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RESEARCH ARTICLE

Neurodevelopmental and Epilepsy Phenotypes in
Individuals With Missense Variants in the Voltage-
Sensing and Pore Domains of KCNH5
Hannah C. Happ, BA,* Lynette G. Sadleir, MBChB, MD,* Matthew Zemel, DO, Guillem de Valles-Ibáñez, PhD,
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Abstract
Background and Objectives
KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the
neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants.

Methods
We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5
variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were
identified through an international collaboration. Clinical history, EEG, and imaging data were
analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously
published individuals including additional phenotypic details.

*These authors contributed equally as first authors.

†These authors contributed equally as senior authors.
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Results
We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent
missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally
critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using
the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure
onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged
from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-
responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with
infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset
movement disorder, early-infantile DEE, profound disability, and childhood death.

Discussion
We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore
domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-
phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in
human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.

The voltage-gated potassium channels are a large group of
transmembrane proteins critical for controlling neuronal ex-
citability and regulating electrophysiologic properties in the
brain.1 The ether-a-go-go (EAG) subfamily consists of 2
members, EAG1/Kv10.1 encoded by KCNH1 and EAG2/
Kv10.2 encoded by KCNH5. Pathogenic gain-of-function
(GOF) variants in KCNH1 are implicated in Temple-
Baraitser and Zimmermann-Laband syndromes2-4; epilepsy
is a common feature of these overlapping syndromes.5 Indi-
viduals with variants in KCNH5 have been reported in large
exome sequencing cohort studies of individuals with neuro-
developmental disorders (NDDs). Of the 3 previously
reported individuals, 2 had a recurrent missense variant
(p.Arg327His) associated with a developmental and epileptic
encephalopathy (DEE) with onset prior to 1 year of age.6,7

The third had a neonatal-onset DEE and a different de novo
missense variant (p.Ile463Thr).8 Despite these case reports,
the KCNH5-associated phenotypes are not well delineated.

KCNH5 is expressed in excitatory neurons in upper layer IV of
the cerebral cortex and the hippocampus.9,10 KCNH5 encodes
for Kv10.2, which localizes to the somatodendritic region
where it plays a role in controlling the electrical coupling be-
tween cell bodies and distal dendrites.10 Like most potassium
channels, it consists of 4 transmembrane domains (S1–S4) that
make up the voltage-sensing domain and 2 transmembrane
domains and a reentrant loop (S5–S6) that comprise the
pore module (Figure 1, A and C). The recurrent Kv10.2
p.Arg327His variant localizes to S4, where voltage-clamp
analysis in a heterologous expression system demonstrated a
hyperpolarized shift of voltage dependence of activation and

acceleration of activation, consistent with a gain-of-function
pathogenic mechanism.11

Here we report a cohort of 17 individuals with de novo or
inherited (n = 1) missense variants in the voltage-sensing and
pore domains of KCNH5. We describe 14 new patients and
provide additional phenotypic information for the 3 published
individuals from large cohort studies.6-8 We analyze the
spectrum ofKCNH5-associated neurodevelopment disorders,
particularly the epilepsy phenotypes, and discuss genotype-
phenotype correlations.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
We performed KCNH5 targeted resequencing in 680 individ-
uals with DEEs and exome sequencing in 213 individuals with
DEEs, totaling 893 individuals. All individuals underwent clin-
ical assessment, and medical records, EEG, and imaging data
were obtained. Seizure types and epilepsy syndromes were
classified according to the ILAE classification.12,13 Individuals
with DEEs had been previously tested for pathogenic variants in
the majority of known DEE genes (14 and unpublished data).
The study was approved by the Austin HealthHuman Research
Ethics Committee (H2007/02961), the New Zealand Health
and Disability Ethics Committee (NTY/12/06/053/AM15),
and the University Hospital of Lyon and Aix-Marseille Uni-
versity in France Ethics Committee (05/78, CPP Strasbourg
Alsace 1). Written informed consent was provided by the

