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Abstract

In this paper, we use tools from network theory to trace the properties of the matching function

to the structure of granular connections between applicants and firms. We link seemingly

disparate parts of the literature and recover existing functional forms as special cases. Our

overarching message is that structure counts. For rich structures, captured by non-random

networks, the matching function depends on whole sets rather than just the sizes of the two

sides of the market. For less rich—random network—structures it depends on the sizes of the

two sides and a few structural parameters. Structures characterized by greater asymmetries

reduce the matching function’s efficacy, while denser structures can have ambiguous effects

on it. For the special case of the Erdös-Rényi network, we show that the way the network

varies with the sizes of the two sides of the market determines if the matching function exhibits

constant returns to scale, or even if it is of a specific functional form, such as CES.
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1 Introduction

The matching function is the linchpin of most models that depart from the Walrasian equi-

librium to capture search frictions in the market (Petrongolo and Pissarides, 2001). The

number of contexts in which it has been used highlights its success: most notably the labor

market, where unemployed and vacancies coexist in equilibrium, but also credit markets,

goods markets, assets trading over the counter, the new monetarist literature aiming to

explain the emergence of money, international trade.

The matching function, however, has remained a “black box” for nearly forty years. It is a

reduced-form object which economists use for its tractability but no systematic analysis has

been done of the frictions implicitly assumed to underlie it, such as information limitations

and coordination failures. More specifically, little is known of how the structure of the

underlying frictions affects the matching function’s properties.

Notable contributions that derive a matching function endogenously are Burdett, Shi and

Wright (2001) and Albrecht, Gautier and Vroman (2006) in the directed search literature,

Calvó-Armengol and Zenou (2005) in the social networks literature, and Stevens (2007)

who uses a specific type of queuing system. Each of these contributions derive important

implications, but in terms of the matching function, as we will show, each has focused on a

particular, highly symmetric structure of the underlying frictions.

In this paper, we propose a network-based model of the matching function, linking the

micro to the macro. We consider any possible structure of connections between applicants

and firms, under a benchmark application-and-offer protocol, to provide the first systematic

study of how the structure of the underlying frictions affects the emergent matching function.

The overarching message of our findings is that structure counts. Our first insight is that

matching improves if there is less inequality in job access among job-seekers: asymmetries

unambiguously aggravate miscoordination and hurt the matching process. This result is

novel, and may play an important role, empirically, to help explain documented variations

in match efficacy. Second, in contexts with search frictions like the labor market, expanding

agents’ opportunities is not necessarily a good thing: more links can actually worsen match-
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ing. More broadly, we show that the matching function is generally a function of whole sets,

rather than just the sizes of the two sides of the market as assumed in the literature. In other

words, who links where, that is the composition of the market as captured in the network

structure, generally matters. We recover existing matching functions as special cases.

In our setup a bipartite network connects applicants (the unemployed) and vacancies. The

links can correspond to social ties—as in the social networks literature (e.g. Calvó-Armengol,

2004)—or skills required to apply for that job, or geographic restrictions the applicant has

on where to work. In other words a link captures 1-for-1 whether an applicant knows of

or generally can be employed at a vacancy—for whatever reason—and we do not need to

take a stance on it for our analysis. The network, characterized by the presence or not of a

link between any applicant-vacancy pair, is thus making explicit precisely the frictions the

literature has been assuming to implicitly underlie the matching function.

We adopt a simple protocol as to what happens over this network, this collection of links:

Each applicant applies to all vacancies they are connected to; each vacancy is offered to an

applicant chosen uniformly at random among all applications received—if any application

was received. When an applicant receives at least one offer, a “match” or a “meeting” is

said to take place. The matching function, which in our setup is an endogenous object, is

the expected number of such matches, taking the underlying network structure as given.

We start by analyzing maximally rich structures, where we can differentiate between each

applicant and firm. We derive a matching function that depends on whole sets rather than

just the sizes of the two sides of the market as typically assumed, yet it is given by a compact

analytic expression. Our framework is thus consistent with the empirical findings that the

composition of the market matters for the matching outcome (e.g. Barnichon and Figura,

2015; Hall and Schulhofer-Wohl, 2018) without needing to assume the existence of a matching

technology at any level of (dis-)aggregation. In the special case of the complete network, we

recover the functional form of the classic balls-in-bins model derived early in the literature

(e.g. Butters, 1977) and later as an equilibrium outcome by Burdett, Shi and Wright (2001).

To get closer to the more standard matching functions in the literature more symmetry is
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required. To this end, we extend our analysis to random networks: the number of links of each

applicant is drawn iid from a distribution, and links fall uniformly at random on vacancies

on the other side. The resulting structures are less rich than the non-stochastic networks,

as both applicants and firms are ex-ante identical. However, they are rich enough: changes

in asymmetry are well-defined as mean-preserving spreads in the underlying distribution.

Because all applicants and all firms are now ex-ante identical, the matching function—given

again by a compact expression—comes closer to its standard form, depending on the sizes of

the two sides of the market, rather than whole sets. In the special case when the applicant-

degree distribution is degenerate, i.e. all applicants have the same number of links, we

recover the matching function of Albrecht, Gautier and Vroman (2006).

Our comparative static results make predictions for match efficacy, the residual term of the

matching function when the sizes of the two sides of the market are held fixed. Match efficacy

is the analog of the production function’s total factor productivity and it governs how well the

matching process works. It has been shown to fluctuate, and specifically to drop in recessions

(e.g. Sedláček, 2014; Mukoyama, Patterson and Şahin, 2018). It is considered a key concept

in understanding turnover in the labor market (Hall and Schulhofer-Wohl, 2018), yet little

is known of the causes of these fluctuations. Our approach provides a natural explanation,

based on changes in the network structure connecting applicants to firms. An applicant’s

degree corresponds to the number of applications they send and hence their search intensity.

The network thus captures a structurally rich notion of search intensity among applicants.

Let us first look at the effect of asymmetries. We compare structures where inequality in

access to jobs among applicants changes: take a network, hold the firm side fixed and swap a

link from it linking firm j with applicant i to it linking firm j with another applicant i′; only

the job-finding probabilities of these two applicants are affected. Match efficacy goes down

iff applicant i—from whom we take the link away—relies more on it compared to applicant

i′. That is, iff the probability that applicant i does not receive an offer from all their other

connections excluding j, is higher than the respective probability for applicant i′. In other

words, when the “rich” get “richer”—in the sense of access to jobs—match efficacy drops.
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Let us now look at the effect of more links, underpinned by an analogous condition. Suppose

we add a new link between an applicant i, and a firm j. The job-finding probability of

applicant i goes up, while the job-finding probability of all other applicants linking to firm j

goes down. The condition for whether the net outcome of this trade-off is positive is whether

applicant i, who benefits from the addition, needs that link more compared to the “average”

applicant hurt from the addition. Specifically, we show the outcome is positive iff, again, the

probability that i does not receive an offer from all the other firms they link to—excluding

j—is higher than the average respective probability for all other applicants linking to j.

The result on the effect of asymmetries is novel and we show that it holds very generally,

both in arbitrary non-random networks, and in random networks with arbitrary degree

distributions. It suggests the informativeness of higher moments of search intensity data,

beyond the mean, in explaining changes in match efficacy. For instance, some job-seekers may

get excluded from connections to firms during recessions, leading to an increase in inequality

of access to jobs and hence to a drop in match efficacy. Validating such network-based

explanations could be done by collecting granular microdata on actual applications.

The result on more links is present in the special symmetric structures of Albrecht, Gautier

and Vroman (2006) and Calvó-Armengol and Zenou (2005). We show that it holds much

more generally for arbitrary non-random networks. Through the lens of such matching

functions, the coexistence of higher search intensity during the Great Recession and the

observed outward shift of the Beveridge curve does not necessarily stand as a puzzle, as is

the case with matching functions in the macro-literature (Elsby, Michaels and Ratner, 2015;

Mukoyama, Patterson and Şahin, 2018).

In the final part of the paper, we also make progress in understanding the determinants of

the other key dimension of the matching function—returns to scale. For the tractable case

of the Erdös-Rényi random network, we show that whether the matching function exhibits

constant returns to scale or even whether it is of specific functional forms, such as CES, as

commonly assumed, depends on how the network “scales,” how it varies with the sizes of

the two sides of the market. This result echoes Stevens (2007) who uses a queuing system

related to the Erdös-Rényi network, to derive the CES functional form.
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Taking all our results together, search intensity and a matching technology of certain prop-

erties are not two separate things, where the former is “super-imposed” on the latter as in

the textbook treatment (e.g. Pissarides, 2000); they are one and the same. Our richer notion

of search intensity that takes into account the whole structure of search—the network—is

the matching function. Directed search and random search are not that different after all.

Network theory allowed us to give a treatment of the problem at significantly greater gener-

ality than what has been done before: applicants can be arbitrarily heterogeneous in their

number of links, and our analysis applies equally well to small (Burdett, Shi and Wright,

2001) and large (Albrecht, Gautier and Vroman, 2006) economies. Compared with the so-

cial networks literature (e.g. Calvó-Armengol, 2004) which takes as primitive the network

among applicants, we work with the network between applicants and vacancies. We draw

tighter connections to the macro-labor literature precisely because we work with networks

of that type. In contrast to the queuing system primitive of Stevens (2007) our network of

connections is, in principle at least, fully observable in cross-sectional data.

