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I. INTRODUCTION

A canonical configuration for the study of weakly magnetized plasmas is a cylindrical plasma column immersed in an axial magnetic field. Here weakly magnetized is understood as a plasma radius of typically 3 to 30 ion Larmor radii. The presence of a radial electric field E r or a radial gradient of the plasma pressure perpendicular to the magnetic field leads to flows in the azimuthal direction. These flows when combined with plasma inhomogeneities (density or temperature gradients) give rise to various instabilities resulting in turbulence, appearance of coherent structures, and anomalous transport which generally affect the performance of the device. Understanding the formation of large-scale structures in weakly magnetized plasmas is of particular interest for both fundamental research and technological applications like magnetron sources [1], Penning discharges [2] and negative ion sources. Rotating coherent structures have also been observed in Hall thrusters [START_REF]Plasma Science[END_REF]- [START_REF] Parker | [END_REF] where they are called "spokes" and limit the performance of the device. In the past decades, many models have been proposed to study instabilities in E ×B plasmas [5]- [15]. Rosenbluth et al. [5] have explained the stability of a rotating cylindrical plasma column in the frame of kinetic theory, valid for low β plasma for kρ i < 1 and ω/ω ci ≈ (kρ i ) 2 where ω is the plasma perturbation frequency, ω ci is the ion cyclotron frequency, k is the wave vector of the perturbation and ρ i is the ion Larmor radius. Terms of the order of (kρ i ) 2 have been retained and higher-order terms have been neglected. Rotating plasma columns were shown to be prone to the centrifugal instability that stems from the difference between the azimuthal velocity of ions and electrons caused by inertia. Chen [6] verified the results of [5] using a two-fluid model, still, under the low-frequency assumption (LFA) i.e. ω ph ω ci where ω ph is the Doppler shifted frequency given by ω ph = ω -mω 0 . Here m is the azimuthal mode number and ω 0 is the equilibrium flow frequency of ions. In this treatment, both the mode frequency and equilibrium flow frequency are ordered small, with ω ph /ω ci = O(ρ 2 ), where ρ << 1 is the magnetization parameter defined as ρ = ρ i /l with l as the scale length of macroscopic gradients. Chen studied the influence of finite Larmor radius and magnetic shear on the linear stability. He also extended the model to the regime of fast rotation by assuming ω ph /ω ci = O(ρ). As an extension of the above-referenced work, Rognlien [12] gave analytical and numerical solutions of lowfrequency electrostatic waves (ω << ω ci ) in a radially bounded plasma column for lower azimuthal mode numbers (m = 1, 2) for uniform as well as non-uniform rotation. Most of the models formulated so far to study E ×B plasmas are based on the LFA (ω ph << ω ci ) and therefore not suitable for weakly magnetized linear plasma devices such as MISTRAL [16], RAID [17], and VKP [18] where the frequency values, ω and ω 0 , are typically comparable to the ion cyclotron frequency ω ci . Recently, Gueroult et al. [15] have studied the centrifugal instability for an E × B plasma column in the regime of fast rotation (|ω 0 -ω 0e |/ω ci ≈ O (1) where ω 0e is the equilibrium flow frequency of electrons) with no constraint on the perturbation frequency ω. The analysis was performed in the radially local limit and focused on the case of a radially outward electric field, E r > 0. To the author's knowledge, no attempt has been made to go beyond the LFA in a radially global model, including the influence of boundary conditions. This is the purpose of the present work. We have verified and extended the results of [6] and [15] to obtain a radially global solution valid at arbitrary frequency. The differences between the radially local and global solutions, with and without LFA, have been explored to clarify the effect of these assumptions. Throughout the paper, the example of MISTRAL is used to highlight typical parameters encountered in linear plasma columns. No direct comparison with experimental measurements is yet attempted since it still requires further model developments. The plan of the paper is as follows, in Section II, the twofluid model equations and assumptions are presented. In Section III, the equilibrium flow frequency in the cylindrical geometry is derived. Section IV details the dispersion relation for the radially global case and in the local limit with and without LFA. In Section V, the linear stability is discussed to highlight the regimes where the instability can be found. In Section VI, a comparison between local and global growth rates is made, and in Section VII, the summary and conclusions are presented.

II. MODEL EQUATIONS

We consider a cylindrical plasma bounded radially and immersed in a homogeneous magnetic field such that B = B êz (see Fig. 1). The model is based on the continuity and momentum equations for electrons and ions,

∂n j ∂t + ∇ • (n j v j ) = 0 (1) 
n i m i ∂v i ∂t + v i • ∇v i = n i e (-∇φ + v i × B)-T i ∇n i -m i n i ν in v i (2) 0 = -en e (-∇φ + v e × B) -∇(n e T e ) (3) 
with

∇ = ∂ ∂r êr + 1 r ∂ ∂θ êθ + ∂ ∂z êz ( 4 
)
where êr , êθ and êz are the unit vectors in r, θ and z directions respectively. Here, j = i, e denotes either ions or electrons, n j is the number density, v j is the velocity of the species, m j is the mass of the species, T i,e is the species temperature, φ is the electric potential and ν in is the ion-neutral collision frequency. The following assumptions are used:

• Electrostatic approximation, ∂B ∂t = 0 • Quasi-neutrality, n i = n e . • No particle source. • No variations in the axial direction (k || = 0). • Radially uniform ion temperature i.e. T i ≈ 0.1 eV. • No Gyroviscosity (∇.π i = 0, ∇.π e = 0).
• Electron inertia neglected as a consequence of the small mass of electrons i.e m e /m i 1.

