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Abstract 

DNA methylation is one of many epigenetic marks, which directly modifies base 

residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation 

of gene expression and alternative splicing in several cell types, including during cell 

lineage specification and differentiation processes. DNA methylation changes have also 

been observed during aging, and aberrant methylation patterns have been reported in 

several neurological diseases. We here review the role of DNA methylation in Schwann 

cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous 

systems, respectively. We first address how methylation and demethylation are 

regulating myelinating cells’ differentiation during development and repair. We then 

mention how DNA methylation dysregulation in diseases and cancers could explain their 

pathogenesis by directly influencing myelinating cells’ proliferation and differentiation 

capacities. 
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Main points 
DNA methylation regulates Schwann cells and oligodendrocytes differentiation. 

DNA modifications are necessary for myelination or remyelinating events in the CNS. 

DNA methylation is dysregulated in myelinating glia in aging, in neurodegenerative 

diseases, and in Schwannomas and CNS gliomas. 
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1. Introduction 

Epigenetic regulation is composed of several layers of modifications, from 

regionally-restricted marks on DNA and histones, to more global remodeling of 

chromatin regions. DNA methylation is the first layer of these epigenetic processes, as it 

directly modifies base residues, on cytosines and to a lower extent on adenines. DNA 

modifications mainly target the cytosine residues at their C-5 position, essentially at 

CpG dinucleotides in mammalian genomes (Eden & Cedar, 1994; Lister et al., 2009). 

DNA methylation itself is a multi-step cycle, in which methylation is first initiated by the 

addition of a methyl group from S-adenosylmethionine on the C-5 position (5-

methylcytosine, 5mC), then demethylation is gradually induced by the oxidation of 5mC 

to 5-hydroxy-methylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine 

(5caC) (Hashimoto, Zhang, & Cheng, 2012; Huang & Rao, 2014; Lister et al., 2013; 

Meier & Recillas-Targa, 2017; H. Wu & Zhang, 2011) (Figure 1A). The first reaction is 

catalyzed by the DNA methyltransferases (DNMTs): the “maintenance” DNMT1, which is 

responsible for the faithful copying of DNA methylation from mother to daughter cells 

during replication, and the de novo DNMT3A and DNMT3B, which establish new 

methylation marks (Goll & Bestor, 2005; Lei et al., 1996; Lyko, 2018, p. 201; Okano, Xie, 

& Li, 1998). The demethylation reactions can be passive, but they are mainly catalyzed 

by the Ten-Eleven Translocations (TETs) enzymes, TET1, TET2 and TET3, which are 

differently expressed depending on the tissue type and also with age (Kriaucionis & 

Heintz, 2009; Rasmussen & Helin, 2016). The last demethylation step is catalyzed by 

thymine-DNA glycosylase (TDG), followed by base excision repair (BER) (Figure 1A).  

DNA methylation has been shown to have important roles in X-inactivation, 

genomic imprinting, transposon silencing, transcription factor binding, cellular 

differentiation, cancer and aging (Beerman et al., 2013; M. J. Jones, Goodman, & 

Kobor, 2015; P. A. Jones, 2012; Yin et al., 2017). Generally, the level of methylation is 

higher in intergenic and repetitive regions of the genome and lower in gene regulatory 

areas, such as CpG islands (CGIs), transcription start sites, gene bodies and enhancer 

regions (P. A. Jones, 2012; Lister et al., 2009). At promoter regions and transcription 

starting sites, 5mC and 5hmC marks have mainly been associated with transcriptional 
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repression and initiation, respectively (Brenet et al., 2011; Schübeler, 2015; Smith & 

Meissner, 2013; Suzuki & Bird, 2008) (Figure 1B).	 Yet, while there is strong evidence 

for 5mC marks at CGIs at transcriptional start sites causing transcriptional repression, 

5mC in other regions of the genome, particularly in enhancers and gene bodies, 

appears to be more dynamic and associated with both gene activation and repression 

(Deaton & Bird, 2011; P. A. Jones, 2012; Zhu, Wang, & Qian, 2016). Both 5mC and 

5hmC marks could directly prevent the access of transcription factors to their binding 

sequence, especially for those containing a CG in their binding motif, or through binding 

partners such as methyl-CpG binding domain proteins. It is also worth noting that 

correlative assumptions between DNA methylation and gene expression have been 

recently challenged, as some studies have revealed modification of epigenetic marks 

following transcription. In these cases, DNA methylation and hydroxy-methylation marks 

would be revelators of ongoing or past gene expression and/or repression (Hodges et 

al., 2011; Lister et al., 2013; Stadler et al., 2011; Ziller et al., 2013). Specific DNA 

modifications could also recruit cofactors that modulate the chromatin environment, 

including histone modifications, which would imply a larger and more integrated role of 

several epigenetic marks in regulating gene expression (Jian Feng et al., 2015; Yiwei 

Liu, Zhang, Blumenthal, & Cheng, 2013; Schübeler, 2015; Smith & Meissner, 2013; 

Szulwach, Li, Li, Song, Han, et al., 2011; Yin et al., 2017). In gene bodies, 5mC and 

5hmC marks have also been associated with alternative splicing (Gelfman, Cohen, 

Yearim, & Ast, 2013; Maunakea, Chepelev, Cui, & Zhao, 2013; Wan et al., 2013; Yearim 

et al., 2015). Less is known about the gene expression regulation by 5fC and 5caC 

marks, but the recent development of new sequencing methods and specific antibodies 

for these marks will certainly lead to a better characterization of their respective 

biological roles. 

