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Structural connectivity of the brain at different ages is analyzed using diffusion-weighted magnetic resonance imaging (MRI) data. The
largest decrease of streamlines is found in frontal regions and for long inter-hemispheric links. The average length of the tracts also
decreases, but the clustering is unaffected. From functional MRI we identify age-related changes of dynamic functional connectivity
(dFC) and spatial covariation features of functional connectivity (FC) links captured by metaconnectivity. They indicate more stable dFC,
but wider range and variance of MC, whereas static features of FC did not show any significant differences with age. We implement
individual connectivity in whole-brain models and test several hypotheses for the mechanisms of operation among underlying neural
system. We demonstrate that age-related functional fingerprints are only supported if the model accounts for: (i) compensation of the
individual brains for the overall loss of structural connectivity and (ii) decrease of propagation velocity due to the loss of myelination.
We also show that with these 2 conditions, it is sufficient to decompose the time-delays as bimodal distribution that only distinguishes
between intra- and inter-hemispheric delays, and that the same working point also captures the static FC the best, and produces the
largest variability at slow time-scales.

Key words: brain aging; connectome; dynamic functional connectivity; brain network model; compensation.

Introduction
Combining network dynamics approaches with graph theory met-
rics is a leading paradigm for studying the brain. The former is
motivated by the observations that the brain architecture shapes
its neurophysiological activity (Sporns et al. 2004; Vincent et al.
2007; Wang et al. 2013). As a consequence, in the study of its large-
scale dynamics, the brain is typically represented as a network
of anatomically interacting regions each constrained by inherent
dynamics Sanz-Leon et al. (2015); Pathak et al. (2022a). Based on
this, a number of modeling studies have demonstrated that inde-
pendently of the size of the regions and their underlying dynam-
ics, neuroanatomical constraints of the human brain shape and
drive its functionality during healthy resting state (Courtiol et al.
2020; Deco et al. 2009; 2011; Schirner et al. 2018) or during patholo-
gies such as epilepsy (Jirsa et al. 2017), stroke (Allegra Mascaro
et al. 2020), and Alzheimer’s disease (Stefanovski et al. 2019).

Development of the network neuroscience (Bassett and
Sporns, 2017) has been possible due to advances of non-invasive
structural (Johansen-Berg and Rushworth, 2009) and functional
(Logothetis et al. 2001) brain imaging. The former allows drawing
a comprehensive map of biologically realistic connectivity, the
so-called connectome (Sporns et al. 2005). On the functional
side, until recently the focus of research was on the functional

connectivity (FC) that calculates co-fluctuations in the blood
oxygenation-level dependent (BOLD) functional magnetic res-
onance imaging (fMRI) of distant brain regions (Friston, 2011).
It is now established that non-stationarity in FC reveals a
rich structure characterized by rapid transitions between few
discrete FC states, which is captured by the so-called dynamic
functional connectivity (dFC) (Hansen et al. 2015; Hutchison et al.
2013).

Aging of the brain is well described, both structurally and
functionally. It leads to a substantial overall decrease in the num-
ber of streamlines (Bethlehem et al. 2022; Lim et al. 2015; Perry
et al. 2015; Peters and Sethares, 2006), which mostly affects inter-
hemispheric links that decrease with advancing age (Duffy et al.
1996; Kikuchi et al. 2000; Knott and Harr, 1997). On the functional
side, applying graph theory metrics reveals age-related increases
of between- and decreases of within-network resting-state FC
(Stumme et al. 2020). Temporal variations of the occupancy of
FC states during rest are more predictive in the context of aging
(Chen et al. 2017). Related to this is the stability of the different
states (Li et al. 2020), which has predictive value across lifespan
(Sastry et al. 2022), where the total transition of states is negatively
correlated with age (Xia et al. 2019). Slowing down with age for
dFC is also seen when it is characterized as a random walk
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(Battaglia et al. 2020), whereas its modular slowing is associated
with cognitive dysfunction (Lombardo et al. 2020).

The observed patterns between the structure and the function
have been statistically linked (Betzel et al. 2014; Zimmermann
et al. 2016), but the dependence still has not been established
on individual level. A possible link was shown between the
decrease of complexity of brain’s function in aging and its
structural changes represented as long-range pruning (Nakagawa
et al. 2013). Variability in neural systems has been associated
with functional benefits (Garrett et al. 2011; Sleimen-Malkoun
et al. 2014), and its loss with aging is often followed with
compensatory and adaptive processes (Lövdén et al. 2010), as well
as, dedifferentiation (Baltes and Lindenberger, 1997). However,
these have not been linked to the structural loss, which is
consistently shown not to have a significant role in age-related
cognitive decline (Burke and Barnes, 2006).

Most studies show greatest structural deficit in the frontal
regions of the brain and there are regional differences in white
matter hyperintensities (Peters, 2006), which most likely result
from demyelination and reduce axons’ transmission speed (Wen
and Sachdev, 2004). Specifically, there is strong evidence that age
and loss of myelin integrity reduce conduction velocity along
nerve fibers (Peters, 2002). One of the possible mechanisms are
myelin sheath alterations, which are strongly correlated with
aging in monkeys (Peters and Sethares 2002). As for the direct
evidence of conduction velocity reduction, in cats for example
has been found that along nerve fibers in the pyramidal tracts
it is decreased by 43% for old cats compared to young ones
(Xi et al. 1999).

The work that we present has three main goals: (i) to char-
acterize the spatial distribution of the decrease in structural
connectivity including the lengths of white matter tracts; (ii) to
identify the changes in dynamics of the FC and its higher order
spatial features, and (iii) to apply a mechanistic model to test
under which conditions the individual structural connectivity can
be responsible for (ii). The workflow is illustrated in Fig. 1. The
model allows expressing several hypotheses for the impact of
demyelination on the propagation velocity (no impact or decrease
by 30% and 50%) and for the existence of dynamical compen-
sation for the lost connectivity. For the analysis of structural
connectivity, of particular interest are the time delays due to
signal transmission (estimated from the ratio tract length and
propagation velocity), which determine the synchronization of
oscillatory processes (Petkoski et al. 2018; Petkoski and Jirsa, 2019).
Time delays and the weights compose the space-time structure
of the connectivity that is crucial in shaping its macroscopic
activity (Deco et al. 2009; Ghosh et al. 2008; Sanz-Leon et al.
2015). Their impact during synchronization can be unified in
the so-called normalization of the connectome for communi-
cation through coherence (Petkoski and Jirsa, 2022) that allows
graph theoretical metrics to unveil structural affinity for spec-
trally dependent activation patterns in the brain. Functional alter-
ations are studied through statistics on dFC and MC, which cap-
ture temporal and spatial aspects of the FC (Arbabyazd et al.
2020). In particular, for the former we analyze the rate at which
transitions occur between overall FC states, and for the latter
we analyze the coherence between the pairs of brain regions.
For the last part of the study, we utilize Kuramoto oscillators,
which despite being overly simple, due to their parsimonious
parametrization allow for drawing specific links between network
structure and the emergent synchronization patterns of neuronal
activity (Allegra Mascaro et al. 2020; Cabral et al. 2011; Pope et al.
2021).

