathogen associated with disease in cats and
dogs [75]. Bartonella spp. (B. elizabethae, B. rattimassiliensis, B. tribocorum, B. coopersplainsensis,
and B. queenslandensis) have already been reported from rat mites in the Mekong Delta [76]
and blood samples from rodents and bats in Vietnam [11,77]. However, the Bartonella genus,
especially B. clarridgeiae, was first discovered in C. canis dog fleas in our study. It has been
previously found in fleas in Southeast Asia (SEA) from the Thai-Myanmar border [78],
Laos [32], the Philippines [79], and Indonesia [80].

We found that 1% of X. astia fleas, which parasitise small wild rodent species, harbour
B. rochalimae DNA using a sequence analysis based on the gltA gene. B. rochalimae is the
causative agent of CSD, which can be transmitted to humans from fleas and mites [81].
Several cases of human infection have been described in the United States [82]. A B.
rochalimae infection was first reported in a dog from California [83]. Wild carnivores
such as coyotes, foxes, and skunks, have been suggested to be major reservoirs for B.
rochalimae in nature [81]. In Asia, B. rochalimae has been found in wild rodents near the
China—Kazakhstan border [66].

We showed, for the first time, the prevalence of B. coopersplainsensis in X. astia ro-
dent fleas captured in Vietnam. This Bartonella bacterium has not yet been described
in humans [62]. However, B. coopersplainsensis has been detected in rats collected from
SEA [72,84], Brazil [62], and New Zealand [85], and from other wild rodents in China [86]
and Lithuania [87]. In Vietnam, B. coopersplainsensis has already been detected in trombi-
culid mites in rats and their reservoir host’s blood samples [76].

The Bartonella species detected in our specimens were B. clarridgeiae, B. rochalimae,
and B. coopersplainsensis, with no evidence of other species such as Bartonella spp. (B.
rattimassiliensis, B. tribocorum), being reported in the SEA region. Our results demonstrate
that X. astia and C. canis fleas are potential vectors of B. clarridgeiae and B. rochalimae, which
might play a role in human infection in the Central Highlands of Vietnam.

5. Conclusions

Our study shows that the MALDI-TOF MS tool can be used for the rapid identification
of Vietnamese flea species preserved in 70% ethanol for more than a year. However, further
studies are needed to prove its effectiveness on a large number of different species. It has
also provided evidence of dog and rodent fleas being the vectors for carrying Bartonella
species in Vietnam. The detection of these pathogenic bacteria in their ectoparasites may be
applied to epidemiologic surveillance and prevention strategies. Hence, further studies
will be needed to identify the potential factors of B. clarridgeiae, B. rochalimae, and B.
coopersplainsensis and to investigate whether small wild rodents and domestic dogs, as well
as ectoparasite vectors, are of zoonotic importance.



Microorganisms 2023, 11, 716 13 of 17

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390 / microorganisms11030716/s1.

Author Contributions: Conceptualisation, PP, L.N.H. and X.Q.N.; methodology, P.P. and A.Z.D;
formal analysis, L.N.H. and A.Z.D.; investigation, L.N.H. and Q.L.P.; identification, L.N.H., Q.L.P. and
J.-M.B.; resource, P.P.,; data curation, P.P; writing original draft preparation, L.N.H.; writing—review
and editing, LN.H., A.Z.D. and P.P; visualization, LN.H., A.Z.D., ].-M.B., X.Q.N., VH.H. and PP;
supervision, PP; funding acquisition, P.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This study was supported by the Institut Hospitalo-Universitaire (IHU) Méditerranée
Infection, the National Research Agency under the “Investissements d’avenir” programme, reference
ANR-10-IAHU-03, the Région Provence Alpes Céte d’Azur and European ERDF PRIMI funding.
LNH received a Ph.D. scholarship from IHU Méditerranée Infection. The funding sources had
no role in the study design, data collection, and analysis, decision to publish, or preparation of
this manuscript.

Institutional Review Board Statement: The study was approved by the research ethics committee
of the Institute of Malariology, Parasitology, and Entomology, Quy Nhon (IMPE-QN) on behalf of the
Vietnamese Ministry of Health (Approval No. 380/CT-VSR-2021). Permission was obtained from
local authorities for wild mammals that were not listed in national parks or other protected areas in
Vietnam. For dogs and cats, permission was obtained from the owners. Rodents were captured using
live animal traps and released into their natural habitat after collecting flea samples.

Data Availability Statement: Not applicable.

Acknowledgments: We are sincerely grateful to the staff of the Entomological Department of the
Institute of Malariology, Parasitology, and Entomology, Quy Nhon (IMPE-QN), Vietnam for their
support with specimen collection. The authors would like to thank all of the pet owners for giving
us access to their animals. We would also thank the insectarium team at the Institut Hospitalo-
Universitaire Méditerranée Infection, Marseille, France, for their assistance and the provision of the
MALDI-TOF MS and molecular biology materials.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barbieri, R.; Signoli, M.; Chevé, D.; Costedoat, C.; Tzortzis, S.; Aboudharam, G.; Raoult, D.; Drancourt, M. Yersinia Pestis: The
Natural History of Plague. Clin. Microbiol. Rev. 2020, 34, €00044-19. [CrossRef] [PubMed]