Glossary
ACMG = American College of Medical Genetics and Genomics; DEE = developmental and epileptic encephalopathy;
EAG = ether-a-go-go; ID = intellectual disability; GOF = gain of function; MIP = molecular inversion probe; NDD =
neurodevelopmental disorder; VUS = variants of uncertain significance.
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Figure 1 Location and Conservation of the 6 Unique De Novo KCNH5 Missense Variants

(A) Schematic of Kv10.2 (EAG2), modified from Protter35 plot of Q8NCM2 (KCNH5_Human). Of the 6 transmembrane domains, S1-S4 make up the voltage-
sensing domain, and S5-6 form the pore helix. The KCNH5 patient-specific variants identified in this study are indicated by their amino acid change. (B) Graph
of missense tolerance ratio (MTR; y-axis) and protein position (x-axis), with variants indicated. MTR36 is a measure of protein-encoding cDNA sequence
intolerance to missense variants. Variant positions with a value greater than 1 (blue line) is considered neutral; values below 1 are under constraint. Two
variants (p.Arg327His and p.Arg333His) are in the 5th percentile of least tolerated missense alterations in the exome. The 5th and 25th percentiles are
highlighted in red and yellow, respectively. (C) Locations of variants (color coded) are mapped onto the crystal structure of homotetrameric assembly of
Kv10.1 (PDB5K7L); all variants are perfectly conserved between KCNH5 and KCNH1 and are mapped to the corresponding amino acid. The pore domain is
highlighted in white, and a single tetrameric subunit is colored light blue. EAG = ether-a-go-go

Neurology.org/N Neurology | Volume 100, Number 6 | February 7, 2023 e605

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


patient or their parent or legal guardian in the case of minors or
those with intellectual disability (ID).

We identified an additional 14 individuals with KCNH5 variants
through GeneMatcher.15 These individuals were consented using
research protocols approved by their local ethics committees.
Their clinicians provided clinical information. For the 3 previously
published individuals (probands 2, 10, and 15), we obtained ad-
ditional clinical information. In total, the cohort consists of 19
individuals with KCNH5 missense variants, with 17 having vari-
ants localized in or near the voltage-sensing or pore domains.

KCNH5 Variant Identification and Analysis
We used molecular inversion probes (MIPs) to capture all
exons and 5 base pairs of flanking intronic KCNH5 sequence;
next-generation sequencing and data analysis were performed
as described previously.14 We resequenced KCNH5, covering
95% of the gene at a depth of 50X (median across the cohort
of 680 individuals). Exome sequencing (n = 213) was per-
formed via Epi25.16 We considered only variants that were
nonsynonymous, altered the acceptor/donor splice sites, or
indels that disrupted the coding frame. Only variants that
were not present in gnomAD17 and TOPMed18 were con-
sidered for segregation analysis. The variants in the 14 indi-
viduals recruited by the matchmaker exchange network15

were identified via clinical or research genome (n = 2), exome
(n = 10), or gene panel (n = 2) sequencing.16 Library prep-
aration and data analysis were performed using local protocols
and computational pipelines. Variants were classified
according to the American College of Medical Genetics and
Genomics (ACMG) guidelines for variant classification.19

KCNH1 (EAG1/Kv10.1) and KCNH5 (EAG2/Kv10.2) have
72% identity at the amino acid level. The 3-dimensional
structure of Kv10.2 has not yet been resolved; thus, to model
the location of each of the identified missense variants, we
used the Kv10.2 homology model generated from the Kv10.1
cryo-EM structure (5k7l.1.A) using UCSF ChimeraX.20

Data Availability
All data from this study are available in the manuscript or
supplementary materials.

Results
Rare Missense Variants in KCNH5
We identified 2 individuals with the previously reported de
novo missense variant p.Arg327His in 2 DEE cohorts (1/680
by MIPs and 1/213 by exome16). Through our international
collaboration, we identified 5 additional individuals with
this recurrent variant, which arose de novo in 4 individuals
(Table 1). We also identified 5 additional missense variants in
the voltage-sensing and pore domains of Kv10.2 (Figure 1).
One variant (p.Arg333His) was present in 4 individuals; it
arose de novo in 3 and was inherited from an affected mother
in the fourth proband. The 4 other de novo missense variants
were each observed once in single individuals.