Materials and methods
Data acquisition
In this study we analyze anatomical and diffusion-weighted
images of 50 subjects acquired at Berlin Center for Advanced
Imaging, Charité University Medicine, Berlin, Germany (age
ranged from 18 to 80 years, mean 41.26 ± 18.36; 30 females and 20
males). A total of 49 of these subjects were used in the study for
describing the automated pipeline for constructing individualized
virtual brains from multimodal neuroimaging data (Schirner et al.
2015) and their dFC were also analyzed as part of a larger cohort
(Battaglia et al. 2020). The pipeline combines several state-of-the-
art neuroinformatics tools to generate subject-specific cortical
and subcortical parcellations, surface-tessellations, structural
and functional connectomes, lead field matrices, electrical source
activity estimates and region-wise aggregated BOLD fMRI time-
series (Schirner et al. 2015).

Construction of Structural Connectivity (SC)
networks
Desikan–Killiany atlas (Desikan et al. 2006) is used as imple-
mented in FREESURFER (excluding the corpus callosum, but
including the insular cortices of both hemispheres) leading to
68 cortical regions of interest (ROI). Details about the magnetic
resonance imaging (MRI) acquisition are given in Supplementary
Material 6.2. fMRI data were pre-processed following Schirner
et al. (2015) and in a same manner as in Battaglia et al. (2020),
(details described in Supplementary Material 6.3).

Upon tractography, the pipeline (Schirner et al. 2015) (see
details in Supplementary Material 6.1) computes distinct
connections and aggregates them for each region to generate
3 types of SC matrices:

• raw counts, contain counts of all tracts that were found
between each pair of regions (symmetric),

• distinct connection counts, contain only distinct connections
between each pair of regions (symmetric),

• weighted distinct connection counts, in which the strength
of each distinct connection is divided by the number of all
distinct connections leaving the voxel (yielding asymmetric
strength matrices).

For the last case, a symmetric SC matrix was constructed by
taking the mean of the weights per each direction of the links.

Along with strengths, the pipeline outputs three different SC
distances matrices that contain the mean, mode, and median
lengths of all tracks that were found between each pair of regions.
The means are chosen to represent the distance of the links
between each pair of brain regions. Since the actual white matter
fibers do not necessarily follow straight lines, these are by con-
struction larger than the Euclidean distances between the ROIs,
and also than the distances between the centers of the brain
regions.

Modularity
The optimal community structure of the connectomes was cal-
culated using the Louvain function (Blondel et al. 2008) from
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) for
weighted undirected links. The algorithm was run starting from a
value of the resolution parameter, which gives twice the number
of the required partitions. Then the resolution parameter was
decreased by 1% at each consecutive step until a partition con-
sisting of a predefined number of communities was achieved.
The procedure was repeated 100 times each, for partitions of
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Fig. 1. Data analysis and modeling workflow. A) fMRI and DTI are performed in a cohort in the age range from 18 to 80 years. B) Static, dynamic, and
spatial higher order connectivity are calculated for the empirical BOLD fMRI time-series of each subject. C) Structural connectivity (SC) is reconstructed
from DTI and is characterized with the respect of number and length of the tracts, as well as their location in the brain (lobes and hemipsheres). The
impact of the aging-induced demyelination is linearly accounted in axonal velocity, from which time delays are assigned to each link, based on its
length and subject’s age. D) Together with the weights for the coupling between brain nodes, time-delays build the brain network model of Kuramoto
oscillators. These are subject specific (shown in red in the model equation) and fixed, whereas the global coupling G and the age-dependent mean
axonal propagation velocity vage are the only free hyper-parameter. E) Simulated neuronal activity is passed through a hemodynamic response function
to yield BOLD time-series. The same procedures as for the empirical data are used to calculate FC, dFC, and MC for the static, dynamic, and spatial
higher order connectivity of the simulated data. F) Different data features are extracted for each of the connectivity metrics, and they are compared for
the empirical and simulated data. By parameters sweep we estimate the parameters of the model that best fit the data.

2, 3, 4, and 5 communities. For each of these repetitions and
partitions, we calculated the modularity coefficient Q, which is
a scalar between -1 and 1 that measures the density of links
inside communities as compared with links between communi-
ties (Newman and Girvan, 2004). In addition we calculated the
modularity coefficient for the initial community affiliation set to
correspond exactly to the left and right hemispheres. Here again
an algorithm was run for the same 100 resolution parameters
that earlier achieved optimal bi-community structure, until it was
assured that the division in 2 communities corresponds to the
hemispheric division.

dFC metrics
Static (time-averaged) FC is calculated as Pearson correlation of
the BOLD time-series, empirical or simulated, in a given time win-
dow. This is a linear metric that describes statistical dependencies,
in a similar sense as coherence, or transfer entropy (Friston, 2011).
Other possibility would be to focus on metrics of information
flow and complexity such as spectral Granger causality (Faes
et al. 2017) and multiscale entropy (Costa et al. 2002), which in
addition account for nonlinear and multi-scale interactions of
brain signals (Courtiol et al. 2016).

Evolution of FC over time is captured by dFC that is defined
the same as functional connectivity dynamics (FCD) in

Hansen et al. (2015). It describes the similarity between FC(t)
matrices at different time windows tk, where k = 1 . . . M. The
(tk, tl) entry of the M × M FCD matrix is provided by the Pearson
correlation between the upper triangular parts of the 2 matrices
FC(tk) and FC(tl) (Arbabyazd et al. 2020). We calculated FCD for 4
different window sizes (30, 15, 10, and 5 time points), which always
move by 1 time point. In all the cases, by keeping the interval
between two consecutive FC network time-resolved estimations
constant, higher and lower correlations of the FCD can naturally
be interpreted as associated to a slower or faster speed of dFC
reconfiguration (Battaglia et al. 2020). Hence, a first aim to
describe dFC consists of a suitable quantification and description
of the distributions of FCD entries, notably, their mean, median
or mode, giving a typical dFC speed, and their spread as given by
their second and higher momenta, i.e. standard deviation (STD)
and kurtosis.