Methylation patterns remain reasonably static in terminally differentiated cells, 

whereas they are dynamically varied across cell types and developmental ages (J. Feng 

et al., 2010; Lister et al., 2013, 2009; Nestor et al., 2012, p. 201). During early cell 

lineage choice, in embryonic stem cells, binding sites of pluripotency-associated 

transcription factors have been shown to be enriched for DNA hydroxy-methylation (Ficz 
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et al., 2011). In the nervous system, DNA methylation has been extensively studied in 

neurons and astrocytes, which are both cell types that undergo several steps of lineage 

specification and cell differentiation (G. Fan et al., 2001; Guo et al., 2014; Hutnick et al., 

2009; Kinde, Gabel, Gilbert, Griffith, & Greenberg, 2015; E. Li, Bestor, & Jaenisch, 

1992; Milutinovic, Zhuang, Niveleau, & Szyf, 2003; Unterberger, Andrews, Weaver, & 

Szyf, 2006). During development, DNA methylation has been shown to be essential for 

determination of the neural lineage (Z. Wu et al., 2012), while demethylation has been 

reported to be associated with precocious astrogliogenesis, defective survival in 

proliferating neuroblasts and reduced neuronal plasticity in post-mitotic neurons 

(Guoping Fan et al., 2005; J. Feng et al., 2010; Hutnick et al., 2009; Z. Wu et al., 2012). 

The myelinating cells of the peripheral nervous system (PNS) and the central 

nervous system (CNS), Schwann cells and oligodendrocytes, also undergo multiple cell 

lineage specification steps before terminally differentiating. A tight dynamic control of 

transcription factors is necessary for normal myelination, and their dysregulation, in 

cancers, diseases and aging, has been directly linked to glial cell proliferation or 

differentiation defects. Here, we review the role of DNA methylation in the Schwann cell 

and oligodendroglial lineages, during the myelination process in development and in the 

adult, as well as in injury, cancer and aging. 

 

2. DNA methylation in Schwann Cells 

2.1. The Schwann cell lineage  

Schwann cells are amongst the major glial cell types of the mammalian PNS, 

alongside enteric glia from the gut and satellite glia from the dorsal root ganglia. 

Currently, there are four known types of Schwann cells, though this number will likely 

grow with future studies. Myelinating and Remak (non-myelinating) Schwann cells are 

found in spinal nerves and are associated with large and small caliber axons, 

respectively. Whereas terminal Schwann cells and nociceptive Schwann cells are 

associated with nerve terminals of motor and nociceptive neurons, respectively (Abdo et 
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al., 2019; Jessen & Mirsky, 2019). Schwann cells are generated from neural crest cells 

and pass through two well characterized developmental stages before differentiating 

into myelinating or Remak Schwann cells around birth. These stages are known as the 

Schwann cell precursor and the immature Schwann cell (Jessen & Mirsky, 2019). 	

More recently an additional Schwann cell state was identified. After injury to the 

adult PNS, myelinating and Remak Schwann cells transform into repair Schwann cells 

to promote nervous system regeneration (Arthur-Farraj et al., 2012; Gomez-Sanchez et 

al., 2017; Jessen & Arthur-Farraj, 2019). Repair Schwann cells can have subtly different 

molecular phenotypes depending on their vicinity to the site of injury (Clements et al., 

2017). Following axon regeneration, they can re-differentiate into either myelinating or 

Remak Schwann cells, independent of their original phenotype (Stierli et al., 2018). 

Importantly, repair Schwann cells appear to be lineage-restricted and incapable of 

transforming into other cell types or of forming tumors, without further mutation or 

manipulation of their genome (Parfejevs, Antunes, & Sommer, 2018; Stierli et al., 2018). 

 

2.2. DNA methylation regulates Schwann cell myelination 

Both DNMT3A and DNMT3B are important for neural crest specification and the 

timing of their differentiation (for review see (Hu, Strobl-Mazzulla, & Bronner, 2014)). In 

the absence of DNMT3A in the chick embryo there is a failure to repress neural genes, 

Sox 2 and Sox3 in the prospective neural crest region and a subsequent loss of neural 

crest specifier genes, Sox10, Foxd3 and Snail2 (Hu, Strobl-Mazzulla, Sauka-Spengler, 

& Bronner, 2012). Loss of DNMT3B in both human embryonic stem cells and in the 

chick embryo leads to acceleration of neural crest differentiation and precocious 

peripheral neuronal differentiation (Hu, Strobl-Mazzulla, Simoes-Costa, Sánchez-

Vásquez, & Bronner, 2014; Martins-Taylor, Schroeder, LaSalle, Lalande, & Xu, 2012). In 

the chick, DNMT3B binds and methylates the Sox10 promoter, which represses Sox10 

expression, allowing for cessation of neural crest delamination (Hu, Strobl-Mazzulla, 

Simoes-Costa, et al., 2014). It is currently unknown whether DNA methylation regulates 
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the generation or behavior of Schwann cell precursors or Immature Schwann cells. 

Immature Schwann cells begin to myelinate after they select an axon through a process 

known as radial sorting (Monk, Feltri, & Taveggia, 2015). Schwann cells receive signals 

to myelinate from their basal lamina, most prominently through interaction of laminin-

221 with the G-protein coupled receptor, GPR126, signaling through a cyclic 

AMP/protein kinase A axis (Mogha et al., 2013; Monk et al., 2009; Petersen et al., 

2015). Additionally, Schwann cells also receive signals from the axon that regulate 

myelination, the most studied of these is Neuregulin 1 type III binding to ErbB receptors 

(Michailov et al., 2004; Taveggia et al., 2005). These signals coalesce on a number of 

transcription factors to regulate myelin gene expression, such as Egr2/Krox-20 and Yy1 

((Ye He et al., 2010), reviewed in (Herbert & Monk, 2017; Monk et al., 2015)). 

Myelination begins in mouse nerves at birth (Monk et al., 2015). A genome wide 

CpG methylation study using reduced representation bisulfite sequencing compared 

mouse newborn nerves to adult mature myelinated postnatal day 60 (P60) nerves. They 

showed that promoter and regulatory regions for a number of myelin genes, such as 

Mbp and Pmp22 became globally hypo-methylated by P60 and this broadly correlated 

with an up-regulation in myelin gene expression between these two time points. 