The amino acids at all 6 variant positions (2 recurrent, 4
singletons) were conserved between Kv10 proteins. The
missense variants had CADD21 scores of 26–32, conferring a
high likelihood of deleteriousness (Figure 1B and Table 1).
All variants were absent from the general population (gno-
mAD and TOPMed) and were classified as either pathogenic
or likely pathogenic (P/LP) by the ACMG criteria (eTable 1,
links.lww.com/WNL/C453).19

We also identified 2 de novo variants of uncertain significance
(VUS) in the N-terminal (p.Leu181Pro) and C-terminal
(p.Ile606Thr) of Kv10.2 in 2 individuals with NDDs but
without seizures (eAppendix 1, links.lww.com/WNL/C453).
These VUS were located outside of the functionally critical
pore or voltage-sensing domains. One variant (p.Leu181Pro)
did not segregate with the NDD in the family, and the in-
dividual with the p.Ile606Thr variant also carried a pathogenic
16p11.2 microdeletion that may explain some or all of their
clinical features. Although these variants are included here for
completeness, this study focuses on the 17 individuals with
variants in the voltage-sensing or pore-forming domains.

Phenotypic Features in IndividualsWith KCNH5
Pathogenic or Likely Pathogenic Variants
All 17 individuals with pathogenic or likely pathogenic missense
variants in the voltage-sensing or pore domains had epilepsy
(Table 1). Moreover, the mother of proband 14 who carries the
recurrent p.Arg333His variant also has epilepsy, although de-
tailed clinical information was not available. The median age at
seizure onset was 6 months (range: 1–12 months). A wide
range of seizure types were seen: focal impaired awareness
seizures (8), focal to bilateral tonic-clonic seizures (9), focal
motor seizures (8), generalized myoclonic (4), generalized
tonic-clonic seizure (2), myoclonic-atonic (1), absence seizure
(1), unknown onset tonic-clonic seizures (6), and epileptic
spasms (2). Nine (53%) individuals had a DEE. The remainder
had focal epilepsy (3), generalized epilepsy (2), or there was
inadequate information to make an epilepsy type diagnosis (3).
Nine individuals (53%) achieved seizure freedom, with median
seizure offset at 2.5 years (range: 3 months to 8 years).

Developmental concerns were noted at a median age of 15
months in 14 individuals (range birth to 3.5 years), pre-
dominantly affecting language (11). One child had normal
development, and for 2 individuals, aged 61 years, early de-
velopmental information was limited. Cognitive outcome for
the 10 individuals over 5 years of age ranged from normal (3/
10) to mild (3/10), moderate (2/10), severe (1/10), and
profound (1/10) ID. Two individuals died at ages 13 months
and 9 years, respectively.

There were no consistent or significant dysmorphic features
noted in these individuals. Proband 1 was reported to have
long eyelashes and mild ptosis, whereas proband 2 had
prominent ears, small hands, and a flexion contracture of the
4th and 5th digits of one hand. Significant sleep disorders
were not noted in any individual.
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Table 1 Clinical Presentation of Our Cohort and Previously Published Individuals With P/LP KCNH5 Missense Variants

Proband
(age at
study, sex)

Protein
change
(CADD) Inheritance Syndrome

Age at sz
onset:
type

Other sz
type(s)

Sz
offset

Development
(age of first
concern);
regression
(age)

Developmental and
behavioral outcome EEG MRI

ASMs (positive
response underlined)

1 (4y, M) p.Lys324Glu
(27)

De novo DEE 3m: FMS
(Hc)

FBTCS, SE, and
TCS

N/A GDD (18m); no Sev ID (single words,
amb, and assisted feeds;
ADHD

3m: N; 10m: FD
11m, 18m: N

3m: N LEV, PHT, CLB, VPA, and
LTG

2Veeramah

(13y, M)
p.Arg327His
(32)