• Electron collisions with ions and neutrals neglected. This is for instance relevant for the regimes met in MISTRAL [19] where ν ei , ν en /ω ce 1.

The plasma density, flow, and electric potential are written as the sum of a time-independent equilibrium part denoted by subscript 0 and a fluctuating part denoted by superscript ∼ as, n = n 0 + ñ, v = v 0 + ṽ and φ = φ 0 + φ where the fluctuating part has the following form:

ñ = n 1 (r) exp[i(mθ -ωt)] ṽ = v 1 (r) exp[i(mθ -ωt)] φ = φ 1 (r) exp[i(mθ -ωt)] (5)
Here, n 0 is the equilibrium density of ions or electrons, φ 0 is the equilibrium electric potential and v 0 is the equilibrium flow. For the fluctuating part, n 1 and φ 1 gives the perturbation amplitude of density and potential respectively, v 1 (r) = v r1 êr + v θ1 êθ with v r1 and v θ1 , the radial and the azimuthal component of the perturbed velocity respectively, m is the azimuthal mode number and ω = ω r + iγ where ω r is the mode frequency and γ is the growth rate. The equilibrium density (n 0 ) and plasma potential (φ 0 ) are assumed to have gaussian and parabolic profiles, respectively. This is compatible with typical profiles measured in MISTRAL (see Appendix A),

n 0 (r) = n 00 exp - r 2 r 2 0 ; φ 0 = p 1 r 2 + p 2 (6) 
where n 00 , p 1 and p 2 are constants. Here r is the radial coordinate and r 0 is the width of the Gaussian used to parametrize the density profile; r 0 characterizes how fast the plasma density decays to zero when moving radially outward. These equilibrium profiles are consistent with the rigid body rotation assumption used for the equilibrium, see Section III.

III. EQUILIBRIUM FLOW

In this section, we derive the expression of the ion equilibrium flow, as a function of the E × B flow and the diamagnetic flow under the assumption of rigid body rotation. The equilibrium flow velocity for ions is first split into radial and azimuthal components,

v i0 (r) = v ir0 êr + v iθ0 êθ (7) 
and rigid body rotation is assumed such that v iθ0 = rω 0 with ω 0 = ω 0 = 0 where represents ∂/∂r and represents ∂ 2 /∂r 2 . The ion inertial term v i0 • ∇v i0 entering Eq. (2) becomes,

(v i0 • ∇) v i0 = v ir0 ∂v ir0 ∂r -rω 2 0 êr + 2ω 0 v ir0 êθ (8)
Substituting Eqs. ( 7) and (8) in the ion momentum equation (Eq. ( 2)), assuming ∂v i0 /∂t = 0, taking the cross product with B and then projecting along êr , one gets,

v ir0 = -ν in rω 0 ω ci + 2ω 0 (9) 
The equation above is normalized by dividing v ir0 with v thi = T i /m i ; r with ρ i = mv thi /eB; ν in , ω 0 with ω ci = eB/m i and the normalized quantities are noted with an overbar, see Table I

, vir0 = -ν in r ω0 1 + 2ω 0 (10) 
which is the equilibrium flow of ions in the radial direction. Using Eq. ( 9) in Eq. ( 2) and projecting along êθ , the azimuthal flow frequency ω 0 = v iθ0 /r is given by:

ν in ω 0 2ω 0 + ω ci 2 -ω 2 0 = -ω ci ω E0 + ω ci ω 0 -ω ci ω * 0 + ν 2 in ω 0 2ω 0 + ω ci ( 11 
)
Here ω E0 is the E × B drift frequency,

ω E0 = B × ∇φ 0 rB 2 • êθ = φ 0 rB (12) 
and ω * 0 is the ion diamagnetic drift frequency,

ω * 0 = T i en 0 B B × ∇n 0 rB • êθ = T i erB n 0 n 0 (13) = - T i erB 1 L n ( 14 
)
where 1/L n = -n 0 /n 0 = 2r/r 2 0 is the logarithmic density gradient. It should be noted that ω E0 and ω * 0 are independent of r because of the choice of n 0 and φ 0 given by Eq. (6). The rotation direction for positive E × B and diamagnetic frequency is illustrated in Fig. 1. Azimuthal flows are counted positive in the direction of increasing θ. The normalized form of Eq. ( 11) is,

4 ω0 + 1 2 4 -1 -ν2 in + 4(ω E0 + ω * 0 ) ω0 + 1 2 2 - ν2 in 4 = 0 (15)
which is a fourth order polynomial in ω0 whose solutions are given by,

ω0 = ± 1 2 1 2 b + b 2 + 4ν 2 in - 1 2 ( 16 
)
where b = 1 + 4(ω * 0 + ωE0 ) -ν2 in . Eq. ( 15) has four roots. Only two roots will be considered since the other two are imaginary and the equilibrium flow is undefined. Eq. ( 16) gives the remaining two roots. The branch for which ω0 increases with increasing ωE0 + ω * 0 is the slow rotation mode and the one that decreases with increasing ωE0 + ω * 0 is the fast rotation mode [20].