In addition we calculated higher order interactions between
brain regions using metaconnectivity (MC) (Arbabyazd et al. 2020).
Exactly as typical static FC analysis ignores time, the previously
mentioned FCD analyses ignore space. However, FC reconfigu-
ration may occur at different speeds for different sets of links
(Lombardo et al. 2020). Furthermore, the fluctuations of certain
FC links may coincide with the fluctuation of other FC links, but
at the same time be relatively independent from the fluctuation
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of other sets of links. Therefore, we compute a different dFC speed
distribution for different sets of links, which constitute spatial
dFC modules. MC is defined as correlation between linkwise time-
series consisting of the pairwise correlations between the given
nodes at each window. Hence it represents a fourth order statistics
between nodes’ dynamics. Links in the MC matrices are grouped
in a such a way that besides the overall MC, we also calculate
the statistics of the links within the left and within the right
hemispheres, between the hemispheres, between the internal left
versus right hemispheric links, and left and right versus inter-
hemispheric each. These are all illustrated in Fig. 4, where the
MC within the 7 clusters is expected to be distinctive, as a conse-
quence of the high hemispheric bimodularity of the SC discussed
in Section 2.3

Model
Brain Network Model (BNM) with Kuramoto oscillators
Personalized BNM comprises 68 delay-coupled cortical brain
regions, each having a dynamics captured by Kuramoto oscillators
(Cabral et al. 2011; Petkoski et al. 2018; Pope et al. 2021). Weighted
distinct connection counts are chosen as connectivity strengths,
because they account for most physiological features (Schirner
et al. 2016; 2018). Time delays of each link are defined from the
individual lengths by setting the propagation velocity at 3.3m/s,
which was shown to have a highest predictive value for supporting
realistic spectral activation patterns (Petkoski and Jirsa, 2022)
and is a value between the empirical mean and median cortico-
cortical evoked potentials (Lemaréchal et al. 2021). To confirm
the generality of the results, we also use propagation velocities of
2m/s and 5m/s.

We consider the Kuramoto model (KM) (Kuramoto, 1984) with
explicit heterogeneous time-delays τij and coupling strengths Gwij,
where G is a global coupling parameter and wij are the normalized
weights from the connectome. This represents a canonical model
for weakly, delay-coupled oscillators, with long delays in compar-
ison to the coupling strengths or natural frequencies (Ermentrout
and Wechselberger, 2009). For symmetric, link-dependent delays,
τij = τj,i, and phases θi of each oscillator evolve as

θ̇i = ω + G
N

N∑
j=1

wij sin[θj(t − τij) − θi] + ξi(t), i = 1 . . . N, (1)

where ω = 2π f is the natural frequency of the oscillators. ξi(t)
takes into account the contribution of different stochastic forces
and are assumed to be sources of Gaussian white noise satisfying
〈ξi(t)〉 = 0, 〈ξi(t)ξj(t)〉 = 2Dδijδ(t − t′).

The heterogeneity in phase models can stem from natural
frequencies and/or from additive noise term, but both sources
have similar influence to the observed global dynamics (Acebrón
et al. 2005). The size of the connectome-derived networks is rather
small, N = 68 cortical regions, and the connection strengths
span almost across 5 orders of magnitude. Hence if the natural
frequencies were heterogeneous, then the global dynamics would
have been highly influenced by the particular realization of the
probability density function of the natural frequencies (Petkoski
et al. 2018). To avoid this, we fix the natural frequencies of each
node, while still introducing heterogeneity to each oscillator in the
form of independent white noises with the same intensity.

For the parameters space, we explore only the global coupling
G and the propagation velocity v, while keeping fixed the noise D
and the frequencies f . This is justified because the dynamics for
the KM in general depends on the ratio G/D (Acebrón et al. 2005).

Similarly the impact of the time-delays depend on their relative
size compared to the natural frequencies (Petkoski et al. 2016).

BNM with reduced distribution of delays
The reduced model is derived from the decomposition of the
space-time structure of the connectome (Petkoski et al. 2016;
2018). It assumes bimodal δ-distributed time-delays, with values
corresponding to the mean delays of the internal and external
links for each subject. The model hence read

θ̇i = ω + ξi(t)

+ G
N

N/2∑
j=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wij sin[θj(t − τint) − θi] + wi,j+N/2 sin[θj+N/2(t − τext) − θi],

i = 1 . . . N
2

wi,j+N/2 sin[θj+N/2(t − τint) − θi] + wij sin[θj(t − τext) − θi],

i = 1 + N
2 . . . N.

(2)

Simulated BOLD
Simulated neural activity was converted into simulated BOLD sig-
nals using Balloon–Windkessel model (Friston et al. 2003) of The
Virtual Brain (Sanz-Leon et al. 2015) and the resulting time-series
were then downsampled at 2s, to correspond to the empirical
BOLD signals. The physical quantity whose variations underlie
BOLD signal was chosen as bi = sin θi, as it has been the case in
other studies of the neuronal activity using Kuramoto oscillators
(Cabral et al. 2011; Pope et al. 2021).

Results
White matter loss
Global changes in the SC
A known feature of the connectome of the aging brain is the
decrease of total number of connections. Results in Fig. 2 (top)
show that this is robustly reflected in all three metrics for the
weights: raw counts, distinct connection counts, and weighted
distinct connection counts (Schirner et al. 2015). Mostly affected
are the weighted distinct connection counts, which are taking
into account the surface of the gray-white matter interface, while
avoiding multiple counting of different tracks, and as such are
mostly used as connection weights (Schirner et al. 2018).

Spatial changes in the SC
Next, we investigated if the drop in the number of connections
is spatially uniform and to what extent it is affecting the links
of different lengths. We analyzed the changes of the intra- and
inter-hemispheric links, and of the long and short connections,
where the boundary is set at 70mm, so that it corresponds to the
local minimum in the global distribution, Fig. S1. These results
imply that the loss of connection strength is spatially and across
lengths heterogeneous, with long and external links the strongest
affected, Fig. 2. For example, the number of external connections
in the oldest subjects is several times smaller compared with the
youngest. Since external links are longer than the internal, Fig.
S1, the decreases in the external, and generally longer, links could
be an effect of a same phenomenon targeting either longer or the
external links.

We also checked to what extent the loss of tracts impacts the
average length of the remaining tracts. To each link we assign as
many tracts as given by its weight, each of them with a length
equal to the mean of all the tracts. Results in Fig. 3 show that the
mean and median length of the tracts decrease with aging, and
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Fig. 2. Number of tracts per subject and their correlation with age. (top) Total number of raw counts (left), distinct connection counts (middle), and
weighted distinct connection counts (right); and total number of distinct connection counts for (middle plots left to right) short, long, internal, and
external links; and for (bottom plots left to right) internal short, external long, external short, and internal long links.

that the external and long links are mostly affected. It is worth
noting that the internal links have longer mean than median
values, indicating that they have asymmetric distribution with
long outliers. For the external links on contrary, median and mean
values are very close to each other. Short external links have more
short outliers, and long external links have more long outliers
that skew the means. These effects become stronger with aging,
indicating that despite the significant decrease of the average
length of the external links, the length of long and short external
links are less affected. Instead, it is the loss of external long links,
Fig. 2, that reduces the length of the remaining external and long
connections.