2. Bitam, I; Dittmar, K,; Parola, P.; Whiting, M.F.; Raoult, D. Fleas and Flea-Borne Diseases. Int. |. Infect. Dis. 2010, 14, e667—-€676.
[CrossRef] [PubMed]

3. Hamzaoui, B.E.; Zurita, A.; Cutillas, C.; Parola, P. Fleas and Flea-Borne Diseases of North Africa. Acta Trop. 2020, 211, 105627.
[CrossRef] [PubMed]

4. Cavanaugh, D.C.; Dangerfield, H.G.; Hunter, D.H.; Joy, R.J.; Marshall, ].D.; Quy, D.V; Vivona, S.; Winter, PE. Some Observations
on the Current Plague Outbreak in the Republic of Vietnam. Am. J. Public Health Nations Health 1968, 58, 742-752. [CrossRef]

5. Pham, H.V,; Dang, D.T.; Tran Minh, N.N.; Nguyen, N.D.; Nguyen, T.V. Correlates of Environmental Factors and Human Plague:
An Ecological Study in Vietnam. Int. ]. Epidemiol. 2009, 38, 1634—1641. [CrossRef]

6. El Hamzaoui, B.; Laroche, M.; Almeras, L.; Bérenger, J.-M.; Raoult, D.; Parola, P. Detection of Bartonella spp. in Fleas by
MALDI-TOF MS. PLoS Negl. Trop. Dis. 2018, 12, e0006189. [CrossRef]

7. Nguyen, V.-L.; Colella, V.; Greco, G.; Fang, F.; Nurcahyo, W.; Hadi, U.K.; Venturina, V.; Tong, K.B.Y.; Tsai, Y.-L.; Taweethavonsawat,
P; et al. Molecular Detection of Pathogens in Ticks and Fleas Collected from Companion Dogs and Cats in East and Southeast
Asia. Parasit Vectors 2020, 13, 420. [CrossRef]

8.  Alvarez-Fernandez, A.; Breitschwerdt, E.B.; Solano-Gallego, L. Bartonella Infections in Cats and Dogs Including Zoonotic Aspects.
Parasit Vectors 2018, 11, 624. [CrossRef]

9.  Beugnet, F; Marié, J.-L. Emerging Arthropod-Borne Diseases of Companion Animals in Europe. Vet. Parasitol. 2009, 163, 298-305.
[CrossRef]

10. Le-Viet, N.; Le, V-N.; Chung, H.; Phan, D.-T.; Phan, Q.-D.; Cao, T.-V.; Abat, C.; Raoult, D.; Parola, P. Prospective Case-Control
Analysis of the Aetiologies of Acute Undifferentiated Fever in Vietnam. Emerg. Microbes Infect. 2019, 8, 339-352. [CrossRef]

11.  Anh, L.T.L.; Balakirev, A.E.; Chau, N.V. Investigation of Multiple Infections with Zoonotic Pathogens of Rodents in Northern
Vietnam. J. Vector Borne Dis. 2021, 58, 47-53. [CrossRef] [PubMed]

12. Do, T,; Inpankaew, T.; Duong, D.H.; Bui, K.L. First Molecular Evidence of Pathogens in Fleas Collected from Dogs in Northern

Vietnam. Pathogens 2021, 10, 1185. [CrossRef]


https://www.mdpi.com/article/10.3390/microorganisms11030716/s1
http://doi.org/10.1128/CMR.00044-19
http://www.ncbi.nlm.nih.gov/pubmed/33298527
http://doi.org/10.1016/j.ijid.2009.11.011
http://www.ncbi.nlm.nih.gov/pubmed/20189862
http://doi.org/10.1016/j.actatropica.2020.105627
http://www.ncbi.nlm.nih.gov/pubmed/32652054
http://doi.org/10.2105/AJPH.58.4.742
http://doi.org/10.1093/ije/dyp244
http://doi.org/10.1371/journal.pntd.0006189
http://doi.org/10.1186/s13071-020-04288-8
http://doi.org/10.1186/s13071-018-3152-6
http://doi.org/10.1016/j.vetpar.2009.03.028
http://doi.org/10.1080/22221751.2019.1580539
http://doi.org/10.4103/0972-9062.321750
http://www.ncbi.nlm.nih.gov/pubmed/34818863
http://doi.org/10.3390/pathogens10091185

Microorganisms 2023, 11, 716 14 of 17

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Porshakov, A.M.; Korneev, M.G.; Chumachkova, E.A.; Chau, N.V,; Toan, T.V,; Cuong, V.V. Addition to the Flea Fauna of Vietnam.
Entomol. Rev. 2021, 101, 1287-1292. [CrossRef]

Kirkland, G.L. Guidelines for the Capture, Handling, and Care of Mammals as Approved by the American Society of Mammalo-
gists. J. Mammal. 1998, 79, 1416-1431. [CrossRef]

Pratt, H.D. Flea Diagram—With Structures Labeled. 8. Available online: https:/ /stacks.cdc.gov/view/cdc/7681/cdc_7681_DS1
.pdf (accessed on 2 March 2023).

Beaucournu, ].C.; Launay, H. Les Puces de La France et du Bassin Méditerranéen Occidental. Fédération Frangaise des Sociétés de Sciences
Naturelles; Lechevalier: Bréteau, France, 1990; ISBN 2-903052-10-7.