Our setup, naturally, entails some modeling choices. We propose a minimal, novel, and useful

setup to study the determinants of the object of interest of this study, the matching function.

We abstract for example from potential differences in the quality of applicant-firm matches,

which could be introduced adding weights to the edges, or from firms possibly making more

than one (or even zero) offers. Opting for generality, we show how any network’s properties

affect the emergent matching function, without taking a stand on where the network is

coming from. How these networks look in reality, how they are formed, how they evolve over

the business cycle, and how they respond to policy remain to be studied. In this sense our

network is an intermediate object whose significance this paper highlights.

The rest of the paper is structured as follows. Section 2 lays out the setup. Section 3 derives

the matching function for non-random networks and goes over useful special cases. Section

4 gives our comparative statics regarding match efficacy. Section 5 extends our analysis

to random networks. Section 6 presents the implications of scaling. Section 7 discusses

modeling choices at length. Section 8 discusses avenues for future research and concludes.
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2 The setup

We start by introducing the economic environment, some terminology and notation.

Primitives: The economic environment consists of two sets of agents U and V , of size

U, V ∈ N respectively, and a (bipartite) graph G linking elements between the two sets.

We take the elements of U to correspond to applicants, i.e. workers searching for a job, and

the elements of V to correspond to jobs offered by firms. In other words U contains the

unemployed,1 while V contains vacancies in our setup.

As a convention, we will be indexing the elements of U by i = 1, 2, ..., U and the elements of

V by j = 1, 2, ..., V . Following the search and matching literature we will assume that each

firm has a single vacancy to fill, thus we may interchangeably refer to firm j or vacancy j as

the counterparty of an applicant i.

The graph G is represented by an adjacency matrix—denote G =
(
gij
)
, where gij = 1 if

applicant i is connected to firm j, and gij = 0 otherwise.2 G + ij (resp. G − ij) denotes

network G after adding (resp. deleting) a link between applicant i and vacancy j.

We will denote by di =
∑

j gij an applicant’s degree, that is the number of firms the applicant

connects to. Similarly a firm’s degree dj =
∑

i gij corresponds to the number of applicants

the firm connects to. As a matter of accounting it has to hold that the total number of

degrees on the two sides are equal, i.e.
∑

i di =
∑

j dj.

Finally we refer to an applicant’s neighborhood as the set of firms the applicant connects

to. Specifically, for an applicant i, define Ni = {j ∈ V : gij = 1}. Similarly we can define

the neighborhood of a firm j. It follows that the size of a node’s neighborhood equals their

degree; for applicant i denote |Ni| = di.

As in what follows we will be making connections to the search and matching literature, let

1In principle the “applicants” can also be people who are not classified as “unemployed” in the data,

for example people searching on the job. With slight abuse of terminology we will be using the terms

“applicants,” “job-seekers” and “unemployed” interchangeably.
2Applicants correspond to rows and firms to columns.
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us also define the central quantity of that literature, market tightness, θ = V
U
.

An application and offer protocol: Taking the network of links G as given, we assume

applicants apply to all firms they connect to. Each vacancy is offered to an applicant chosen

uniformly at random among all applications received, if any application was received.

When an applicant receives (at least) one offer, a “match” (or a “meeting”) is said to take

place. The key object of interest throughout our analysis is the matching function defined

as the expected number of matches taking the network structure as given. We denote

m(G) = E[#matches|G]

An example: Let us consider the following instance3

Figure 1: A 2-by-2 example.

Applicant i1 applies to both firms j1 and j2, while applicant i2 applies only to firm j2.

Accordingly, firm j1 makes an offer to applicant i1, and firm j2 chooses with probability 1/2

to make an offer to i1 and with probability 1/2 to make an offer to i2. We take no stand on

which offer (if any) both i1 and i2 choose.

3In matrix form the graph of this example is G =

1 1

0 1

. For exposition, we also note that the degree

of applicant i1 is 2, and of applicant i2 it is 1. Their corresponding neighborhoods are the sets {j1, j2}, and
{j2} respectively.
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There are two possible outcomes: (i) j2 makes an offer to i2, (ii) j2 makes an offer to i1.

Outcome (i) is the first best. Outcome (ii) is a state of coexisting vacancy and unemployment,

as a result of coordination failure. According to our protocol, each outcome occurs with

probability 1/2. Thus, the expected number of matches is given by

m(G) =
1

2
· 2 + 1

2
· 1

= 3/2

A note on interpretation. The links of the graph can correspond to social ties—as in the

social networks literature4 (e.g. Calvó-Armengol, 2004), or skills required to apply for that

job, or geographic restrictions the applicant has on where to work. In other words the graph

can represent any relevant factors restricting the jobs an applicant knows of, or can apply

to for whatever reason, and we don’t need to take a stance on it for our analysis.

The network structure, that is the presence or not of a link between any applicant-vacancy

pair, can thus be taken to make explicit precisely the frictions the search and matching

literature has been assuming to implicitly underlie the matching function.5 The network can

be said to capture the underlying information structure, broadly conceived, in the economy.

3 Matching in an arbitrary graph

We can extend our computation to any arbitrary graph G, and get a generalized matching

function that is a function of sets rather than just the sizes of the two sides of the market.

4The seminal modern contribution here is considered Calvó-Armengol (2004). A series of papers have fol-

lowed including Calvó-Armengol and Jackson (2004), Calvó-Armengol and Zenou (2005), Ioannides and

Soetevent (2006), Galenianos (2014, 2020), Galeotti and Merlino (2014), Espinosa, Kováŕık and Rúız-

Palazuelos (2021). Montgomery (1991) is one of the important precursors. An early overview of the use of

network tools in economics is provided by Ioannides (1977).
5In the words of Petrongolo (VoxEU, 2010) “[Search] frictions derive from several sources, including

imperfect information about trading partners, heterogeneous demand and supply, slow mobility, coordination

failures and other similar factors.”
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Proposition 1. For any given arbitrary graph G connecting job-seekers to vacancies, the

matching function defined as the expected number of total matches is given by

m(G) = U −
U∑
i=1

∏
j∈Ni

(
1− 1

dj

)
(1)

Proof. For any applicant i the probability to receive no offer is
∏

j∈Ni

(
1− 1

dj

)
, and thus

their probability of finding a job is

fi(G) ≡ Pr{i receives at least one offer|G}

= 1−
∏
j∈Ni

(
1− 1

dj

)
For each applicant define the indicator random variable showing if they find a job, where

Yi =

1, w.p. fi(G)

0, w.p. 1− fi(G)

Then the number of matches, taking the graph as given, which by definition is the number

of applicants finding a job is also a random variable, and specifically #matches|G =
∑

i Yi.

The matching function, i.e. the expected number of matches is then

m(G) = E[#matches|G]

= E[
U∑
i=1

Yi]

=
U∑
i=1

E[Yi]

=
U∑
i=1

fi(G)

= U −
U∑
i=1

∏
j∈Ni

(
1− 1

dj

)
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Let us pause and appreciate how compact an expression (1) is for how general it is: it gives

us the expected number of matches for any possible graph G. The matching function is a

function of sets, as applicants’ neighborhoods Ni enter the expression.

We think it is useful to highlight that each applicant i finding a match is a Bernoulli trial with

probability of success fi. The Bernoulli trials are not independent, they all depend on G,

but to compute m(G) independence is not required; we only use the linearity of expectation.

We also note that the derivation of fi hinges on each firm deciding independently from all

other firms which applicant to make an offer to.

Let us now see how (1) specializes in special types of structures, and specifically how it

reduces in being a function only of the sizes U, V as is the case in the literature.

Example 1: The complete graph (or family of graphs) is the case where all applicants are

connected to all firms. In this case Ni = V , ∀i, and dj = U, ∀j, thus (1) becomes

m(G) = U −
U∑
i=1

(
1− 1

U

)V

= U

(
1−

(
1− 1

U

)V
)

It can be seen that the matching function in this case is increasing and concave in its two

arguments.6 We also note the complete graph corresponds to the classic balls-in-bins model.

Thus, it is no surprise the above is the same functional form derived early using that model

(e.g. Butters, 1977), and later as an equilibrium object by Burdett, Shi and Wright (2001).7

The complete graph is an interesting special case as it corresponds to the case when informa-

tion frictions are eliminated—all applicants know of and can apply to all existing jobs—thus

matching is only the outcome of coordination frictions.

It is broadly accepted in the literature (e.g. Petrongolo and Pissarides, 2001; Wright et al.,

6Shown in the Online Appendix.
7Replace U with m, and V with n to get their eq. 18. We also derive the symmetric of this function, i.e.

m = V
(
1−

(
1− 1

V

)U)
, as a special case in our random network treatment; see footnote 16.
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2021) that the empirical relevance of this functional form8 is quite limited.

Example 2: A double regular graph (or family of graphs) is the case where every applicant

is connected to dU firms, and each firm is connected to dV applicants.

This is a doubly-symmetric graph where all applicants and all firms search with the same

“intensity,” and we show it relates closely to the standard search-and-matching setup. We

note that a double regular graph can be thought to correspond to a symmetric equilibrium.