De novo FDEE 6m: TCS TCS and FMS
(Hc)

N/A GDD (6m); yes
(3y)

Sev ID (NV); ASD Freq MFD (sleep
activation)

NP VPA (partial), others
unknown

3 (5.5y, M) De novo DEE: D/EE-
SWAS

5m: FIAS FBTCS and
FMS (Hc)

3y Language
delay (2.5y);
yes (2.5y)

Mild/Mod ID (sentences
and amb); ADHD

6m: FMS; 9m, 11m: MFD;
2.8y CSWS; 3y: MFD
(sleep activation); 11y:
focal slow

6m: N, 4y: N PB, CBZ, CLB, LEV, STR,
VPA, and TPM

4 (61y, F) Parents
unavailable

Epilepsy:
unknown
type

6m:
Unknown

GTCS, Abs, and
FAMS

N/A Unknown; no N (learning difficulties at
school; sentences, amb,
and self-feeds)

56y: focal slow, FD, and
GSW

55y: N CBZ, LEV, PB, PHT, TPM,
VPA, CBZ, PGB, and LTG

5 (5y, F) De novo FDEE 6m: FS FMS and
FBTCS

N/A Language
delay (16m); no

Mod ID (2-word
sentences, amb, and
self-feeds); autistic trait

8m: N; 12m: MFD; 2y 9m:
slow

NP OXC and LEV

6 (10y, F) De novo FDEE 7m: FIAS FBTCS and
FMS (Hc)

N/A Language and
behavior delay
(3.5y); no

Mild ID (sentences, amb,
and self-feeds);
behavioral difficulties

7m: N; 3y: FD; 5y, 6y, 8y,
10y: slow, Freq MFD
(sleep activation)

1y, 3y, 5y: N VPA (partial), LEV, LCS
(partial), TPM, LTG, CLB,
CBZ, ETX, GBP, CBD, and
KD

7 (9y, M) De novo DEE 10m:
FIAS

MyAS, My, and
TCS

6y Language
delay (15m); no

Mod ID (sentences, amb,
and self-feeds)

1y: slow; 5y, 6y: FreqMFD
(sleep activation)

10m, 4y: N CBZ (partial) and LTG

8 (3.8y F) De novo FDEE 2m: FMS FBTCS and
FIAS

N/A Language
delay (15m); no

Sev ID (2-word
sentences, amb, and
assisted feeds); ASD

2y 9m: Slow, FD (sleep
activation)

11m, 18m: N LEV, LTG, CLB, and CBZ
(partial)

9 (19m, M) De novo CE 7m: GTCS FBTCS 14 m Language
delay (14m); no

Language delay (single
words, amb, and self-
feeds)

9m: GSW; 11m, 13m: N 14m: N LEV and OXC

10Minardi

(61y, M)
Parents
unavailable

DEE <1 y: TCS None 8y GDD
(unknown); no

Mild ID (sentences, amb,
and self-feeds)

54, 56-59y: slow, diffuse
MFD (sleep activation)

52y, 53y: multiple
nonenhancing white matter
abnormalities; arachnoid cyst;
mineral deposits in the orbit
(eFigure 1, links.lww.com/WNL/
C453)
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Table 1 Clinical Presentation of Our Cohort and Previously Published Individuals With P/LP KCNH5 Missense Variants (continued)

Proband
(age at
study, sex)

Protein
change
(CADD) Inheritance Syndrome

Age at sz
onset:
type

Other sz
type(s)

Sz
offset

Development
(age of first
concern);
regression
(age)

Developmental and
behavioral outcome EEG MRI

ASMs (positive
response underlined)

11 (3.5y, F) p.Arg333His
(30)

De novo FE 8m: FIAS FBTCS 12m N; no N (sentences, amb, and
self-feeds)

11m, 3y: N 13m: N VPA

12 (7y, F) De novo Epilepsy:
unknown
type

9m: TCS None 5y Language
delay (18m); no

N (sentences, amb, and
self-feeds)