Moreover, binding sites for myelin-specific transcription factors, such as Egr2 and Yy1 

were found to be enriched in the hypo-methylated regions (Varela-Rey et al., 2014) 

(Figure 2). It is important to note that the investigators found that, genome-wide, DNA 

hypo-methylation was associated with both up- and down-regulation of gene 

expression, which mirrors findings from other tissues (P. A. Jones, 2012). Although 

Varela-Rey et al. found that regulatory regions of a number of myelin genes became 

progressively more hypo-methylated, the relationship of DNA methylation with global 

myelin gene expression appears more complex. This is because most myelin genes 

were progressively up-regulated after birth (P10), while myelination proceeded, and 

then down-regulated again, albeit to levels higher than at newborn, in the adult nerve 

(P60) (Varela-Rey et al., 2014). Additionally, there are two further considerations to take 

into account with the interpretation of these findings. Firstly, Schwann cells are actively 

proliferating in the early postnatal nerve and this could certainly contribute to some of 
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the reduction in global CpG methylation observed in the adult nerve. Secondly, genome 

wide hypo-methylation is a phenomenon that is observed in many tissues with aging 

and it is possible that some of the hypo-methylation seen between newborn and P60 

sciatic nerve could be related to the aging process (M. J. Jones et al., 2015). Despite 

this, genetically increasing the global level of DNA methylation in the mouse sciatic 

nerve through knockout of Gnmt, an enzyme that regulates the level of S-

adenosylmethionine, the major methyl donor, led to thinner myelin sheaths and a 

reduction in expression of a number of lipid metabolism genes important in the 

myelination process (Varela-Rey et al., 2014) (Figure 2). This does demonstrate that 

altering methylation levels can regulate Schwann cell myelination in vivo, however it 

remains uncertain what the relative contribution of methylation of DNA versus histones 

contributes to this phenotype and whether it occurs through a Schwann cell 

autonomous mechanism.  

Cyclic AMP has been identified as a signal that could regulate the level of DNA 

methylation in Schwann cells during myelination. Firstly, treating cultured Schwann cells 

with cyclic AMP analogues, an in vitro assay for myelin differentiation, induces global 

CpG hypo-methylation of the Schwann cell methylome (Varela-Rey et al., 2014). 

Additionally, it has been shown that elevation of cyclic AMP levels in Schwann cells, in 

vitro, can increase 5hmC in promoters and gene bodies of up-regulated myelin genes 

(e.g. Prx and Mbp), likely through increasing the bioavailability of TETs cofactor Fe2+, in 

a process that is independent of protein kinase A activation (Camarena et al., 2017) 

(Figure 2). In support of this, the activity of TETs in the sciatic nerve significantly 

increases as myelination proceeds (Varela-Rey et al., 2014). Genome-wide profiling of 

5hmC has yet to be performed in peripheral nerve but in the CNS, it has been shown 

that hydroxy-methylation is a relatively abundant epigenetic mark compared to other 

tissues and is enriched in enhancers and gene bodies while largely absent from 

transcriptional start sites (Szulwach, Li, Li, Song, Wu, et al., 2011).  

While these studies implicate CpG methylation and potentially hydroxy-

methylation in regulating myelination in the PNS, we still do not know the relative roles 

of the DNMTs and TETs enzymes in the Schwann cell lineage. Furthermore, it is likely 
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that global DNA hypo-methylation is not the principal molecular mechanism driving 

myelination but works in concert with histone modifications, transcription factor binding 

and microRNA mediated post-transcriptional processing, which all have substantial 

roles in initiating myelination (reviewed in this issue by N. Tapinos and C. Jacob, and by 

M. Wegner). Finally, single-cell methylome studies will be required to further clarify the 

methylome signature in the Schwann cell lineage and, in particular, how the methylome 

of Remak Schwann cells differs from that of myelinating Schwann cells in adult 

peripheral nerves.	

 

2.3. Schwann cell methylome changes after nerve injury 

Whole genome shotgun bisulfite sequencing of sciatic nerve seven days after 

nerve transection demonstrated relatively few methylation changes (853 differentially 

methylated CpGs out of over 4 million identified) compared to uninjured nerves (Arthur-

Farraj et al., 2017). At this time point post-nerve injury, all Schwann cells are either in 

the process of or are already transformed into repair Schwann cells (Arthur-Farraj et al., 

2012; Gomez-Sanchez et al., 2017). One caveat to this kind of analysis is that Schwann 

cells compose 80% of the uninjured and between 50-70% of the injured peripheral 

nerve, raising the possibility that other cell types could contribute to the methylation 

signatures. While this cannot be completely excluded without performing single cell 

methylation analysis, the in vivo methylation profile of the injured nerve was strongly 

correlated with the methylation profile of cultured Schwann cells (which have similar 

morphology and gene expression to repair Schwann cells) but not macrophages, 

cultured endoneurial fibroblasts or perineurial cells (Arthur-Farraj et al., 2017). Often, 

global methylation changes are the hallmark of loss of lineage restriction and 

tumorigenesis (Baylin & Jones, 2016). The fact that we detected relatively few 

methylation changes after injury might reflect the observation that myelinating and 

Remak Schwann cells remain lineage restricted after conversion to repair Schwann 

cells and are not multipotent (Stierli et al., 2018).  
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Schwann cells react to injury by down-regulating myelin genes and up-regulating 

developmental genes, alongside expression of a new program of genes specialized for 

repair (Jessen & Arthur-Farraj, 2019). Furthermore, repair Schwann cell morphology is 

radically different to that of immature Schwann cells (Gomez-Sanchez et al., 2017). In 

line with this, the DNA methylation changes occurring during myelination in 

development are not reversed upon injury, as one might expect if this was simply de-

differentiation (Arthur-Farraj et al., 2017; Varela-Rey et al., 2014). Together, this shows 

that the Schwann cell reaction to injury cannot be classified solely as ‘de-differentiation’, 

which it is often referred to as, but instead as an adaptive change of cellular state, which 

is required to promote effective nerve repair (Jessen & Arthur-Farraj, 2019; Jessen, 

Mirsky, & Arthur-Farraj, 2015) (Figure 2). 

