
HAL Id: hal-04139662
https://amu.hal.science/hal-04139662v1

Preprint submitted on 23 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling, control and simulation of a single rotor UAV
with swashplateless torque modulation
Evandro Bernardes, Frédéric Boyer, Stéphane Viollet

To cite this version:
Evandro Bernardes, Frédéric Boyer, Stéphane Viollet. Modelling, control and simulation of a single
rotor UAV with swashplateless torque modulation. 2023. �hal-04139662�

https://amu.hal.science/hal-04139662v1
https://hal.archives-ouvertes.fr


Modelling, control and simulation of a single rotor UAV
with swashplateless torque modulation

Evandro Bernardesa, Frédéric Boyerb, Stéphane Violleta,∗

aAix Marseille Univ, CNRS, ISM, Marseille, France
bLS2N Laboratory, Institut Mines Telecom Atlantique, Nantes, France

Abstract

Single rotor-base unmanned aerial vehicles (UAVs) represent the most minimal-
istic design to implement an aerial vehicle. We describe here a mono-rotor UAV,
also named mono-spinner, that uses torque modulation (also called swashplateless
mechanism) to provide roll and pitch control without the need of a complicated
swashplate mechanism. A full non-linear model of the mono-spinner based on
the Euler-Poincaré theoretical framework is given including a description of the
structure of the drone and its rotor control system. Mechanical properties, kinetic
energy and all of the external forces of interest to derive the equations of mo-
tion are described. A novel, Lyapunov-stable, quaternion-based nonlinear control
law based on the decomposition of the orientation quaternion into a spin compo-
nent and a reduced orientation component is provided. Finally, simulation results
based on parameters measured from a real implementation of a mono-spinner are
produced.

Keywords: UAV, mono-rotor, drone, spinner, autopilot

1. Introduction

Unmanned aerial vehicles (UAVs) are becoming ubiquitous, with their pos-
sible uses ranging from professional, to personal or even rescue applications [1].
Fully actuated multi-copters (and specially, quad-copters) are by far the most com-
mon type of UAVs: they are cheap to build, mechanically simple, easily control-
lable and the use of multiple rotors allows the thrust force and the torques to vary

∗Corresponding author.
Email address: stephane.viollet@univ-amu.fr (Stéphane Viollet)

Preprint submitted to Aerospace Science and Technology June 23, 2023



within a broad range.
Nevertheless, different UAV configurations exist with different sets of advan-

tages and disadvantages. The Gemini [2] uses a bi-rotor configuration based on
tandem helicopters that is arguably more energetically efficient and easier to scale
while maintaining the same width for indoors applications. However, Gemini fea-
tures a relatively important mechanical complexity due to the use two additional
servo-motors in order to produce a roll motion. Highly underactuated UAVs us-
ing a single rotor are also of great interest: they can be easier to miniaturize, like
the Piccolissimo [3], and even be designed in such a way that an active control
is not needed for achieving stable hovering flight [4]. An interesting subclass of
these mono-rotor drones are mono-wing drones, like the ones proposed in [5, 6]
inspired by the flight of the samara winged fruit/seed [7] and featuring a high effi-
ciency [8]. In [9] the problem of finding solutions for a relaxed definition of hover
for different configurations of motors pointing in the same direction is studied. In
[10, 11] an example of how to maintain position control using a single motor is
shown.

There are also different efforts for reducing the mechanical complexity while
maintaining full controllability. For example, [12] studies the design of a gy-
roscopically controlled micro air vehicle. Another elegant effort to achieve the
same controllability is cyclic flapping by torque modulation [13, 14]: By attach-
ing the tip of each blade of a rotor on a specialized kind of passive hinge assembly,
and then cyclically accelerating and decelerating the rotation speed of the rotor,
a vector thrust control is achieved without the need of additional servomotors or
complicated swashplate mechanisms. A coaxial bi-rotor UAV based on this tech-
nology was demonstrated [15], and more recently, the Gemini-II [16], a follow-up
to [2] that replaces both servomotors by a swashplateless cyclical system was also
demonstrated successfully. It is worth noting that a very recent study sheds a
light on the advantages of implementing such swashplateless mechanism com-
bined with a single rotor configuration [17]. Usually, the uncontrollable spin is an
undesirable feature and many studies of spinning drones dealt with the problem of
safety when a drone loses control of one or more of its rotors [18]. Multirotors like
quadrotors have been extensively studied in the literature, and many models with
varying levels of detail and precision have been presented (e.g. [19] for a review).
Quadrotors can also generate very aggressive maneuvers [20] thanks to higher roll
and pitch torques than a single rotor configuration of the same size. However, the
mono-spinner named PULSAR consumes 26.7% less power than a quadrotor hav-
ing the same payload and total propeller disk area [17]. As its has been shown for
a quadrotor [21], PULSAR features a high controllability as it can also achieve

2



dynamic ball avoidance and even navigation in a cluttered environment.
Our work presents a full theoretical analysis of a mono-rotor drone, and aims

at providing a full theoretical framework to model this type of UAVs that fea-
ture both internal (rotor pitch and roll) and external (angular velocities and 3D
positions) degrees of freedom. It can be seen as a complementary work to [17]
and present two main contributions. First, the Euler-Poincaré equation was used
to model the Equations of Motion of the drone. This is a special form of the
Euler-Lagrange equation that can be used when the space of configurations is a
member of a Lie group [22, 23]. Using this equation allowed us to have a very
complete theoretical model of the dynamics of the drone, using a minimal set of
approximations. Second, a new treatment of the orientation is presented: we intro-
duce a novel decomposition of the orientation, effectively separating the uncon-
trollable spin component from the controllable reduced orientation component,
and we demonstrate the relationship between this expression of the spin rotation
with the Euler angles in the ZYZ sequence. Based on this decomposition, a new
non-linear control law acting on the controllable reduced orientation is presented.
Moreover, a simulation of the drone comprising both the complete dynamics and
the attitude controller is implemented.

This work is organized as follows: Section 2 describes the different parts of
the vehicle and its general working principles. Section 3 analyzes the linear and
angular velocities of each part of the drone, and uses them to model the expres-
sion of the total kinetic energy. Section 4 models the external forces acting on
the drone. Section 5 presents the equations of motion used for the simulation and
describes the methodology used to derive them by means of the Euler-Poincaré
equation. Section 6 describes a quaternion-based nonlinear rate control for the at-
titude, using a special kind of quaternion decomposition (that is further explained
in Appendix C). Section 7 shows the simulation results.

2. System overview

The robot is composed of 3 separated rigid bodies, as seen on Figure 2:

• The main body Bb, defining a frame of reference FB at its center of mass. It
comprises most of the body and all of the electronics including the stator;

• The power supply Bs, defining a frame of reference FS . It is located at the
bottom and comprises of the battery, which is a big part of the overall mass;

3



Figure 1: Overview of the proposed spinning UAV. The thrust is produced by a brushless mo-
tor, the driver of which is capable of controlling the rotor’s speed with a sinusoidal velocity. A
passive swashplateless mechanism based on [13, 14] is attached to the rotor. The swashplateless
mechanism allows to control the direction of the thrust vector with 3 degrees of freedom. Multiple
anti-torque of dimensions 136mm× 50mm fins are mounted radially around the UAV’s main body,
in order to reduce the spin rotation drastically. The power supply, located at the bottom, presents
a great point of concentrated mass.

4



• The propeller Bp, defining a frame FP that can rotate with 3 degrees of
freedom with respect to the main body frame FB. It is composed of only the
parts of the rotor that rotate freely with 3 DoF w.r.t. the main body frame.

a) b)

xE yE

zE

x B

y B

z B

x S

y S

z S

xP

yP

zP

Figure 2: a) Illustration of the 3 separated bodies that compose the monorotor, and the distances
between their centers of mass. Bp is the propeller’s body, Bb is the main body and Bs is the power
supply body. b) Diagram showing the inertial coordinate frame FE , the main body frame FB, the
power supply frame FS and the propeller frame FP. The green circle defines the virtual propeller
frame.

There are two main reasons for choosing to analyze the battery mass at the
bottom as a separate body: first, it keeps the main center of mass close to the
electronics and inboard IMUs, and second, to help stabilize the robot’s attitude
passively using gravity. Analyzing it as a separate body also makes it easier to
study the effect of the distance hS = |

−−−−→
FSFB| between the centers of mass of the

main body and the battery, specially if this distance is variable.

2.1. Masses and inertia matrices
The bodies Bb, Bs and Bp have masses mb, ms and mp and inertia matrices JB

b ,
JS

s and JP
p , respectively. In their own reference frames, these inertia matrices are

5



constant and approximately diagonal. For Bb and Bs:

JB
b = diag(Jbx, Jby, Jbz)

JB
s = JS

s = diag(Jsx, Jsy, Jsz) (1)

For the propeller’s inertia matrix, since the angular speed of the rotor is large
compared to all of the other angular velocities, we approximated the propeller by
averaging its inertia matrix around one rotation around the z-axis. The real inertia
matrix of the propeller is:

JP∗
p∗ = diag(Jpx, Jpy, Jpz) (2)

Where, in general, Jpx , Jpy. We use instead the following mean:

JP
p =

1
2π

∫ 2π

0
Rz(γ)

(
JP∗

p∗

)
Rz(γ)T dγ (3)

which gives:
JP

p = diag(Jpd, Jpd, Jpz) (4)

With Jpd = (Jpx+Jpy)/2. Moreover, the propeller inertia matrix can be represented
in the body frame FB with the following transformation:

JB
p = RB

P JP
p

(
RB

P

)T
(5)

We also define m = mb+ms+mp, the mass of the whole drone, and the full inertia
matrix is

J = JB
b + JB

s + JB
p + JB

m (6)

Where JB
m is the inertia component created by the masses of Bp and Bs, given by:

JB
m = (msh2

S + mph2
P)

(
−êz

2
)

(7)

Note that the hat operator (̂·) gives the skew-symmetric matrix form of the cross
product:

â =

 0 −az ay

az 0 −ax

−ay ax 0

 (8)

Such that a1 × a2 = â1a2 for any a1 and a2 in R3. In particular:

êz =

0 −1 0
1 0 0
0 0 0

 (9)

6



3. Pose and velocities

In this section, the expression of the linear and angular velocities of each body
will be analyzed and the kinetic energy of the whole system will be calculated.