Yssouf, A.; Socolovschi, C.; Leulmi, H.; Kernif, T.; Bitam, I.; Audoly, G.; Almeras, L.; Raoult, D.; Parola, P. Identification of Flea
Species Using MALDI-TOF/MS. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 153-157. [CrossRef]

Vobis, M.; D'Haese, ].; Mehlhorn, H.; Mencke, N.; Blagburn, B.L.; Bond, R.; Denholm, I.; Dryden, M.W.; Payne, P.; Rust, M.K ; et al.
Molecular Phylogeny of Isolates of Ctenocephalides felis and Related Species Based on Analysis of ITS1, ITS2 and Mitochondrial
165 RDNA Sequences and Random Binding Primers. Parasitol. Res. 2004, 94, 219-226. [CrossRef]

Ahamada M'madi, S.; Diarra, A.Z.; Almeras, L.; Parola, P. Identification of Ticks from an Old Collection by MALDI-TOF MS.
J. Proteom. 2022, 264, 104623. [CrossRef] [PubMed]

Nebbak, A.; El Hamzaoui, B.; Berenger, ].-M.; Bitam, I.; Raoult, D.; Almeras, L.; Parola, P. Comparative Analysis of Storage
Conditions and Homogenization Methods for Tick and Flea Species for Identification by MALDI-TOF MS. Med. Vet. Entomol.
2017, 31, 438-448. [CrossRef]

Yssouf, A.; Almeras, L.; Raoult, D.; Parola, P. Emerging Tools for Identification of Arthropod Vectors. Future Microbiol. 2016, 11,
549-566. [CrossRef]

Nebbak, A.; Willcox, A.C.; Bitam, I; Raoult, D.; Parola, P.; Almeras, L. Standardization of Sample Homogenization for Mosquito
Identification Using an Innovative Proteomic Tool Based on Protein Profiling. Proteomics 2016, 16, 3148-3160. [CrossRef]
Yssouf, A.; Parola, P.,; Lindstrom, A.; Lilja, T.; L’Ambert, G.; Bondesson, U.; Berenger, ].-M.; Raoult, D.; Almeras, L. Identification
of European Mosquito Species by MALDI-TOF MS. Parasitol. Res. 2014, 113, 2375-2378. [CrossRef] [PubMed]

Zurita, A.; Djeghar, R.; Callejon, R.; Cutillas, C.; Parola, P.; Laroche, M. Matrix-Assisted Laser Desorption/Ionization Time-of-
Flight Mass Spectrometry as a Useful Tool for the Rapid Identification of Wild Flea Vectors Preserved in Alcohol. Med. Vet.
Entomol. 2019, 33, 185-194. [CrossRef] [PubMed]

Lafri, I.; El Hamzaoui, B.; Bitam, I.; Leulmi, H.; Lalout, R.; Mediannikov, O.; Chergui, M.; Karakellah, M.; Raoult, D.; Parola, P.
Detection of Relapsing Fever Borrelia spp., Bartonella spp. and Anaplasmataceae Bacteria in Argasid Ticks in Algeria. PLoS Negl.
Trop. Dis. 2017, 11, e0006064. [CrossRef]

Djiba, M.L.; Mediannikov, O.; Mbengue, M.; Thiongane, Y.; Molez, ].-F,; Seck, M.T.; Fenollar, F.; Raoult, D.; Ndiaye, M. Survey of
Anaplasmataceae Bacteria in Sheep from Senegal. Trop. Anim. Health Prod. 2013, 45, 1557-1561. [CrossRef]

Rolain, J.-M.; Stuhl, L.; Maurin, M.; Raoult, D. Evaluation of Antibiotic Susceptibilities of Three Rickettsial Species Including
Rickettsia felis by a Quantitative PCR DNA Assay. Antimicrob. Agents Chemother. 2002, 46, 2747-2751. [CrossRef] [PubMed]
Mediannikov, O.; Trape, J.-F; Diatta, G.; Parola, P; Fournier, P-E.; Raoult, D. Rickettsia Africae, Western Africa. Emerg. Infect. Dis.
2010, 16, 571-573. [CrossRef] [PubMed]

Rolain, J.-M.; Franc, M.; Davoust, B.; Raoult, D. Molecular Detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae,
Rickettsia felis, and Wolbachia pipientis in Cat Fleas, France. Emerg. Infect. Dis. 2003, 9, 339-342. [CrossRef]

Rolain, J.-M.; Raoult, D. Molecular Detection of Coxiella burnetii in Blood and Sera during Q Fever. QJM 2005, 98, 615-617.
[CrossRef]

Laidoudi, Y.; Levasseur, A.; Medkour, H.; Maaloum, M.; Ben Khedher, M.; Sambou, M.; Bassene, H.; Davoust, B.; Fenollar, F.;
Raoult, D.; et al. An Earliest Endosymbiont, Wolbachia massiliensis Sp. Nov., Strain PL13 from the Bed Bug (Cimex hemipterus),
Type Strain of a New Supergroup T. Int. J. Mol. Sci. 2020, 21, 8064. [CrossRef]

Nguyen, HM.; Theppannga, W.; Vongphayloth, K.; Douangngeun, B.; Blacksell, S.D.; Robinson, M.T. Screening of Ectoparasites
from Domesticated Dogs for Bacterial Pathogens in Vientiane, Lao PDR. Zoonoses Public Health 2020, 67, 862—-868. [CrossRef]
Suntsov, V.V,; Huong, L.T.; Suntsova, N.I.; Gratz, N.G. Plague Foci in Viet Nam: Zoological and Parasitological Aspects. Bull.
World Health Organ. 1997, 75, 117-123.