 Among the limited methylation changes observed in the injured nerve, the 

majority of differentially methylated regions (DMRs) were localized in regulatory regions 

of the genome, including putative enhancer regions. DMRs in these regions showed 

enrichment of genes associated with ErbB, TGFb and neurotrophin signaling, and 

occurred in the vicinity of binding sites for AP1 family, BACH2, MAFK and BATF 

transcription factors (Arthur-Farraj et al., 2017). Working in concert with other epigenetic 

modifications during nerve injury, DNA methylation changes may regulate expression of 

certain sets of genes through differential enhancer methylation and subsequent 

alteration of transcription factor binding. Conversely, altered methylation may occur as a 

result of transcription factor binding (Schübeler, 2015). The DNA demethylase, TET2 

has been identified as having an important role in regulating enhancer methylation 

(Lister et al., 2013). In light of this, it would be particularly interesting to investigate 

whether TET2 and have a role in regulating demethylation/hydroxy-methylation at 

enhancers in Schwann cells.  

 

3. DNA methylation in oligodendrocytes 

3.1. The oligodendroglial cell lineage 



	 12 

 Oligodendrocytes (OLs), the myelinating cells of the CNS, emerge from 

oligodendrocyte progenitor cells (OPCs), themselves deriving from neural stem cells. 

The switch from highly proliferative and migrative cells, characteristic of OPCs, to 

differentiating and ensheathing cells, specific to OLs, is regulated by the dynamic and 

orchestrated expression of specific transcription factors, from early specification (e.g. 

Ascl1, Olig1/Olig2, Sox10) to late maturation (e.g. Yy1, Myrf, Zfp191) (Emery et al., 

2009; Y. He et al., 2007; Howng et al., 2010; Küspert & Wegner, 2016; Q. R. Lu et al., 

2002; Nakatani et al., 2013). These processes are also regulated by epigenetic 

modifications, including chromatin remodeling (reviewed in this issue by C. Parras and 

QR. Lu), histones modifications (reviewed in this issue by J. Liu and G. Castelo-Branco) 

and DNA methylation. 

 

3.2. DNA methylation in oligodendroglial cells during developmental myelination 

DNA modification enzymes, DNMTs and TETs, are highly enriched in brain, liver 

and reproductive tissues, which correlate with high DNA methylation and hydroxy-

methylation levels in the CNS, compared to other tissues (Globisch et al., 2010; W. Li & 

Liu, 2011; Ono, Uehara, Kurishita, Tawa, & Sakurai, 1993; Szulwach, Li, Li, Song, Wu, 

et al., 2011; Tawa, Ono, Kurishita, Okada, & Hirose, 1990). However, their levels at 

specific genomic regions dynamically vary during oligodendroglial cell development, 

from their specification to their differentiation. 

In early developmental stages, specification of cortical neural stem cells into the 

glial lineage has been shown to be regulated by two successive DNA methylation 

waves,  first global demethylation, followed by specific methylation and silencing of 

neuronal genes (Guo et al., 2014; Oswald et al., 2000; Sanosaka et al., 2017; Z. Wu et 

al., 2012). Low-methylated regions at promoters of astrocyte- and oligodendrocyte-

specific genes are also enriched for gliogenic transcription factors, such as the nuclear 

factor I-binding motif, which are necessary to drive glial specification (Guoping Fan et 

al., 2005; Namihira et al., 2009; Sanosaka et al., 2017; Shu, Butz, Plachez, 
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Gronostajski, & Richards, 2003). Finally, acquisition of de novo methylation and 

hydroxy-methylation at specific astroglial (e.g. Gfap, genes involved in the JAK-STAT 

pathway) and oligodendroglial (e.g. Olig1, Sox10, Id2/4) genes distinguishes between 

these two glial lineages (Guoping Fan et al., 2005; Hatada et al., 2008; Takizawa et al., 

2001; Teter et al., 1996; H. Wu et al., 2010; M. Zhang et al., 2019) (Figure 3). 

The dynamic levels of DNA methylation and hydroxy-methylation in the 

oligodendroglial lineage, as well as their respective catalytic enzymes, DNMTs and 

TETs, suggest that these epigenetic marks are also essential for oligodendrocyte 

differentiation (Moyon et al., 2016; Y. Zhang et al., 2014; Zhao et al., 2014). An initial 

descriptive study detected a specific demethylation of the myelin gene, Mag, during 

OPC differentiation (Grubinska, Laszkiewicz, Royland, Wiggins, & Konat, 1994). Indeed, 

TET1, TET2 and TET3 have been shown to be necessary for OPC differentiation in vitro 

(Zhao et al., 2014). On the contrary, the blockade of the DNA methylation enzymes, in 

vivo, during rat CNS development, has been shown to delay myelination (Ransom, 

Yamate, Black, & Waxman, 1985). However, this study was using a non-specific 

demethylating drug, which also affected RNA metabolism and post-transcriptional 

processes. More detailed whole-genome methylome analysis comparing sorted 

neonatal OPCs and OLs has shown that OPC differentiation is associated with the 

same extent of hypo- as hyper-methylation. DNA methylation marks, identified by 

bisulfite-conversion sequencing, are mainly inversely correlated with gene expression 

during developmental myelination: genes with hypermethylated promoters and 

decreased expression in OLs compared to OPCs are associated with “neuronal 

lineage”, “cell cycle regulation” and “proliferation”, while genes with hypomethylated 

promoters and increased expression in OLs compared to OPCs are associated with 

“lipid processes” and “myelin components”. Decreasing methylation of differentiation 

genes after genetic ablation of Dnmt1 in OPCs was not sufficient to induce their 

differentiation, as it was also associated with reduced methylation and hence defective 

repression, of cell cycle genes and activation of genotoxic stress and the ER stress 

response. Conversely, RNA-Sequencing of in vitro OPCs lacking Tet1 revealed that 

downregulated genes were enriched for differentiation and cell cycle regulation genes. 
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However, loss of Tet1 in neonatal OPC was not sufficient to block their proliferation and 

differentiation in vitro and in vivo (Moyon et al., 2019; M. Zhang et al., 2019). This 

highlights a more complex role for DNA methylation in the oligodendroglial lineage, 

requiring both methylation and demethylation of specific genomic regions (Figure 3). 