3.1. Body pose and velocities
The inertial pose of the body is defined as the homogeneous transformation

from frame FB to FE:

gE
B =

RE
B sE

B

0T 1

 (10)

Where RE
B is the rotation matrix between the body frame FB and the inertial frame

FE, and sE
B is the position of the body in the inertial frame. DefiningωωωB

b and vB
b the

angular and linear velocities of Bb in FB, we can define Bb’s inertial twist ηB
B as:

ηB
B =

[
ωωωB

b

vB
b

]
(11)

3.2. Rotor pose and velocities
In order to generate vector thrust control with a single motor, we can use a

swashplateless system that works by producing cyclic flapping by torque modu-
lation. This technology consists of attaching the blades on passive asymmetric
lag-pitch hinges (as seen in Fig. 3), that are excited by using a motor speed con-
troller that adds a sinusoidal speed component of frequency equals to 1/rev. A
complete description of this mechanism can be read in [13, 14].

The passive hinges oscillate by the inertia of the blade assembly, giving an
inclination to the rotor disc. By raising the amplitude of this sinusoidal term, the
rotor disc inclination is more pronounced. By changing the phase of this term, we
can effectively control the direction of this inclination. In this work, we modeled
the rotor by considering it as a simple motor connected to two revolute joints. The
rotor is fixed at a distance hP = |

−−−−→
FEFB| from the the center of FB. The rotation

matrix from the propeller frame FP to the body frame FB is:

RB
P ≡ Rz(β) Ry(α) =

cαcβ −sβ sαcβ
cαsβ cβ sαsβ
−sα 0 cα

 (12)

Where α is the inclination angle, β is the direction angle, sx = sin(x) and cx =

cos(x). We also define γ as the angle around the z-axis in which the rotor wings

7



a) b)

Figure 3: Swashplateless assembly based on [13, 14]. a) The lag-pitch hinge rotations (detailed
in red) are responsible for creating the oscillatory flapping due to their inclination angle. The
center teethering hinge helps reducing higher order components on the oscillation. b) Angle α
between the plane created by the wings and the horizontal plane in our approximate model (note
that this plane is horizontal w.r.t. to FB, and not the inertial frame). This model considers the
teethering hinge as the center of the controlled inclination. This approximates well the behavior
of the system.

are continuously rotated. We can then define the inertial pose gB
P of the frame FP

with respect to FB as an element of SE(3) as follows:

gB
P =

RB
P hPez

0T 1

 (13)

Where ez = [0, 0, 1]T . We define ΩΩΩP
P/B as the full angular velocity between

the propeller and the body in the rotor frame FP (the subscript P/B indicates the
angular velocity between the rotor and the body, and the superscript P indicates it
is expressed in the propeller FP frame):

ΩΩΩP
P/B = ωωω

P
P/B + γ̇ez (14)

Where γ̇ is the mean velocity of the rotor around the z-axis, andωωωP
P/B is the angular

velocity of the virtual rotor frame FB (the rotor’s disc) w.r.t. the body frame FB:

ωωωP
P/B =

−sαβ̇
α̇

cαβ̇


ṘB

P = RB
P ω̂ωω

P
P/B (15)

Note that α, α̇ and β̇ are very small compared to γ̇. Moreover, the kinetic en-
ergy component generated by the inertia of the rotor blades is negligible. There-
fore, we considerωωωP

P/B ≈ 0 and:

ΩΩΩP
P/B ≈ γ̇ez (16)

8



4. External forces

In this section, we will analyze the external forces and torques acting on the
drone. There are three components:

FB
ext = FB

grav + FB
p + FB

aero (17)

Where FB
grav represents the external forces and torques generated by gravity, FB

p
represents the forces and torques generated by the rotor and FB

aero represents the
aerodynamic torque generated by friction with the air.

4.1. Gravity force
The 6×1 vector of the sum of torques and forces caused by gravity in all three

bodies is:

FB
grav =

[
0

mb gB

]
+

[
RB

P hPêzRB
P

0 RB
P

] [
0

mp gP

]
+

[
RB

S −hS êzRB
S

0 RB
S

] [
0

ms gS

]
=

[
−∆mez × gB

mgB

]
(18)

Assuming gE = (0, 0,−g) = −gez where g is the gravitational constant, RB
S = I

and gB = gS = RT gE and ∆m = mshS − mphP.

4.2. Motor thrust and torque
The thrust direction vector r in FB is controlled using the swashplateless solu-

tion. It is given by:

r = RB
P ez =

sαcβ
sαsβ
cα

 (19)

And the motor thrust force fp and torque τp are:

f B
p = fpr
τB

p = τpr (20)

The magnitudes of both the motor thrust and torque can be modeled as a quadratic
function of the propeller’s rotation speed w.r.t. the inertial frame, which is:∣∣∣ΩΩΩP

p

∣∣∣2 = ∣∣∣∣(RB
P

)T
ωωωB

b +ΩΩΩ
P
P/B

∣∣∣∣2 (21)

9



And taking into account that: ∣∣∣ΩΩΩP
P/B

∣∣∣ ≫ ∣∣∣ωωωB
b

∣∣∣ (22)

We can simplify the expression of the rotor velocity as:∣∣∣ΩΩΩP
p

∣∣∣ ≈ ∣∣∣ΩΩΩP
P/B

∣∣∣ (23)

We then model the magnitudes as:∣∣∣ fp

∣∣∣ = fp ≈ k f

∣∣∣ΩΩΩP
P/B

∣∣∣2∣∣∣τp

∣∣∣ = τp ≈ kτ
∣∣∣ΩΩΩP

P/B

∣∣∣2 (24)

As seen in [11], we assume that the propeller torque is linear w.r.t. to the propeller
thrust. Defining:

k =
kτ
k f
, (25)

We can express the torque τB
p as a linear function of the thrust force f B

p :

τB
p = k f B

p (26)

Moreover, given hP ez the position vector of propeller in the body frame FB, there
is also a crossed thrust torque term that is added, as seen in Fig. 4:

τB
cross = hP ez × f B

p (27)

Adding both terms of torque, we have:

τtotal = τ
B
p + τ

B
cross = Bτ f B

p (28)

With:

Bτ =
(
kI + hP êz

)
=

 k −hP 0
hP k 0
0 0 k

 (29)

And finally, the 6× 1 vector of all torques and forces produced by the propeller is:

FB
p =

[
Bτ fpr

fpr

]
(30)

10



Figure 4: All of the forces and torques produced by the rotor. Thrust vector (in red) considered to
be proportional to the square of the rotor mean angular speed. First torque component (in green)
considered linear in the thrust force. Second torque component (in magenta) generated by the
distance between the propeller thrust center and the center of mass of the body.

4.3. Aerodynamic drag
The aerodynamic drag can be modeled as:

FB
aero =

[
−

∣∣∣ωωωB
b

∣∣∣ KωωωB
b

0

]
(31)

Where K is a diagonal positive definite matrix. At the equilibrium, the angular
velocity of the body frame FB reaches a steady-state velocity with direction op-
posed to the rotor velocity: ωωωB

b = ωzez, and we can assume K ≈ diag (0, 0,Kz),
which leads to: ∣∣∣ωωωB

b

∣∣∣ KωωωB
b = sign(ωz)Kz ω

2
z ez (32)

11



The rotor torque τp and the aerodynamic drag will cancel each other at equilib-
rium, and r = ez, leading to:

Kz = sign(ωz)kτ

(
1 +
γ̇

ωz

)2

(33)

Where γ̇/ωz, the ratio between the steady-state angular velocity of the body and
the rotor velocity, can be estimated experimentally. Even though this study does
not present a real mono spinner, preliminary tests have shown that the steady-state
angular velocity of the mono-rotor drone’s body was higher than the limits of the
Pixracer’s IMU. In order to overcome this problem, several fins of dimensions
136mm × 50mm were attached to the main body of a prototype to add drag, and
then the rotation speed was measured with its integrated IMUs, as shown in Fig.
1. We used our prototype containing a Pixracer card with PX4 firmware to test
the steady-state velocity of the mono-spinner with different numbers of fins, and
compared it with measurements from a Phantom high-speed camera. We made the
motor’s rotation speed vary from 80 to 800 rad/s, and the results can be seen on
Fig. 5. As expected, we noted that adding more fins drastically reduce the steady-
state angular velocity. Moreover, we also noted that two fins were not sufficient to
reduce the monorotor’s angular velocity to the IMU’s gyroscope’s range.

4.4. Sum of external forces
Introducing Eqs. 18, 30 and 31 into Eq. 17, we have the total expression of

the external forces:

FB
ext = FB

grav + FB
p + FB

aero

=

[
fpBτr + ∆m ez × gB −

∣∣∣ωωωB
b

∣∣∣ KωωωB
b

fpr − mgB

]
(34)

5. Equations of Motion with Euler-Poincaré equations

In this section, we will apply the Euler-Poincaré equations to our system.
Originally published in a short two-page note in [22], these equations are a gen-
eralization of the Euler-Lagrange equations to systems whose configuration space
is a Lie group of transformations, instead of a vector space of generalized coordi-
nates [24].

While the direct application of the Newton-Euler equations is also possible,
this approach that makes direct use of vectors and angular pseudo-vectors can be-
come confusing and prone to errors when analyzing a complex multi-body system

12



a) High-speed camera b) Pixracer’s IMU

Figure 5: Steady-state angular angular velocity of mono-rotor with 2, 4 and 8 fins, while varying
the motor’s speed from 80 to 800 rad/s. a) Angular velocity measured from a Phantom high-speed
camera. b) Angular velocity measured from the mono-rotor’s IMU’s rate gyro. The latter saturates
at around 35.68 rad/s.