Suntsov, V.V,; Huong, L.T.; Suntsova, N.I. Notes on fleas (Siphonaptera) in plague foci on the Tay Nguyen plateau (Vietnam).
Parazitologiia 1992, 26, 516-520.

Kernif, T.; Socolovschi, C.; Wells, K.; Lakim, M.B.; Inthalad, S.; Slesak, G.; Boudebouch, N.; Beaucournu, J.-C.; Newton, PN.;
Raoult, D.; et al. Bartonella and Rickettsia in Arthropods from the Lao PDR and from Borneo, Malaysia. Comp. Immunol. Microbiol.
Infect. Dis. 2012, 35, 51-57. [CrossRef]

Beaucournuy, J.-C.; Sountsova, N.L; Ly, T.V.H.; Sountsov, V.V. Contribution a 1’étude de La Peste Au Vietnam: Historique et
Inventaire Des Puces Signalées (Insecta—Siphonaptera) En Zones Anthropisées. Parasite 2002, 9, 3-10. [CrossRef]

Le, T.D.; Tran, N.H.; Tran, TK.T.; Mai, D.T.; Doan, B.M. Research on Species Composition and Distribution of Some External Para-
sites Groups in Southern—Lam Dong Area. Available online: http://www.tapchiyhocduphong.vn/tap-chi-y-hoc-du-phong/20
15/08 /nghien-cuu-thanh-phan-loai-va-phan-bo-mot-so-nhom-ngoai-ky-sinh-tai-mot-so-diem--081E20300.html (accessed on 21
July 2022).


http://doi.org/10.1134/S0013873821090062
http://doi.org/10.2307/1383033
https://stacks.cdc.gov/view/cdc/7681/cdc_7681_DS1.pdf
https://stacks.cdc.gov/view/cdc/7681/cdc_7681_DS1.pdf
http://doi.org/10.1016/j.cimid.2014.05.002
http://doi.org/10.1007/s00436-004-1201-x
http://doi.org/10.1016/j.jprot.2022.104623
http://www.ncbi.nlm.nih.gov/pubmed/35623553
http://doi.org/10.1111/mve.12250
http://doi.org/10.2217/fmb.16.5
http://doi.org/10.1002/pmic.201600287
http://doi.org/10.1007/s00436-014-3876-y
http://www.ncbi.nlm.nih.gov/pubmed/24737398
http://doi.org/10.1111/mve.12351
http://www.ncbi.nlm.nih.gov/pubmed/30516832
http://doi.org/10.1371/journal.pntd.0006064
http://doi.org/10.1007/s11250-013-0399-y
http://doi.org/10.1128/AAC.46.9.2747-2751.2002
http://www.ncbi.nlm.nih.gov/pubmed/12183224
http://doi.org/10.3201/eid1603.090346
http://www.ncbi.nlm.nih.gov/pubmed/20202453
http://doi.org/10.3201/eid0903.020278
http://doi.org/10.1093/qjmed/hci099
http://doi.org/10.3390/ijms21218064
http://doi.org/10.1111/zph.12753
http://doi.org/10.1016/j.cimid.2011.10.003
http://doi.org/10.1051/parasite/20020913
http://www.tapchiyhocduphong.vn/tap-chi-y-hoc-du-phong/2015/08/nghien-cuu-thanh-phan-loai-va-phan-bo-mot-so-nhom-ngoai-ky-sinh-tai-mot-so-diem--o81E20300.html
http://www.tapchiyhocduphong.vn/tap-chi-y-hoc-du-phong/2015/08/nghien-cuu-thanh-phan-loai-va-phan-bo-mot-so-nhom-ngoai-ky-sinh-tai-mot-so-diem--o81E20300.html

Microorganisms 2023, 11, 716 15 0f 17

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Porshakov, A.M.; Chumachkova, E.A ; Kas’yan, Z.A.; Oglodin, E.G.; Mo, L.T.; Cuong, V.V,; Van Toan, C.; Nga, B.T.T. Results of
Epizootiological Survey on Plague and Other Zoonotic Infections in the Northern Provinces of the Socialist Republic of Vietnam
During Spring Months of 2019. Probl. Part. Danger. Infect. 2020, 1, 133-138. [CrossRef]

Crook, L.D.; Tempest, B. Plague: A Clinical Review of 27 Cases. Arch. Intern. Med. 1992, 152, 1253-1256. [CrossRef]

Goyle, A.N. On the Transmission of Plague by Xenopsylla astia and X. cheopis. Preliminary Observations. Ind. Med. Gaz. 1927, 62,
317-318.

Tun, M.M.; King, R.E. The Host/Parasite Relationships of Xenopsylla astia and X. cheopis on Bandicota Bengalensis in Rangoon,
Burma. Southeast Asian J. Trop. Med. Public Health 1979, 10, 505-509.