Lobe-specific changes
The total number of tracts and their length was analyzed taking
into account which lobes of the brain they connect. The frontal
lobe is the most affected by the decrease of fiber counts, Table 1
(top), and within-lobe fibers have generally larger loss than those
between. Regions of the cingulate preserve the internal tracts,
while their connections to the frontal, occipital and parietal lobe

are significantly reduced. Besides the frontal, the number of
internal tracts in the occipital and parietal lobe also experience
strong negative relationship with aging. As for the between-lobes
connections, those between temporal and occipital lobes are the
most decreased with age.

Another aspect of the white matter loss is shown in Table 1
(bottom), where the loss of tracts on the level of lobes is analyzed
between and within hemispheres. The strongest effects from
within the lobes, Table 1, are shown to be mainly due to the loss
of inter-hemispheric links, for the case of the frontal and parietal
lobe, while the loss is quite homogeneous for the occipital lobe.
As for the connectivity between the lobes, the decrease within
the hemispheres is stronger. In this case the results are the same
as for the short links, with parietal links to temporal and to the
cingulate regions mostly affected, together with the occipital to
temporal connections. On the other hand, frontal to parietal links
are mostly affected by the inter-hemispheric connectivity loss
between the different lobes.

We also analyzed whether the observed effects are identically
distributed among the longer and the shorter links (see Table S1
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Fig. 3. Average tract lengths per subject and their correlation with age. Median (blue) and mean (red) track lengths for the whole brain (left column),
internal links (middle column), and external links (right column) and for links of all lengths (top row), short links only (middle row) and long links only
(bottom row).

Table 1. Correlation with age of number of tracts between lobes. Correlation coefficients with age and their P-values (in brackets) for
the number of tracts in and between different lobes (top) and hemispheres (bottom). Statistically significant values (P < 0.05) are bold,
values with P < 0.005, P < 0.0005, and P < 0.00005 are indicated with 1, 2, and 3 asterisks, respectively.

Lobes Temporal Cingulate Frontal Occipital Parietal

Temporal −0.25 (8.6e-2) −0.16 (2.5e-1) 0.02 (8.9e-1) −0.55∗∗∗ (3.9e-5) −0.43∗ (1.8e-3)
Cingulate −0.16 (2.5e-1) 0.21 (1.4e-1) −0.53∗∗ (9.0e-5) −0.30 (3.1e-2) −0.47∗ (5.3e-4)
Frontal 0.02 (8.9e-1) −0.53∗∗ (9.0e-5) −0.58∗∗∗ (8.4e-6) 0.03 (8.3e-1) −0.01 (9.2e-1)
Occipital −0.55∗∗∗ (3.9e-5) −0.30 (3.1e-2) 0.03 (8.3e-1) −0.53∗∗ (8.1e-5) −0.24 (9.5e-2)
Parietal −0.43∗ (1.8e-3) −0.47∗ (5.3e-4) −0.01 (9.2e-1) −0.24 (9.5e-2) −0.48∗ (4.8e-4)

(Continued)
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Table 1. Continued

Lobes Temporal Cingulate Frontal Occipital Parietal

left right left right left right left right left right

Temporal left −0.13
(3.7e-1)

−0.05
(7.6e-1)

0.18
(2.0e-1)

0.07
(6.1e-2)

−0.06
(6.9e-1)

−0.16
(2.8e-1)

−0.54∗∗∗

(5.0e-5)
−0.15

(3.1e-1)
−0.35
(1.3e-2)

−0.26
(6.7e-2)

right −0.32
(2.4e-2)

0.24
(8.8e-2)

0.17
(2.3e-1)

−0.21
(1.4e-1)

0.11
(4.6e-1)

−0.19
(1.9e-1)

−0.38
(7.2e-3)

−0.36
(1.1e-2)

−0.39
(5.3e-3)

Cingulate left 0.26
(7.2e-2)

0.05
(7.2e-1)

−0.43∗

(1.8e-3)
−0.39
(5.6e-3)

−0.38
(6.4e-3)

−0.35
(1.3e-2)

−0.45∗∗

(9.1e-4)
−0.12

(4.2e-1)
right 0.15

(3.1e-1)
−0.33
(2.0e-2)

−0.45∗∗

(1.2e-3)
−0.29
(3.8e-2)

0.01
(9.6e-1)

−0.15
(3.0e-1)

−0.38
(7.3e-3)

Frontal left −0.22
(1.2e-1)

−0.54∗∗∗

(5.3e-5)
−0.04

(8.0e-1)
0.03
8.5e-1

−0.04
(7.9e-1)

−0.47∗∗∗

(4.9e-4)
right −0.23

(1.0e-1)
−0.23

(1.1e-1)
0.06
(6.6e-1)

−0.38
(6.0e-3)

0.13
(3.8e-1)

Occipital left −0.40∗

(3.7e-1)
−0.41∗

(2.9e-3)
0.02
(9.1e-1)

0.21
(1.5e-1)

right 0.51∗∗∗

(1.5e-4)
−0.31
(3.0e-2)

−0.31
(3.0e-2)

Parietal left −0.03
(8.3e-1)

−0.56∗∗∗

(2.5e-5)
right −0.16

(2.7e-1)

in the Supplementary Material), with the division set at 70mm.
Longer tracts are more affected than the short only for the links
within the parietal and between the parietal and occipital lobe.
Shorter tracts on the other hand are more contributing to loss
of connectivity for the links connecting the cingulate with the
frontal and parietal regions, as well as those between parietal and
temporal lobes. For the other significant changes from Table 1
(top), the effect is mostly equally affecting longer and shorter
tracts.

Besides region-specific change in the total number of tracts, we
also analyzed the relationship between age and mean of the inter-
and intra-lobe tract lengths, since the overall length of tracts is
also affected by aging, Fig. 3. Comparing the obtained trends in
Table 2, with those for the number of tracts in Table 1, we point to
several features of the lobe-specific connectivity reorganization
with aging. Tracts within the frontal lobe are again influenced the
strongest, meaning that not only their number is mostly reduced
compared with the other lobes, but their length decreases the
most. The same is the case with the links within the parietal and
between the parietal lobe and cingulate. Separate analysis for the
long versus the short portions of the tracts (see Tables S1–S2 in the
Supplementary Material) reveals that for the within frontal and
within parietal tracts, the reduction in length is due to the strong
decrease of the longer tracts, despites the preserved length by the
remaining long links. As for the parietal-cingulate links, their loss
mainly affects the shorter ones, which become even shorter. It
is interesting to note that temporal–cingulate links are the only
one with significant increase of their average lengths, while their
overall count also increases, but not significantly.