Further analysis of the RNA-Sequencing of sorted control and Dnmt1-mutant OPCs also 

identified different alternative splicing events, correlated with massive hypo-methylation 

at the exon-intron boundaries (Moyon et al., 2016). On one hand, alternative splicing 

events have been shown to be necessary for oligodendrocyte differentiation during 

normal myelination (de Ferra et al., 1985; Jordan et al., 1990; Kevelam et al., 2015; 

Nave, Lai, Bloom, & Milner, 1987; Y. Zhang et al., 2014), and on the other hand, to be 

correlated with DNA methylation marks (Gelfman et al., 2013; Lev Maor, Yearim, & Ast, 

2015; Wan et al., 2013; Yearim et al., 2015). In OPCs, the gene ontology of the 

alternative spliced transcripts is enriched for genes involved in the cell cycle process 

and myelination (Moyon et al., 2016). This shows that DNA methylation and 

demethylation directly affect gene expression and alternative splicing in OPCs, and are 

both required for normal myelination. 

Functional studies suggest specific roles for each DNMTs and TETs in the 

oligodendroglial lineage during development. Recently, in vitro loss-of-function 

experiments have shown that DNMT3A may participate in OPC survival and 

proliferation, while DNMT1 might be necessary for OPC differentiation (Egawa et al., 

2019). DNMT1 could also affect oligodendroglial cells survival in vitro, as it has already 

been observed in embryonic stem cell, but these results were not duplicated in vivo 

(Egawa et al., 2019; Liao et al., 2015). Indeed, the genetic ablation of Dnmt1 only – and 

not Dnmt3a – in vivo in OPCs (using Olig1-cre line) resulted in a severe hypo-

myelination of the CNS, associated with tremors and decreased survival. In OPCs 

lacking Dnmt1, neither cell lineage specification nor survival were affected but, despite 

the hypomethylation of myelin genes, OPCs did not precociously proliferate or 

differentiate. Genetic ablation of Dnmt1 or Dnmt3a, in vivo, in later stages of OL 

development (using Cnp-cre line) did not show any phenotype, which suggested that 

DNA methylation might only be required in the early steps of OPC differentiation in vivo 
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(Moyon et al., 2016). This discrepancy suggests that in vitro and in vivo DNA 

methylation mechanisms might be slightly different, since epigenetic modifications can 

reflect extra-cellular and environmental cues. To better correlate and understand the 

role of DNA methylation on gene expression and alternative splicing, it would also be 

necessary to analyze the different DNA methylation marks at the single-cell level in 

these knock-out mouse lines. Concerning DNA hydroxy-methylation, loss of Tet2 or Tet3 

in the oligodendroglial lineage during developmental myelination did not show any 

phenotypes (Moyon et al., 2019; M. Zhang et al., 2019). While in vivo ablation of Tet1 in 

OPCs (using Olig1-cre line) appears to result in a lower number of embryonic OPCs 

and slightly delayed OL differentiation at early stages (post-natal day 14), only in brain 

regions, the extent of the myelination and its ultra-structure in adult animals are 

comparable to controls (post-natal day 60) (M. Zhang et al., 2019). This would suggest 

that DNA hydroxy-methylation and its respective enzymes are not required for neonatal 

OPC differentiation during developmental myelination. 

 

3.3. DNA methylation in oligodendroglial cells, in adult and aging 

During development, a pool of undifferentiated adult OPCs is maintained and 

uniformly distributed in the grey and white matter of the adult CNS (Chang, Nishiyama, 

Peterson, Prineas, & Trapp, 2000; Dawson, Polito, Levine, & Reynolds, 2003; Pringle, 

Mudhar, Collarini, & Richardson, 1992; Wolswijk & Noble, 1989). Adult OPCs are not 

only immature and on-standby cells, as once thought. More and more evidence has 

confirmed their essential roles in the adult CNS, which includes directly regulating 

neuronal, glial and vascular systems (Frühbeis et al., 2013; Gautier et al., 2015; 

Hayakawa et al., 2011; Pham et al., 2012). They are also the main myelinating cells of 

the adult CNS, necessary for myelin remodelling, plasticity, learning and for 

remyelination (Bengtsson et al., 2005; Fancy et al., 2011; I. A. McKenzie et al., 2014; 

Young et al., 2013). However, adult OPCs have different proliferation, migration and 

differentiation capacities than neonatal OPCs, which result from their different 

transcriptomic profiles (Chari, Crang, & Blakemore, 2003; Clarke et al., 2012; Lin, Mela, 
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Guilfoyle, & Goldman, 2009; Marques et al., 2016; Moyon et al., 2015; Spitzer et al., 

2019). Many epigenetic marks have been demonstrated to change with aging, but DNA 

methylation, especially, has been identified as the prominent epigenetic clock or age 

predictor (Bell et al., 2012; Hernandez et al., 2011; Horvath, 2013; Horvath & Raj, 2018; 

Masser et al., 2018; Shen et al., 2008; Stubbs et al., 2017; Szulwach, Li, Li, Song, Wu, 

et al., 2011; Unnikrishnan et al., 2019). This suggests that phenotypic differences 

observed between adult OPCs and neonatal OPCs could also reflect age-related 

methylomic changes. 

The role of DNA methylation and DNMTs has recently been reported in vivo in 

adult OPCs during remyelination. Genetic ablation of Dnmt1 and/or Dnmt3a in the 

oligodendroglial lineage impairs OPC differentiation into mature OLs, leading to thinner 

and delayed remyelination, following lysolecithin-induced focal demyelination in ventral 

spinal cords (Moyon et al., 2017). Interestingly, loss of a single Dnmt is less dramatic 

than loss of both Dnmt1 and Dnmt3a, suggesting compensatory or redundant roles for 

DNMTs in adult OPCs, an observation not seen in neonatal OPCs. The lack of Dnmt1 

reduced differentiation in both neonatal and adult OPCs, but only proliferation in 

neonatal OPCs (Moyon et al., 2016, 2017) (Figure 3). This suggests an age-dependent 

role for DNA methylation in OPC differentiation. One caveat with this conclusion is that 

the neonatal and adult studies used slightly different genetic strategies (i.e. Olig1-cre 

line targeting early progenitors in developmental brain and Plp-cre line targeting newly 

formed oligodendrocytes in adult brain), so the effects observed on the cell cycle may 

simply reflect the distinct proliferative potential of these two targeted cell populations, 

and not only their age-related differences (Moyon et al., 2016, 2017). Future parallel 

studies comparing the contribution of DNA methylation to neonatal and adult progenitor 

function are needed to fully address these issues. 