Zarea, A.A K,; Bezerra-Santos, M.A.; Nguyen, V.-L.; Colella, V.; Dantas-Torres, F.; Halos, L.; Beugnet, F.; Tempesta, M.; Otranto,
D.; Greco, G. Occurrence and Bacterial Loads of Bartonella and Haemotropic Mycoplasma Species in Privately Owned Cats and
Dogs and Their Fleas from East and Southeast Asia. Zoonoses Public Health 2022, 69, 704-720. [CrossRef]

Lawrence, A.L.; Hii, S.-F; Jirsova, D.; Panakova, L.; Ionica, A.M.; Gilchrist, K.; Modry, D.; Mihalca, A.D.; Webb, C.E.; Traub, R.].;
et al. Integrated Morphological and Molecular Identification of Cat Fleas (Ctenocephalides felis) and Dog Fleas (Ctenocephalides
canis) Vectoring Rickettsia Felis in Central Europe. Vet. Parasitol. 2015, 210, 215-223. [CrossRef]

Parola, P; Davoust, B.; Raoult, D. Tick- and Flea-Borne Rickettsial Emerging Zoonoses. Vet. Res. 2005, 36, 469-492. [CrossRef]
Parola, P.; Cornet, ].-P.; Sanogo, Y.O.; Miller, R.S.; Thien, H.V.; Gonzalez, J.-P; Raoult, D.; Telford III, S.R.; Wongsrichanalai, C.
Detection of Ehrlichia spp., Anaplasma spp., Rickettsia spp., and Other Eubacteria in Ticks from the Thai-Myanmar Border and
Vietnam. J. Clin. Microbiol. 2003, 41, 1600-1608. [CrossRef] [PubMed]

Dittrich, S.; Phommasone, K.; Anantatat, T.; Panyanivong, P; Slesak, G.; Blacksell, S.D.; Dubot-Péres, A.; Castonguay-Vanier, J.;
Stenos, J.; Newton, P.N,; et al. Rickettsia felis Infections and Comorbid Conditions, Laos, 2003-2011. Emerg. Infect. Dis. 2014, 20,
1402-1404. [CrossRef] [PubMed]

Mawuntu, A.-H.P; Johar, E.; Anggraeni, R.; Feliana, F; Bernadus, ].B.B.; Safari, D.; Yudhaputri, F.A.; Dhenni, R.; Dewi, Y.P; Kato,
C.; et al. Rickettsia felis Identified in Two Fatal Cases of Acute Meningoencephalitis. PLoS Negl. Trop. Dis. 2020, 14, e0007893.
[CrossRef]

Mokhtar, A.S.; Tay, S.T. Molecular Detection of Rickettsia felis, Bartonella henselae, and B. clarridgeiae in Fleas from Domestic Dogs
and Cats in Malaysia. Am. |. Trop. Med. Hyg. 2011, 85, 931-933. [CrossRef]

Abreu-Yanes, E.; Abreu-Acosta, N.; Kosoy, M.; Foronda, P. Molecular Detection of Bartonella henselae, Bartonella clarridgeiae and
Rickettsia felis in Cat and Dog Fleas in Tenerife, Canary Islands, Spain. . Vector Ecol. 2020, 45, 233-240. [CrossRef] [PubMed]
Miarinjara, A.; Bland, D.M.; Belthoff, J.R.; Hinnebusch, B.]. Poor Vector Competence of the Human Flea, Pulex irritans, to Transmit
Yersinia pestis. Parasit Vectors 2021, 14, 317. [CrossRef] [PubMed]

Hornok, S.; Beck, R.; Farkas, R.; Grima, A.; Otranto, D.; Kontschan, ].; Takacs, N.; Horvath, G.; Sz6ke, K.; Szekeres, S.; et al. High
Mitochondrial Sequence Divergence in Synanthropic Flea Species (Insecta: Siphonaptera) from Europe and the Mediterranean.
Parasit Vectors 2018, 11, 221. [CrossRef]

Ratovonjato, J.; Rajerison, M.; Rahelinirina, S.; Boyer, S. Yersinia Pestis in Pulex irritans Fleas during Plague Outbreak, Madagascar.
Emerg. Infect. Dis. 2014, 20, 1414-1415. [CrossRef]

O’Donnell, M.; Elston, D.M. What’s Eating You? Human Flea (Pulex irritans). Cutis 2020, 106, 233-235. [CrossRef]

Zurita, A.; Callejon, R.; De Rojas, M.; Gémez Lopez, M.S.; Cutillas, C. Molecular Study of Stenoponia tripectinata Tripectinata
(Siphonaptera: Ctenophthalmidae: Stenoponiinae) from the Canary Islands: Taxonomy and Phylogeny. Bull. Entomol. Res. 2015,
105, 704-711. [CrossRef] [PubMed]

Zurita, A.; Gutiérrez, S.G.; Cutillas, C. Infection Rates of Wolbachia Sp. and Bartonella Sp. in Different Populations of Fleas. Curr.
Microbiol. 2016, 73, 704-713. [CrossRef] [PubMed]

Sevestre, J.; Diarra, A.Z.; Laroche, M.; Almeras, L.; Parola, P. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass
Spectrometry: An Emerging Tool for Studying the Vectors of Human Infectious Diseases. Future Microbiol. 2021, 16, 323-340.
[CrossRef]

Tahir, D.; Almeras, L.; Varloud, M.; Raoult, D.; Davoust, B.; Parola, P. Assessment of MALDI-TOF Mass Spectrometry for Filariae
Detection in Aedes aegypti Mosquitoes. PLoS Negl. Trop. Dis. 2017, 11, e0006093. [CrossRef] [PubMed]