15m: N; 7y: FD 15m, 7y: N LEV, TPM, and ZNS

13 (10y, F) De novo FE 10m:
FIAS

FBTCS 1y Language and
gross motor
delay (18m); no

N (sentences, amb, and
self-feeds); behavioral
difficulties

12m:, 2y,: focal slow, 3y:N 4y, 9y: frontal atrophy (not
progressive); arachnoid cyst;
Chiari Imalformation (eFigure 2)

VPA, weaned at 4y

14 (1.3y, F) Inherited
from
affected
mother

GE 2m: My None 3m Hypotonia
(4m); no

N (single words and
walks with support)

2m: GSW; 3m: N 4m: N VPA

15Imafidon

(11m, F)
(deceased)

p.Ile463Thr
(28)

De novo DEE: EIDEE 3m: TCS ES and My N/A Hypotonia,
GDD (birth);
yes (4m)

Profound DD 1d: N; 3m, 5m and 7m:
FD; 10m: slow, MFD
(continuous)

9d: N; 3m: delayed myelination
and mild cerebral atrophy

VPA, CLN, and LEV

16 (9y, F)
(deceased)

p.Thr468Pro
(26)

De novo DEE: EIDEE 1m: FTS ES, TCS, and
My

N/A Hypotonia,
GDD (birth); no

Profound ID: NV,NA, and
G-tube

1w: N; 1m: FD; 1y: BS; 2y:
slow, MFD, GSW; 5y, 6y:
MFD, BS

3w: increased signal posterior
fossa; 2y (CT): cerebral atrophy

VPA, KD, VGB, STR, PN,
PLP, TPM, LEV (partial),
and PB (partial)

17 (12y, F) p.Phe471Ser
(31)

De novo DE + FE 1y: TCS FIAS 5y GDD (9m); no Mod ID (sentences, amb,
and self-feeds)

1y, 4y, 7y: FD (sleep
activation)

1y, 3y: N VPA, weaned at 11y

Abbreviations: Abs = absence seizures; amb = ambulatory; ADHD = attention-deficit hyperactivity disorder; ASD = autism spectrum disorder; ASM = antiseizure medication; BS = burst suppression; CBD = cannabidiol; CBZ =
carbamazepine; CE = combined focal and generalized epilepsy; CLB = clobazam; CLN = clonazepam; CSWS = continuous spike and wave in slow wave sleep; d = day; DD = developmental delay; DEE = developmental and epileptic
encephalopathy; D/EE-SWAS = developmental and/or epileptic encephalopathy with spike-wave activation in sleep; DE + FE = developmental encephalopathy and focal epilepsy; EIDEE = early infantile DEE; ES = epileptic spasm; ETX =
ethosuximide; FAMS= focal awaremotor seizure; FBTCS = focal to bilateral tonic-clonic seizure; FD = focal discharge; FDEE = focal DEE; FE = focal epilepsy; FIAS = focal impaired awareness seizure; FMS= focalmotor seizure; FMy = focal
myoclonic seizure; FTS = focal tonic seizure; Freq = frequent; FS = febrile seizure; GBP = gabapentin; GDD = global developmental delay; GE = generalized epilepsy; GSW = generalized spike and wave; GTCS = generalized tonic-clonic
seizure; Hc = hemiclonic; ID = intellectual disability; LEV = levetiracetam; KD = ketogenic diet; LCS = lacosamide; LTG = lamotrigine; m =months; MFD = multifocal discharge; Mod =moderate; My = myoclonic; MyAS = myoclonic-atonic
seizure;N=normal;N/A= not applicable;NA=nonambulatory;NP= notperformed;NV=nonverbal;OXC=oxcarbazepine;PB= phenobarbital; PGB=pregabalin; PHT=phenytoin; PLP= pyridoxal-5-phosphate; P/LP= pathogenic/likely
pathogenic; PM = primarymotor; PN = pyridoxine; SE = status epilepticus; Sev = severe; STR = steroid; Sz = seizure; TCS = tonic-clonic seizure; TPM = topiramate; VAF = variant allele frequency; VGB = vigabatrin; VPA = valproate; VUS =
variants of uncertain significance; w = weeks; y = years; ZNS = zonisamide.
References indicate previously published.
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For the 9 individuals with the recurrent voltage-sensing domain
p.Arg327His variant, seizure onset occurred at a median age of
6 months (range 2–10 months). For the 8 individuals for
whom an epilepsy syndrome diagnosis could be made, all but
one, who was 19months old, had a DEE (7/8), which was focal
in 5 individuals. Proband 3 had the syndrome of epileptic en-
cephalopathy with spike-and-wave activation in sleep, which
was associated with language regression.12 All patients had
EEGs, which captured sleep. Sleep activation of epileptiform
discharges was noted in 6 other patients but was not associated
with developmental regression. The cognitive outcome for
those over 5 years of age with this recurrent variant ranged from
normal with learning difficulties (1/6) to mild (3/6), moderate
(1/6), or severe ID (1/6). For those in whom the complete
antiseizure medication history was available, their epilepsy was
drug resistant (8/9), with only 4/9 eventually becoming
seizure-free. Brain MRI was normal in all apart from proband
10. He had no early imaging, but anMRI performed at 52 years
demonstrated nonenhancing periventricular white matter ab-
normalities suggestive of demyelinating lesions. The lesions
were stable on a repeat MRI 6 months later. Note was also
made of an arachnoid cyst and mineral deposits in the orbit
(eFigure 1, links.lww.com/WNL/C453).