13



with additional internal degrees of freedom. This method has, however, the ad-
vantage of producing a parameter-invariant solution in terms of the velocities of
the system in the moving body-frame. The Newton-Euler equations were used for
example for the PULSAR spinner [17]. However it is worth noting that the spin-
ner was considered in this case as a single body. The model of the dynamics did
not take into account all the degrees of freedom of the rotor. Lagrangian mechan-
ics, on the other hand, provides an arguably more systematic method by allowing
the derivation of the dynamical model of the system from the knowledge of its
Lagrangian (which is a scalar) and the model of the external (non-conservative)
forces. First, a concise set of “generalized coordinates”, usually denoted by qqq,
must be defined. Then we can state the Euler-Lagrange equations as:

d
dt

(
∂L
∂q̇qq

)
−
∂L
∂qqq
= QQQ (35)

Where the Lagrangian L = L(qqq, q̇qq, t) is the difference between the kinetic and po-
tential energies, expressed in terms of the generalized coordinates, and QQQ is the
generalized forces vector. One downside of the direct use of the Lagrange equa-
tions is that it requires a choice of parameters beforehand. For a simple rotating
system, for instance, both Euler angles or a rotation quaternion can be used. How-
ever, this is known to introduce artificial nonlinearities and singularities in the case
of UAVs whose configuration Lie group is SO(3) or SE(3): the final equations are
coupled and dependent on the parameters chosen. Moreover, the term ∂L

∂qqq , the
direct derivative of the Lagrangian in terms of qqq, can be very cumbersome. A
quaternion-based model of the pure rotation of a single-body using Lagrangian
mechanics can be seen in [25]. The term QQQ that models the generalized forces can
also be very complicated to calculate. An effort to express the generalization of
this term can be seen in [26].

Any solution to Eq. 35 is also a solution to the Euler Poincaré equations
[27]. Similarly to the Euler-Lagrange equations, the Euler-Poincaré equations al-
low us to develop the Equations of Motion of a system submitted to conservative
forces in a systematic manner. Unlike the Lagrangian equations, however, in the
Euler-Poincaré equations, both the energies and the final dynamic equations are
directly expressed in terms of the velocities of the system in its moving frame of
reference. In practical terms, the Euler-Poincaré equations provide a systematic
energy-based approach that is similar to an analysis based on the Euler-Lagrange
equations, while producing the same parameter-agnostic formulations usually de-
rived with the direct application of the Newton-Euler equations, which are free
from artificial singularities and nonlinearities. We could, naturally, also model the

14



system by using the Newton-Euler equations for the external degrees of freedom
of the system together with the Euler-Lagrange equations for the internal degrees
of freedom. Using the Euler-Poincaré equations, however, all the degrees of free-
dom of the system are captured simultaneously in a unified approach. Moreover,
note that the product of two Lie groups is also a Lie group. In order to derive a
more complex model that takes into account, for instance, a variable battery dis-
tance hS or a more complete swashplateless mechanism model, this generalization
would be straightforward without requiring a profound knowledge of Lie group
theory. These are some of the reasons why we believe that the Euler-Poincaré
equations, although still largely unknown to the robotics community, are the most
natural tool for capturing the dynamics of these types of UAVs.

The Euler-Poincaré equations on the configuration Lie group SE(3) of our
system are:

d
dt

(
∂T
∂η

)
− adT

η

(
∂T
∂η

)
= FB

ext (36)

Where the adη operator is given by [28]:

adη =
[
ω̂ωω 0
v̂ ω̂ωω

]
(37)

And, for simplicity, ωωω = ωωωB
b , v = vB

b and ΩΩΩ = ΩΩΩP
P/B. A quick comparison be-

tween Eq. 36 and Eq. 35 shows that the Euler-Poincaré equations avoid the use
of the usual generalized coordinates of Lagrangian mechanics, and the nonlinear-
ities/singularities related to their use. Moreover, the most tedious, albeit straight-
forward, step in using the Euler-Poincaré equations in our work was to model
the kinetic energies of the system, which is also a required step for Lagrangian
mechanics nonetheless. As shown in Appendix B:

T =
1
2

[
η
ΩΩΩ

]T

M
[
η
ΩΩΩ

]
(38)

Where, defining ∆m = mshS − mphP:

M =


J −∆mêz RB

PJP
p

∆mêz m I 0(
RB

PJP
p

)T
0 JP

p

 (39)

Calculating the partial derivative gives:

∂T
∂η
=

([
J 0
0 m I

]
+ ∆m

)
η +

[
RB

PJP
pΩΩΩ

0

]
(40)

15



Where:

∆m ≡ ∆m

[
0 −êz

êz 0

]
(41)

And ΩΩΩ = γ̇ez with constant γ̇. Moreover, differentiating Eq. 40 w.r.t. time,
recalling that dJ

dt = 0 since we assumeωωωP
P/B ≈ 0, we have:

d
dt

(
∂T
∂η

)
=

([
J 0
0 m I

]
+ ∆m

)
η̇ (42)

For the second term, we have:

−adT
η

∂T
∂η
=

([
ω̂ωωJ 0
0 ω̂ωωm

]
− adT

η∆m

)
η + Jpzγ̇

[
ω̂ωω r
0

]
(43)

Finally giving:

D
[
ω̇ωω
v̇

]
+ C

[
ωωω
v

]
+

[
γ̇Jpz ωωω × r

0

]
= FB

ext (44)

With:

D =
[
J 0
0 m I

]
+ ∆m

C = −adT
ηD

FB
ext =

[
fpBτr + ∆m ez × gB −

∣∣∣ωωωB
b

∣∣∣ KωωωB
b

fpr − mgB

]
(45)

This is the equation used for all simulations. Isolating the angular accelerations,
we have the following equation, which will be useful for the simulation imple-
mentation: [

ω̇ωω
v̇

]
= D−1

(
FB

ext + adT
ηD

[
ωωω
v

]
−

[
γ̇Jpz ωωω × r

0

])
(46)

Which, as expected, expresses the evolution of the system as a function of its
velocities. The position s = sE

B and rotation matrix RE
B can then be integrated with

the reconstruction equations:

ds
dt
= R v

dR
dt
= R ω̂ωω (47)

16



Instead of directly using rotation matrices, however, we parameterize the orien-
tation of the drone using quaternions (more precisely, classical Hamilton quater-
nions [29]). Quaternions are an extension of the complex numbers, consisting of
4 components, and form an excellent set of parameters for rotations, being fast to
compute, easy to normalize and having no singularity-related problems [30]. A
summary of quaternion algebra can be seen on Appendix A. In this work, we will
denote quaternions as 4-vectors:

q =
[
qr

q

]
(48)

Where qr and q are, respectively, the scalar (or real) and vector (or imaginary)
parts of q. Supposing q = qE

B represents the rotation from FB to FE, then, for
some vector a: [

0
aE

]
= q ⊙

[
0
aB

]
⊙ q∗ (49)

Where ⊙ is the Hamilton product (see Appendix A). Finally, to integrate the ori-
entation quaternion, we can use the following rotation reconstruction equation:

q̇ =
1
2

q ⊙
[
0
ωωω

]
(50)

6. Controller architecture

Given that the separation principle holds1, we can control the UAV’s orien-
tation using a cascaded controller architecture. In this section, we developed the
cascaded controller architecture used for the simulations. This architecture con-
sists of an inner non-linear attitude control loop, followed by an outer angular rate
PID controller. This uncoupled controller is easier to implement, and compatible
with commonly used flight controller architectures. The PX4 Flight Controller
[31], for example, implements a nonlinear attitude controller based on [32] fol-
lowed by an angular rate PID controller as well.

1The frequency of the inner rate controller is much higher than the frequency of the outer
attitude controller.

17



6.1. Normal vector and rotation decomposition
The system is underactuated and we cannot control its yaw rotation (the robot

will spin at all times around the z-axis). Instead of controlling the full attitude,
we decomposed the rotation quaternion q to extract the uncontrollable spin, and
control the remaining reduced attitude. We define a vector nnnB

b that points upwards
in the body frame FB:

nnnB
b ≡ ez =

001
 (51)

In this case, this vector in the inertial frame FE can be calculated as:[
0

nnnE
b

]
= q ⊙

[
0

nnnB
b

]
⊙ q∗

= q ⊙
[
0
ez

]
⊙ q∗ (52)

Giving:

nnnE
b =


2(qxqz + qrqy)
2(qyqz − qrqx)
2
(
q2

r + q2
z

)
− 1

 (53)

Defining the middle normal vector as the unit vector half-way between nnnB
b and nnnE

b :

mmmmmmmmm =
nnnE

b + nnnB
b∣∣∣nnnE

b + nnnB
b

∣∣∣ = 1√
q2

r + q2
z

qxqz + qrqy

qyqz − qrqx

q2
r + q2

x

 (54)

Note that this has a singularity when in nnnE
b = −nnnB

b = −ez, which can not be
plausible for the flying mono spinner here. We also defined:

qs =

[
cs

ssez

]
=

[
cos(θs/2)

sin(θs/2)ez

]
θs = 2 atan2(qz, qr) (55)

Or, more directly:

qs =
1√

q2
r + q2

z


qr

0
0
qz

 (56)

18



And we can decompose q as (see Appendix C for a complete demonstration):

q = −
[
0
mmmmmmmmm

]
⊙

[
0
ez

]
⊙ qs (57)

Moreover:

q̇s =
1
2

qs ⊙

[
0
ωωωs

]
(58)

Where:

ωωωs =

(
mmmmmmmmm · Rωωω
mmmmmmmmm · ez

)
ez (59)

Also, we can define mmmmmmmmm with respect to qs as follows:[
0
mmmmmmmmm

]
= q ⊙ q∗s ⊙

[
0
ez

]
(60)

Moreover, its derivative can be given by:

ṁmmmmmmmm = −
1
2

mmmmmmmmm × R (ωωω −ωωωs) (61)

6.2. Rotation error definition
Define q̄ as the desired orientation, and n̄nnE as the corresponding normal vector,

and m̄mmmmmmmm as the corresponding middle normal vector. Moreover, since we cannot
control the rotation around the z-axis, we just set the goal spin as q̄s = qs:

q̄ = −
[
0
m̄mmmmmmmm

]
⊙

[
0
ez

]
⊙ qs (62)

To calculate the rotation quaternion between the desired quaternion and the cur-
rent orientation, we can define a quaternion difference q∆ as follows:

q∆ = q ⊙ q̄∗ =
[
m̄mmmmmmmm ·mmmmmmmmm
m̄mmmmmmmm ×mmmmmmmmm

]
(63)

Or equivalently:

q∆ =
1

|nnn + ez||n̄nn + ez|

[
(n̄nn + ez) · (nnn + ez)
(n̄nn + ez) × (nnn + ez)

]
(64)

19



When the robot’s orientation is at the goal orientation, we know that, by definition,
q∆ =

[
1 0 0 0

]T
. At this state, we know that:[

m̄mmmmmmmm ·mmmmmmmmm
m̄mmmmmmmm ×mmmmmmmmm

]
=

[
1
0

]
(65)

Leading to:

(nnn + ez) · (n̄nn + ez) = |nnn + ez||n̄nn + ez| (66)

Which implies that nnn = n̄nn.