Diarra, A.Z.; Almeras, L.; Laroche, M.; Berenger, ].-M.; Koné, A K.; Bocoum, Z.; Dabo, A.; Doumbo, O.; Raoult, D.; Parola, P.
Molecular and MALDI-TOF Identification of Ticks and Tick-Associated Bacteria in Mali. PLoS Negl. Trop. Dis. 2017, 11, €0005762.
[CrossRef]

Huynh, L.N,; Diarra, A.Z.; Pham, Q.L.; Le-Viet, N.; Berenger, ] M.; Ho, V.H.; Nguyen, X.Q.; Parola, P. Morphological, Molecular
and MALDI-TOF MS Identification of Ticks and Tick-Associated Pathogens in Vietnam. PLoS Negl. Trop. Dis. 2021, 15, e0009813.
[CrossRef]

Werren, ].H.; Baldo, L.; Clark, M.E. Wolbachia: Master Manipulators of Invertebrate Biology. Nat. Rev. Microbiol. 2008, 6, 741-751.
[CrossRef]

Tay, S.T. Wolbachia Endosymbionts, Rickettsia felis and Bartonella Species, in Ctenocephalides felis Fleas in a Tropical Region. . Vector
Ecol. 2013, 38, 200-202. [CrossRef]

Gongalves, L.R.; Harrus, S.; Herrera, H.M.; Gutiérrez, R.; Pedrassani, D.; Nantes, W.A.G.; Santos, EM.; Porfirio, G.E.; Barreto,
W.T.G.; de Macedo, G.C.; et al. Low Occurrence of Bartonella in Synanthropic Mammals and Associated Ectoparasites in
Peri-Urban Areas from Central-Western and Southern Brazil. Acta Trop. 2020, 207, 105513. [CrossRef]


http://doi.org/10.21055/0370-1069-2020-1-133-138
http://doi.org/10.1001/archinte.1992.00400180107017
http://doi.org/10.1111/zph.12959
http://doi.org/10.1016/j.vetpar.2015.03.029
http://doi.org/10.1051/vetres:2005004
http://doi.org/10.1128/JCM.41.4.1600-1608.2003
http://www.ncbi.nlm.nih.gov/pubmed/12682151
http://doi.org/10.3201/eid2008.131308
http://www.ncbi.nlm.nih.gov/pubmed/25061919
http://doi.org/10.1371/journal.pntd.0007893
http://doi.org/10.4269/ajtmh.2011.10-0634
http://doi.org/10.1111/jvec.12394
http://www.ncbi.nlm.nih.gov/pubmed/33207065
http://doi.org/10.1186/s13071-021-04805-3
http://www.ncbi.nlm.nih.gov/pubmed/34112224
http://doi.org/10.1186/s13071-018-2798-4
http://doi.org/10.3201/eid2008.130629
http://doi.org/10.12788/cutis.0107
http://doi.org/10.1017/S0007485315000656
http://www.ncbi.nlm.nih.gov/pubmed/26282009
http://doi.org/10.1007/s00284-016-1119-4
http://www.ncbi.nlm.nih.gov/pubmed/27515668
http://doi.org/10.2217/fmb-2020-0145
http://doi.org/10.1371/journal.pntd.0006093
http://www.ncbi.nlm.nih.gov/pubmed/29261659
http://doi.org/10.1371/journal.pntd.0005762
http://doi.org/10.1371/journal.pntd.0009813
http://doi.org/10.1038/nrmicro1969
http://doi.org/10.1111/j.1948-7134.2013.12030.x
http://doi.org/10.1016/j.actatropica.2020.105513

Microorganisms 2023, 11, 716 16 of 17

63.
64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Parola, P; Raoult, D. Tropical Rickettsioses. Clin. Dermatol. 2006, 24, 191-200. [CrossRef]

Parola, P.; Shpynov, S.; Montoya, M.; Lopez, M.; Houpikian, P; Zeaiter, Z.; Guerra, H.; Raoult, D. First Molecular Evidence of
New Bartonella spp. in Fleas and a Tick from Peru. Am. J. Trop. Med. Hyg. 2002, 67, 135-136. [CrossRef] [PubMed]

Diarra, A.Z.; Kone, A K,; Doumbo Niare, S.; Laroche, M.; Diatta, G.; Atteynine, S.A.; Coulibaly, M.; Sangare, A.K.; Kouriba, B.;
Djimde, A.; et al. Molecular Detection of Microorganisms Associated with Small Mammals and Their Ectoparasites in Mali. Am. ].
Trop. Med. Hyg. 2020, 103, 2542-2551. [CrossRef]

Yin, X.; Zhao, S.; Yan, B.; Tian, Y.; Ba, T.; Zhang, J.; Wang, Y. Bartonella rochalimae, B. grahamii, B. elizabethae, and Wolbachia spp. in
Fleas from Wild Rodents near the China-Kazakhstan Border. Korean |. Parasitol. 2019, 57, 553-559. [CrossRef] [PubMed]

Gundi, V.AK.B,; Taylor, C.; Raoult, D.; La Scola, B. Bartonella rattaustraliani Sp. Nov., Bartonella queenslandensis Sp. Nov. and
Bartonella coopersplainsensis Sp. Nov., Identified in Australian Rats. Int. J. Syst. Evol. Microbiol. 2009, 59, 2956-2961. [CrossRef]
[PubMed]