The phenotype was much less severe for the 4 individuals with
the second recurrent voltage-sensing domain p.Arg333His
variant. This group had onset at a similar age (2–10 months)
with either focal or generalized seizures. In contrast, their
seizures were drug responsive, particularly to valproate (3/4),
and all became seizure-free (aged 3 months to 5 years). One
of the 4 individuals had mild motor and language delay at
presentation, 1 had mild language delay, and 1 had only mild
motor delay. All had normal cognitive development as
assessed by their clinician when last seen at ages 1–10 years.
MRI was normal apart from proband 13 who had mild frontal
cortical atrophy, an arachnoid cyst, and a Chiari I malforma-
tion (eFigure 2, links.lww.com/WNL/C453).

Strikingly, probands 15 (p.Ile463Thr) and 16 (p.Thr468Pro),
with missense variants in or at the junction of the S6 trans-
membrane pore-forming domain, had a much more severe
phenotype. Both individuals presented with persistent non-
epileptic myoclonus on day 1 of life and developed an early-
infantile DEE with drug-resistant seizures by 3 months
and eventual epileptic spasms. They had very limited de-
velopmental progression. Neuroimaging showed cortical at-
rophy. Proband 15 died at 13 months due to respiratory
failure secondary to increased seizure activity. Proband 16
died at 9 years due to pneumonia.

There were 2 additional individuals with likely pathogenic var-
iants and epilepsy. Proband 1, with p.Lys324Glu variant in the
voltage-sensing domain, had a similar phenotype to individuals
with the nearby recurrent p.Arg327His variant. This individual
had a focal DEE with focal seizures beginning at 3 months and
developmental delay evident by 18 months, evolving to severe
ID. Proband 17 had the p.Phe471Ser variant in the C-terminal

cytoplasmic domain, which was very close to the pore-forming
domain. She had moderate ID, drug-responsive focal epilepsy,
and a hyperkinetic movement disorder consisting of a tremor
predominantly in the upper limbs and exacerbated when she
was tired or unwell. She did not have an epileptic encephalop-
athy and presented a similar epilepsy phenotype to patients with
the recurrent p.Arg333His variant. We provide clinical vignettes
for 3 patients (probands 6, 13, and 16) to highlight the spectrum
of phenotypes associated with KCNH5 pathogenic variants
(eAppendix 2, Clinical Vignettes, links.lww.com/WNL/C453).