The normalized equilibrium flow ω0 is shown in Fig. 2 as a function of the sum of the normalized E × B and diamagnetic flows, ωE0 + ω * 0 , for different values of νin . For zero collisionality i.e. ν in = 0, Eq. ( 15) reduces to,

ω2 0 + ω0 -(ω E0 + ω * 0 ) = 0 ( 17 
)
and the equilibrium flow ω0 is given by [6], [10], [15],

ω0 = -1 ± 1 + 4(ω E0 + ω * 0 ) 2 (18) 
Eq. (18) shows that for the equilibrium to exist at νin = 0, the following condition should be satisfied,

ωE0 + ω * 0 > - 1 4 ( 19 
)
For finite collisionality, ωE0 + ω * 0 > -1/4 is no longer required for the equilibrium to exist. From Fig. 2, it is seen that collisions increase the angular frequency of the fast rotation mode and decrease the angular frequency of the slow rotation mode. A more detailed discussion of collisional and non-collisional equilibrium flow can be found in [20].

Turning now to electrons and writing the equilibrium flow velocity as,

v e0 = v er0 êr + v eθ0 êθ (20) 
Eq. ( 3) is solved directly to get, ver0 = 0 ; veθ0 = r ω0e and ω0e = ωE0 + ω * e (21) where ω0e is the electron equilibrium flow frequency and ω * e is the electron diamagnetic drift frequency ω * e normalized to the ion cyclotron frequency, with

ω * e = - 1 en 0 B B × ∇(n 0 T e0 ) rB • êθ (22) 
After deriving the equilibrium flow, the next section will focus on the linear stability of the plasma. Finite ionneutral collisions (and ionization sources) result in a finite radial equilibrium flow, which adds many contributions to the dispersion relation. In the following of this paper, we will focus on the collisionless case and assume ν in = 0.

IV. DISPERSION RELATION

To proceed with the derivation of the dispersion relation, we first linearize the model equations and then use the momentum equations, Eq. ( 2) and Eq. ( 3), to express the ion and electron flow in the continuity equation. The system is closed by invoking quasi-neutrality. From the electron momentum equation, Eq. ( 3), the electron flow is written in the customary form:

v e = b × ∇φ B + 1 en e b × ∇(n e T e ) B ( 23 
)
When B is homogeneous and straight (linear plasma column), for any function A, we have:

∇ • (b × ∇A) = 0 (24) 
Therefore, on multiplying Eq. [START_REF] Hoh | [END_REF] with n e and taking the divergence on both sides,

∇ • (n e v e ) = b × ∇φ B • ∇n e (25) 
which upon linearization yields:

∇ • (n e v e )| 1 = im rB [-φ 1 n 0 + φ 0 n 1 ] (26) = -im φ 1 rB n 0 + imω E0 n 1 (27) 
Combining Eq. ( 27) and the electron continuity equation (Eq. ( 1)), one obtains the relationship between perturbed density (n 1 ) and perturbed potential (φ 1 ),

n 1 n 0 = m rL n 1 ω -mω E0 φ 1 B ( 28 
)
Normalizing length to ion Larmor radius (ρ i ) and frequencies to the ion cyclotron frequency (ω ci ), the normalized form of the above equation is,

n1 = m r Ln 1 ω -mω E0 τ φ1 ( 29 
)
where τ = T e0 ref /T io with T e0 ref , the reference value of the electron temperature. It should be noted that the radial variation of the electron temperature is retained here but since the diamagnetic flux is divergence-free (Eqs. ( 23)-( 25)), it does not enter the continuity equation. The relation between the perturbed density of electrons and perturbed potential given by Eq. ( 29) is therefore identical to that of [6], [12] and [15] where the electron diamagnetic flow was neglected.

Turning now to ions, the linearized momentum equation writes:

-iωv i1 +(v i0 •∇)v i1 +(v i1 •∇)v i0 = e m i [-∇φ + v i1 × B] - T i m i ∇ n 1 n o (30)
For a background rigid body rotation, v i0 = rω 0 êθ , the inertial terms can be written as:

(v i0 • ∇)v i1 = imω 0 v i1 -ω 0 v i1 × b (31) 
and

(v i1 • ∇)v i0 = v ir1 ∂v i0 ∂r + v iθ1 r ∂v i0 ∂θ = -ω 0 v i1 × b (32)
When included in the linearized ion momentum equation, Eq. ( 30), it yields:

-i(ω -mω 0 )v i1 = - ω ci B ∇φ + (ω ci + 2ω 0 )v i1 × b - ω ci T i eB ∇ n 1 n o ( 33 
)
The background flow enters in the Doppler shifted frequency, ω -mω 0 , on the left-hand side and in the linearized Coriolis force, F co = 2m i v i1 × ω 0 b, on the righthand side.