In adult human tissues, TET genes have been shown to be enriched in the 

oligodendroglial lineage compared to neuronal subtypes. DNA methylation and hydroxy-

methylation levels appear to be cell type-specific in the adult CNS, which might suggest 

an interesting specification role in each cell lineage, including oligodendrocytes 

(Kozlenkov et al., 2018). Recent studies have functionally shown that TET1 – and not 
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TET2 or TET3 – is the main DNA hydroxy-methylation enzyme regulating adult OPC 

differentiation (Moyon et al., 2019; M. Zhang et al., 2019). Following lysolecithin-induced 

lesion in young adult ventral spinal cords, efficient remyelination appears to be 

correlated with high TET1 expression and increased DNA hydroxy-methylation in the 

oligodendroglial population. Moreover, ablation of Tet1 in the oligodendroglial lineages 

impaired OL differentiation and delayed remyelination. In aging mice, defective 

remyelination was also associated with lower TET1 expression and no increased DNA 

hydroxy-methylation in the oligodendroglial cells. Interestingly, impaired remyelination 

observed in young mice lacking Tet1 seems to recapitulate the hallmarks of an aging 

phenotype, such as delayed repair and ultra-structural peri-axonal swellings, which 

would eventually lead to defective neuronal functions (Moyon et al., 2019). Altogether, 

these new evidences highlight the essential role of TET1-mediated DNA hydroxy-

methylation in adult OPC, especially after injury, and its potentially deleterious role 

during aging repair. 

 

3.4. DNA methylation in oligodendroglial cells in diseases 

Epigenetic mechanisms, including DNA methylation, have particular relevance for 

human neurodegenerative and psychiatric disease. The development of genome-wide 

DNA methylation studies of human post-mortem brain tissues has highlighted 

methylation and demethylation changes in Alzheimer’s disease, Parkinson disease, 

amyotrophic lateral sclerosis and schizophrenia (Chestnut et al., 2011; Desplats et al., 

2011; Jaffe et al., 2015; P. Li et al., 2019; Semick et al., 2019). These datasets have 

mainly been performed on whole-tissue, and their analysis have followed an historically 

neuro-centric hypothesis. Though previously overlooked, the role of oligodendroglial 

cells in neurological disorders has recently been the focus of a number of studies 

(Chen, Huang, Michael, & Xiao, 2015; A. T. McKenzie et al., 2017; Nasrabady, Rizvi, 

Goldman, & Brickman, 2018; Nguyen et al., 2013). New single-nucleus isolation and 

sequencing technology have now noted specific DNA methylation changes in 

oligodendroglial populations in Alzheimer’s disease and in schizophrenia. In these 
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studies, DNA methylation changes appeared to be as frequently represented in the 

oligodendroglial population as in the neuronal population, but occurring at different 

genomic regions between the two cell populations (Gasparoni et al., 2018; Mendizabal 

et al., 2019). DNA methylation dysregulation in OPCs and OLs could be associated with 

several pathologies, as patients with deficiency in S-adenosylhomocysteine hydrolase 

have been observed to also present correlative CNS hypomyelination (Barić et al., 

2004). 

Indeed, alterations in DNA methylation have been reported in diseases that affect 

the oligodendroglial lineage, such as Multiple Sclerosis (MS). MS is a common immune-

mediated CNS disease, characterized by oligodendroglial loss and focal attacks of 

demyelination, which are frequently associated with neurodegeneration (Ghosh et al., 

2011; International Multiple Sclerosis Genetics Consortium*†, 2019; Oluich et al., 2012). 

A recent study has shown that DNMTs are up-regulated and TETs down-regulated in 

demyelinated areas of the hippocampus from MS patients, which would suggest that 

one would expect an increase in methylation in MS tissues (Chomyk et al., 2017). 

However, DNA methylation sequencing of MS-affected brain tissues revealed a variety 

of methylomic changes in MS-affected normal appearing white matter (NAWM) and 

hippocampus compared to controls. For example, genes known to regulate 

oligodendroglial survival and differentiation (i.e. BCL2L2, NDRG1, NFASC) are hyper-

methylated and down-regulated in MS NAWM samples, which could affect the OPCs’ 

response capacities and overall remyelination in patients (Chomyk et al., 2017; Huynh 

et al., 2014). In contrast, genes implicated in proteolytic processing (i.e. LGMN, CTSZ, 

PAD2) are hypo-methylated and up-regulated in MS NAWM samples, which could even 

have the capacity to trigger the disease (Chomyk et al., 2017; Huynh et al., 2014; 

Mastronardi, Noor, Wood, Paton, & Moscarello, 2007). Indeed, PAD2 can citrullinate 

myelin basic protein (MBP), which results in the breakdown of myelin, the release of 

myelin protein fragments and a subsequent immune response (Mastronardi & 

Moscarello, 2005; Mastronardi et al., 2006). Citrullination of MBP has been shown to be 

elevated in MS tissues compared to controls, which directly correlates with hypo-

methylation and up-regulation of PAD2, and with increased levels of PAD2 enzyme 
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(Mastronardi et al., 2007; Moscarello, Wood, Ackerley, & Boulias, 1994). These findings 

suggest that complex DNA methylation changes in OPCs and OLs could contribute to 

MS pathology, possibly by affecting both demyelination and remyelination. Knowing the 

predominant incidence of MS in women compared to men, it is also worth noting that a 

recent study has shown that DNA methylation changes observed during aging in mouse 

hippocampus were sex-specific. DNA methylation did not differ between males and 

females in young tissues but more than 95% of age-related changes occurred in 

methylation at specific sites in one sex but not the other (Masser et al., 2017). Further 

oligodendroglial-specific and sex-specific analysis would be interesting to address the 

potential role of DNA methylation in MS incidence and pathology. 