For such graphs (1) gives us the matching function being

m(G) = U

[
1−

(
1− 1

dV

)dU
]

However, by accounting it holds that UdU = V dV , and utilizing this equation we can write

m(U, V ) = U

[
1−

(
1− 1

dU

V

U

)dU
]

where dU is taken to be a parameter, and dV is determined from UdU = V dV . All applicants

have the same job-finding probability, which is9

f(θ; dU) = 1−
(
1− 1

dU
θ

)dU

The matching function in this case can be shown to possess standard properties assumed in

the literature: it is constant returns to scale, increasing, and concave in both U , and V . The

matching function can also be shown to be approximated at a first-order by a Cobb-Douglas

function.10 We show these results formally in the Online Appendix.

8Often people refer to its limiting form: using the result limn→+∞

(
1 + x

n

)n

= ex, the above asymptot-

ically exhibits constant returns to scale, as then the matching function can be taken to be approximately

m(V,U) ≈ U

(
1− e−

V
U

)
.

9Naturally, not any choice of a dU will do; dU has to be an integer and it has to be such that dV is also

an integer. This points to a limitation of this model (or special case).
10We note that the 1st-order approximation result is not specific to this family of graphs: any matching

function that exhibits CRS to a 1st-order approximation is Cobb-Douglas.
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We think the following result is interesting to compare with the more general results that

follow on match efficacy.

Proposition 2. For the double regular network the match efficacy is maximized when dU = 1.

Proof. See appendix.

4 Structure and match efficacy

The main result of this section is about aggregate match efficacy. We first provide a re-

lated comparative static for the individual level, which has natural empirical analogs and

generalizes analogous results of the standard matching function.

Proposition 3. In terms of their job-finding probability, an applicant (a) invariably benefits

by connecting to a new firm, and (b) is hurt if another applicant links to a firm they are

connected to.

Proof. In notation the above comparative statics are respectively

fi(G+ ik) > fi(G),∀k ̸∈ Ni

fi(G+ i′k) < fi(G),∀k ∈ Ni, i
′ ̸= i

They follow directly from the expression fi(G) = 1−
∏

j∈Ni

(
1− 1

dj

)
.

Part (a) illustrates that an applicant’s job-finding probability is always improved from higher

search intensity. Part (b) is an externality the higher search intensity of one applicant im-

poses on other applicants. Contrary to the standard matching function where the externality

affects all other applicants, in our case it is “local,” affecting only the applicants connected

to the firm to which the link is added; the rest of the applicants are unaffected.

In other words, an applicant receiving (or losing) a link creates winners and losers, and thus

its effect on aggregate match efficacy is a priori ambiguous. The next example illustrates

such a trade-off.
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Example 3. Consider the following instance where we swap a link from applicant i to i′.

Figure 2: Aggregate efficacy is hurt from the swap iff
(
1− 1

dj1

)(
1− 1

dj2

)
>
(
1− 1

dj3

)
. In this case

applicant i′ who is better off even without the extra link, gets a link at the expense of applicant i, raising

inequality in access to jobs between them.

Their respective job-finding probabilities before the swap are

fbefore
i = 1−

(
1− 1

dj1

)(
1− 1

dj2

)(
1− 1

dj4

)
fbefore
i′ = 1−

(
1− 1

dj3

)
After the swap i loses a link and will necessarily be worse-off, while i′ gains a link and will

be better-off. Thus a trade-off emerges:

f after
i = 1−

(
1− 1

dj1

)(
1− 1

dj2

)
< fbefore

i

f after
i′ = 1−

(
1− 1

dj3

)(
1− 1

dj4

)
> fbefore

i′

All other applicants (not shown in the figure) remain unaffected. The outcome of the trade-

off depends on how their job-finding probabilities compare without the concerned link. More
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concretely aggregate efficacy is reduced iff fbefore
i + fbefore

i′ < f after
i + f after

i′ or(
1− 1

dj1

)(
1− 1

dj2

)
︸ ︷︷ ︸

Prob{i doesn’t get offer from connections excluding j4}

>

(
1− 1

dj3

)
︸ ︷︷ ︸

Prob{i’ doesn’t get offer from connections excluding j4}

This condition states that applicant i is relatively more reliant on the additional link to j4

than i′ to get a job. That is because the probability that i does not find a job relying on all

their other connections,
(
1− 1

dj1

)(
1− 1

dj2

)
is greater than the respective probability for i′,(

1− 1
dj3

)
. Thus making the swap hurts i more than it benefits i′, hence the net outcome is

negative.

Theorem 1. Take an arbitrary network G connecting job-seekers to vacancies.

(A) Let Ĝ denote the network resulting from swapping a link ij ∈ G with link i′j ̸∈ G.

Then m(Ĝ) < m(G), if and only if

1− fi(Ĝ) > 1− fi′(G) (*)

(B) Let Ĝ denote the network resulting from adding link ij, where ij ̸∈ G.

Then m(Ĝ) < m(G), if and only if

1− f̄Nj
(G) > 1− fi(G) (*’)

where 1− f̄Nj
(G) ≡ 1

dj

∑
k∈Nj

∏
j′∈Nk/{j}

(
1− 1

dj′

)
.

Proof. See appendix.

Part (A) of theorem 1 generalizes precisely the instance illustrated in the foregoing example:

1− fi(Ĝ) is the probability applicant i—the loser of the swap, does not receive an offer from

all their other connections excluding j, and 1−fi′(G) the respective probability for applicant

i′—the winner of the swap. The link swap is harmful iff the former is above the latter, and

thus the applicant who is more reliant on the extra connection—i, loses it for the benefit of

the applicant who needs it less—i′.
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A link swap between applicants is the only operation allowed when holding the firms’ degrees

fixed and is thus a well-defined comparative static. It corresponds to cases of redistribution

of links among applicants. Specifically theorem 1 says that any swap, and thus any sequence

thereof, that increases inequality in access to jobs among applicants will hurt the matching

process. In other words, when “the rich get richer”—in terms of access to jobs—match

efficacy goes down. Conversely, link swaps that equalize the probabilities of applicants to

receive an offer, thus making the network structure less asymmetric, improve efficacy.

Part (B) of theorem 1 states that an exactly analogous condition determines whether an

additional link, that is higher (overall) search intensity or equivalently network structures

of higher density, will improve or hurt overall match efficacy. The right-hand side of the

condition is the probability applicant i—the winner of the addition—receives no offer from

all their other connections, thus determines the reliance of i on the new link; the left-hand

side gives the corresponding quantity for the “average” loser of the addition, that is the

average probability an applicant connecting to firm j before the addition receives no offer

from all their other connections excluding firm j.

Theorem 1 formalizes the two main themes of our analysis for match efficacy: structures of

higher asymmetry unambiguously hurt overall match efficacy (part A), while structures of

higher density can have ambiguous results (part B). We will see different variants of these

two themes going forward.

A first variant of the effects of asymmetry expressed only in terms of applicants’ degrees can

be attained in the special case when all firms have the same degree. In this case: dispersion

in applicant’s degrees reduces aggregate efficacy.

Proposition 4. Suppose dj = dV ,∀j. If (d′i) is a mean-preserving spread of (di), then

m(G′) < m(G).

Proof. We have

m(G′) < m(G) ⇔
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U −
U∑
i=1

(
1− 1

dV

)d′i

< U −
U∑
i=1

(
1− 1

dV

)di

⇔

U∑
i=1

(
1− 1

dV

)d′i

>

U∑
i=1

(
1− 1

dV

)di

Since
(
1− 1

dV

)x
is a convex function of x, the last inequality holds.11

Corollary 1. Suppose dj = dV ,∀j, and let GR denote the corresponding doubly regular

graph, if that exists. Then for any graph G, m(G) ≤ m(GR).

Thus, when the situation is homogeneous on the firms’ side, match efficacy increases with

homogeneity on the applicants’ side as well. Conversely, any increase in the spread in

applicants’ degrees will reduce match efficacy.

5 Matching in random graphs

In the foregoing part of our analysis we showed that matching generally depends on whole

sets. In such a setup, therefore, to get closer to the standard matching function that only

depends on sizes of the two sides, one needs to impose extreme symmetry as that in the

double regular or the complete graphs, thus losing all structural richness. We now introduce

the family of structures described as (bipartite) random graphs which feature symmetry, as

all applicants are ex-ante identical, yet retain enough structural richness to be of interest.

Random graph characterization: Take applicant degrees to be i.i.d. draws from a given

distribution p⃗ = (p0, p1, ...pV ), where pk ≡ Pr{di = k}. For each applicant, conditional on

a given draw from that distribution, the links are assumed to fall at random on an equal

number of distinct firms among the V .12

The applicant-degree distribution p⃗ can be any arbitrary distribution over the non-negative

integers. The way the random graph is characterized induces a distribution of degrees on

11The Online Appendix provides some background material on mean-preserving spreads over arbitrary

vectors which are not necessarily a probability distribution.
12More formally that is random sampling of di elements from a population of V without replacement.
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the firm side, which we will show is a binomial distribution.

We highlight that even though all applicants are ex-ante identical in these structures, we

can still meaningfully talk about changes in the asymmetry of the structure in the form of

mean-preserving spreads in the underlying distribution p⃗.