6.3. Angular controller
The inner non-linear loop is defined by:

ωωωr = ωωωs + PPP
(
RT mmmmmmmmm × m̄mmmmmmmm

mmmmmmmmm · m̄mmmmmmmm

)
(67)

Which we demonstrate to stabilize the system with the use of a Lyapunov function
(see Appendix C.5). We then define:

∆ωωω = ωωωr −ωωω (68)

And using an outer PID loop, the correction torque can be calculated as:

τττc = KKK p ∆ωωω + KKKd
d∆ωωω

dt
+ KKKi

∫
∆ωωωdt (69)

According to the motor’s model, we know that the equivalent control force is:

τττ = Bτ fff =
(
kI + hP êz

)
fff (70)

We assumed that the control is given by the cross product part (see Fig. 4). More-
over, we also assumed that ez · fff = 0, since no control of rotations around ez

is supposed possible (and assuming the torque generated by the helices inertia is
negligible). This leads to:

τττc = hP ez × fff c

fff c =
1
hP
τττc × ez =

1
hP

+τc,y

−τc,x

0

 (71)

20



Figure 6: Simulation diagram with a cascaded controller architecture. Controller (in red) com-
posed of a non-linear reduced attitude controller cascaded with a simple PID for angular rate
control, and finally the swashplateless motor model is used to to extract the necessary commands
to the motor. Equations of motion (in green) used to simulate the full system dynamics. Integra-
tion steps are used to extract the angular velocity and orientation. Purple blocks correspond to the
extraction of mmmmmmmmm and m̄mmmmmmmm from q and q̄, respectively.

Adding a constant thrust term in the z direction, for some constant Ω:

fff =

 fx

fy

fz

 = fff c + k fΩ
2ez =

+τc,y/hP

−τc,x/hP

k fΩ
2

 (72)

And finally the motor velocity γ̇, phase β and inclination angle α are calculated
as:

β = atan2( fy, fx)

α = acos
(

fz

| fff |

)
γ̇ =

√
| fff |
k f
=

1
√

cos(α)
Ω (73)

Moreover, since ez × ωωωs = 0, we can simplify the desired angular velocity to:

ωωωr = PPP
(
RT mmmmmmmmm × m̄mmmmmmmm

mmmmmmmmm · m̄mmmmmmmm

)
(74)

7. Simulation

In order to test the controller shown in Section 6, a simulation of the Equations
of Motion shown in Section 5 was implemented using Python2. In this section,

2See github.com/evbernardes/monospinner_simulator

21

https://github.com/evbernardes/monospinner_simulator


we will analyze some of the implementation details.

7.1. Controller
As shown in Section 6, the desired controller force is given by:

fff c =

(
KKK p ∆ωωω + KKKd

d∆ωωω
dt
+ KKKi

∫
∆ωωωdt

)
× ez (75)

Where:

∆ωωω = PPP
(
RT mmmmmmmmm × m̄mmmmmmmm

mmmmmmmmm · m̄mmmmmmmm

)
−ωωω (76)

And the positive definite matrices PPP, KKK p, KKKd and KKKi are all adjusted parameters.
The full propeller force is:

fp = fff c + k fΩ
2ez (77)

And, noting fp =
[
fx fy fz

]T
, the rotor control input signal is calculated as

follows:

β = atan2( fy, fx)

α = atan
(
| fff c|

k fΩ2

)
γ̇ =

Ω
√

cos(α)
(78)

In a real robot, Ω would be manually controlled by the pilot. In our simulation, it
was set as the angular velocity that generates the necessary force for hover:

Ω =

√
mg
k f

(79)

To simulate the physical constraints of the system, two new parameters are in-
troduced: αmax, the max inclination angle supposed to be 30 degrees, and Λ, the
security angular velocity deviation ratio from Ω, fixed at 1.2. The motor control
signals are then calculated as follows:

β = atan2( fy, fx)

α =

{
atan

(
| fff c|

k fΩ2

)
, αmax

}
γ̇ = Ω

[
min

{
1

√
cos(α)

, Λ

}]
(80)

22



The propeller thrust force is then calculated as follows:

r =

sαcβ
sαsβ
cα


fp = k f γ̇

2r (81)

7.1.1. Equations of Motion
We use the equations from Eq. 44. As a reminder:

D
[
ω̇ωω
v̇

]
− adT

ηD
[
ωωω
v

]
+

[
γ̇Jpz ωωω × r

0

]
= FB

ext (82)

With :

D =
[
J 0
0 m I

]
+ ∆m

[
0 −êz

êz 0

]
FB

ext =

[
fpBτr + ∆m g ez × nnnE

b − |ωωω|Kωωω
fpr − mg nnnE

b

]
(83)

And:

m = mb + ms + mp

∆m = mshS − mphP

adη =
[
ω̂ωω 0
v̂ ω̂ωω

]
(84)

Equation 46 is used to calculate the angular and linear accelerations:[
ω̇ωω
v̇

]
= D−1

(
FB

ext + adT
ηD

[
ωωω
v

]
−

[
γ̇Jpz ωωω × r

0

])
(85)

In order to test the robustness of the theoretical modelling of the equations of
motion, all while simplifying the implementation, we decided to use the simplest
and most basic method for numerical integration: the Euler method. For the linear
and angular velocities:

ωωωk+1 = ωωωk + ∆t ω̇ωωk

vk+1 = vk + ∆t v̇k (86)

23



with ∆t the sampling time of the simulation.
And the new orientation and position can be reconstructed by applying the

following equations:

q̇k =
1
2

qk ⊙

[
0
ωωωk

]
qk+1 = qk + ∆t q̇k

sk+1 = sk + ∆t R(qk) vk (87)

Note that an extra normalization step is needed for q.

7.1.2. Parameters
The parameters are all based on a prototype designed at ISM, using 8 anti-

torque fins as shown in section 2. The masses and distances are given in Table
1, and the controller parameters for all the following tests are the ones shown in
Table 2.

mb 0.2100kg
ms 0.2007kg
mp 0.0067kg
hP 0.083m
hS 0.145m
Jbx 0.0010026 kg m2

Jby 0.0010026 kg m2

Jbz 0.0001831 kg m2

Jsx 0.0001794 kg m2

Jsy 0.0000387 kg m2

Jsz 0.0001928 kg m2

Jpd 0.0000052 kg m2

Jpz 0.0001061 kg m2

k f 0.0000052400 kg m
kτ 0.0000000108 kg m2

Kz 0.0000280908 kg m2

Table 1: Masses and distances used during the simulations.

24



κ 1
PPP diag(1, 1, 1)

KKK p 0.7
KKKd 0.0
KKKi 0.0
Ω 945 rad/s

Table 2: Controller parameters used during the simulations.

7.1.3. Inputs and parametration
For simplicity, the inputs in the simulation are given as Euler angles in the

ZYZ sequence. As seen in [33], the rotation can be decomposed as:

RE
B = R(θ3ez) R(θ2ez) R(θ1ez) (88)

Where the θ1, θ2 and θ3 (the precession, nutation and revolution respectively) are
given by:

θ1 = atan2(qz, qr) − atan2(−qx, qy)

θ2 = acos
(
2

(
q2

r + q2
z

)
− 1

)
θ3 = atan2(qz, qr) + atan2(−qx, qy) (89)

Equation 88 can be rewritten as:

RE
B = R ((θ1 + θ3) ez) R(θ1ez)T R(θ2ez) R(θ1ez) (90)

And analyzing Eqs. 55, 89 and 90, we note that:

θ1 + θ3 = 2 atan2(qz, qr)
= θs (91)

We will then use the angles θs instead of θ3 to represent the robot’s spin, since
θs is consistent with the quaternion decomposition and Eq. 55. Moreover, θs

is uniquely defined when θ2 is near 0 and arguably more representative of the
actual geometrical spin. The input goal orientations to the simulations are given
as precessions and nutations:

θθθ = (θ1, θ2) (92)

25



So that:

n̄nnE =

cos(θ1) sin(θ2)
sin(θ1) sin(θ2)

cos(θ2)

 (93)

And.

m̄mmmmmmmm =
n̄nnE + ez

|n̄nnE + ez|
=

cos(θ1) sin(θ2/2)
sin(θ1) sin(θ2/2)

cos(θ2/2)

 (94)

7.2. Simulation 1: orientation tracking without noise
In this scenario, the robot is supposed to hover while changes of large ampli-

tude are imposed on precession and nutation angles (ZYZ sequence). This sce-
nario shows the controllability of the spinning robot in pitch and roll despite the
uncontrollable spinning angle. In addition, the controller allows the robot to reach
a desired body tilt with a null steady-state error. This first simulation starts with
the robot at rest. Then 4 orientation points in Table 3 are tracked in sequence,
before going back to the initial orientation. In Fig. 8 a) and b) we can see how

θ1 θ2
45
◦

0
◦

45
◦

90
◦

45
◦

180
◦

45
◦

−90
◦

45
◦

0
◦

Table 3: Orientation inputs for simulation 1.

the controller manages to track all the points easily, acting directly on (mmmmmmmmmx,mmmmmmmmmy),
the components perpendicular to ez, and taking the shortest path. Figure 8 c)
shows the angular velocities. The component around ez approaches the theoreti-
cal steady-state velocity, while the other components approach zero. Figure 8 d)
shows the calculated inputs to the motors. Both the inclination angle α and the
rotor velocity γ̇ have peaks whenever the goal is changed, limited by the physical
constraints. Figure 7 shows the motor phase. We can note how the phase keeps in-
creasing continuously with a change of rate equivalent to the change of rate of the
spin, with inverted sign. This was expected in order to counter the mono-rotor’s
spin. We can also note that the moment the goal orientation is changed, there is a

26



discontinuity on the motor input phase, which was also expected, since the robot
has a new goal orientation. We note though that even when this phase-shift hap-
pens, the change of rate continues to follow the negative of the change of rate of
the spin.

a)

b)

Figure 7: a) Motor phase β and b) robot’s spin θs from t = 2s to t = 6s. The swashplateless
phase increases at the same rate as the spin angle, but in the inverse direction. It is also shown (at
t = 4.1s) how the motor phase suddenly shifts when the goal orientation changes.