 

4. The role of DNA methylation in Schwann cell and oligodendroglial tumors  

4.1. Glial origin of some PNS and CNS tumors 

The main Schwann cell tumors are benign Schwannomas and neurofibromas, 

and malignant peripheral nerve sheath tumors (MPNST) (for reviews see (Evans et al., 

2002; Hilton & Hanemann, 2014; Ratner & Miller, 2015)). The commonest genetic 

abnormality found in sporadic Schwannomas is mutation in the NF2 gene, which codes 

for the protein, Merlin (Hilton & Hanemann, 2014). Patients with neurofibromatosis type 

1 (NF1), develop amongst other neoplasms, cutaneous and plexiform neurofibromas, 

which are thought to be predominantly Schwann cell tumors but which also contain 

other cell types. All neurofibromas are associated with bi-allelic inactivation of the NF1 

gene, which codes for the tumor suppressor protein, neurofibromin, an inhibitor of RAS 

signaling (Ratner & Miller, 2015). In a proportion of NF1 patients, plexiform 

neurofibromas will transform into MPNSTs, however 50% of MPNST do occur 

sporadically. These tumors are highly aggressive and generally have a poor prognosis 

(Farid et al., 2014). 

Gliomas are the most common type of primary brain tumors in adults and they 

are usually characterized by poor prognoses (Ohgaki & Kleihues, 2005). Molecular 
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characterization of gliomas suggest that they originate from proliferative cells, such as 

neural stem cells, astrocytes and OPCs (for review see (Zong, Parada, & Baker, 2015)). 

Histopathological analysis of human glioma samples (e.g. expression of OPC-specific 

markers, such as NG2 and Olig2) and analysis of the molecular signature of proneural 

glioblastomas (e.g. expression of PDGFRa, NKX2-2, OLIG2) strongly suggest an 

oligodendroglial origin (Ligon et al., 2004; Q. Richard Lu et al., 2001; Shoshan et al., 

1999; Verhaak et al., 2010). Proneural gliomas present alterations of PDGFRa, such as 

mutations and/or amplifications, often associated with point mutations in tumor protein 

gene TP53 and in isocitrate dehydrogenase (IDH) 1 (Verhaak et al., 2010). Interestingly, 

three recent studies even highlighted the synaptic interaction of OPC-like cells with 

neural circuits in gliomas, which might promote their progression (Venkataramani et al., 

2019; Venkatesh et al., 2019; Zeng et al., 2019).  

 

4.2. Aberrant DNA modifications in Schwannomas and glioblastomas 

Aberrant DNA methylation is strongly implicated in tumorigenesis. There are 

three ways DNA methylation can contribute to an oncogenic phenotype: firstly by 

enabling somatic and germline mutation through deamination of 5mC to thymine within 

gene bodies, following exposure to UV irradiation or carcinogens; secondly by global 

hypo-methylation; and thirdly by hyper-methylation of CGI promoters of tumor 

suppressor genes (Baylin & Jones, 2016). 

In some gliomas, OPC proliferation and apoptosis dysregulation has been 

directly linked to mutation of genes involved in the DNA methylation/demethylation 

cycle. IDH1/2 mutation, which is frequently detected in these types of cancers, has been 

shown to induce the accumulation of 2-Hydroxyglutarate, inhibiting Alpha-Ketoglutarate-

dependent deoxygenase and the metabolic-epigenetic interplay, leading to alteration of 

both histone and DNA methylation patterns (Christensen et al., 2011; Ohba & Hirose, 

2018; Unruh et al., 2019; Yan et al., 2009). 
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Many tumors, and especially gliomas, have been characterized by extensive 

global DNA hypo-methylation, associated with aberrant activation of genes and non-

coding regions (Chou et al., 2012; Chu et al., 2011; Felsberg et al., 2006; Jia et al., 

2019; Sharma, Kelly, & Jones, 2010; Uhlmann et al., 2003; Watanabe & Maekawa, 

2010; J. Zhang et al., 2016). Inversely, 5hmC enrichment, potentially allowing gene 

expression activation, has also been detected in enhancers implicated in glioma 

pathogenesis (Glowacka et al., 2018; Johnson et al., 2016). A number of studies have 

also shown that the significant DNA methylation changes observed in Schwann cell 

tumors are likely to contribute to their pathogenesis, as well as aid in their classification. 

Firstly, the global methylation profiles of Schwannomas differ based on their anatomical 

location, as cranial Schwannomas show different methylation patterns to spinal 

Schwannomas (Agnihotri et al., 2016). Genome-wide methylation mapping using 

MeDIP-Seq, which immunoprecipitates methylated DNA prior to whole genome 

sequencing, compared the methylome of benign Schwannomas, MPNSTs and cultured 

human Schwann cells. This study found over 100,000 DMRs between samples, 

including hyper-methylation of tumor suppressor genes, hypo-methylation of oncogenes 

and differential methylation of CGI shores. Yet, the most common methylation change 

was hypo-methylation of non-intronic satellite regions, particularly SATR1 and ARLalpha 

satellite repeat regions (Feber et al., 2011). Microsatellite instability does not appear to 

be a frequent aberration in MPNSTs suggesting that hypo-methylation of these regions 

may have a more complex role, possibly in the regulation of nearby genes, though this 

remains to be tested (Serra et al., 1997). A genome-wide methylation microarray of 

vestibular Schwannomas demonstrated a trend towards hypo-methylation with more 

differential methylation identified away from CGIs, similar to the findings in MPNSTs 

(Feber et al., 2011).	 Significant hypo-methylation of the Hox gene cluster was identified 

as a commonly occurring alteration but this study did not identify any NF2 promoter 

hypermethylation, unlike previously (Feber et al., 2011; Gonzalez-Gomez, Bello, Arjona, 

et al., 2003; Torres-Martín et al., 2015).  