The loss of tracts is not necessarily related to the reduction of
their length. For example, the tracts connecting the temporal with
occipital and parietal regions preserve their mean length beside
the strong decrease of their total count. Similarly, although the
total number of tracts between occipital and the parietal lobe is
not significantly reduced, there is a significant reduction in long
tracts, Table S1, which then leads to reduced mean length. When
accounting for the hemispheres and lobes, the change in length is

generally smaller, Table S3. The strongest decrease is observed for
the inter-hemispheric links within the frontal lobe and frontal–
cingulate. Interestingly, the length of inter-hemispheric frontal-
parietal tracts are not particularly impacted besides the strong
reduction in the overall connectivity, Table 1. Similar patterns
were found for the inter-hemispheric parietal, and for within
occipital links.

Clustering
Possible changes in the clustering and modularity of the SC were
investigated using Louvain modularity (Blondel et al. 2008) for
weighted undirected links from the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). The optimal number of clusters was
set at 2, 3, 4 and 5 and even though the modularity decreased in all
the studied cases, Fig. S2, these were not statistically significant.
For all but one subject the modularity decreases by increasing the
number of partitions. Hence, for 49 of the subjects statistically
significant highest modularity is achieved for 2 partitions. For
32 out of 50 subjects even without setting the initial division
on hemispheres, this was found as the optimal (with highest
modularity coefficient) in each of the 100 runs of the algorithm.
In only 3 of the rest, the same resolution parameters for the
hemispheric division did not yield higher modularity.

Similar results were observed for the modularity of weak,
strong, short and long tracts, Fig. S2. The modularity is mostly
influenced by the strong links, so the modularity of these
only are very similar to the case of the full connectome. Short
links-only networks yield optimal hemispheric division for
each of the subjects, while weak links give optimal modularity
with 2 clusters for every subject, with hemispheric division
being the most optimal for 45 of them. Long links on the
other hand do not exclusively produce significantly smaller
modularity for larger partitions, as it would have been expected
from the distribution of the tract lengths, Fig. S1 and also
(Petkoski et al. 2016, 2018), which show that most of the
inter-hemispheric tracts are long, compared with the median.
However, due to the misrepresentation of the inter-hemispheric
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Table 2. Correlation with age of mean length of tracts between lobes. Correlation coefficients with age and their P-values (in
brackets) for the mean length of tracts in and between different lobes. Statistically significant values (P < 0.05) are bold, values with
P < 0.005 and P < 0.0005 are indicated with 1 and 2 asterisks, respectively.

Lobes Temporal Cingulate Frontal Occipital Parietal

Temporal −0.24 (9.9e-2) 0.30 (3.6e-2) −0.09 (5.5e-1) −0.11 (4.3e-1) 0.04 (8.0e-1)
Cingulate 0.30 (3.6e-2) 0.08 (5.7e-1) −0.14 (3.3e-1) −0.16 (2.7e-1) −0.40∗ (4.5e-3)
Frontal −0.09 (5.5e-1) −0.14 (3.3e-1) −0.50∗∗ (2.0e-4) −0.04 (7.8e-1) 0.20 (1.6e-1)
Occipital −0.11 (4.3e-1) −0.16 (2.7e-1) −0.04 (7.8e-1) −0.28 (5.2e-2) −0.30 (3.3e-2)
Parietal 0.04 (8.0e-1) −0.40∗ (4.5e-3) 0.20 (1.6e-1) −0.30 (3.3e-2) −0.45∗ (1.0e-3)

Fig. 4. From static to dFC. A) Traditionally, correlations between neural activity time-series of N different brain region nodes are averaged over long
times and compiled into the entries FCij of a static NxN FC matrix (right). B) Sliding windows of a shorter temporal duration, it is possible to estimate
a stream of time-resolved FC(t) networks, so-called dFC stream. The degree of similarity (inter-matrix correlation) between FC(t) networks observed at
different times is then represented into a dFC matrix. C) Alternatively, one can consider each individual FC link as a dynamic variable FCij attached
to the graph edge between two regions i and j. Generalizing the construction of the FC matrix in panel (A), we can thus extract a N(N − 1) × N(N −
1) matrix of covariance between the time-courses of different FCij links, giving rise to the MC matrix. (see Arbabyazd et al. (2020) for more details).
(D) Example of empirical FC, FCD, and MC for the first subjects, with the latter two calculated for window sizes of 60 and 10 seconds, and overlap of
58 and 8, respectively. Links in the MC matrix rows and columns are ordered starting from internal left hemispheric, internal right hemispheric and
external (inter-hemispheric).

tracts with diffusion tensor imaging (DTI) (Reveley et al. 2015,
Zalesky et al. 2016), the intra-hemispheric long links are still of
a similar size as the inter-hemispheric links. This still results in
high intra-hemispheric connectivity, and hence, high modularity
for hemispheric division.

Taken together with the distribution of the track lengths,
Fig. S1, and the highest modularity for the hemispheric division,
suggest that the spatio-temporal structural architecture can be
approximated into two modules corresponding to the hemi-
spheres. Correspondingly, measures of the network dynamics
are expected to distinguish between intra- and inter-hemispheric
data features.

Functional reorganization
Static FC, Fig. 4(A), decreases with age for the internal and external
links of every lobe, but none of them is statistically significant
(Table S4 top). Similarly, the FC decreases without statistical sig-
nificance for the resting state networks (Table S4 bottom).

To go beyond the static data features, we analyzed the alter-
ations with age in the dynamics of FC, as captured by dFC and

MC (Arbabyazd et al. 2020), Fig. 4(B). We focused on the dFC
walk paradigm, as introduced by Battaglia et al. (2020). In short,
relatively small variations of FC from one observation time to the
next result in shorter flight lengths and more extensive network
reconfigurations than in larger flight lengths. We characterize this
temporal evolution of the FC by the mean of the dFC. Smaller
mean of dFC corresponds to a more dynamically fluid brain,
which quicker reconfigures its dynamics.

For the spatial aspects of the dFC we analyzed MC (Lombardo
et al. 2020). It captures correlations between the links, Fig. 4(C),
which are grouped in different modules depending on whether
they are inter- or intra-hemispheric, where the latter are further
divided by the hemispheres. Thus, we analyzed dynamics asso-
ciated with five spatially separate modules: left–left to left–left,
left–left to right–right, right–right to right–right, left–right to left–
right, and intra-hemispheric (left–left and right–right) to inter-
hemispheric (left–right), Fig. 4(D).

Fluidity of dFC showed a significant decrease with aging as cap-
tured by the increase of the mean non-overlapping off-diagonal
dFC (further simply referred as mean dFC), and hence decrease of
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the mean dFC velocity, as already reported (Battaglia et al. 2020).
This relationship is increasing and becoming more significant for
smaller lengths of the sliding window, Fig. 5. Similar trends are
also observed for the median and mode of dFC, and only for the
short sliding windows these are accompanied by increases of the
variance and kurtosis, Fig. S3.