We will denote the firm-degree distribution by z⃗ = (z0, z1, ...zU), where zk ≡ Pr{dj = k}.
We will also denote the mean degree on the applicant and firm sides by d̄U , d̄V respectively,

i.e. d̄U =
∑

k kpk and d̄V =
∑

k kzk.

Lemma 1. Conditional on an applicant-degree distribution p⃗, the degrees on the firm side

follow a binomial distribution, denote dj ∼ Bin(λ, U), where λ = d̄U
V
.

Proof. We have

zk = Pr

{
U∑
i=1

Xij = k

}
where Xij is an indicator, being 1 if applicant i links to (has applied to) firm j.

Since all i are ex-ante i.i.d, Xij are also i.i.d with probability13

Pr{Xij = 1} =
V∑

k=1

Pr{Xij = 1|di = k}pk

=
V∑

k=1

(
V−1
k−1

)(
V
k

) pk

Define λ ≡
∑V

k=1

(V −1
k−1)
(Vk)

pk. Now, by noticing that
(V −1
k−1)
(Vk)

= k
V
, it follows that

λ =
d̄U
V

Then Xij are Bernoulli with probability of success λ, and thus dj ∼ Bin(λ, U).

We note that λ is a function of p⃗, V but for notational simplicity we are not denoting this

explicitly.

13The second line follows from a standard combinatorial argument: we want to find how many choices

include a particular element i, among all the
(
V
k

)
possible choices. We fix element i, and are free to choose

the remaining k − 1 elements from the remaining V − 1 elements of the pool: these are precisely
(
V−1
k−1

)
.
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Remark: Since dj ∼ Bin(λ, U), it follows that d̄V = λU , and thus14

d̄V
U

=
d̄U
V

This is a useful relationship we will invoke again in our analysis later.

Corollary 2. A mean-preserving spread in the distribution of di’s leaves the distribution of

dj’s unchanged.

Proof. This follows from dj’s following a binomial distribution, and its parameter λ depend-

ing only on d̄U , V , which stay constant with a mean-preserving spread.

We will return to this result when we do comparative statics.

5.1 Moving to matching

We now derive the matching function in the stochastic network case. The matching function

now is a double expectation, over who makes an offer to whom (as before), but also over the

realized networks G. In other words, the matching function now is

m = EG[m(G)]

We first prove a lemma we will need regarding the excess degree of a firm an applicant

connects to. The excess degree, denote by d̃, refers to the number of edges leaving the firm

other than the edge of the said applicant.15

Lemma 2. The excess degrees of all firms an applicant connects to (a) are i.i.d, and (b) it

holds that Pr{d̃ = k} = (1+k)z1+k

d̄v
.

14In fact it can be shown this is an accounting identity that has to hold for any bipartite random graph.
15We note that the result Pr{d̃ = k} = (1+k)z1+k

d̄v
is a special case of a more general result known for

the configuration model (e.g. Newman, 2003; Jackson, 2010). The result is exact in our case, while in the

configuration model it is approximate and holds asymptotically for a large number of nodes.

18



Proof. The degrees of firms are i.i.d following Bin(λ, U). Thus the excess degrees of a firm

an applicant connects to are also i.i.d and d̃ ∼ Bin(λ, U − 1), since U − 1 only of the firm’s

degree Bernoulli trials remain to be determined. It follows that

Pr{d̃ = k} =

(
U − 1

k

)
λk(1− λ)U−1−k

=
(U − 1)!

k!(U − 1− k)!
λk(1− λ)U−1−k

=
1 + k

λU

U !

(1 + k)!(U − 1− k)!
λ1+k(1− λ)U−1−k

=
(1 + k)z1+k

d̄V

Theorem 2. The matching function in our stochastic network model, defined as m =

EG[m(G)], is given by

m = U

(
1−

V∑
dU=0

pdU (1− ϕ)dU

)
(2)

where ϕ = 1−z0
d̄V

. z0 = (1− λ)U is the probability a firm receives no applications.

Proof. See appendix.

Remark: Suppose p⃗ is degenerate, say Pr{di = d} = 1. Then all applicants have the same

number of connections and thus send the same number of applications, and (2) becomes16

m(U, V ; p⃗) = U

(
1−

V∑
dU=0

pdU (1− ϕ)dU

)

= U

(
1−

(
1− 1− z0

d̄V

)d
)

If also U, V → ∞ holding V/U constant, then z0 → e−d̄V . Using Ud = V d̄V ,

m(U, V ; d) = U

(
1−

(
1− 1− e−dU/V

dU/V

)d
)

We notice this is the matching function derived by Albrecht, Gautier and Vroman (2006).

16Taking the special case when d = 1, we get m(U, V ) = V
(
1−

(
1− 1

V

)U)
, which is the symmetric

function of the balls-in-bins model we got in section 3. See also footnote 7.
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5.2 The special case of Erdös-Rényi

As it is an important benchmark in the literature of random graphs, we derive the matching

properties of the Erdös-Rényi network, which we show is a special case of our model.

Lemma 3. When di ∼ Bin(µ, V ), our stochastic network becomes the Erdös-Rényi network,

that is it can be created drawing each link with the same probability µ.

Proof. We have already shown the firm degree distribution is binomial with parameter λ =

d̄U
V
. But since di ∼ Bin(µ, V ), d̄U = µV . Thus λ = µ, and dj ∼ Bin(µ, U).

It follows that in this case the network can be constructed drawing each link with probability

µ as this process amounts to precisely V Bernoulli trials for each applicant, and U Bernoulli

trials for each vacancy all with probability of success µ.

Corollary 3. In the case of the Erdös-Rényi model the matching function is given by

m = U

(
1−

[
1− 1− (1− µ)U

U

]V)

Proof. See appendix.

Two polar cases are readily verifiable: As we would expect, for µ = 0, we have the empty

graph, and m = 0; For µ = 1, we have the complete graph, and m = U
(
1−

[
1− 1

U

]V )
.

Corollary 4. The matching function in the Erdös-Rényi model is increasing in µ, and thus

it is maximized when µ = 1 (the complete graph).

Proof. It follows directly from the expression for m.

Contrasting this with the result on double regular graphs, it indicates that a higher search

intensity has generally an ambiguous effect on match efficacy. We will see another variant

of this finding in the more general analysis that follows.
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5.3 The effects of asymmetry and density; again

From (2), the applicants’ job-finding probability is given generally from the expression

f =
m

U
= 1−

V∑
dU=0

pdU (1− ϕ)dU

where ϕ = 1−z0
d̄V

.

We have already established that a mean-preserving spread in di’s leaves the distribution of

dj’s unchanged (corollary 3), and thus ϕ is left unchanged as well. We can further show the

following proposition

Proposition 5. A mean-preserving spread17 in the distribution of di’s reduces the applicants’

job-finding probability f .

Proof. Denote by p⃗ ′ a mean-preserving spread of p⃗. Equivalently, the two distributions

have the same mean, and p⃗ second-order stochastically dominates (SOSD) p⃗ ′ (Mas-Colell,

Whinston and Green, 1995, proposition 6.D.2). The definition of SOSD holds that for every

non-decreasing concave functions u(·) : R+ → R it holds that∑
dU

p′dUu(dU) ≤
∑
dU

pdUu(dU)

Now, −(1−ϕ)dU is an increasing and (strictly) concave function, and then from the definition

of SOSD we have

∑
dU

p′dU [−(1− ϕ)dU ] ≤
∑
dU

pdU [−(1− ϕ)dU ] ⇒

1−
∑
dU

p′dU (1− ϕ)dU ≤ 1−
∑
dU

pdU (1− ϕ)dU ⇒

17A mean-preserving spread is defined as a compound lottery, say d′U = dU + Y , where E[Y |dU ] = 0

(Rothschild and Stiglitz, 1970). For example define Y = 0, if dU = 0, and Y =

+1,w.p. 1/2

−1,w.p. 1/2
if dU ≥ 1.
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f ′ ≤ f

with equality holding iff ϕ = 0 or ϕ = 1.

Corollary 5. Given d̄U , match efficacy is maximized when everyone sends the same number

of applications, d̄U .

Proof. We have

1−
V∑

dU=0

pdU (1− ϕ)dU < 1− (1− ϕ)d̄U

following from Jensen’s inequality.

We note that proposition 5 and its corollary echo the results on the impact of heterogeneity

on match efficacy of section 4.

We now move to study the effect of uniformly increasing search intensity across applicants.

As illustrated in figure 3, when all applicants send the same number of applications, i.e.

Pr{di = d} = 1, the matching function exhibits an inverted-U shape as a function of d.

Thus uniformly increasing search intensity has an ambiguous effect on match efficacy.

Figure 3: Job-finding probability f(.) as a function of d ∈ [0, V ], when all applicants have the same degree

d. U, V are held fixed. f(.) (and thus m(.)) has a characteristic inverted-U shape as a function of degree d.
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We notice the possibility that the peak of the inverted-U can be to the left of d = 1 in the

case of a slack market of relatively low V (figure on the right, U = 100, V = 20). That means

that in this case, having everyone send the same number of applications, maximum efficacy is

achieved when everyone sends a single application. Furthermore, quantitatively, even when

the peak is at a higher degree, it is early, or in other words the matching function has a

“long” right tail. This means that even when there are benefits from multiple applications,

congestion effects outweigh these benefits quite fast. The peak in the left figure, a perfectly

balanced market with U = V = 100 occurs at d = 3.