Discussion
Potassium channel subunits are one of themost important groups
of genes associated with epilepsy, in particular with the most
severe group of epilepsies, the DEEs.22 Here, we show that de
novo pathogenic variants inKCNH5 in 17 patients are frequently
associated with a DEE but may also cause self-limited epilepsies.
We describe the phenotypic spectrum, with particular emphasis
on the phenotype-genotype correlations and the putative effect of
these missense variants on Kv10.2 channel function.

We highlight a genotype-phenotype correlation for variants across
the protein (Figure 2). The p.Arg333His variant is associated with
the mildest epilepsy phenotype, a drug-responsive self-limited
focal or generalized epilepsy with normal cognitive outcome.
Conversely, the nearby most common recurrent p.Arg327His
variant has a far more severe epilepsy phenotype of DEE. Of
interest, the nearby p.Lys324Glu voltage-sensing domain vari-
ant was also associated with a DEE. Individuals with these 2
variants predominantly presented with an infantile-onset DEE
between 2 and 10months of age with drug-resistant generalized
and focal seizures. Early developmental concerns were noted
with cognitive outcome ranging from learning difficulties to
severe ID. Finally, 2 individuals with variants in the pore-
forming S6 transmembrane domain (p.Ile463Thr and
p.Thr468Pro) had an even more severe phenotype of neonatal-
onset DEE with onset on day 1 of life resulting in profound
disability and death.

The p.Arg327His variant, located in the voltage-sensing S4
transmembrane domain, acts in a GOF manner.11 Multistate
structural modeling demonstrated that the p.Arg327His var-
iant favors channel opening, and voltage-clamp experiments
showed a hyperpolarized shift of voltage dependence of
activation and acceleration of activation.11 These changes in
electrophysiologic properties are consistent with the GOF
mechanism that is typically observed for several potassium
channels implicated in DEEs, such as KCNH1,2 KCNT1,23

and KCNT2.24 A subset of epilepsy-associated variants in
KCNA2, KCNB1, KCNQ2, and KCNQ3 have similarly been
shown to act in a GOF manner.25-27 How these changes lead
to epilepsy remains unresolved.28 We hypothesize that the
new KCNH5 voltage-sensing and pore domain pathogenic
variants described here also have a similar GOFmechanism to
the p.Arg327His variant. This is supported by in silico data
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including the tolerance of KCNH5 to loss-of-function (truncat-
ing) variants in the general population. KCNH5 has a probability
of loss-of-function intolerant (pLI) score of 0.0229. Epilepsy-
associated genes that confer pathogenicity via haploinsufficiency
typically have pLI scores;1, highlighting that loss of function is
unlikely to be the pathogenic mechanism for KCNH5 variants.
Conversely, missense variants in the gene are not as well tolerated,
with a z-score of 2.51 (Figure 1B), suggesting selection against
certain missense variants throughout human evolution.

The 2 most severely affected individuals carried missense
variants (p.Ile463Thr and p.Thr468Pro) that cluster right at
the junction of the S6 transmembrane domain and the early
C-terminal cytoplasmic domain that form the channel pore.
The 2 missense variants are located within 5 amino acids of
each other right at the channel pore. Missense variants are
similarly found in and just outside the S6 domain of the
EAG1/Kv10 pore encoded by KCNH1 in individuals with
Temple-Baraitser syndrome, which includes epilepsy as a key
feature. Detailed electrophysiologic studies of these S6 mis-
sense variants in KCNH1 showed delayed deactivation and
decreased threshold of activation in both human cells and
Xenopus oocytes, consistent with a GOF mechanism.2,3 We
hypothesize that the pore-forming KCNH5 missense variants
act in a similar GOF manner. Like other voltage-gated po-
tassium channels, Kv10.2 comprises 4 subunits that form a
homotetramer. Any given tetramer could have between zero

and 4 subunits containing the variant residue, and it is possible
that the function of the resulting channels could be differen-
tially disrupted. This principle is a challenge in ion channel
physiology generally, and in particular, for epilepsy, new tools
and models are currently being developed to address this
challenge. Moreover, future studies will also be necessary to
confirm the functional effect and determine whether missense
pathogenic variants in themost central pore region have amore
profound GOF effect on Kv10.2 function than those in the
voltage-sensing domain or located further away from the pore.