Even more significant changes were observed for the higher
order interactions of dFC, as captured by the MC, Fig. 5. These
show a very significant increase of the range and STD of MC,
which point to increased variations of spatial covariations. The
effects were also systematically more pronounced for smaller
windows. Here we were able to analyze the spatial component of
the dynamical connectivity, revealing that the trends are generally
preserved among all pairs of links. Nevertheless, interactions
involving inter-hemispheric links are slightly stronger affected,
followed by the MC between the intra-hemispheric links and
between the inter- and intra-hemispheric links.

BNM for the dependence of the function from
structure
To mechanistically analyze the effects of the aging-related SC
reorganization to neuronal activity, we constructed a brain net-
work model. From the neuronal activity that operates at EEG
frequency bands, we simulated BOLD time-series and repeated
the same analysis as for the empirical recordings. We built the
BNM using Kuramoto oscillators (Kuramoto, 1984) with explicit
heterogeneous time-delays (Petkoski et al. 2018). Beside its sim-
plicity and representing highly idealized system, the model can
nonetheless exhibit rather non-trivial collective dynamics that
could map different states of the brain (Breakspear et al. 2010;
Cabral et al. 2011; Sheppard et al. 2013; Petkoski et al. 2018). In its
current implementation, its simplicity allows it to only account
for the impact of the spatio-temporal structure of the connectivity
to the emergent dynamics.

Having fixed noise and natural frequencies, as well as indi-
vidual connectivity, we performed parametric exploration of the
global coupling and conduction velocity, as the only free param-
eters of the model. This allowed us to test several hypotheses.
For the global coupling, we explored two strategies: (i) constant
scaling for each subject, which implies a very strong impact of
the connectivity loss to the dynamics and (ii) subject-specific
scaling proportional to the mean strength of the weights, which
implies compensatory mechanisms for each subject. The first
strategy proportionally accounts for the connectivity loss and it
leads to very different dynamics between subjects, because the
mean values of the weights, which mainly constrain the network
dynamics (Rodrigues et al. 2016) differ between subjects by as
much as 100%, as seen in Fig. 2.

The second approach decreases the influence of the SC, and
practically compensates its loss by bringing the dynamical work-
ing point of the subjects in the same range. This is supported by
the fact that all the subjects are healthy and in a similar dynam-
ical state. Hence, it is not expected for the large-scale dynamical
properties between them to deviate too strongly, as also visible in
the empirical data. Moreover, the effect of subject-specific spatio-
temporal structure is still fully shaping the observed dynamics.

For the conduction velocity, we also adopted 2 strategies:
(i) fixed velocity for each subject that does not explicitly takes into
account the effects of demyelination with aging, which are not
captured by the connectome, and (ii) decreasing velocity with age,
which assumes that not all of the aspects of the demyelination
are fully captured by the SC through changes in the fractional
anisotropy and henceforth weights, but increased propagation

time at the existing links should be explicitly taken into account.
In the case of age-dependent conduction velocity, it is calculated
as

vsubj = v0 − agesubj − min(age)

max(age) − min(age)
�v.

The last hypothesis that we checked with the BNM, was whether
the decomposition of the time-delays into the hemispheric modes
(Petkoski et al. 2016, 2018) is sufficient to capture the main data
features of the dynamics at time-scales of BOLD.

Simulations for dFC reveal that there is a relatively wide
parameter range for the global coupling scaled individually, and
for conduction velocities linearly decreasing with age, where
the average statistics of dFC is in agreement with the empirical
results, Fig. 6(A). Significant increase with age for the means of
dFC occurs for all 4 window lengths, and not only for the full
model, but also when the spatially reduced delay matrices are
used, Fig. S7. More importantly, it is not only the same trend
with age that appears statistically significant, but that is also the
case for the subject specific metrics. Assuming global instead of
individualized scaling for the global coupling, generally reverses
the trends in the statistics of dFC, and the same is the case for
constant conduction velocity. Same parameter sweep for the
global coupling was also run for propagation velocities of 2m/s
and 5m/s, which for both models showed qualitatively similar
patterns as for 3.3m/s, see Fig. S7, but weaker agreement with the
empirical results. For the case with no delays, the results do not
show any significant trends with age, nor significant correlation
with empirical, subject-specific results.

The spatial aspect of dFC is captured by the statistics of MC
that is shown in Fig. 6(B-C). The strongest age-related patterns of
the range and the STD of MC are well captured by the model (and
by its reduced version, Fig. S6) around the same working points as
for FCD. Significant correlations again appear also for the individ-
ualized dynamics, in addition to the general age-related trends.
Unlike the results for FCD, here significant correlations with the
aging trends also can occur for the case of age-independent propa-
gation velocity, or global scaling, though for fewer parameters, and
never for the same working point consistently across the metrics.

Finally, it is worth noting that fluidity of the dynamics at time-
scales observed in dFC is the largest for global coupling that
showed the best match with the data, as it can be seen by the
values of STD and range of FCD (Fig. S5(e–h)). Even though these
are dependent on the window sizes, the highest predictive value
of the model is observed around the values of global couplings
which maximize the variance of dFC. This has been hypothesized
to be the working point of the brain dynamics (Rabuffo et al. 2021),
and in our case, this optimal dynamical range also overlaps with
the working point where the model reaches the highest predictive
value for the static FC (Fig. S5(i–j)). Interestingly, on the fast time
scales of the oscillators, this does not correspond to the range with
highest metastability at the brink of synchronization (Fig. S5(c–d)),
but to the synchronized regime (Fig. S5(a–b)).

Discussion
In this work we identify the significant changes in the dynamics
of brain FC, as reflected in dFC and MC metrics for the dynamical
reconfigurations, and we apply a BNM to identify which aspects of
the spatiotemporal reorganization of the brain structure with the
aging could be responsible for the latter dynamical alterations.
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Fig. 5. Age-dependent subject-specific dFC and MC. Scatter plots of mean dFC (A) and magnitude (B) and STD (C) of different spatial components of the
empirical MC against subjects’ age for different sizes of the sliding windows. (ll = left–left, rr = right–right, lr = left–right, ext =- external/inter-hemispheric,
int =- internal/intra-hemispheric).

SC alterations with age
More than half of the human brain volume is made up of
white matter: regions where axons are coated in myelin, which
primarily functions to increase the conduction speed of axon
potentials. Myelin sheaths are produced and maintained by
oligodendrocytes, whose capacity in doing so is reduced with
aging (Sams, 2021). This, however, cannot be retrieved with
neuroimaging, causing a generally neuron-centric approach in
the research of non-pathological brain aging mechanisms. Due to
this limitation, we describe only the changes in brain structure
as captured by tractography, but in the causal BNM we explicitly
account for the impact of the demyelination on the conduction
velocity.