Finally, we compare the efficacy of three networks: (i) the double regular network, (ii) the

Erdös-Rényi network, and (iii) the 1-side regular network where all applicants have the same

degree (Albrecht, Gautier and Vroman, 2006). To do so, in the following figure we hold U, V

fixed, and vary the applicants’ degree d. In cases (i) and (iii) all applicants have exactly the

same degree, d. In case (ii) there is (ex-post) heterogeneity in applicants’ degrees, but they

all have the same (ex-ante) expected degree, d; in other words for the three networks to be

comparable, we vary µ in the Erdös-Rényi model by varying d, where µ = d
V
.

Figure 4: Comparing the efficacy of (i) the double regular network, (ii) the Erdös-Rényi network, and (iii)

the 1-side regular network where all applicants have the same degree, holding fixed U = V = 100. The detail

in the graph zooms in the range of d = 5..100 for visual clarity.
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There are a few comments to make on the plot. First, we confirm that the job-finding

probability is decreasing for the double regular graph, increasing for Erdös-Rényi, and of the

inverted-U shape in the case of the 1-side regular network. We notice that for the double

regular network the probability is exactly 1 for a degree of 1, as this is the case where every

applicant links to a single firm and thus there are no search or coordination frictions.

Second, the fact that efficacy in Erdös-Rényi is lower everywhere reflects our results that

applicant-side heterogeneity is harmful for efficacy: in Erdös-Rényi there is applicant-side

heterogeneity in degrees, while in both other networks there isn’t. The fact that efficacy

is lower in the case of the 1-side regular network compared to the double regular network

suggests that heterogeneity is harmful on the firm side as well: neither network has hetero-

geneity on the applicant side, but the double regular doesn’t have heterogeneity on the firm

side either, while the 1-side regular has the degrees on the firm side following a binomial

distribution.

Lastly, we see the 1-side regular and double regular networks quickly converging to each

other as degrees increase. This is because the matching functions of the two differ only by

the probability of a firm to receive no applications, z0, and this probability goes to 0 as

d increases.18 All three converge to the same limit at d = V , which corresponds to the

matching function of the complete network, i.e. the classic balls-in-bins case.

6 The importance of network scaling

The complete graph is the special case when all applicants know of all vacancies. If the

number of vacancies changes, for the graph to remain complete, each applicant has to scale

their degree up or down accordingly. Thus working with the complete graph structure (the

balls-in-bins model) implicitly assumes some type of scaling of the degree of all applicants

as the size of the graph changes. The same applies to the double regular network.

Upon reflection, the question of scaling applies to all graphs and relates to the question of

18Our formulas for the two cases are f(θ; d) = 1−
(
1− 1

dθ
)d

for the double regular network, and f(θ; d) =

1−
(
1− 1−z0

d θ
)d

for the 1-side regular network.
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how does applicant degrees change, when market conditions—the sizes of the two sides of the

market—change. This question requires an economic model of network generation and thus

lies outside the scope of this paper. We can, however, illustrate its significance following the

classic analysis of the the Erdös-Rényi network, where the key parameter of the distribution

is parameterized as a function of the network size, to study the change in properties of the

graph (e.g. Jackson, 2010, p. 89).

In the Erdös-Rényi network it holds that

f = 1−
[
1− 1− z0

U

]V
, where z0 = (1− µ)U , µ =

d̄U
V

We take the limit where U, V → +∞ holding V/U fixed, to get

f → 1− e−(1−z0)V/U , where z0 → e−Ud̄U/V

Now, scaling refers to how d̄U changes when U, V change.19 For example, if d̄U is constant,

the matching function will exhibit constant returns to scale, while, if d̄U scales linearly in V

(i.e. µ stays constant), the matching function will exhibit increasing returns to scale (figure

5). Finally, if d̄U scales according to the following expression,

d̄U = −V

U
ln

(
1 +

U

V
ln

(
1− (U−γ + V −γ)−

1
γ

U

))
, γ > 0

the matching function will be of the CES form, as shown in proposition 6 that follows. It

can be seen that in this case d̄U is homogeneous of degree 0 in U, V , and as illustrated in

figure 6 it is increasing and concave in market tightness V
U
.

19We notice this job-finding probability corresponds to another matching function assumed in the litera-

ture, where a fraction of applications z0 gets “lost” (e.g. Petrongolo and Pissarides, 2001). In our case no

application is “lost.” z0 is the fraction of firms receiving no applications and it is an endogenous quantity.

25



Figure 5: Returns to scale

Figure 6: d̄U yielding CES
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Proposition 6. Take a function m̃(U, V ) such that m̃(U, V ) < U, V . Then, in the Erdös-

Rényi network, if

d̄U = −V

U
ln

(
1 +

U

V
ln

(
1− m̃(U, V )

U

))
(**)

it will hold that f = m̃(U,V )
U

, and d̄U > 0.

Proof. See appendix.

It follows that if m̃(U, V ) = m0

(
U−γ+V −γ

)− 1
γ , γ > 0,m0 ∈ (0, 1],20 the Erdös-Rényi network

gives rise to the CES matching function. The Leontief can be derived as the limit case of

the CES when γ → ∞. The Cobb-Douglas can also be derived as a limit case of the more

general CES function m0

(
(1− η)U−γ + ηV −γ

)− 1
γ , η ∈ (0, 1), when γ → 0.21

Our result on being able to generate specific matching functions can be taken to illustrate

“how much” or rather “what type” of a knife-edge case the Cobb-Douglas, the CES, or in

fact any specification of the aggregate matching function are. Our analysis suggests that,

assuming one of these specifications amounts to assuming a particular type of scaling of

the applicant-degree distribution: For any pair of U, V , d̄U has to scale “appropriately”—as

given by (**), for the matching function to be of the respective functional form, or more

generally to satisfy constant returns to scale.

The question as to how the network scales with market conditions is ultimately an empirical

one, and our analysis suggests what type of data are needed to address it.

Connection to Stevens (2007). In the large-economy limit of the Erdös-Rényi network we

are working with in this section, the applicant-degree distribution is Poisson with parameter

d̄U . Stevens (2007) describes the underlying network of connections by a queuing system.

Even though the queuing system cannot be mapped exactly to the Erdös-Rényi network

because its characterization is inherently dynamic, we argue the two are closely related.

20For this functional form it can be checked that m̃(U, V ) < U, V .
21For the Cobb-Douglas we have to restrict U, V in the regions where m < U, V . The fact that Cobb-

Douglas is less tractable than the CES in the discrete case is known in the literature. Cobb-Douglas can

also be derived as the 1st-order approximation to the CES as shown in the appendix of section 3.
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Stevens (2007) describes the underlying network of connections and offer protocol as a

(“telephone-line”) queuing system (Cox and Miller, 1965 section 4.4; Ross, 2010 section

6.3). Applications arrive at a Poisson rate of uα. These can equivalently be thought as

independent arrivals from u applicants each at a Poisson rate α. This means that at any

time interval τ the number of applications (“customer arrivals”) from each applicant is a

Poisson distributed random variable with parameter ατ . Thus on the applicant side the

model is virtually identical to our Erdös-Rényi network.

Things change slightly from our setup regarding how applications “fall” on vacancies, and

how offers (matches) are made: the firm is modeled as a “server” processing applications at

a Poisson rate of vγ. As soon as an application arrives, if it finds the server empty, it starts

being processed; if the server is busy, the application is lost. Once processing finishes, an

offer (match) is made and the server returns to being empty and ready to process another

application. The (stationary) probability the server is empty is known to be vγ
vγ+uα

, and thus

the matching function is

uα
vγ

vγ + uα

that is the rate of arrival times the fraction of time it finds the server empty.

This is a useful comparison for two reasons: (a) it links to an alternative characterization

of the network of connections and offers protocol which are specified as arrival processes

and thus for comparison we have to see them over some time interval τ ; (b) it relates to

scaling, as one of the main insights of Stevens (2007) is that the matching function is of the

CES form precisely when average application intensity—α, and recruitment intensity—γ, are

endogenously chosen in a way that depends on market conditions, that is, when intensities

“scale” appropriately (Stevens, 2007, proposition 3).

7 Discussion of assumptions

This section discusses some elements of our framework, and modeling choices we made.

Applicant links falling uniformly at random on vacancies. We note that essentially

our random network model assumes firms have no limit on how many applications they want
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to screen; they accept as many applications as applicants send. One way of relaxing this

assumption is by assuming that each firm has a randomly drawn degree, and “meeting”

amounts to connecting the stubs of applicant and firm degrees. That model is the bipartite

configuration model analyzed by Newman, Strogatz and Watts (2001); asymptotically it

will have the same behavior as ours, with the only difference being that zk will not be

necessarily binomial, but an arbitrary distribution, and a primitive. That setup will still

have (asymptotically) a matching function given by (2) but z0 will be a primitive.

Burdett, Shi and Wright (2001) and Albrecht, Gautier and Vroman (2006) are examples of

how to derive their respective networks, in equilibrium, when links fall randomly on firms.