7.3. Simulation 2: vertical stability with random and impulsive noises
In this second scenario, the spinning robot is supposed to reject fast distur-

bances similar to gust of wind applied to the pitch and roll axes. As shown in
Figure 9, the quaternion-based control strategy (see Section 6) allows the robot to
reject 90% of the disturbance within about 500ms. This second simulation starts
with the robot at rest, then multiple random impulse torques with magnitude up to
26Nm. It also contains random torques of up to 0.09Nm at all times. In Fig. 9 a)
and b) we can see how the controller manages to compensate for these impulses.
Figure 9 d) shows the motor inputs, and we note the effect of a noisy angular
velocity. This may not be a problem in real systems where a low pass filter is

27



a) b)

c) d)

Figure 8: Responses of the simulated mono spinner to changes in attitude angles. a) Time course
of each component of mmmmmmmmm. b) shows the Euler angles representation of the orientation on the ZYZ
sequence: θ1 is the precession (first rotation around the z-axis, representing the direction in which
the robot is inclined), θ2 represents the nutation (rotation around the y-axis, representing the incli-
nation angle), and θs = θ1+θ3 is the uncontrollable spin. c) Angular velocity. d) Motor inclination
and rotation velocity.

28



usually applied to the orientation estimators, but an additional low pass filter might
also be necessary in the controller output.

7.4. Analysis of the middle normal vector’s projection
The normal middle vector mmmmmmmmm also opens up a new opportunity for the visual-

ization of the results. This vector can be separated into two components:

(ez ·mmmmmmmmm)ez =
[
0 0 mmmz

]T
, component in the direction of ez

−êz
2 mmmmmmmmm =

[
mmmx mmmy 0

]T
, component orthogonal to ez (95)

By definition, we know that |mmmmmmmmm| = 1 and ez ·mmmmmmmmm ≥ 0. The component of mmmmmmmmm in the
z-axis is then completely defined by the other components:

ez ·mmmmmmmmm = +
√

1 − | êz
2mmmmmmmmm |2

mmmz = +

√
1 −mmm2

x −mmm2
y (96)

Meaning that the orthogonal components (mmmx,mmmy) completely define the reduced
orientation with only two values.

8. Conclusion

Recent studies on unconventional unmanned flying vehicles have shed a new
light on their possible advantages, namely reduced cost and better power effi-
ciency. Moreover, the rise of thrust cyclic flapping by torque modulation makes
it more accessible to construct even more minimalist flying drones without fully
sacrificing their controllability.

In this work, the design of a cylindrical mono-rotor drone using a swashplate-
less torque modulation system is extensively studied. A comprehensive non-linear
dynamic model is studied using a very small amount of simplifications, with the
help of the Euler-Poincaré equation. An alternative representation of the drone’s
attitude is demonstrated and used, showing a novel way to decompose the ori-
entation into two parts: an uncontrollable spin component and a simple vector
representing the reduced, controllable part of the orientation. This allowed us to
explicitly separate and state the controllable 2 degrees of freedom of the rotation
(equivalent to the roll and pitch) from the uncontrollable degree of freedom of the
spin. A non-linear reduced attitude controller is then developed, with the help of
this decomposition, and an easily implementable strategy is designed based on

29



a) b)

c) d)

Figure 9: Responses of the simulated mono spinner to perturbations. a) Time course of each
component of mmmmmmmmm. b) Euler angles in ZYZ sequence. c) Angular velocity. d) Motor inclination,
phase and rotation velocity.

30



Figure 10: Projection of mmmmmmmmm in the XY plane for Simulation 1 of the mono-rotor. The dashed circles
indicate the possible values of (mmmmmmmmmx,mmmmmmmmmy) when θ2 = π (in black) and θ2 = π/2 (in gray).

31



this controller. The whole model including the controller was fully implemented
in Python. The source code of the simulation software is fully available. The
model was shown to correctly work even using a simple Euler integration method.

This paper presents a complete theoretical analysis for a spinning single ro-
tor drone, and in the future, a prototype should be built in order to validate the
theoretical and simulation results presented here. An important problem that may
rise is the orientation estimation problem: having a robot spinning constantly may
create a drift in the robot’s spin (or yaw) estimation. However, real time attitude
estimation based on novel Kalman-based filters have shown to be efficient and
robust to the spinning [34]. A full and precise estimation is crucial for the correct
use of the control. All these points open full research fields for the development
of future autonomous spinning vehicles.

Acknowledgments

This research was supported by CNRS, Aix-Marseille University and the French
National Research Agency (ANR) via the Origabot project (ANR-18-CE33-0008-
01).

Appendix A. Quaternion algebra summary

The 3D orientation can be expressed as a unit quaternion. Since the definitions
concerning quaternion algebra are not perfectly consistent in the literature, we will
show in this section some important notation and definitions used in this work.

A quaternion q is a hypercomplex number composed of four components:

q = qr + qxi + qy j + qzk (A.1)

Where qr, qx, qy, qz ∈ R. And all of the properties of quaternions can be derived
using: i2 = j2 = k2 = i jk = −1. For simplicity, quaternions are written in this
work as 4 × 1 vectors:

q =


qr

qx

qy

qz

 =
[
qr

q

]
(A.2)

Where qr as the real part and q =
[
qx qy qz

]T
the imaginary/vector part of q.

The Hamilton product between two quaternions in 4-vector form will be written

32



as3.

q ⊙ p =
[
qr

q

]
⊙

[
pr

p

]
=

[
qr pr − q · p

qr p+ prq + q × p

]
(A.3)

Defining the conjugate q∗ =
[

qr

−q

]
and the absolute value as |q| =

√
q2

r + q2
x + q2

y + q2
z ,

the inverse q−1 of q is given by:

q−1 =
q∗

|q|
(A.4)

And for any quaternion q:

q ⊙ q−1 = q−1 ⊙ q =
[
1
0

]
(A.5)

Appendix B. Kinetic energy analysis

In this section, the kinetic energy of the three distinct parts of the mono-rotor
will be analyzed.

Appendix B.1. Main body
The body’s kinetic energy is trivial:

TB =
mb

2
(vB

b )T vB
b +

1
2

(
ωωωB

b

)T
JB

bωωω
B
b

=
1
2

[
ωωωB

b

vB
b

]T [
JB

b 0
0 mbI

] [
ωωωB

b

vB
b

]
(B.1)

For sake of clarity, we expand Eq. B.1 in the following form:

TB =
1
2


ωωωB

b

vB
b

ΩΩΩP
P/B


T JB

b 0 0
0 mbI 0
0 0 0



ωωωB

b

vB
b

ΩΩΩP
P/B

 (B.2)

3When ⊙ notation is not used, consider common matrix/vector products.

33



Appendix B.2. Rotor
To find the kinetic energy, we must find the angular velocityΩΩΩP

p and the linear

velocity vP
p ofFP w.r.t. the inertial frameFE. To transform an inertial twist η =

[
ωωω
vvv

]
represented in a frame Fi to a frame F j, both related by a transformation:

g j
i =

R j
i sss j

i

0T 1

 (B.3)

Where s j
i is the position of Fi in F j and R j

i is the rotation matrix from Fi to F j, we
define the Ad operator [28]:

Ad j
i =

 R j
i 0

ŝss j
i R

j
i R j

i

 (B.4)

And the inverse operation is:

Adi
j =


(
R j

i

)T
0

−
(
R j

i

)T
ŝss j

i

(
R j

i

)T

 (B.5)

Moreover, by composition of velocities, we can state that:

η
j
j = Ad j

i η
i
i + η

j
j/i (B.6)

Considering ωωωB
b and vB

b , respectively, the angular and linear velocities of the main
body frame FB w.r.t. to the inertial frame FE, we can calculate the final rotor
velocities w.r.t. to the inertial frame as:

ηP
P =

(
AdP

B

)
ηB

B + η
P
P/B

=
(
AdB

P

)−1
ηB

B + η
P
P/B[

ΩΩΩP
p

vP
p

]
=


(
RB

P

)T
0

−hP

(
RB

P

)T
êz

(
RB

P

)T

 [ωωωB
b

vB
b

]
+

[
ΩΩΩP

P/B
0

]
(B.7)

Which leads to:

ΩΩΩP
p =

(
RB

P

)T
ωωωB

b +ΩΩΩ
P
P/B

vP
p =

(
RB

P

)T
vB

b − hP

(
RB

P

)T
êzωωω

B
b (B.8)

34



And the rotor’s kinetic energy is:

TP =
mp

2

(
vP

p

)T
vP

p +
1
2

(
ΩΩΩP

p

)T
JP

p ΩΩΩ
P
p

=
1
2

[
ΩΩΩP

p

vP
p

]T [
JP

p 0
0 mpI

] [
ΩΩΩP

p

vP
p

]
(B.9)