Age-related loss of brain’s structural connectivity has been of
interest in many studies (Betzel et al. 2014; Lim et al. 2015; Perry
et al. 2015) that, nevertheless, overlooked the impact on the tract
lengths and their spatial distribution, which are of focus here.
Topological organization of the white matter connectivity across
the human lifespan is characterized by a decrease in the global
network properties, such as the connectivity strength, starting
from the third decade (Coupé et al. 2017; Zhao et al. 2015). This
is confirmed with our results for the decrease in SC. The loss of
white matter connectivity is especially pronounced for the inter-
hemispheric links, as already reported (Puxeddu et al. 2020), caus-
ing the average length of the remaining tracts to decrease with
age, because the inter-hemispheric links are on average longer.
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Fig. 6. Model fit for the empirical dFC and MC. Correlation between simulated data features with age, and with the subject specific empirical results.
(A) The mean of the off-diagonal dFC is used for the temporal aspects of dynamical reconfiguration, and for the spatial it is (B) STD between MC of
inter-hemispheric links (upper plots) and (C) range of MC values between the links in the left and in the right hemisphere (lower plots). The results are
shown for different size of the moving window (60s, 30s, 20s, and 10s) levels of global coupling G, scaling for the cohort (identical scaling for each subject
indicated with scal all and subject specific scaling dependent on their mean connectivity indicated with scal subj) and age-dependent linear decrease
of the conduction velocity �v. Statistically significant correlations are indicated with black rectangles. Parameters: conduction velocity v0 = 3.3m/s,
natural frequency f = 10Hz, noise intensity D = 1.

The frontal lobe is the strongest affected area by the loss of
fiber counts, Table 1, in agreement with the literature (Peters,
2006, Gunning-Dixon et al. 2009). Similarly strong loss is observed
in the occipital lobe, but this is more equally affecting intra- and
inter-hemispheric links, hence having much smaller impact on
the tract lengths. Even though we found within-lobe fibers to be
more affected than those between lobes, Table 1, the modularity
is still generally stable, in line with similar studies (Lim et al. 2015).

Many studies indirectly point to the decrease of white matter
fibers in the frontal regions by showing strong negative rela-
tionship with functional anisotropy and age, that is especially
prominent in the frontal lobe (Grieve et al. 2007; Inano et al.
2011; Billiet et al. 2015). Most of the these works (Grieve et al.
2007; Inano et al. 2011; Mädler et al. 2008) also measured axonal
and radial diffusion, and related the trends in those measures to
the demyelination, as indicated by the measurements of myelin

water fraction. However, there are also some contradicting studies
(Billiet et al. 2015), which although observed the decrease of frac-
tional anisotropy with aging, did not find significant difference in
myelin water fraction. We did not recover myelination or other
related metric, but instead using the BNM we found that model’s
predictability is increased if a reduction of conduction velocity
due to hypothesized demyelination is assumed to occur linearly
with age.

dFC alterations with age
It is now a widely recognized concept in the study of dynamics
of the human brain network, that FC is not static, but changes
its pattern over time, even during rest. The possibility of study-
ing these dynamics through analysis of neuroimaging data has
catalyzed substantial interest in methods that estimate time-
resolved fluctuations in FC (Lurie et al. 2020). In the context of

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/10/6241/6972302 by U

niversite Aix-M
arseille 2 user on 20 June 2023



6252 | Cerebral Cortex, 2023, Vol. 33, No. 10

aging, temporal variations of the resting-state showed decrease of
FC variation for the inter-network connections (Chen et al. 2017).
Dynamic FC tends to slow down with increasing age (Battaglia
et al. 2020), and cognitive performance in healthy older adults
relates to spontaneous switching between states of FC during rest,
as captured by dFC (Cabral et al. 2017). Also, lower metastability
at slow time-scales of BOLD activity is associated with higher age
(Escrichs et al. 2020), which is in agreement with the functional
benefits of greater variability in neural systems, including flexibil-
ity/adaptability, heightened dynamic range, Bayesian optimality,
and multi-stability (Garrett et al. 2011; Sleimen-Malkoun et al.
2014).

Here, first we showed that several metrics derived on static
FC do not correlate with the age, in line with the generally low
predictive power of FC (Domhof et al. 2021). Often the simulated
FC that fits best to the same subject’s empirical FC may not
necessarily be the same simulated FC (Triebkorn et al. 2020). Next,
we focused our analysis on the temporal aspects of dFC and
the spatial aspects of covariation between FC links. The former
confirmed the slowing down of dFC Battaglia et al. (2020), which
is accelerated at shorter time-scales, as observed from the mean
dFC calculated at shorter windows. Interestingly, the variance of
dFC is less affected, and only starts to significantly increase at
faster time-scales.

The dFC is highly dependent on the sliding windows (e.g. notice
the overall decrease in correlation values with the decrease of the
window size). To avoid this we have carried out the analysis on dif-
ferent sized windows, thus further demonstrating the robustness
of the observed features. Another possibility would have been to
use an unsupervised data-driven approach (Sastry et al. 2022).

Age-related changes are even stronger for the covariations
between FC links, as captured by spatial components of MC. Here,
it is not the means that are mostly affected, but the variance
and range of MC, which very significantly increase with age.
Larger impact is still present for shorter time-scales, although
to a smaller extent. Spatially speaking, the trends are strongest
for the covariation of inter-hemispheric links between themselves
(even though the inter-hemispheric static FC is unaffected), and
for the internal links of hemispheres between each other. These
results point for the first time that taking into account the spatial
aspects of the dFC through higher order interactions, could serve
as a better and more robust biomarker for aging. This is to be
expected also due to the large spatial heterogeneity of the white-
matter loss, which nevertheless does not result in observable
changes in the respective static FC metrics. A possible reason for
this is the fact that FC by definition averages out nonlinearities
in the dynamics, which are highly non-stationary (Heitmann and
Breakspear, 2017; McIntosh and Jirsa, 2019).