In parallel, tumors, such as gliomas, have been characterized by regional DNA 

hyper-methylation at specific loci, correlated with silencing of tumor suppressor genes 
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(Chou et al., 2012; Chu et al., 2011; Felsberg et al., 2006; Jia et al., 2019; Sharma et 

al., 2010; Uhlmann et al., 2003; Watanabe & Maekawa, 2010; J. Zhang et al., 2016). In 

Schwannomas and MPNSTs, a number of early and targeted studies have also 

identified promoter hyper-methylation of tumor suppressor genes and their subsequent 

inactivation, which appeared as potential mechanism for how aberrant DNA methylation 

contributes to tumorigenesis (Gonzalez-Gomez, Bello, Alonso, et al., 2003; Gonzalez-

Gomez, Bello, Arjona, et al., 2003; Kawaguchi et al., 2006; Kino et al., 2001; Oh et al., 

2015). Promoter hyper-methylation of the downstream effectors of Merlin/NF2, Lats1 or 

Lats2, has been described in Schwannomas and it was recently shown in mice that 

specific deletion of both Lats1 and Lats2 in Schwann cells can lead to MPNST 

generation (Oh et al., 2015; L. M. N. Wu et al., 2018). In contrast to Nf2, hyper-

methylation of the Nf1 promoter does not seem to occur in Schwann cell tumors (Feber 

et al., 2011; Fishbein, Eady, Sanek, Muir, & Wallace, 2005; Harder et al., 2004; Luijten 

et al., 2000). However, site specific methylation of discrete CpGs in SP1, AP2 and CRE 

binding sites in the Nf1 promoter may affect transcription factor binding and NF1 

expression in neurofibromas and MPNSTs (Harder et al., 2004; Kino et al., 2001; 

Mancini, Singh, Archer, & Rodenhiser, 1999).  

DNA methylation modifications have been highly correlated with tumorigenesis 

and prognosis of Schwannomas, MPNSTs, and gliomas, which suggests that specific 

methylating and demethylating agents could be potential therapies to prevent cancer 

cell progression in these tumours (Aoki & Natsume, 2019; de Souza et al., 2018; 

Heiland et al., 2016; Yanwei Liu et al., 2015; Ohba & Hirose, 2018). Certainly epigenetic 

therapies targeting the polycomb repressive complex 2 (PRC2) are a promising current 

avenue of research for MPNSTs and high grade gliomas given genetic studies strongly 

implicate PRC2 and loss of Histone H3K27 methylation in their progressions (De Raedt 

et al., 2014; Filbin et al., 2018; Lee et al., 2014; Nagaraja et al., 2017; Natalie Wu & Lu, 

2019; M. Zhang et al., 2014). Presently, the main challenges facing the field are to 

discern whether the differential methylation observed in tumors are more cause or 

consequence of the oncogenic process. Furthermore, what role does the DNA 

methylation machinery have in the development of Schwannomas, MPNSTs and 
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gliomas? Finally, we still don’t understand the hierarchical interaction between DNA 

methylation, histone modifications and chromatin states within individual tumor cells and 

this needs to be addressed to develop better future treatments (Baylin & Jones, 2016). 

 

5. Concluding remarks  

A growing body of evidence supports a prominent role for both DNA methylation 

and potentially DNA hydroxy-methylation in Schwann cells and oligodendroglial cells 

lineages, during development and in a number of neurological diseases, including 

tumors. A better integration of these specific 5mC and 5hmC marks with other 

epigenetic layers, such as histone modifications, chromatin remodeling or microRNA 

post-transcriptional processing, would be essential to clearly map their respective roles 

on gene regulation during myelinating cells proliferation and differentiation processes. 

New tools, including specific 5fC and 5caC antibodies and sequencing techniques, 

should also now allow a better comprehension of these DNA modifications marks. 

Single-cell sequencing coupled with methylome analysis would be essential to precisely 

address the functional role of epigenetic marks, which are highly specific between each 

cell type and within each cellular lineage, between developmental times and within 

aging, injury and disease.  
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Figures 

 

 

 

 

Figure 1. DNA methylation/demethylation cycle 

(A) A class of enzymes called DNA methyltransferases (DNMT1, DNMT3A, 3B) 

methylate cytosines (C) by transferring a methyl group from S-adenosylmethionine 

(SAMe). 5-methylcytosine (5mC) can be oxidized by ten eleven translocation (TET) 

enzymes (TET1, TET2, TET3) to 5-hydroxy-methylcytosine (5hmC), to 5-formylcytosine 

(5fC), then 5-carboxylcytosine (5caC). The last demethylation step is catalyzed by 

thymine-DNA glycosylase (TDG), followed by base excision repair (BER). (B) Generally, 

DNA methylation (5mC) marks are associated with gene repression, while DNA 

hydroxy-methylation (5hmC) marks are correlated with gene expression. 
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Figure 2. DNA methylation in Schwann cells during myelination and after nerve 
injury. 
The transition from immature Schwann cell to myelinating Schwann cell is accompanied 

by hypomethylation of promoters and enhancers of myelin and lipid biosynthetic 

pathway genes. The DNA methyltransferase, Glycine N-methyltransferase (GNMT), 

which metabolizes S-Adenosylmethionine (SAMe), positively regulates the myelination 

process, whereas increases in the levels of SAMe negatively regulate myelination 

(Varela-Rey et al., 2014). The transformation of myelinating Schwann cells to Repair 

Schwann cells after nerve injury is accompanied by down-regulation of myelin genes, 

up-regulation of developmental genes and also of repair program genes (Jessen & 

Arthur-Farraj, 2019). There are no global methylome changes in Schwann cells upon 

nerve injury but discrete differential methylation in putative repair program gene 

enhancers (Arthur-Farraj et al., 2017). 
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Figure 3. DNA methylation in oligodendroglial cell differentiation during 
myelination and remyelination. 
Oligodendroglial cell lineage differentiation is regulated by both DNA methylation and 

demethylation. Early DNA methylation of neuronal and astroglial lineage genes induce 

oligodendroglial specification. During oligodendrocyte progenitor cell differentiation, 

DNA methylation – mediated by DNMT1 during development and mainly DNMT3A in 

adult - has been associated with transcriptional repression of proliferation genes and of 

inhibitor of differentiation genes. In contrary, DNA demethylation has been observed on 

differentiation and myelin genes, resulting from TET activity that induces the OPC 

differentiation program, during developmental myelination and repair. 
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