Introducing Eq. B.7 into Eq. B.9, we can state:

TP = A + B +C + D (B.10)

In which:

A =
1
2

[
ωωωB

b

vB
b

]T (
AdP

B

)T
[
JP

p 0
0 mpI

] (
AdP

B

) [ωωωB
b

vB
b

]
=

1
2

[
ωωωB

b

vB
b

]T RB
PJP

p

(
RB

P

)T
− mph2

P
(̂
ez
)2 mphPêz

−mphPêz mpI

 [
ωωωB

b

vB
b

]
(B.11)

The second term is:

B =
1
2

[
ΩΩΩP

P/B
0

]T [
JP

p 0
0 mpI

] 
(
RB

P

)T
0

−hP

(
RB

P

)T
êz

(
RB

P

)T

 [ωωωB
b

vB
b

]
=

1
2

(
ΩΩΩP

P/B

)T (
RB

PJP
p

)T
ωωωB

b (B.12)

The third term is:

C =
1
2

[
ωωωB

b

vB
b

]T [
RB

P hPêzRB
P

0 RB
P

] [
JP

p 0
0 mpI

] [
ΩΩΩP

P/B
0

]
=

1
2

(
ωωωB

b

)T (
RB

PJP
p

)
ΩΩΩP

P/B (B.13)

And the fourth and final term is:

D =
1
2

(
ΩΩΩP

P/B

)T
JP

p ΩΩΩ
P
P/B (B.14)

Finally, adding all terms together, we can express the propeller’s kinetic energy
as:

TP =
1
2


ωωωB

b

vB
b

ΩΩΩP
P/B


T 

JB
p − mph2

P
(̂
ez
)2 mphPêz RB

PJP
p

−mphPêz mbI 0(
RB

PJP
p

)T
0 JP

p



ωωωB

b

vB
b

ΩΩΩP
P/B

 (B.15)

Where JB
p = RB

P JP
p

(
RB

P

)T
.

35



Appendix B.3. Power supply
The power supply mass and frame can also be analyzed in the exact same way

as the propeller using Eqs. B.4 and B.6, with translation −hS ez, rotation RB
S = I

and ηS
S/B = 0:

ηS
S =

(
AdS

B

)−1
ηB

B + η
P
S/B[

ΩΩΩS
s

vS
s

]
=

[
I 0

hS êz I

] [
ωωωB

b

vB
b

]
(B.16)

Which leads to:

ΩΩΩS
s = ωωω

B
b

vS
s = hS êzωωω

B
b + vB

b (B.17)

And the power supply’s kinetic energy is:

TS =
mp

2

(
vS

s

)T
vS

s +
1
2

(
ΩΩΩS

s

)T
JS

sΩΩΩ
S
s

=
1
2

[
ΩΩΩS

s

vS
s

]T [
JS

s 0
0 msI

] [
ΩΩΩS

s

vS
s

]
(B.18)

Introducing Eq. B.16 into Eq. B.18, and expanding it as before, we get:

TS =
1
2

[
ωωωB

b

vB
b

]T [
I −hS êz

0 I

] [
JS

s 0
0 msI

] [
I 0

hS êz I

] [
ωωωB

b

vB
b

]

=
1
2


ωωωB

b

vB
b

ΩΩΩP
P/B


T JS

s − msh2
S
(̂
ez
)2
−mshS êz 0

mshS êz msI 0
0 0 0



ωωωB

b

vB
b

ΩΩΩP
P/B


T

(B.19)

Appendix B.4. Total kinetic energy
The expression of the total kinetic is:

T = TB + TP + TS (B.20)

36



Defining η =
[
ωωωB

b

vB
b

]
as the inertial twist of the body,ΩΩΩ = ΩΩΩP

P/B as the rotor’s angular

velocity w.r.t. the FB. The extra inertia component created by the point masses is:

JB
m = (msh2

S + mph2
P)

(
−êz

2
)

= (msh2
S + mph2

P)

1 0 0
0 1 0
0 0 0

 (B.21)

Define J = JB
b +JB

s +JB
p +JB

m and m = mb+ms+mp the sum of all masses. Inserting
Eqs. B.2, B.15 and B.19 into Eq. B.20, and defining ∆m = mshS − mphP

4, we get:

T =
1
2

[
η
ΩΩΩ

]T

M
[
η
ΩΩΩ

]
(B.22)

Where:

M =


J −∆mêz RB

PJP
p

∆mêz m I 0(
RB

PJP
p

)T
0 JP

p

 (B.23)

Appendix C. Quaternion decomposition into middle normal vector and spin
angle

In this section, we will derive a novel decomposition of the rotation quaternion
into two different components: one representing the uncontrollable spin angle, and
the other representing the two remaining controllable degrees of freedom.

Appendix C.1. Decomposition into two quaternions
Suppose two frames, a body-fixed frame FB and another frame FE (for ex-

ample, the inertial frame). We have a body that spins around an axis eb. In the
body frame, this vector is equivalent to a constant unit vector eB

b ≡ e. Suppose
q = [qr, qT ]T is the unit quaternion that defines the rotation from the body frame
FB to the inertial frame FE. If we note eE

b as the vector eb in the inertial frame, we

4Note that mshS ≫ mphP.

37



know that: [
0
eE

b

]
= q ⊙

[
0
eB

b

]
⊙ q∗

= q ⊙
[
0
e

]
⊙ q∗ (C.1)

Or simply eE
b = ReB

b = Re, where R = R(q), which gives:

eE
b =

(
I + 2

(
qr q̂ + q̂ 2

))
e (C.2)

Moreover, notating ωωω as the angular velocity of the body in the body frame, we
know that:

q̇ =
1
2

q ⊙
[
0
ωωω

]
(C.3)

Similarly to what was done in [35], but in a more general form, we will suppose
the existence of two unit quaternions, qa, the “reduced attitude quaternion” (also
known as the “swing”) and qs, the “spin quaternion” (also known as the “twist”):

qa =

[
ar

aaa

]
, qs =

[
sr

sss

]
q = qa ⊙ qs (C.4)

We also defineωωωa andωωωs as the angular velocities of both qa and qs such that:

q̇a =
1
2

qa ⊙

[
0
ωωωa

]
q̇s =

1
2

qs ⊙

[
0
ωωωs

]
(C.5)

And we add the constraint that both qa and qs are unit quaternions:

|qa|
2 = |qs|

2 = 1 (C.6)

Appendix C.2. Attitude quaternion
Since the quaternion qa has four components, but the spin is already repre-

sented by qs, a new constraint must be chosen for qa, otherwise the system is
under-determined. A natural choice for this constraint, to assure that no rotation

38



around e is done with qa, such that aaa · e = 0. This is a generalization of one of the
constraints used in [35]. Using this constraint:

qa ⊙

[
0
e

]
=

[
0(

arI + âaa
)

e

]
(C.7)

So, defining mmmmmmmmm =
(
arI + âaa

)
e, we know that qa has the form:

qa = −

[
0
mmmmmmmmm

]
⊙

[
0
e

]
(C.8)

Morever, since |qa| = |e| = 1, we know that |mmmmmmmmm| = 1. Introducing Eq. C.8 into Eq.
C.1: [

0
eE

b

]
= q ⊙

[
0
eB

b

]
⊙ q∗

= qa ⊙

[
0
eB

b

]
⊙ q∗a

= −

[
0
mmmmmmmmm

]
⊙

[
0
eB

b

]
⊙

[
0
mmmmmmmmm

]
(C.9)

Multiplying both sides on the right by −
[
0
mmmmmmmmm

]
:

−

[
0
eE

b

]
⊙

[
0
mmmmmmmmm

]
= −

[
0
mmmmmmmmm

]
⊙

[
0
eB

b

]
[
mmmmmmmmm · eB

b

mmmmmmmmm × eB
b

]
=

[
eE

b ·mmmmmmmmm
eE

b ×mmmmmmmmm

]
(C.10)

From Eq. C.10 we know that:

mmmmmmmmm × eB
b = eE

b ×mmmmmmmmm

mmmmmmmmm ×
(
eE

b + eB
b

)
= 0

mmmmmmmmm × ((R + I) e) = 0
(C.11)

Which means that, for some constant λ, we know that:

mmmmmmmmm = λ (R + I) e (C.12)

39



Choosing λ > 05 and noting that |mmmmmmmmm| = 1:

λ =
|mmmmmmmmm|

|(R + I) e|
=

1
|(R + I) e|

(C.13)

And finally:

mmmmmmmmm =
eE

b + eB
b∣∣∣eE

b + eB
b

∣∣∣ = (R + I) e
|(R + I) e|

(C.14)

And:

|(R + I) e| =
√

2 (e · Re + 1)

= 2
√

1 − |e × q|2

= 2
√

q2
r + (e · q)2 (C.15)

Finally, the attitude quaternion qa can be given as:

qa = −

[
0
mmmmmmmmm

]
⊙

[
0
e

]
(C.16)

Note that this equation has a singularity when eE
b = −eB

b = −e (mmmmmmmmm is undetermined).
For e = ez, we can see on Fig. C.11 the domains of both eE

b and mmmmmmmmm.

Appendix C.3. Spin quaternion
Considering that qs is the quaternion representing only the rotation that creates

the constant spin around e:

qs ⊙

[
0
e

]
⊙ q∗s =

[
0
e

]
qs ⊙

[
0
e

]
=

[
0
e

]
⊙ qs[

e · sss
e × sss

]
=

[
e · sss
−e × sss

]
(C.17)

Which gives e × sss = −e × sss, meaning that:

e × sss = 0 (C.18)

5Choosing λ < 0 would lead to the same final solution.

40



Figure C.11: On the left, the domain (in blue) of eE
b , with a red dot representing the singularity

point where eE
b = −e. On the right, the upper hemisphere represents the domain of mmmmmmmmm. We can see

that the whole equator between both hemispheres correspond to the case eE
b = −e, which means

that mmmmmmmmm is undefined in this case.