Linking the structure and the function
Age-related alterations in brain structure and function have been
linked to age-related cognitive decline, although challenges still
remain (Hedden et al. 2016). Sources of heterogeneity are not
fully understood, but seem to be associated with different neu-
robiological substrates (loss of white matter tracts and demyeli-
nation), and single-cohort designs might be optimal in reducing
the sources of interindividual variation that may be unrelated
to age (Zuo et al. 2016). Current models indicate that structure
and function are significantly correlated, but the correspondence
is not perfect because function reflects complex multisynaptic
interactions in structural networks (Suárez et al. 2020). This has
been demonstrated also in the respect with aging (Zimmermann
et al. 2018), where SC and FC each show unique and distinct

patterns of variance across subjects, and variability of FC alter-
ations is especially high across older adults (Stumme et al. 2020).
Therefore, function cannot be directly estimated from structure,
but must be inferred by mechanistic models, which can causally
test the higher-order interactions (Schirner et al. 2018, Courtiol
et al. 2018), and offer higher explanatory value compared with
the data-driven methods (Jockwitz et al. 2017). It was already
shown that a specific pattern of SC/FC coupling predicts age
more reliably than does region wise SC, or FC decrease alone
(Zimmermann et al. 2016), but the dependence between the SC
age-related changes and the FC reorganizations are still ambigu-
ous. This indicates that the impact that SC has on brain dynamics
needs to be investigated beyond the FC (Triebkorn et al. 2020).

Choosing sine coupling is the simplest form for the phase
reduction of weakly coupled oscillators (Kuramoto, 1984). The
coupling functions in real systems often involves different fre-
quency bands (Jirsa and Müller, 2013; Stankovski et al. 2017b) and
take complex forms (Stankovski et al. 2017), which can be of cru-
cial importance for regulating biological oscillations (Stankovski
et al. 2016). Another step to make the model more realistic would
be through explicit inclusion of the sources of variability of the
model parameters (Petkoski et al. 2012). These could be contribut-
ing to the slow rhythms at the ranges captured by dFC. Notably,
this has been demonstrated for the cardiovascular oscillations
(Musizza et al. 2007; Stankovski et al. 2016) and for the thalamus
and other subcortical structures that shape the dynamical land-
scape of the cortical activity (Shine et al. 2019; Taylor et al. 2022).
In addition, biasing the parameters of BNM with structural het-
erogeneity has been shown to increase the predictive power of the
models of the resting state (Kong et al. 2021; Schirner et al. 2018),
whereas data-driven approaches have identified good match of
inferred regional parameters and the structural heterogeneity (Sip
et al. 2021).

Compensation (Lövdén et al. 2010) of the brain is probably
among the major causes that impede establishing individualized
SC/FC link with aging. Another reason could be that time-
delays are often ignored, and they still cannot be retrieved on
individual level, but tract lengths are used as a proxy (Sanz-Leon
et al. 2015). This, however, cannot capture the important effects
that demyelination might have on increasing the propagation
delays (Sorrentino et al. 2022). Scaffolding is a normal process
present across the lifespan that involves use and development of
complementary, alternative neural circuits to achieve a particular
cognitive goal (Park and Reuter-Lorenz, 2009). Hence, the behav-
ioral performance in older adults is often hypothesized to depend
on keeping some quantity invariant through compensation in
another. Preservation of neuronal synchrony in aging through
enhancing inter-areal coupling has been suggested as one such
example Pathak et al. (2022b). Here, we do not investigate
a functional feature that is kept invariant. Instead, through
a battery of metrics we report the functional reorganization
associated with healthy aging, and we demonstrate that the
increase of global coupling, together with the demyelination, are
necessary for this to occur in the brain model. On the other hand,
the structural connectivity is significantly decreased in aging,
implying that the increased global coupling compensates the
lost connectivity. This is perfectly plausible from the dynamical
viewpoint, but it is still unknown which biophysical mechanism
could be responsible for the shift in the global coupling. This is
purely phenomenological parameter, which has been also shown
to be important in setting the working point in the case of epilepsy
(Courtiol et al. 2022). Most likely, it is linked to the regulatory
changes in neuromodulation that are missing in our model, in
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particular, the aging-related increase of dopamine synthesis
capacity (Berry et al. 2016).

The model shows statistically significant individualized pre-
dictive value for the most significant dFC and MC data fea-
tures. This is observed only if: (i) dynamical compensation is
assumed through the global effective coupling that is identi-
cal across subjects (by normalizing each connectome with the
individualized mean connectivity) and (ii) conduction velocity
is linearly decreased with aging to account for the demyelina-
tion that is not accounted in the weights and lengths of the
individualized connectome. The results hold even if the spatio-
temporal connectivity is spatially decomposed (Petkoski et al.
2016; 2018; Petkoski and Jirsa, 2019), such that only lumped intra
and inter-hemispheric delays are taken into account. The latter
is supported by the results for the SC alterations, which indeed
show that the strongest decrease with aging is observed for the
inter-hemispheric tract lengths. Interestingly, the best fit for dFC
and MC is obtained at the working point that maximizes the
variability of dFC, as observed through its variance, as it has been
independently used as a criterion for the healthy homeostasis of
the brain (Rabuffo et al. 2021; Triebkorn et al. 2020). This holds for
both, the original and reduced model.

Limitations of the study
Using larger cohorts that become more available, such as
1000Brains (Caspers et al. 2014), would improve the reliability
of the obtained results. Handling larger datasets would, however,
require using digital research platforms such as EBRAINS that
allows integration and accessibility of those datasets together
with simulation engines (Schirner et al. 2022). Parcellation-
induced variation of empirical and simulated brain connectomes
at group and subject levels is another issue that needs to be
considered (Domhof et al. 2021). Nevertheless, most of our
findings for the structure and function, and for their link with the
model, independently and robustly show statistically significant
trends with age, and individually. This gives us confidence in the
reported changes, and in the mechanisms linking them, which
we recovered on an individualized level for the first time. To
compensate for the focus on a single cohort of a modest size,
with the model and with the applied hypotheses we have tried
to be as general and unbiased as possible. We are covering static
and dynamical data features, as well as higher order interactions,
for a wide range of the global couplings, which cover different
dynamical regimes—from weak synchronization, through high
metastability to high synchronization.

Interestingly, decomposition of time-delays in the reduced
model probably works because using homogeneous conduction
velocities is already introducing bias for the delays. As such,
the main modes of the delays were shown in silico to contain
sufficient predictive value (Petkoski et al. 2018; Petkoski and Jirsa
2019). The conduction velocities of action potentials differ could
be between 0.1 m/s and 10 m/s (Waxman, 1980), depending on
the axonal diameter and the presence of a myelin sheath, but
obtaining reliable individualized maps on whole-brain level is still
impossible. Importantly, however, Caminiti et al. (2013) found that
the spectrum of tract lengths obtained with MRI closely matches
that estimated from histological reconstruction of axons labeled
with an anterogradely transported tracer. They also measured
conduction velocity of myelinated axons in the human brain that
were between 6 and 10 m/s. It has also been reported that similar
overall population of myelinated to nonmyelinated axons can
be found in corpus callosum of different species (Olivares et al.
2001), with the latter generally having velocity <1m/s. All these

indicates that better estimates of the time-delays (Lemaréchal
et al. 2021), especially if they are personalized (Sorrentino et al.
2022), are expected to improve the predictive power of any
whole-brain model.

Supplementary material
Supplementary material is available at Cerebral Cortex online.
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