Upon normalization, we get,

-i(ω -mω 0 )v i1 = (1 + 2ω 0 )v i1 × b -∇Φ 1 (34)
Writing, C = 1 + 2ω 0 , the factor by which the Laplace force is modified due to the inertial force, ωph = ω -mω 0 , the normalized Doppler shifted frequency and combining the perturbed density and potential terms into Φ 1 = n1 + τ φ1 , the linearized ion momentum equation then writes:

-iω ph vi1 = -∇Φ 1 + C vi1 × b (35)
Taking first the cross-product of Eq. ( 35) with b and using again Eq. (35) to replace v i1 × b in that new equation, we get:

vi1 = C C 2 -ω2 ph b × ∇Φ 1 + i ωph C ∇Φ 1 (36) 
The first term in the bracket is the combination of the perturbed E × B and diamagnetic flows. The second one is the polarisation flow. Inertial effects are included in the factor C. The polarisation flow matters when the mode frequency ω is comparable to ω ci , which is precisely the regime of interest here. Note that the polarization flow makes the plasma compressible (∇ • vi1 = 0).

The final step needed before obtaining the dispersion relation is to compute the linearized divergence of the ion particle flux:

∇ • (n i vi )| 1 = n 0 ∇ • vi1 + vi1 • ∇n 0 + v0 • ∇n 1 (37)
These terms are given by:

n 0 ∇ • vi1 = n 0 iω ph C 2 -ω2 ph ∇ 2 Φ 1 (38) vi1 • ∇n 0 = C C 2 -ω2 ph - im r Φ 1 n 0 + i ωph C Φ 1 n 0 (39) v0 • ∇n 1 = imω 0 n 1 ( 40 
)
where

∇ 2 Φ 1 = Φ 1 + Φ 1 /r -m 2 /r 2 Φ 1 .
Combining quasi-neutrality, n e = n i , and the continuity equations yields:

∇ • (n e v e )| 1 = ∇ • (n i v i )| 1 (41) 
which implies:

m r 1 Ln τ φ1 + mω E0 n1 = C C 2 -ω2 ph m r 1 Ln Φ 1 - ωph C 1 Ln Φ 1 + ωph C ∇ 2 Φ 1 + mω 0 n1 (42)
Now, using the electron continuity equation, Eq. ( 29), to express n1 as a function of φ1 in Φ 1 = n1 + τ φ1 , we get:

Φ 1 = (1 + α * )τ φ1 (43) 
with

α * = - mω * 0 ωph -m (ω E0 -ω0 ) (44) 
Note that when the ion pressure gradient is neglected in the ion momentum equation (T i = 0), we get α * = 0 and Φ 1 = τ φ1 . Using Eq. ( 43) to express τ φ1 and n1 as a function of Φ 1 and reminding that from the equation dictating the equilibrium flow, ω0 + ω2 0 = ω * 0 + ωE0 , Eq. ( 42) can be written as:

Φ 1 + 1 r - 1 Ln Φ 1 - m 2 r2 Φ 1 + 1 r Ln N Φ 1 = 0 ( 45 
)
where

N = m C ωph - C 2 -ω2 ph ωph -mω 2 0 ( 46 
)
Eq. ( 45) and ( 46) provide an extension of the model derived in [6] for arbitrary frequency values but in the limit of vanishing gyro-viscosity. The low-frequency expansion involved in [6] consists in approximating C 2 -ω2 ph ∼ C 2 . In this limit,

N = m C ωph - C 2 ωph -mω 2 0 (47)
and one exactly recovers Eq. ( 25) in [6] for ∇ • π i = 0. Note that N is radially constant because of the assumption of rigid body rotation. The differential equation ( 45) can be solved by the method used in [5], [6] and [12] by exploiting the change of variables,

z = r 2 /r 2 0 (48)
where r 0 is the width of the Gaussian used to parametrize the density profile defined by Eq. ( 6), and enters Eq. ( 45) through 1/L n = 2r/r 2 0 , combined with

Φ 1 = z -1 2 e z 2 W (z), (49) 
to obtain the Whittaker's equation [START_REF] Whittaker | A Course of Modern Analysis[END_REF],

d 2 W dz 2 + - 1 4 + N + 1 2z + 1 -m 2 4z 2 W = 0 (50) 
The non-singular solution of this equation is given by,

W N,m (z) = z m+1 2 e -z 2 F m -N 2 , 1 + 2m; z (51) 
where F m-N 2 , 1 + 2m; z is the confluent hypergeometric function of the first kind known as Kummer's function. Imposing the boundary condition Φ(Z) = 0, with Z = r 2 b /r 2 0 (where r b is the outer radial boundary of the cylindrical vessel), fully determines the possible values of N , which for different mode numbers m are evaluated from the zeros of the Kummer function F ( m-N 2 , 1 + 2m; Z). These zeros can be evaluated numerically. Alternatively, the asymptotic values of N (Z → ∞) are N = m + 2n where n = 0, 1, 2, 3, .... is the radial mode number [5]- [6]. The radial mode number n simply indicates which zero of F we are referring to; e.g. n = 0 implies the first value of N at which the function F goes to zero, n = 1 implies the second value of N at which the function F goes to zero and so on. In Fig. 3, the numerical solutions for N , obtained using whitm function in the Python library mpmath, are compared to the asymptotic solutions for n = 0. Convergence is reached at Z > 6 for m = 1, but higher Z values are required at high m numbers. For practical applications like in MISTRAL where r b = 10 cm and r 0 ≈ 3 cm, it is, therefore, preferable to use the numerical solution. In the following discussion, we will only use the values of N evaluated numerically.