A note on applicant-degree distributions. Having applicants with zero degree in the set

of “unemployed” may appear somewhat atypical. Most of the analysis will not be affected

by limiting attention to distributions with Pr{di = 0} = 0. Naturally this would preclude

the Erdös-Rényi network which does have a positive fraction of applicants with 0 degree.

In other words, our random graph approach treats in a unified way the decision to enter

the labor market (extensive margin of search—send 0 vs sending ≥ 1 applications) and the

search effort an applicant puts (intensive margin of search—number of applications sent).

People with 0 links (and hence 0 applications) will be the “voluntarily” unemployed, while

people who send ≥ 1 applications and don’t find a job, the “involuntarily” unemployed. The

quotation marks are there to highlight that the “voluntarily” unemployed may just be shut

out of the network of job search, not having for example the relevant skills at the moment,

or the right connections, or they may not know how to search.22

Vertical heterogeneity and uniform at random offers. Our setup abstracts from

potential differences in applicants’ quality in their abilities. Such a dimension could be

introduced, for example, by adding weights to the edges to reflect differences in the applicant-

job fit. The probability to receive an offer could then be proportional to that weight. The

extent to which “good” applicants would tend to be good fits for multiple positions, and

22Some firms will also have zero degree, but this is perfectly normal: a firm can find no match either

because nobody applied to its vacancy, or because it made an offer to someone who takes another offer.
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thus receive more offers, could exacerbate the coordination frictions in the matching process.

In the absence of differences in quality the uniform-at-random offer from the firm side seems

the most natural choice. In fact, we argue, there are many contexts where the choice among

applicants is so multidimensional, that, which applicant really “clicks” for a position they

look fit for “in paper,” is unpredictable and thus can appear as uniform at random.23

Multiple applications and single offers. In our application-and-offer protocol, the two

sides of the market are asymmetric: applicants apply to all vacancies they are connected to,

while firms make a single offer. This asymmetry stems from the nature of the problem: an

offer, once made, is assumed to be binding; this is not the case for applications. Since firms

are assumed to have a single vacancy to fill, they necessarily make a single offer.

We think extending the analysis to cases where firms make multiple offers would be naturally

done in a context where (large) firms have multiple vacancies to fill. Such a setup may give

rise to matching functions where the two sides of the market enter more symmetrically

compared to the matching functions we have derived here.24

Relatedly, we do not consider cases where a firm makes no offers, or cases where firms make

multiple rounds of offers. To make such extensions meaningful would require to introduce

notions of quality and preferences. Such decisions are also inherently dynamic: for a firm to

decide whether it does not like any candidate25, or whether it wants to make an offer to its

second-best candidate if its top choice turned their offer down, is a function of what types

of candidates the firm expects to “meet” next period (e.g. Martellini and Menzio, 2020).

We abstract from all these dimensions in the current analysis as our emphasis is on the

23It is common that unpredictable factors, such as “cultural” fit, enter the decision process. Similarly, in

the academic job market, internal politics among groups and which one will manage to make the strongest

case to hire their preferred candidate affect the outcome.
24In such setups, we conjecture that a critical role will be played by correlations between the number of

applications sent at firms and the number of vacancies at these firms.
25A firm might also make no offer because it is a “phantom” (Cheron and Decreuse, 2017). This however

is a different issue relating to the measurement of vacancies and if an observed vacancy is “really” a vacancy.

Incidentally, this issue has gained some attention recently in the policy debate (e.g. Michaillat, 2023).
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implications of the network structure, by definition a cross-sectional object.26

We do think however some further commenting is useful. The number of rounds determines

the extent of coordination frictions. Since our interest is on the role of the network structure,

we have kept the application-and-offer protocol fixed throughout, while we vary the network

structures. To get a sense of how the two interact let us modify our protocol to the polar case

of allowing arbitrarily many rounds of offers to the same pool of applicants: assume each

applicant chooses randomly one of the offers they receive; this applicant-vacancy pair exits

the market, while unmatched firms choose randomly another applicant in their applications

list to make an offer to; the process is repeated until all possible matches are exhausted.27

With such a protocol, the result that increasing the number of links across applicants can

have a negative impact on match efficacy due to congestion effects will go away. This can be

seen in the limit: in the complete graph, allowing for multiple rounds necessarily means the

matching function reaches its efficacy limit, that is m(U, V ) = min{U, V }, i.e. the maximum

number of possible matches will ultimately be formed.

However, the result that a mean-preserving spread in the applicant degree distribution hurts

match efficacy is maintained, even though, naturally, the level of the job-finding probability

changes. We show this through simulations. In the left figure below, the y-axis plots the

applicant job-finding probability and as we move to the right, the figure plots the outcome

of four applicant-degree distributions each being a MPS of the one to its left. The reason

the result carries through can be seen going back to our figure 1, reproduced below to the

right: more well-connected applicants (i1 in the figure) can receive and accept an offer (offer

j2 in the figure) that “blocks” less connected applicants from being able to receive an offer

even if multiple rounds are allowed for.

26The single-round assumption is commonly held among related papers that look at the allocation of jobs

to applicants in the cross-section (e.g. Shimer, 2005; Albrecht, Gautier and Vroman, 2006; Galenianos and

Kircher, 2009; as well as Calvó-Armengol, 2004; Calvó-Armengol and Zenou, 2005).
27This type of analysis is inspired from Kircher (2009) and Gautier and Holzner (2017) who, however,

contrary to us, impose some amount of coordination of how applicants are recalled over rounds.
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Figure 7: Figure A plots the applicant job-finding probability and as we move to the right of the x-axis

each applicant-degree distributions is a mean-preserving spread of the one to its left. More specifically, the

sizes of the two sides of the market are held constant, U = V = 100; d̄U = 20; and for x = {0, 1, 2, 3}
half of the applicants are randomly assigned a high degree of dh = d̄U + x · 5, and the rest a low degree

of dl = d̄U − x · 5. We run 3000 simulations of network creation and matching and take their average for

each data point. For the single round protocol we have the analytic expression of the matching function as

well and show it is identical to the expectation computed through simulation. Figure B illustrates that in

the presence of such patterns in the network, when applicant i1 receives and accepts an offer from firm j2,

applicant i2 is cut out of the network even if we allow for multiple rounds thereafter.

8 Concluding remarks

The key message of this paper is that structure counts for the properties of the emergent

matching function, to the point we can claim that the underlying structure is the matching

function. A natural next question is, of course, how do economic forces determine that

structure and how does that structure change over time.

It is worth highlighting one sense of structure we have not covered in our analysis. For any

plausible interpretation of a link, one might expect correlation patterns to emerge. Suppose

applicant i connects to two jobs—say j, j′. Conditional on applicant i′ connecting to job

32



j, they may have a higher than average probability to also connect to job j′. This relates

to the fundamental notion of clustering (or transitivity) in the networks literature, and it

is absent from our random network structures, for which the probabilities of each link are

independent. We think this is of first-order interest to be refined in future theoretical work

and be tested empirically.

Apart from its realism, clustering is expected to matter quantitatively, as we would expect

coordination failures be exacerbated in its presence: to put it simply, clustering implies

that the same people compete for the same jobs. A description of the underlying network

of connections featuring clustering can be seen as a relaxation of what is commonly done,

to assume fully segmented submarkets (or “locations”),28 an approach that comes with the

known empirical challenge of choosing the “boundaries” of these submarkets.

Networks can also guide refined welfare types of exercises,29 where the planner takes into

account the whole network of connections, thus finding the constrained optimum by elimi-

nating only coordination frictions. The constrained optimum is a known and easy to solve

problem in the networks literature, it is the max-flow problem.

Starting from the job-finding probability for the random network, given in (2) and taking

1st-order Taylor approximation around d̄u, we get

f
1st

≈ 1− (1− ϕ)d̄u

which is the job-finding probability in the 1-side regular network (Albrecht, Gautier and

Vroman, 2006) giving that network an additional special role. Taking the 2nd-order Taylor

approximation yields

f
2nd

≈ 1− (1− ϕ)d̄u
[
1 +

1

2
[ln(1− ϕ)]2V ar(du)

]
giving yet another variant of our theme that asymmetries, as these are captured here by the

variance of the distribution of connections, hurt match efficacy.

28E.g. Sahin et al., 2014, Herz and van Rens, 2020 in the empirical, and Menzio and Shi, 2011 in the

theoretical literature. Under clustering, there will be subsets of highly connected applicants and firms, who

however are not fully isolated from the rest of the market. Such subsets would form a “submarket.”
29Such type of exercises have been the focus of large part of the literature, e.g. Moen, 1997; Shimer, 2005;

Albrecht, Gautier and Vroman, 2006; Kircher, 2009; Galenianos and Kircher, 2009; Sahin et al., 2014.
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In terms of empirical work, all parts of our analysis suggest that to further unpack the im-

plications of the structure that underlies the emergent matching function, we need granular,

applicant-vacancy level data on links. What are the stylized facts of these networks, and

how they evolve over the business cycle are open questions.