So we know that, for a real scalar s:

sss = se (C.19)

And noting sr = c, we can rewrite qs as:

qs =

[
c
se

]
(C.20)

With the constraint that |qs|
2 = c2 + s2 = 1. This leads to the natural definition as:

c = cos θs/2
s = sin θs/2 (C.21)

But to find these parameters for a given q, we can use C.4 and C.16 to find that:

qs = q∗a ⊙ q

|(R + I) e|
[
0
e

]
⊙

[
c
se

]
=

[
0

(R + I) e

]
⊙

[
qr

q

]
|(R + I) e|

[
−s
ce

]
=

[
−q · (R + I) e

(qrI − q̂) (R + I) e

]
(C.22)

Remembering Eq. C.2:

(R + I) e =
(
I + I + 2

(
qr q̂ + q̂ 2

))
e

= 2
(
I + qr q̂ + q̂ 2

)
e (C.23)

41



To find s:

|(R + I) e| s = q · (R + I) e
= 2q · e (C.24)

And finally:

s =
2

|(R + I) e|
q · e (C.25)

For c:

|(R + I) e| ce = (qrI − q̂) (R + I) e (C.26)

After some tedious algebra, we find that:

|(R + I) e| c = 2eT (
qrI + 2q̂

)
e

= 2qr (C.27)

Which gives:

c =
2

|(R + I) e|
qr (C.28)

And noting that c2 + s2 = 1 leads to |(R + I) e| = 2
√

q2
r + (q · e)2:

qs =
2

|(R + I) e|

[
qr

(q · e)e

]
=

1√
q2

r + (q · e)2

[
qr

(q · e)e

]
(C.29)

Which gives:
θs = 2 atan2(q · e, qr) (C.30)

Appendix C.4. Derivatives
In this section, we will analyze how to decompose the derivative of the full

rotation quaternion.

42



Appendix C.4.1. Derivative of spin quaternion
Analyzing the derivative of qs:

q̇s =
d
dt

([
c
se

])
=

1
2

[
−s
ce

]
θ̇s

=
1
2

[
c
se

]
⊙

[
0
θ̇se

]
(C.31)

And definingωωωs = θ̇se, we can finally write:

q̇s =
1
2

qs ⊙

[
0
ωωωs

]
(C.32)

Using Eq. C.30:

d
dt

(tan θs/2) =
d
dt

(
q · e
qr

)
1

2c2 θ̇s =
qrq̇v − q̇r q

q2
r

· e (C.33)

Moreover, we know that:

q̇ =
[
q̇r

q̇v

]
=

1
2

[
qr

q

]
⊙

[
0
ωωω

]
=

1
2

[
−ωωω · q

(qrI + q̂)ωωω

]
Which gives:

q2
r

c2 θ̇s =
(
qr(qrI + q̂)ωωω + (ωωω · q)q

)
· e

= ωωωT
(
I − qr q̂ + q̂ 2

)
e

=
1
2
ωωωT (I + R)T e

=
1
2
ωωωT RT (R + I) e (C.34)

43



And according to Eqs. C.23 and C.28:

θ̇s =
c2

q2
r
ωωω ·

RT ((R + I) e)
2

θ̇s = 2
((R + I) e)
|(R + I) e|2

· Rωωω

=
mmmmmmmmm · Rωωω
mmmmmmmmm · e

(C.35)

And we can finally state that:

ωωωs =

(mmmmmmmmm · Rωωω
mmmmmmmmm · e

)
e (C.36)

Appendix C.4.2. Derivative of mmmmmmmmm
By definition: [

0
mmmmmmmmm

]
= −q ⊙ q∗s ⊙

[
0
e

]∗
(C.37)

Which leads to: [
0
ṁmmmmmmmm

]
= −q̇ ⊙ q∗s ⊙

[
0
e

]∗
− q ⊙ q̇s

∗ ⊙

[
0
e

]∗
=

1
2

q ⊙
[

0
ωωω −ωωωs

]
q∗ ⊙

[
0
mmmmmmmmm

]
=

1
2

[
0

R(ωωω −ωωωs)

]
⊙

[
0
mmmmmmmmm

]
(C.38)

Which gives: [
0
ṁmmmmmmmm

]
=

1
2

[
0

R(ωωω −ωωωs)

]
⊙

[
0
mmmmmmmmm

]
=

1
2

[
−mmmmmmmmm · R(ωωω −ωωωs)
−mmmmmmmmm × R(ωωω −ωωωs)

]
(C.39)

Which finally gives:

ṁmmmmmmmm = −
1
2

mmmmmmmmm × R (ωωω −ωωωs) (C.40)

Moreover, since mmmmmmmmm · R(ωωω −ωωωs) = 0, we can also write Eq. C.39 as:[
0
ṁmmmmmmmm

]
= −

1
2

[
0
mmmmmmmmm

]
⊙

[
0

R(ωωω −ωωωs)

]
(C.41)

44



Appendix C.5. Demonstration of nonlinear attitude controller with a Lyapunov
function

Consider the following Lyapunov candidate function:

V = V(mmmmmmmmm) ≡ − ln
(
(m̄mmmmmmmm ·mmmmmmmmm)2

)
(C.42)

We can see that:

• V = 0 ⇐⇒ mmmmmmmmm = m̄mmmmmmmm, (the case when nnn = n̄nn);

• V > 0 for any other value of mmmmmmmmm;

• lim
nnn→−n̄nn

V(mmmmmmmmm) = +∞.

Differentiating Eq. C.42 w.r.t. time:

V̇ = −2
m̄mmmmmmmm · ṁmmmmmmmm
m̄mmmmmmmm ·mmmmmmmmm

(C.43)

Introducing Eq. 61 into Eq. C.43 gives:

V̇ =
m̄mmmmmmmm · (mmmmmmmmm × R (ωωω −ωωωs))

m̄mmmmmmmm ·mmmmmmmmm
(C.44)

Using the fact that aaa · (bbb × ccc) = ccc · (aaa × bbb), and that aaa · (Rbbb) = (RTaaa) · bbb, we can
further simplify the expression as:

V̇ = (ωωω −ωωωs) ·
(
RT m̄mmmmmmmm ×mmmmmmmmm

m̄mmmmmmmm ·mmmmmmmmm

)
(C.45)

Which leads to the natural definition that, for any 3× 3 positive-definite matrix PPP,
setting:

ωωω −ωωωs = −PPP
(
RT m̄mmmmmmmm ×mmmmmmmmm

m̄mmmmmmmm ·mmmmmmmmm

)
(C.46)

Defining:

mmmmmmmmm′ = RT m̄mmmmmmmm ×mmmmmmmmm
m̄mmmmmmmm ·mmmmmmmmm

(C.47)

We have:

V̇ = −mmmmmmmmm′ · (PPPmmmmmmmmm′) ≤ 0 (C.48)

45



Which is always negative, proving that V is a Lyapunov function and showing this
system is Lyapunov stable. Isolatingωωω gives:

ωωω = ωωωs + PPP
(
RT mmmmmmmmm × m̄mmmmmmmm

mmmmmmmmm · m̄mmmmmmmm

)
(C.49)

Which is equivalent to 67 and defines our nonlinear control law. Compared to the
Lyapunov function defined in [17], for example, the controller defined here gets
more and more aggressive when the robot’s orientation error approaches 180◦.
Moreover, our controller might be more well suited for a desired m̄mmmmmmmm close to ez,
which is the case.

References

[1] V. Baiocchi, D. Dominici, M. Mormile, Uav application in post seismic
environment, The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences XL-1/W2 (2013) 21–25. doi:
10.5194/isprsarchives-XL-1-W2-21-2013.

[2] Y. Qin, W. Xu, A. Lee, F. Zhang, Gemini: A Compact Yet Efficient Bi-
Copter UAV for Indoor Applications, IEEE Robotics and Automation Let-
ters 5 (2) (2020) 3213–3220. doi:10.1109/LRA.2020.2974718.

[3] M. Piccoli, M. Yim, Piccolissimo: The smallest micro aerial vehicle, in:
2017 IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 3328–3333. doi:10.1109/ICRA.2017.7989378.

[4] M. Piccoli, M. Yim, in: Passive stability of a single actuator micro aerial
vehicle, 2014, pp. 5510–5515. doi:10.1109/ICRA.2014.6907669.

[5] S. K. H. Win, L. S. T. Win, D. Sufiyan, S. Foong, Design and control of the
first foldable single-actuator rotary wing micro aerial vehicle, Bioinspiration
& Biomimetics 16 (6) (2021) 066019. doi:10.1088/1748-3190/ac253a.

[6] S. K. H. Win, L. S. T. Win, D. Sufiyan, G. S. Soh, S. Foong, An agile samara-
inspired single-actuator aerial robot capable of autorotation and diving, IEEE
Transactions on Robotics 38 (2) (2022) 1033–1046. doi:10.1109/TRO.
2021.3091275.

46

https://doi.org/10.5194/isprsarchives-XL-1-W2-21-2013
https://doi.org/10.5194/isprsarchives-XL-1-W2-21-2013
https://doi.org/10.1109/LRA.2020.2974718
https://doi.org/10.1109/ICRA.2017.7989378
https://doi.org/10.1109/ICRA.2014.6907669
https://doi.org/10.1088/1748-3190/ac253a
https://doi.org/10.1109/TRO.2021.3091275
https://doi.org/10.1109/TRO.2021.3091275


[7] A. Norberg, Autorotation, self-stability, and structure of single-winged fruits
and seeds (samaras) with comparative remarks on animal flight, Biologi-
cal Reviews 48 (4) (1973) 561–596. doi:10.1111/j.1469-185X.1973.
tb01569.x.

[8] M. Hedayatpour, M. Mehrandezh, F. Janabi-Sharifi, Optimal-power config-
urations for hover solutions in mono-spinners, in: 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2020, pp.
1344–1349. doi:10.1109/IROS45743.2020.9341648.