Saengsawang, P.; Kaewmongkol, G.; Phoosangwalthong, P.; Chimnoi, W.; Inpankaew, T. Detection of Zoonotic Bartonella Species
in Ticks and Fleas Parasitizing Free-Ranging Cats and Dogs Residing in Temples of Bangkok, Thailand. Vet. Parasitol. Reg. Stud.
Rep. 2021, 25, 100612. [CrossRef] [PubMed]

Inoue, K.; Maruyama, S.; Kabeya, H.; Yamada, N.; Ohashi, N.; Sato, Y.; Yukawa, M.; Masuzawa, T.; Kawamori, F.; Kadosaka, T.;
et al. Prevalence and Genetic Diversity of Bartonella Species Isolated from Wild Rodents in Japan. Appl. Environ. Microbiol. 2008,
74, 5086-5092. [CrossRef]

Gundi, V.A.K.B,; Kosoy, M.Y.; Myint, K.S.A.; Shrestha, S.K.; Shrestha, M.P,; Pavlin, J.A.; Gibbons, R.V. Prevalence and Genetic
Diversity of Bartonella Species Detected in Different Tissues of Small Mammals in Nepal. Appl. Environ. Microbiol. 2010, 76,
8247-8254. [CrossRef]

Winoto, I.L.; Goethert, H.; Ibrahim, LN.; Yuniherlina, I; Stoops, C.; Susanti, I.; Kania, W.; Maguire, ].D.; Bangs, M.].; Telford, S.R,;
et al. Bartonella Species in Rodents and Shrews in the Greater Jakarta Area. Southeast Asian |. Trop. Med. Public Health 2005, 36,
1523-1529.

Jiyipong, T.; Morand, S.; Jittapalapong, S.; Rolain, J.-M. Bartonella spp. Infections in Rodents of Cambodia, Lao PDR, and
Thailand: Identifying Risky Habitats. Vector Borne Zoonotic Dis. 2015, 15, 48-55. [CrossRef]

Logan, ].M.].; Hall, J.L.; Chalker, V.J.; O’Connell, B.; Birtles, R.J. Bartonella clarridgeiae Infection in a Patient with Aortic Root
Abscess and Endocarditis. Access Microbiol. 2019, 1, €000064. [CrossRef]

Kordick, D.L.; Hilyard, E.J.; Hadfield, T.L.; Wilson, K.H.; Steigerwalt, A.G.; Brenner, D.].; Breitschwerdt, E.B. Bartonella clarridgeiae,
a Newly Recognized Zoonotic Pathogen Causing Inoculation Papules, Fever, and Lymphadenopathy (Cat Scratch Disease). J.
Clin. Microbiol. 1997, 35, 1813-1818. [CrossRef]

André, M.R.; Canola, R.A.M.; Braz, ].B.; Perossi, L.LES.; Calchi, A.C.; Ikeda, P.; Machado, R.Z.; de Vasconcelos, R.O.; Camacho, A.A.
Aortic Valve Endocarditis Due to Bartonella Clarridgeiae in a Dog in Brazil. Rev. Bras. Parasitol. Vet. 2019, 28, 661-670. [CrossRef]
[PubMed]

Loan, HK,; Cuong, N.V,; Takhampunya, R.; Klangthong, K.; Osikowicz, L.; Kiet, B.T.; Campbell, J.; Bryant, J.; Promstaporn, S.;
Kosoy, M.; et al. Bartonella Species and Trombiculid Mites of Rats from the Mekong Delta of Vietnam. Vector Borne Zoonotic Dis.
2015, 15, 40-47. [CrossRef] [PubMed]

Anh, PH.; Van Cuong, N.; Son, N.T.; Tue, N.T.; Kosoy, M.; Woolhouse, M.E].; Baker, S.; Bryant, ].E.; Thwaites, G.; Carrique-Mas,
J.J.; et al. Diversity of Bartonella spp. in Bats, Southern Vietnam. Emerg. Infect. Dis. 2015, 21, 1266-1267. [CrossRef]

Parola, P.; Miller, R.S.; McDaniel, P; Telford, S.R.; Rolain, J.-M.; Wongsrichanalai, C.; Raoult, D. Emerging Rickettsioses of the
Thai-Myanmar Border. Emerg. Infect. Dis. 2003, 9, 592-595. [CrossRef]

Chomel, B.B.; Carlos, E.T.; Kasten, RW.; Yamamoto, K.; Chang, C.C.; Carlos, R.S.; Abenes, M.V.; Pajares, C.M. Bartonella henselae
and Bartonella clarridgeiae Infection in Domestic Cats from The Philippines. Am. J. Trop. Med. Hyg. 1999, 60, 593-597. [CrossRef]
[PubMed]

Marston, E.L.; Finkel, B.; Regnery, R.L.; Winoto, I.L.; Graham, R.R.; Wignal, S.; Simanjuntak, G.; Olson, ].G. Prevalence of Bartonella
henselae and Bartonella clarridgeiae in an Urban Indonesian Cat Population. Clin. Diagn. Lab. Immunol. 1999, 6, 41-44. [CrossRef]