Note that for a given radial mode number n, the value of N and the eigenfunction shape only depends on the azimuthal mode number m and the value of Z, which represents the ratio of the cylinder radius to the plasma radius. The eigenfunctions are therefore independent of the background flow ω0 . Eigenfunctions obtained for m = 1, 2, 5 Once N is known, rearranging Eq. ( 46) gives the cubic dispersion relation,

ω3 ph - N m ω2 ph + N ω2 0 -2C ω0 ωph -mC ω2 0 = 0 (52)
from which the mode growth rate and frequency can be computed.

If the LFA is applied i.e. if C 2 -ω2 ph ≈ C 2 , the equation above becomes, N m ω2 ph -N ω2 0 -2C ω0 ωph + mC ω2 0 = 0 (53)
which is exactly equivalent to Eq. ( 30) in [6] if the terms with 1/r 2 0 entering because of the gyro-viscosity tensor are dropped.

Local limit: To make the link with previous work, e.g. [6] and [15], the local limit is obtained by assuming [15]. Note that in [15], the diamagnetic drift of ions was neglected. It is kept here but only enters the equation by modifying the equilibrium azimuthal flow ω0 . Various asymptotic regimes and stability limits regarding the dispersion relation (Eq. ( 54)) have been discussed in [15] for -0.25 ≤ ω E0 ≤ 0. We extend this discussion to -0.5 ≤ ω 0 ≤ 1.5 in Section V. Using the LFA in Eq. ( 54), leads to the following dispersion relation,

ω2 ph + 4r 2 C ω0 mr 2 0 -mω 2 0 ωph + 2r 2 C ω2 0 r2 0 = 0 (55) V. LINEAR STABILITY
In this section, the linear stability and the parametric dependency of the growth rate are discussed for the global dispersion relation derived in Section IV. We first examine the role of the radial mode number n on linear stability. Fig. 5 represents the radial mode number n which yields the largest growth rate evaluated using the global dispersion relation (Eq. 52) for a given mode number m as a function of Z and ω 0 /ω ci . For m = 1, 2 and for the given range of ω 0 /ω ci , the radial mode number n = 0 has the largest growth rate for Z < 3. For Z > 3, higher radial mode numbers are progressively dominating as ω0 and Z increases. For m = 10, the lowest radial mode number n = 0 corresponds to the largest growth rate when -0.3 ≤ ω 0 /ω ci ≤ 0.3. For large values of |ω 0 |, the radial mode number n that gives the largest growth rate also increases with |ω 0 | and Z. When the growth rate is evaluated using the global dispersion relation with LFA (Eq. 53), the lowest radial mode number n = 0 has the largest growth rate. In the following discussion, we will focus on the radial mode number, n = 0.

The most unstable mode obtained from the global dispersion relation without (Eq. ( 52)) and with LFA (Eq. ( 53)) for mode number n = 0 and m = 1, 2 and 10 are shown in Fig. 6 as a function of ω 0 /ω ci and Z. The two models predict the growth rate to increase with |ω 0 |, with an asymmetry with respect to ω0 , originating from the inertial term in the effective magnetization factor C. The difference between two models increases with increasing m number and equilibrium flow frequency ω0 . For m = 10, the region of higher growth rate, as well as the stability region are radically different with and without LFA. Without the LFA, the largest growth rate is obtained at low Z and large ω0 , whereas this becomes a stable region and the growth rate is maximum at large Z with the LFA. The difference in the stability region stems from the neglect of the terms of the order of ω3 ph . For frequencies satisfying ω -mω 0 << ω ci , the LFA is valid, and hence the dispersion relation with LFA (Eq. ( 53)) yields correct results, but as we move towards regimes with high-frequency values, the LF ordering fails. There is a common region that is stable (γ = 0) for both the cases and that region corresponds to ω0 = 0.

Effect of LFA:

The validity domain of the LFA as a function of ω 0 /ω ci is emphasized in Fig. 7, where the solution without the LFA (Eq. ( 52)) with the red curve, is compared to the solution with the LFA valid when ω ph /ω ci = O(ρ 2 ) (green curve, Eq. ( 53)) and to another solution with the LFA but valid at higher frequency i.e. ω ph /ω ci = O(ρ) (blue curve, Eq. ( 38) in [6] with ∇ •π i = 0).

All three dispersion relations, predict the same growth rate γ and the real part of Doppler shifted frequency ωr -mω 0 when the values of ω0 are close to zero. As ω0 increases, the model predictions deviate, especially for higher mode numbers. This accounts from the fact that terms involving higher order of ωph = ω -mω 0 i.e. the Doppler shifted frequency have been neglected in evaluating the dispersion relations in [6] and as the factor mω 0 increases, the assumption is no longer valid.

Impact of radial boundary on growth rate:

The position of the boundary also has a strong influence on the mode growth rate for a given value of ω0 . The growth rate and real part of the Doppler shifted frequency at different radial boundary positions rb keeping r0 fixed, for various values of m evaluated by the global dispersion relation (Eq. ( 52)) is shown in Fig. 8. At fixed plasma size, r0 , increasing the cylinder radius rb , for which Φ(Z) = 0 is imposed, first destabilizes all modes and then has limited to no impact on the growth rate once rb ∼ 3r 0 (Z ∼ 9). Note that m = 1 has a different behavior and gets fully stabilized when the bounding cylinder radius is increased. For the real part of the normalized Doppler shifted frequency ωr -mω 0 , for all the mode numbers, the frequency is maximum for small values of Z and then decreases as Z increases except for m = 1 when ω0 = -0.4. The sign of ω0 plays a critical role in determining the sign of Doppler shifted frequency (ω r -mω 0 ).