In terms of theoretical work what is needed is to further understand how these networks are

formed: as the outcome of choices of people to acquire information of new jobs and firms to

advertise them, the choices of people to move to jobs of similar skills to theirs, or to acquire

new skills to expand the set of jobs they can apply to, or to relocate. Models of network

creation and models of directed search can usefully be blended in that direction.
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Sedláček, Petr. 2014. “Match efficiency and firms’ hiring standards.” Journal of Monetary

Economics, 62(C): 123–133.

Shimer, Robert. 2005. “The Assignment of Workers to Jobs in an Economy with Coordi-

nation Frictions.” Journal of Political Economy, 113(5): 996–1025.

Stevens, Margaret. 2007. “New Microfoundations for the Aggregate Matching Function.”

International Economic Review, 48(3): 847–868.
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Appendices

A Section 3, Matching in an arbitrary graph

Proposition. For the double regular network matching efficacy is maximized when dU = 1.

Proof. The job-finding probability in the double regular graph case is

f = 1−
(
1− 1

dU
θ

)dU

To study its monotonicity holding θ fixed and varying dU , let us define and study the

monotonicity of the auxiliary function

h(dU) =

(
1− 1

dU
θ

)dU
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where naturally dU ≥ θ for the function to be well-defined.30 From now on we drop the

subscript U to simplify notation.

Define

h̃(d) = ln(h(d))

= d ln

(
1− 1

d
θ

)
Now,

h̃′(d) = ln

(
1− 1

d
θ

)
+

d 1
d2
θ

1− 1
d
θ

= ln

(
1− 1

d
θ

)
+

1
d
θ

1− 1
d
θ

We can show this is always > 0. Exponentiate both sides to get

eh̃
′
=

(
1− 1

d
θ

)
e

1
d
θ

1− 1
d
θ

But we know ex ≥ 1 + x, ∀x ≥ 0, thus

e

1
d
θ

1− 1
d
θ ≥ 1 +

1
d
θ

1− 1
d
θ
⇒

e

1
d
θ

1− 1
d
θ ≥ 1

1− 1
d
θ
⇒(

1− 1

d
θ

)
e

1
d
θ

1− 1
d
θ ≥ 1

Since eh̃
′ ≥ 1, it follows that h̃′ ≥ 0, thus h̃ is increasing in d, thus h is increasing in d, and

hence f is decreasing in d.

B Section 4, Structure and match efficacy

Theorem. Take an arbitrary network G connecting job-seekers to vacancies.

30This constraint is imposed in our model from UdU = V dV , and dV ≥ 1.
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(A) Let Ĝ denote the network resulting from swapping a link ij ∈ G with link i′j ̸∈ G.

Then m(Ĝ) < m(G), if and only if

1− fi(Ĝ) > 1− fi′(G)

(B) Let Ĝ denote the network resulting from adding link ij, where ij ̸∈ G.

Then m(Ĝ) < m(G), if and only if

1− f̄Nj
(G) > 1− fi(G)

where 1− f̄Nj
(G) ≡ 1

dj

∑
k∈Nj

∏
j′∈Nk/{j}

(
1− 1

dj′

)
.

Proof. Part (A): Since nothing changes for any other applicant other than i, i′, only these

two matter, thus

m(Ĝ) < m(G) ⇔

fi(Ĝ) + fi′(Ĝ) < fi(G) + fi′(G) ⇔

−
∏

k∈Ni/{j}

(
1− 1

dk

)
−

∏
k∈Ni′

⋃
{j}

(
1− 1

dk

)
< −

∏
k∈Ni

(
1− 1

dk

)
−
∏
k∈Ni′

(
1− 1

dk

)
⇔

−
∏

k∈Ni/{j}

(
1− 1

dk

)
+
∏
k∈Ni

(
1− 1

dk

)
< −

∏
k∈Ni′

(
1− 1

dk

)
+

∏
k∈Ni′

⋃
{j}

(
1− 1

dk

)
⇔

−
∏

k∈Ni/{j}

(
1− 1

dk

)
+

∏
k∈Ni/{j}

(
1− 1

dk

)(
1− 1

dj

)
< −

∏
k∈Ni′

(
1− 1

dk

)
+
∏
k∈Ni′

(
1− 1

dk

)(
1− 1

dj

)
⇔

−
∏

k∈Ni/{j}

(
1− 1

dk

)[
1−

(
1− 1

dj

)]
< −

∏
k∈Ni′

(
1− 1

dk

)[
1−

(
1− 1

dj

)]
⇔

∏
k∈Ni/{j}

(
1− 1

dk

)
>
∏
k∈Ni′

(
1− 1

dk

)
⇔

1− fi(Ĝ) > 1− fi′(G)

Part (B): In this case only i and the applicants in the neighborhood of firm j are affected.

Specifically,
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m(Ĝ) < m(G) ⇔

fi(Ĝ) +
∑
k∈Nj

fk(Ĝ) < fi(G) +
∑
k∈Nj

fk(G) ⇔

−
(
1− 1

1 + dj

) ∏
j′∈Ni

(
1− 1

dj′

)
+
∑
k∈Nj

∏
j′∈Nk/{j}

(
1− 1

dj′

) < −
∏

j′∈Ni

(
1− 1

dj′

)
−
(
1− 1

dj

) ∑
k∈Nj

∏
j′∈Nk/{j}

(
1− 1

dj′

)
⇔

1

1 + dj

∏
j′∈Ni

(
1− 1

dj′

)
<

(
1

dj
− 1

1 + dj

) ∑
k∈Nj

∏
j′∈Nk/{j}

(
1− 1

dj′

)
⇔

1

1 + dj

∏
j′∈Ni

(
1− 1

dj′

)
<

1

dj(1 + dj)

∑
k∈Nj

∏
j′∈Nk/{j}

(
1− 1

dj′

)
⇔

∏
j′∈Ni

(
1− 1

dj′

)
<

1

dj

∑
k∈Nj

∏
j′∈Nk/{j}

(
1− 1

dj′

)
⇔

1− fi(G) <
1

dj

∑
k∈Nj

∏
j′∈Nk/{j}

(
1− 1

dj′

)
︸ ︷︷ ︸

≡1−f̄Nj
(G)

To go from line 2 to line 3 we used the expression for an applicant’s job-finding probabil-

ity, canceled the 1’s from all terms, and factored out
(
1− 1

1+dj

)
on the left hand side for

compactness. To go from line 3 to line 4 we collected terms on the two sides.

C Section 5, Matching in random graphs

Theorem. The matching function in our stochastic network model, defined as m = EG[m(G)],

is given by

m = U

(
1−

V∑
dU=0

pdU (1− ϕ)dU

)
(2)

where ϕ = 1−z0
d̄V

. z0 = (1− λ)U is the probability a firm receives no applications.

Proof. We have that

Pr{i receives at least one offer | Ni, dj∀j ∈ Ni} = 1−
∏
j∈Ni

(
1− 1

dj

)
Therefore the (ex-ante) probability an applicant finds a job is given by

f = 1− ENi

{
E(dj)j∈Ni

{∏
j∈Ni

(
1− 1

dj

) ∣∣∣∣Ni

}}
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= 1−
∑
Ni

pNi
E(dj)j∈Ni

{∏
j∈Ni

(
1− 1

dj

) ∣∣∣∣Ni

}

= 1−
∑
Ni

pNi

∏
j∈Ni

(
1− Edj

{
1

dj

∣∣∣∣Ni

})

= 1−
∑
Ni

pNi

(
1− Ed̃

{
1

1 + d̃

})|Ni|

= 1−
∑
dU

∑
Ni:|Ni|=dU

pdU
1(
V
dU

) (1− Ed̃

{
1

1 + d̃

})dU

= 1−
∑
dU

pdU
1(
V
dU

) (1− Ed̃

{
1

1 + d̃

})dU ∑
Ni:|Ni|=dU

1

= 1−
∑
dU

pdU

(
1− Ed̃

{
1

1 + d̃

})dU

= 1−
∑
dU

pdU

(
1−

U−1∑
k=0

1

1 + k

(1 + k)z1+k

d̄V

)dU

= 1−
∑
dU

pdU

(
1− 1

d̄V

U∑
k=1

zk

)dU

= 1−
∑
dU

pdU

(
1− 1− z0

d̄V

)dU

Since this is the probability of each applicant finding a job, the expected number of matches

is given by m =
∑

i f = Uf .

In the derivation of f , to go from the 2nd to the 3rd line we used the fact that dj’s are

independently distributed within i’s neighborhood (part (a) of lemma), and to go from the

3rd to the 4th line we used that dj’s are also identically distributed within any neighborhood

(also part (a) of lemma). To go to the 5th line, we enumerate the neighborhoods by their

size and use the fact that the probability to generate a particular neighborhood Ni of size

dU is to draw a degree of dU and then choose the one among the
(
V
dU

)
neighborhoods of such

size. To go to the 6th line we notice that nothing depends on the exact neighborhood Ni,

only its size, thus we factor everything out of the second sum. To go to the 7th line we use
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the fact that the number of neighborhoods with dU members is precisely
(
V
dU

)
, hence this

term cancels. To go to the 8th line we use part (b) of the lemma.