Mizukami, M.; Sato, S.; Nabeshima, K.; Kabeya, H.; Ueda, D.; Suzuki, K.; Maruyama, S. Molecular Survey of Bartonella rochalimae
in Japanese Raccoon Dogs (Nyctereutes Procyonoides Viverrinus). J. Wildl. Dis. 2020, 56, 560. [CrossRef]

Eremeeva, M.E.; Gerns, H.L.; Lydy, S.L.; Goo, ].S.; Ryan, E.T.; Mathew, S.S.; Ferraro, M.].; Holden, ].M.; Nicholson, W.L.; Dasch,
G.A; et al. Bacteremia, Fever, and Splenomegaly Caused by a Newly Recognized Bartonella Species. N. Engl. ]. Med. 2007, 356,
2381-2387. [CrossRef]

Henn, ].B.; Gabriel, M.W.; Kasten, RW.; Brown, R.N.; Koehler, J.E.; MacDonald, K.A.; Kittleson, M.D.; Thomas, W.P.; Chomel, B.B.
Infective Endocarditis in a Dog and the Phylogenetic Relationship of the Associated “Bartonella rochalimae” Strain with Isolates
from Dogs, Gray Foxes, and a Human. J. Clin. Microbiol. 2009, 47, 787-790. [CrossRef]

Tay, S.T.; Mokhtar, A.S.; Zain, SIN.M.; Low, K.C. Isolation and Molecular Identification of Bartonellae from Wild Rats (Rattus
Species) in Malaysia. Am. . Trop. Med. Hyg. 2014, 90, 1039-1042. [CrossRef] [PubMed]

Helan, ].N.V.G,; Grinberg, A.; Gedye, K_; Potter, M.; Harrus, S. Molecular Detection of Bartonella coopersplainsensis and B. henselae
in Rats from New Zealand. N. Z. Vet. ]. 2018, 66, 257-260. [CrossRef]


http://doi.org/10.1016/j.clindermatol.2005.11.007
http://doi.org/10.4269/ajtmh.2002.67.135
http://www.ncbi.nlm.nih.gov/pubmed/12389935
http://doi.org/10.4269/ajtmh.19-0727
http://doi.org/10.3347/kjp.2019.57.5.553
http://www.ncbi.nlm.nih.gov/pubmed/31715700
http://doi.org/10.1099/ijs.0.002865-0
http://www.ncbi.nlm.nih.gov/pubmed/19628592
http://doi.org/10.1016/j.vprsr.2021.100612
http://www.ncbi.nlm.nih.gov/pubmed/34474805
http://doi.org/10.1128/AEM.00071-08
http://doi.org/10.1128/AEM.01180-10
http://doi.org/10.1089/vbz.2014.1621
http://doi.org/10.1099/acmi.0.000064
http://doi.org/10.1128/jcm.35.7.1813-1818.1997
http://doi.org/10.1590/s1984-29612019078
http://www.ncbi.nlm.nih.gov/pubmed/31618303
http://doi.org/10.1089/vbz.2014.1604
http://www.ncbi.nlm.nih.gov/pubmed/25629779
http://doi.org/10.3201/eid2107.141760
http://doi.org/10.3201/eid0905.020511
http://doi.org/10.4269/ajtmh.1999.60.593
http://www.ncbi.nlm.nih.gov/pubmed/10348234
http://doi.org/10.1128/CDLI.6.1.41-44.1999
http://doi.org/10.7589/2019-06-162
http://doi.org/10.1056/NEJMoa065987
http://doi.org/10.1128/JCM.01351-08
http://doi.org/10.4269/ajtmh.13-0273
http://www.ncbi.nlm.nih.gov/pubmed/24732465
http://doi.org/10.1080/00480169.2018.1483781

Microorganisms 2023, 11, 716 17 of 17

86. Li, D.-M.; Hou, Y,; Song, X.-P; Fu, Y.-Q.; Li, G.-C.; Li, M.; Eremeeva, M.E.; Wu, H.-X.; Pang, B.; Yue, Y.-].; et al. High Prevalence
and Genetic Heterogeneity of Rodent-Borne Bartonella Species on Heixiazi Island, China. Appl. Environ. Microbiol. 2015, 81,
7981-7992. [CrossRef] [PubMed]

87. Mardosaité-Busaitiené, D.; Radzijevskaja, J.; Bal¢iauskas, L.; Bratchikov, M.; Jurgelevicius, V.; Paulauskas, A. Prevalence and
Diversity of Bartonella Species in Small Rodents from Coastal and Continental Areas. Sci. Rep. 2019, 9, 12349. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1128/AEM.02041-15
http://www.ncbi.nlm.nih.gov/pubmed/26362983
http://doi.org/10.1038/s41598-019-48715-y
http://www.ncbi.nlm.nih.gov/pubmed/31451710

	Introduction 
	Materials and Methods 
	Study Sites, Flea Collection and Morphological Identification 
	Flea Dissection and Specimen Preparation 
	DNA Extraction and Validation of Morphological Identification Using Molecular Analysis 
	MALDI-TOF MS Analysis 
	MALDI-TOF MS Parameters 
	Spectral Analysis 
	Reference Database Creation and Blind Test 
	PCR Detection of Microorganisms in Fleas 

	Results 
	Flea Collection and Morphological Identification 
	Molecular Identification 
	MS Spectra Analysis 
	MALDI-TOF MS Flea Identification 
	Detection of Microorganisms in Fleas 

	Discussion 
	Conclusions 
	References