Eigenfunction and Phase difference:

The expression of eigenfunctions for the normalized perturbed density n 1 /n 0 and perturbed potential eφ 1 /T e0 ref is obtained by using Eqs. ( 29) and ( 43),

n1 = m r Ln (ω -mω E0 ) Φ 1 (1 + α * ) (56) φ1 = Φ 1 (1 + α * )τ ( 57 
)
where α * is given by Eq. ( 44). Using these expressions, the eigenfunctions n1 for m = 1 and 10 are shown in Fig. 9 for τ = 1. The perturbations in density and potential are more spread out for m = 1 than for m = 10 or in other words, modes with higher azimuthal mode numbers are more localized towards the boundary region, as already discussed in Fig. 4.

Another essential information regarding the mode structure of the instability is the phase difference between density and potential fluctuations. This is a quantity that can be measured experimentally and which determines the level of particle flux driven by the fluctuations n1 vi1 . To calculate the phase difference between φ1 and n1 , we divide Eq. (57) by Eq. ( 56 Writing, φ1 n1 = Ae iφp , the phase difference φ p is,

φ p = tan -1 γ ωr -mω E0 (59) 
Fig. 10 shows the phase difference between φ1 and n1 as a function of ω E0 /ω ci and -2/r 2 0 for m = 1 and m = 2 with τ = 1. Note that r0 does not appear explicitly in Eq. b,d). for ω0 = 0.4 (59) but comes in the expression for Z = r2 b /r 2 0 and ω0 which determines γ and ωr . Therefore, by varying r0 , the combined effect of Z as well as ω0 on the phase difference can be observed. The phase shift is close to zero except in a narrow region where ωr -mω E0 is approaching zero. In this region, the phase shift becomes large, |φ p | ∼ 90 • and changes sign. Furthermore, the critical value of ωE0 at which the phase shift changes from negative to positive increases with decreasing r0 .

Azimuthal mode number spectra: In Fig. 11, the normalized growth rate γ and normalized real frequency ωr , computed numerically by solving the dispersion relation (Eq. ( 52)) are shown as a function of m. The growth rate is increasing with the mode number m irrespective of the sign of ω0 . At high m numbers, finite Larmor radius (FLR) effects are strongly stabilizing [START_REF] Hoh | [END_REF] and should be taken into account. In a fluid description, they enter in the gyroviscosity tensor, neglected here, but shown to stabilize high m numbers in [6]. In other words, FLR effects are important when k θ ρ i ∼ 1 where k θ = m/r is the azimuthal wave number. This corresponds to, m ∼ r/ρ i , which implies that the FLR stabilization (γ → 0) comes into effect when m > r/ρ i .

The growth rate is zero for ω0 = 0 which is consistent with the linear stability diagram (Fig. 6). For m = 1, γ is of the order of 10 -2 ω ci for positive values of ω0 and for ω0 = -0.2, and zero for ω0 = -0.4 and 0. For similar values of ω0 but in opposite directions, there is a small difference in the growth rate up to m = 5 and this difference in the growth rate escalates with the increasing mode number m. Overall the growth rate increases with the increase in ω0 . The Doppler shifted frequency (ω r -mω 0 ) has the sign opposite to that of ω0 for ω0 < 0. For ω0 > 0, the Doppler shifted frequency has the sign opposite to ω0 until m < 20. The real part of the frequency ωr has also been shown in Fig. 11(c) to show the dominance of the factor mω 0 .

VI. COMPARISON OF LOCAL AND GLOBAL DISPERSION RELATION

In this section, the impact of the local approximation (Eqs. ( 54)-( 55)) is discussed. In Fig. 12, the mode growth rate obtained in the local approximation with and without LFA is shown as a function of ω0 and r2 /r 2 0 for m = 1, 2 and 10. Similarly to the radially global results, the LFA assumption is shown to have a validity domain restricted to low ω0 values and low m numbers. Relaxing the LFA opens up new instability regions, in particular at low m numbers where an unstable zone is obtained at ω0 < 0. For ω0 = 0, no instability exists and stable anti-drift modes with a propagation frequency ωr = mr 2 0 /2r 2 are predicted without the LFA [21].