Corollary. In the case of the Erdös-Rényi model the matching function is given by

m = U

(
1−

[
1− 1− (1− µ)U

U

]V)

Proof. The matching function is m = U · f . We will work with the job-finding probability

f . Theorem 2 specializes in this case as

f = 1−
V∑

dU=0

pdU (1− ϕ)dU

= 1−
V∑

dU=0

(
V

dU

)
µdU (1− µ)V−dU (1− ϕ)dU

= 1−
V∑

dU=0

(
V

dU

)
[µ(1− ϕ)]dU (1− µ)V−dU

= 1− [1− µ+ µ(1− ϕ)]V

= 1− [1− µϕ]V

= 1−
[
1− µ

1− z0
µU

]V
= 1−

(
1− 1− (1− µ)U

U

)V

D Section 6, The importance of network scaling

Proposition. Take a function m̃(U, V ) such that m̃(U, V ) < U, V . Then, in the Erdös-Rényi

network, if

d̄U = −V

U
ln

(
1 +

U

V
ln

(
1− m̃(U, V )

U

))
(**)

it will hold that f = m̃(U,V )
U

, and d̄U > 0.
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Proof.

d̄U = −V

U
ln

(
1 +

U

V
ln

(
1− m̃(U, V )

U

))
⇔

e−Ud̄U/V = 1 +
U

V
ln

(
1− m̃(U, V )

U

)
⇔

1− e−Ud̄U/V = −U

V
ln

(
1− m̃(U, V )

U

)
⇔

V

U
(1− e−Ud̄U/V ) = − ln

(
1− m̃(U, V )

U

)
⇔

V

U
(1− z0) = − ln

(
1− m̃(U, V )

U

)
⇔

f =
m̃(U, V )

U

Now, since d̄U corresponds to a mean, it has to be that d̄U > 0; this is indeed the case. As long

as m̃(U, V ) < U sufficiently, so that ln
(
1− m̃(U,V )

U

)
≈ − m̃(U,V )

U
is a good approximation, from

the 3rd line above we get 1 − e−Ud̄U/V = m̃(U,V )
V

, and since m̃(U,V )
V

< 1 from our assumption

on m̃(U, V ), this equation pins down a unique d̄U > 0.
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This Online Appendix provides supplementary proofs for results not central to the paper.

Section 3, Matching in an arbitrary graph

Proposition. The matching function in the case of the complete graph is increasing and

concave in its two arguments

Proof. The matching function in this case is

m(U, V ) = U

(
1−

(
1− 1

U

)V
)

Its derivatives are of the respective signs:

∂m

∂V
= −U

(
1− 1

U

)V
ln
(
1− 1

U

)
> 0, and

∂2m

∂V 2
= −U

(
1− 1

U

)V [
ln
(
1− 1

U

)]2
< 0

∂m

∂U
= 1−

(
1− 1

U

)V−1(U − (1 + V )

U

)
> 0, and

∂2m

∂U2
= −V 2

U3

(
1− 1

U

)V−2
< 0
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Proposition. The matching function m for a double regular graph exhibits constant returns

to scale, and it is increasing and concave in each of its arguments.

Proof. The matching function is

m(U, V ; dU) = U

[
1−

(
1− 1

dU

V

U

)dU
]

Constant returns to scale follow from the definition, as ∀λ > 0

m(λU, λV ; dU) = λU

[
1−

(
1− 1

dU

λV

λU

)dU
]

= λm(U, V ; dU)

For the rest it helps to express m in terms of the job-finding probability m(U, V ) = Uf(θ),

where f(θ) =

[
1−

(
1− 1

dU
θ
)dU]

, and we dropped the parameter dU as an argument of the

functions for notational convenience.

So for monotonicity and concavity we check the derivatives:

∂m

∂V
= f ′(θ) (i)

∂2m

∂V 2
= f ′′(θ)

1

U
(ii)

∂m

∂U
= f(θ)− f ′(θ)θ (iii)

∂2m

∂U2
= f ′′(θ)θ2U−1 (iv)

We first show that f is increasing and concave, signing conditions (i), (ii), (iv):

f ′(θ) = (1− θ)dU−1 ≥ 0

f ′′(θ) = −(dU − 1)(1− θ)dU−2 ≤ 0

We also note that f(0) = 0, and f(1) = 1−
(
1− 1

dU

)dU
≤ 1.

To get the sign of (iii) we show that f(θ) − f ′(θ)θ ≥ 0: Define Q(θ) = f(θ) − f ′(θ)θ. But

Q′ = −θf ′′ ≥ 0. And since Q(0) = 0, Q(θ) ≥ 0.
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We note the elasticity of m(·) is not constant.1 Specifically, denote η(θ) ≡ ∂m
∂V

V
m
, then

η(θ) =
f ′(θ)θ

f(θ)

Of course, from CRS we have that ∂m
∂U

U
m

= 1− η(θ). It follows from the concavity of m w.r.t

U that η(θ) < 1, as we showed above that f ′(θ)θ ≤ f(θ).

Proposition. For tightness θ = V
U

around 1, the matching function m for a double regular

graph is equal to a Cobb-Douglas function up to 1st-order. Specifically, one can write

m(U, V ) ≈ m0V
η̃U1−η̃,

where m0 = f(1) ≤ 1, and η̃ = η(1) < 1.

Proof. We take logs of the matching function

ln(m) = ln(U) + ln

(
1−

[
1− 1

dU
eln(

V
U )
]dU)

Define L(x) ≡ ln

(
1−

[
1− 1

dU
ex
]dU)

, where x ≡ ln
(
V
U

)
. We can take the Taylor expansion

of L(x) around any x0 ∈ (−∞, ln(dU)); we choose to do so around x0 = 0:

L(x) =
∞∑
n=0

L(n)(0)

n!
xn

The 1st-order approximation yields

L(x) ≈ L(0) + L′(0)x

And hence the matching function is (approximately) of the Cobb-Douglas form:

ln(m) ≈ L(0) + (1− L′(0)) ln(U) + L′(0) ln(V )

where L(0) = ln

(
1−

(
1− 1

dU

)dU)
, L′(0) =

(
1− 1

dU

)dU−1

1−
(
1− 1

dU

)dU
.

1Constant elasticity is not considered one of the characteristic properties of the matching function. For

example the Cobb-Douglas has constant elasticity, while the specification m(V,U) =
[
V −γ +U−γ

]− 1
γ , γ > 0

does not.
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We also notice that L′(0) = f ′(1)·1
f(1)

= η(1), and L(0) = ln(f(1)). Thus we have shown that at

a 1st-order, for cases when V ≈ U , and all applicants and firms are symmetric we can write

m(U, V ) ≈ m0V
η̃U1−η̃,

where m0 = f(1) ≤ 1, and η̃ = η(1) < 1.

Section 4, Structure and match efficacy

In this section we provide some background material on mean-preserving spreads over arbi-

trary vectors which are not necessarily a probability distribution relating to proposition 4 in

the main text.

Definition A vector x′ is a mean preserving spread (MPS) of vector x if they have the

same mean
∑

i xi =
∑

i x
′
i and if x can be obtained from x′ by a series of Pigou-Dalton

transfers, ignoring the identities of the agents.

Definition A transfer t > 0 from one agent to another when the two agents are endowed with

x1, x2 respectively of some quantity, is a Pigou-Dalton transfer if x1 > x2 AND x1− t ≥
x2 + t.

That is a Pigou-Dalton transfer between two agents is one such that an amount is transferred

from the richer to the poorer agent preserving their relative positions. The quantity under

consideration can be anything, e.g. wealth, number of friends etc.

We make the following observations following straight from the definitions.

Remark 1: Any sequence of Pigou-Dalton transfers is mean-preserving.

Remark 2: It can be helpful to think of a mean-preserving spread (MPS) x′ of a vector x,

as created from x doing “inverse” Pigou-Dalton transfers. “Inverse” Pigou-Dalton transfers

are transfers where the rich become richer and the poor poorer.

Remark 3: A mean-preserving spread (MPS) increases inequality in the outcomes, while a

Pigou-Dalton transfer decreases it.
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For a MPS we can show the following basic result:

Proposition. For a strictly convex function h(·), if x′ is a MPS of x, then it holds that∑
i

h(x′
i) >

∑
i

h(xi)

Proof. It suffices to show the inequality holds for a single Pigou-Dalton transfer (up to

relabeling). Then by applying it repetitively, we can show it holds for any sequence of such

transfers. Let us assume a transfer occurs between agents 1 and 2.

Assume x′
2 = x2 + t, x′

1 = x1 − t, and x2 ≥ x1, where t > 0. Then∑
i

h(x′
i) >

∑
i

h(xi) ⇔

h(x1 − t) + h(x2 + t) > h(x1) + h(x2) ⇔

h(x2 + t)− h(x2) > h(x1)− h(x1 − t) ⇔
h(x2 + t)− h(x2)

t
>

h(x1)− h(x1 − t)

t

But we know from the mean value theorem there exist c̃ ∈ (x2, x2 + t) and
≈
c ∈ (x1 − t, x1)

s.t.

h′(c̃) =
h(x2 + t)− h(x2)

t

h′(
≈
c) =

h(x1)− h(x1 − t)

t

We also know that since h(·) is convex, h′(·) is increasing thus h′(c̃) > h′(
≈
c), completing the

proof.

Note: Even though typically the outcome vectors x, x′ are taken to be positive in applications

(e.g. income redistribution), this is not a requirement. The result holds equally well for

positive and negative outcome vectors.
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