[9] M. W. Mueller, R. D’Andrea, Relaxed hover solutions for multicopters:
Application to algorithmic redundancy and novel vehicles, International
Journal of Robotics Research 35 (8) (2016) 873–889. doi:10.1177/
0278364915596233.

[10] W. Zhang, M. W. Mueller, R. D’Andrea, A controllable flying vehicle with
a single moving part, in: 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 3275–3281. doi:10.1109/ICRA.2016.
7487499.

[11] W. Zhang, M. W. Mueller, R. D’Andrea, Design, modeling and control of a
flying vehicle with a single moving part that can be positioned anywhere in
space, Mechatronics 61 (October 2018) (2019) 117–130. doi:10.1016/j.
mechatronics.2019.06.004.

[12] C. E. Thorne, M. Yim, Design and Analysis of a Gyroscopically Controlled
Micro Air Vehicle, Journal of Intelligent & Robotic Systems 65 (1) (2012)
417–435. doi:10.1007/s10846-011-9644-7.

[13] J. Paulos, M. Yim, An underactuated propeller for attitude control in mi-
cro air vehicles, in: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 1374–1379. doi:10.1109/IROS.2013.
6696528.

[14] J. Paulos, M. Yim, Cyclic Blade Pitch Control Without a Swashplate for
Small Helicopters, Journal of Guidance, Control, and Dynamics 41 (3)
(2018) 689–700. doi:10.2514/1.G002683.

[15] J. Paulos, B. Caraher, M. Yim, Emulating a fully actuated aerial vehicle
using two actuators, in: 2018 IEEE International Conference on Robotics

47

https://doi.org/10.1111/j.1469-185X.1973.tb01569.x
https://doi.org/10.1111/j.1469-185X.1973.tb01569.x
https://doi.org/10.1109/IROS45743.2020.9341648
https://doi.org/10.1177/0278364915596233
https://doi.org/10.1177/0278364915596233
https://doi.org/10.1109/ICRA.2016.7487499
https://doi.org/10.1109/ICRA.2016.7487499
https://doi.org/10.1016/j.mechatronics.2019.06.004
https://doi.org/10.1016/j.mechatronics.2019.06.004
https://doi.org/10.1007/s10846-011-9644-7
https://doi.org/10.1109/IROS.2013.6696528
https://doi.org/10.1109/IROS.2013.6696528
https://doi.org/10.2514/1.G002683


and Automation (ICRA), 2018, pp. 7011–7016. doi:10.1109/ICRA.2018.
8462975.

[16] Y. Qin, N. Chen, Y. Cai, W. Xu, F. Zhang, Gemini ii: Design, modeling, and
control of a compact yet efficient servoless bi-copter, IEEE/ASME Trans-
actions on Mechatronics 27 (6) (2022) 4304–4315. doi:10.1109/TMECH.
2022.3153587.

[17] N. Chen, F. Kong, W. Xu, Y. Cai, H. Li, D. He, Y. Qin, F. Zhang, A self-
rotating, single-actuated UAV with extended sensor field of view for au-
tonomous navigation, Science Robotics 8 (76) (Mar. 2023). doi:10.1126/
scirobotics.ade4538.

[18] S. Sun, G. Cioffi, C. De Visser, D. Scaramuzza, Autonomous Quadro-
tor Flight despite Rotor Failure with Onboard Vision Sensors: Frames
vs. Events, IEEE Robotics and Automation Letters 6 (2) (2021) 580–587.
doi:10.1109/LRA.2020.3048875.

[19] R. Mahony, V. Kumar, P. Corke, Multirotor aerial vehicles: Modeling, esti-
mation, and control of quadrotor, IEEE Robotics & Automation Magazine
19 (3) (2012) 20–32. doi:10.1109/MRA.2012.2206474.

[20] M. Faessler, F. Fontana, C. Forster, D. Scaramuzza, Automatic re-
initialization and failure recovery for aggressive flight with a monocular
vision-based quadrotor, in: 2015 IEEE International Conference on Robotics
and Automation (ICRA), 2015, pp. 1722–1729. doi:10.1109/ICRA.2015.
7139420.

[21] D. Falanga, K. Kleber, D. Scaramuzza, Dynamic obstacle avoidance for
quadrotors with event cameras, Science Robotics 5 (40) (2020) eaaz9712.
doi:10.1126/scirobotics.aaz9712.

[22] H. Poincaré, Sur une forme nouvelle des équations de la mécanique,
Comptes rendus de l’Académie des Sciences de Paris 132 (1901) 369–371.

[23] W. Yu, Z. Pan, Dynamical equations of multibody systems on Lie groups,
Advances in Mechanical Engineering 7 (3) (2015) 1687814015575959.
doi:10.1177/1687814015575959.

48

https://doi.org/10.1109/ICRA.2018.8462975
https://doi.org/10.1109/ICRA.2018.8462975
https://doi.org/10.1109/TMECH.2022.3153587
https://doi.org/10.1109/TMECH.2022.3153587
https://doi.org/10.1126/scirobotics.ade4538
https://doi.org/10.1126/scirobotics.ade4538
https://doi.org/10.1109/LRA.2020.3048875
https://doi.org/10.1109/MRA.2012.2206474
https://doi.org/10.1109/ICRA.2015.7139420
https://doi.org/10.1109/ICRA.2015.7139420
https://doi.org/10.1126/scirobotics.aaz9712
https://doi.org/10.1177/1687814015575959


[24] F. Boyer, D. Primault, The poincaré-chetayev equations and flexible multi-
body systems, Journal of Applied Mathematics and Mechanics 69 (6) (2005)
925–942. doi:10.1016/j.jappmathmech.2005.11.015.

[25] F. E. Udwadia, A. D. Schutte, An alternative derivation of the quaternion
equations of motion for rigid-body rotational dynamics, Journal of Ap-
plied Mechanics, Transactions ASME 77 (4) (2010) 1–4. doi:10.1115/
1.4000917.

[26] F. E. Udwadia, A. D. Schutte, Equations of motion for general constrained
systems in lagrangian mechanics, Acta Mechanica 213 (1-2) (2010) 111–
129. doi:10.1007/s00707-009-0272-2.

[27] F. Boyer, M. Porez, Multibody system dynamics for bio-inspired locomo-
tion: from geometric structures to computational aspects, Bioinspiration
& Biomimetics 10 (2) (2015) 025007, publisher: IOP Publishing. doi:
10.1088/1748-3190/10/2/025007.

[28] R. M. Murray, S. S. Sastry, L. Zexiang, A Mathematical Introduction to
Robotic Manipulation, 1st Edition, CRC Press, Inc., USA, 1994.

[29] H. Sommer, I. Gilitschenski, M. Bloesch, S. Weiss, R. Siegwart, J. Nieto,
Why and how to avoid the flipped quaternion multiplication, Aerospace 5 (3)
(2018) 1–15. arXiv:1801.07478, doi:10.3390/aerospace5030072.

[30] J. B. Kuipers, Quaternions and rotation sequences: a primer with applica-
tions to orbits, aerospace, and virtual reality, Princeton Univ. Press, Prince-
ton, NJ, 1999.

[31] L. Meier, D. Honegger, M. Pollefeys, Px4: A node-based multithreaded open
source robotics framework for deeply embedded platforms, in: 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015, pp.
6235–6240. doi:10.1109/ICRA.2015.7140074.

[32] D. Brescianini, M. Hehn, R. D’Andrea, Nonlinear Quadrocopter Atti-
tude Control, ETH Zürich Research Collection (2013). doi:10.3929/
ethz-a-009970340.

[33] E. Bernardes, S. Viollet, Quaternion to Euler angles conversion: A direct,
general and computationally efficient method, PLOS ONE 17 (11) (2022)

49

https://doi.org/10.1016/j.jappmathmech.2005.11.015
https://doi.org/10.1115/1.4000917
https://doi.org/10.1115/1.4000917
https://doi.org/10.1007/s00707-009-0272-2
https://doi.org/10.1088/1748-3190/10/2/025007
https://doi.org/10.1088/1748-3190/10/2/025007
http://arxiv.org/abs/1801.07478
https://doi.org/10.3390/aerospace5030072
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/10.3929/ethz-a-009970340
https://doi.org/10.3929/ethz-a-009970340


e0276302, publisher: Public Library of Science. doi:10.1371/journal.
pone.0276302.

[34] P. Solanki, C. C. de Visser, Attitude Estimation of a Quadcopter with one
fully damaged rotor using on-board MARG Sensors, AIAA Science and
Technology Forum and Exposition, AIAA SciTech Forum 2022 (2022).
doi:10.2514/6.2022-0857.

[35] R. G. Valenti, I. Dryanovski, J. Xiao, Keeping a good attitude: A quaternion-
based orientation filter for IMUs and MARGs, Sensors (Switzerland) 15 (8)
(2015) 19302–19330. doi:10.3390/s150819302.

50

https://doi.org/10.1371/journal.pone.0276302
https://doi.org/10.1371/journal.pone.0276302
https://doi.org/10.2514/6.2022-0857
https://doi.org/10.3390/s150819302

	Introduction
	System overview
	Masses and inertia matrices

	Pose and velocities
	Body pose and velocities
	Rotor pose and velocities

	External forces
	Gravity force
	Motor thrust and torque
	Aerodynamic drag
	Sum of external forces

	Equations of Motion with Euler-Poincaré equations
	Controller architecture
	Normal vector and rotation decomposition
	Rotation error definition
	Angular controller

	Simulation
	Controller
	Equations of Motion
	Parameters
	Inputs and parametration

	Simulation 1: orientation tracking without noise
	Simulation 2: vertical stability with random and impulsive noises
	Analysis of the middle normal vector's projection

	Conclusion
	Quaternion algebra summary
	Kinetic energy analysis
	Main body
	Rotor
	Power supply
	Total kinetic energy

	Quaternion decomposition into middle normal vector and spin angle
	Decomposition into two quaternions
	Attitude quaternion
	Spin quaternion
	Derivatives
	Derivative of spin quaternion
	Derivative of m

	Demonstration of nonlinear attitude controller with a Lyapunov function