In contrast to the local dispersion relation which evaluates the growth rate at each radial position, the global dispersion relation describes the growth rate of an eigenmode extending over the whole cylinder radius. To compare the local and global model predictions, we show in b /r 2 0 . This quantity is compared to the global model predictions in Fig. 13 (d,e,f). All results are shown without the LFA. In Fig. 13 (a,b,c), we see that for ω0 > 0, the value of γmax is largely independent of Z = r2 b /r 2 0 . This is because the radial position at which the maximum growth rate is obtained in the local model is close to zero, see Fig. 12(a,b,c). The situation is different for ω0 < 0 and low m number where the local growth rate increases with r (see Fig. 12(a)). This is reflected by an increase of γmax with r2 b /r 2 0 . In both cases, γmax is obtained close to the radial boundaries, either r = 0 or r = rb , where global effects are non-negligible. This is why the relative difference between the γmax and γglobal , shown in Fig. 13, is always significant, except perhaps when the growth rate is closer to zero. The dark blue region in Fig. 13(d,e,f) where γrel is maximum corresponds to the region where γmax = 0 but γglobal remains finite, leading to large value of γmax -γglobal . The white region in Fig. 13(d,e,f) corresponds to the region where both γmax and γglobal corresponds to zero. From the comparison, it is evident that the local dispersion relation cannot be used to study the global behavior of weakly magnetized rotating plasma systems having frequencies comparable to the ion-cyclotron frequency.

VII. CONCLUSIONS AND SUMMARY

A dispersion relation for a rigid body rotating plasma in cylindrical geometry has been derived for the radially local and global eigenmodes. The instability's growth rate is strongly dependent on the equilibrium azimuthal flow ω0 which in turn depends on the E × B flow and the diamagnetic flow. No instability is predicted for ω0 = 0. For fixed ω0 and density gradient, the azimuthal mode number m and the radial boundary limit rb are the dominant factors affecting the growth rate.

The comparison of the dispersion relation with and without low-frequency assumption (LFA), revealed that as soon as the equilibrium flow frequency is a fraction of the ion-cyclotron frequency, with the exact threshold depending on the parameters m and Z, relaxing the LFA is mandatory. More precisely the LFA becomes inaccurate when the Doppler shifted frequency, ωr -mω 0 , becomes comparable to ω ci .

The local solution of the dispersion relation was compared to the global solution (see Fig. 13) showing that there is no parameter range where the local model is applicable. This is because the local mode predicts a maximum growth rate either close to the plasma axis or outer cylinder where boundary effects are essential. Rotating plasmas subject to centrifugal instability like MISTRAL, require a non-local treatment taking the boundary into account.

This work is a part of an effort aiming at developing a comprehensive theory for the description of strongly rotating weakly magnetized plasma columns. We have focused here on the collisionless case and neglected finite Larmor radius effects. These assumptions will need to be relaxed and this is why we have so far refrained from making a direct comparison with MISTRAL. In particular, it has been shown in [25] that ion-neutral collisions are important to discuss the stability mechanism of weakly magnetized rotating plasma columns. Furthermore, shear effects which give rise to Kelvin-Helmholtz (KH) instability [10], [24] and are important for rotating plasmas are not included in the current discussion through the assumption of rigid body rotation (∂ω 0 /∂r = 0) in the two-fluid formalism. Efforts to resolve these issues are in progress.

Appendix A: Typical equilibrium profile measured in the MISTRAL experiment

The experimental setup of MISTRAL is shown in Fig. 14 with a comprehensive description given in [16], [26] and [27]. The plasma is produced in the magnetized cylindrical column after the interaction of energetic electrons with neutrals. These energetic electrons are produced by thermionic emission in the source chamber. A polarisable grid called the separating grid is inserted at the entrance section of the linear plasma column and separates the source chamber from the linear column. Another polarisable grid called the collector is placed at the end of the plasma column. The time-averaged electron density and plasma potential are measured with a radially movable Langmuir probe. The electron density and plasma potential profiles are shown in Fig. 15 and Fig. 16, for a configuration where the separating grid and collector are connected and at the negative potential. The gas used is Argon and the cylinder is grounded. The magnetic field and the pressure values are B = 16 mT and P = 3.6 × 10 -4 mbar respectively.

Within the uncertainties on the measurements, the shape of the number density n 0 is Gaussian (Fig. 15) and the plasma potential φ 0 is parabolic (Fig. 16), thus, consistent with the rigid body rotation assumption used in the model. Table II gives the value of dimensionless parameters entering in the model for MISTRAL plasma shown in Fig. 15 and16.

The ion-cyclotron frequency is only a few kHz and comparable to the azimuthal flow frequency. Models valid in the low rotation regime are therefore not applicable to MISTRAL plasmas. Note that the ion-neutral collision frequency is also comparable to the ion-cyclotron frequency and the present model will need to be extended to be applicable to MISTRAL plasmas. 
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 1 FIG. 1: Cylindrical coordinate system and direction of rotation for ion cyclotron frequency ω ci , positive E × B frequency (ω E0 > 0) and positive diamagnetic frequency (ω * 0 > 0).
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 2 FIG. 2: Normalized equilibrium flow frequency (ω 0 /ω ci ) as a function of normalized ExB drift frequency (ω E0 /ω ci ) and ion diamagnetic drift frequency (ω * 0 /ω ci ) for different values of normalized ion-neutral collision frequency (ν in /ω ci ). The black dashed line presents the stability limit for νin = 0. The red dashed line is the diagonal.

FIG. 3 :

 3 FIG. 3: Values of N corresponding to the first zero of Kummer's function for different values of Z = r 2 b /r 2 0 . The solid line denotes the values evaluated numerically and the dashed line (--) denotes the asymptotic values.

  and 10 for different Z values, including the one of MIS-TRAL (Z ≈ 10.8), are shown in Fig. 4. The solutions of Eq. (46) are purely real, therefore, there is no radial variation of the phase of the eigenfunctions.