De novo missense variants in KCNH1/Kv10.1 cause Temple-
Baraitser syndrome (TBS) andZimmermann-Laband syndrome
(ZLS).2-4 Features of both include ID, epilepsy, facial dys-
morphism, and nail hypoplasia.30 GOF KCNH1 missense vari-
ants have recently been reported in individuals with ID and
epilepsy without the additional phenotypic features of TBS/
ZLS.31,32 Individuals with both syndromic and nonsyndromic
KCNH1-associated disorders with epilepsy have both focal and
generalized seizures in infancy.5 Three of the 6 reportedKCNH5
variants (p.Lys324Glu, p.Arg327His, and p.Ile463Thr) affect
analogous KCNH1 amino acid residues that have been reported
in individuals with KCNH1-associated NDDs,2,4,32 further
highlighting the importance of these positions on channel
function. KCNH1 and KCNH5 are predominantly expressed in
the adult CNS (Human Protein Atlas33 and GTEx34); however,
current expression data sets are largely limited to adult tissues.

Figure 2 Phenotypic Spectrum Associated With KCNH5 Missense Variants

The number of individuals in the phenotype group is represented by circle size, and colors of each circle and star match the variant/phenotype class. The
individuals with the p.Lys324Glu and p.Arg327His variants in the S4 transmembrane domain presented with an infantile-onset DEE with drug-resistant
generalized and focal seizures, whereas the 4 individuals with the nearby recurrent p.Arg333His variant had drug-responsive seizures and became seizure-
free. The 2 individuals with variants in or directly at the junction of the S6 transmembrane domain (p.Ile463Thr and p.Thr468Pro) are the most severely
affected with a neonatal-onset movement disorder and early-infantile DEE. The single individual with the nearby p.Phe471Ser variant was less severely
affected with moderate ID and drug-responsive seizures. Range is indicated in parentheses where applicable. DE = developmental encephalopathy; DEE =
developmental and epileptic encephalopathy.
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Particularly as all 6 amino acid residues affected by the nucleotide
changes described here are conserved between KCNH1 and
KCNH5 (eFigure 3, links.lww.com/WNL/C453), future data
sets such as the Developmental Genotype-Tissue Expression
initiative will be valuable for evaluating both the multisystem
involvement of KCNH1-associated disorders and the CNS-
limited KCNH5-related phenotypes.

Overall, we establish KCNH5 as a gene associated with epilepsy
and neurodevelopmental phenotypes and identify an emerging
genotype-phenotype correlation. We describe 17 individuals
with pathogenic or likely pathogenic variants in KCNH5, in-
cluding 4 novel variants. The p.Arg327His variant located in the
voltage-sensing domain causes gain of channel function,11 and
we hypothesize that the additional KCNH5 voltage-sensing and
pore domain variants also lead to epilepsy via a similar GOF
mechanism. We highlight an intriguing genotype-phenotype
correlation with a spectrum of epilepsy and cognitive outcomes.
These observations will be further supported by examining the
functional effects associated with the location of different vari-
ants in Kv10.2, with potential therapeutic implications. Our
study expands the role of EAG proteins in human disease,
highlighting that KCNH5 variants are implicated in a spectrum
of NDD and epilepsy phenotypes.

Accession Numbers
KCNH5 mRNA NM_139318.4 and protein NP_647479.2
sequence.

KCNH1 protein NP_758872.1.
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Epilepsy Research Centre
Prague—EpiReC
consortium, Motol
University Hospital is a full
member of the ERN
EpiCARE; Department of
Pediatric Neurology, Second
Faculty of Medicine, Charles
University in Prague and
Motol University Hospital,
Prague, Czech Republic

Major role in the acquisition
of data

Markéta
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