FIG. 4 :

 4 FIG. 4: Eigenfunction Φ as a function of r/r b for m = 1, 2, 5 and 10. The solid lines represent the case when Z = 10.8 (for MISTRAL) and the dashed lines represent the case when Z = 6.9.

Φ 1

 1 = 0, Φ 1 = 0 in Eq. (45), This is the same as the dispersion relation obtained by equating Eqs. 17(a) and 17(b) in

10 FIG. 5 :

 105 FIG. 5: Radial mode number n corresponding to the largest growth rate γ as a function of Z = r2 b /r 2 0 and ω 0 /ω ci . The color bar represents the radial mode number n.

FIG. 6 : 20 FIG. 7 :

 6207 FIG. 6: Normalized growth rate γ/ω ci as a function of normalized equilibrium flow frequency (ω 0 /ω ci ) and Z = r2 b /r 2 0 where rb is the radial boundary and r0 is the width of the Gaussian normalized to Larmor radius ρ i for the global dispersion relation given by Eq. (52) (Figs. (a,b,c)) and Eq. (53) (Figs.(d,e,f)). The color bar represents the normalized growth rate (γ = γ/ω ci ).

FIG. 8 :

 8 FIG. 8: Normalized growth rate γ = γ/ω ci and normalized Doppler shifted frequency (ωr -mω 0 )/ω ci as a function of Z = r2 b /r 2 0 for various mode numbers m using dispersion relation (Eq. (52)). Figs (a,c). for ω0 = -0.4 and Figs. (b,d). for ω0 = 0.4

= 10 FIG. 9 :FIG. 10 :

 10910 FIG. 9: Normalized perturbed density n 1 /n 0 for (a). m = 1 and (b). m = 10 as a function r/r b using Z = 10.8. The parameters used to obtain these eigenfunctions are ωE0 = 0.95, ω * 0 = -0.35, ω0 = 0.42 and τ = 1.

FIG. 11 :

 11 FIG. 11: (a). Normalized growth rate γ = γ/ω ci , (b). Normalized Doppler shifted frequency (ωr -mω 0 )/ω ci and (c). Normalized frequency ωr = ωr/ω ci as a function of azimuthal mode number m for various values of normalized equilibrium flow frequency ω0 = ω 0 /ω ci used in the global dispersion relation (Eq. (52)).

  FIG. 12: Normalized growth rate γ/ω ci as a function of normalized equilibrium flow frequency (ω 0 /ω ci ) and r2 /r 2 0 for the local dispersion relation given by Eq. (54) (Figs. (a,b,c)) and Eq. (55) (Figs. (d,e,f)). The color bar represents the normalized growth rate (γ = γ/ω ci ).

Fig. ( 13

 13 Fig.(13), the maximum growth rate, γmax , obtained with the local model over the interval 0 ≤ r ≤ rb as a function of ω0 and Z = r2 b /r 2 0 . This quantity is compared to the global model predictions in Fig.13 (d,e,f). All results are shown without the LFA. In Fig.13 (a,b,c), we see that for ω0 > 0, the value of γmax is largely independent of Z = r2 b /r 2 0 . This is because the radial position at which the maximum growth rate is obtained in the local model is close to zero, see Fig.12(a,b,c). The situation is different for ω0 < 0 and low m number where the local growth rate increases with r (see Fig.12(a)). This is reflected by an increase of γmax with r2 b /r 2 0 . In both cases, γmax is obtained close to the radial boundaries, either r = 0 or r = rb , where global effects are non-negligible. This is why the relative difference between the γmax and γglobal , shown in Fig.13, is always significant, except perhaps when the growth rate is closer to zero. The dark blue region in Fig.13(d,e,f) where γrel is maximum corresponds to the region where γmax = 0 but γglobal remains finite, leading to large value of γmax -γglobal . The white region in Fig.13(d,e,f) corresponds to the region where both γmax and γglobal corresponds to zero. From the comparison, it is evident that the local dispersion relation cannot be used to study the global behavior of weakly magnetized rotating plasma systems having frequencies comparable to the ion-cyclotron frequency.

FIG. 13 :

 13 FIG. 13: Normalized maximum growth rate γmax/ω ci as a function of normalized equilibrium flow frequency (ω 0 /ω ci ) and r2 b /r 2 0 for the local dispersion relation given by Eq.(54) (Figs. (a,b,c)). Normalized relative growth rate γ rel /ω ci as a function of normalized equilibrium flow frequency (ω 0 /ω ci ) and r2 /r 2 0 where γrel = 2(γmax -γglobal )/(γmax + γglobal ) and γglobal is evaluated using Eq. (52) (Figs. (d,e,f)). The constant lines on Figs.(d,e,f) represents the difference between γmax and γglobal .

FIG. 14 :

 14 FIG.14: Electrical schematic of MISTRAL. In the source chamber, 32 filaments randomly emit energetic primary electrons, which are then injected into the argon-filled cylindrical chamber. A magnetic plasma column is produced by the interaction of these primary electrons moving along the magnetic field.

TABLE I :

 I Normalized parameters and their definitions. Here T e0 ref is the reference value of the electron temperature.

TABLE II :

 II Various parameters in MISTRAL for Ar at B=16 mT
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