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components of myelin dysregulation in
Alzheimer’s disease
Andrew T. McKenzie1,2,3, Sarah Moyon4,13, Minghui Wang1,2, Igor Katsyv1,2,3, Won-Min Song1,2, Xianxiao Zhou1,2,
Eric B. Dammer5, Duc M. Duong6,7, Joshua Aaker8, Yongzhong Zhao1,2, Noam Beckmann1,2, Pei Wang1,2,
Jun Zhu1,2, James J. Lah9,10, Nicholas T. Seyfried6,7,9, Allan I. Levey9,10, Pavel Katsel11, Vahram Haroutunian2,11,12,
Eric E. Schadt1,2, Brian Popko8, Patrizia Casaccia2,4,13* and Bin Zhang1,2*

Abstract

Background: Oligodendrocytes (OLs) and myelin are critical for normal brain function and have been implicated in
neurodegeneration. Several lines of evidence including neuroimaging and neuropathological data suggest that
Alzheimer’s disease (AD) may be associated with dysmyelination and a breakdown of OL-axon communication.

Methods: In order to understand this phenomenon on a molecular level, we systematically interrogated OL-
enriched gene networks constructed from large-scale genomic, transcriptomic and proteomic data obtained from
human AD postmortem brain samples. We then validated these networks using gene expression datasets
generated from mice with ablation of major gene expression nodes identified in our AD-dysregulated networks.

Results: The robust OL gene coexpression networks that we identified were highly enriched for genes associated with
AD risk variants, such as BIN1 and demonstrated strong dysregulation in AD. We further corroborated the structure of
the corresponding gene causal networks using datasets generated from the brain of mice with ablation of key network
drivers, such as UGT8, CNP and PLP1, which were identified from human AD brain data. Further, we found that mice
with genetic ablations of Cnp mimicked aspects of myelin and mitochondrial gene expression dysregulation seen in
brain samples from patients with AD, including decreased protein expression of BIN1 and GOT2.

Conclusions: This study provides a molecular blueprint of the dysregulation of gene expression networks of OL in AD
and identifies key OL- and myelination-related genes and networks that are highly associated with AD.

Keywords: Alzheimer’s disease, Oligodendrocyte, Myelin, co-expression network, Causal network, RNA sequencing,
Proteomics, Differential expression, CNP, BIN1
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Background
Alzheimer’s disease (AD) causes a progressive dementia
that affects approximately 1/6th of people in the US age
75 and above [1]. Although the number one risk factor
for AD is advanced age, the reason for this remains un-
known [2, 3]. A wealth of evidence has emerged over the
past decade to support the role of non-neuronal cells,
especially astrocytes and microglia, in amyloid beta (Aβ)
processing and AD pathogenesis [4–6]. While less well
studied, several lines of evidence have suggested that
dysregulation of oligodendrocytes (OLs) and associated
dysmyelination might be important in AD pathology.
For example, human neuroimaging studies have shown
that white matter changes occur early in AD and are
predictive of disease status [7–9]. In particular, MRI
studies have detected white matter volume atrophy in
multiple brain regions prior to changes in gray matter in
AD progression [10–12]. Further, post-mortem human
pathological studies have demonstrated that the pattern
of neurofibrillary tangle deposition in AD is highly cor-
related with the developmental pattern of myelination,
with late-myelinated axonal tracts substantially more
vulnerable to degeneration in AD [13, 14]. Recent re-
ports have highlighted the importance of OLs and mye-
lin metabolic function for axonal health and transport
capacity [15–20], thereby suggesting the possibility that
OL-driven axonal damage could precede a secondary de-
myelination in the pathogenesis of AD. In particular,
there are several mouse models of ablation of the OL-
associated myelin genes Ugt8 [21], Cnp [22, 23], and
Plp1 [24, 25], in which axonal degeneration occurs in
the presence of minimal ultrastructural myelin alter-
ations and therefore are well suited to study altered OL
gene expression, presumably leading to myeling dysfunc-
tion preceding the onset of neurodegeneration. To in-
vestigate the hypothesis that OL dysregulation in AD
may be part of the underlying mechanism leading to
neurodegeneration, we sought to employ a detailed mo-
lecular and systems-level analysis to provide a molecular
substrate for the potential role of OLs in mediating the
initial axonal damage.
In this study, we systematically examined and validated

OL-enriched gene networks to uncover key genes and
molecular signaling circuits of OLs in AD. We built
upon AD-associated and OL-enriched networks con-
structed in a previous study of genetic, gene expression,
and pathophysiologic data in late-onset AD [26]. We
constructed a union of the three OL-enriched modules
from a multi-tissue AD co-expression network and
found that it was strongly enriched for AD risk factor
genes. Our OL-enriched consensus module includes
genes encoding proteins associated with Aβ-production
PSEN1 and BACE1, as well as the AD risk factor genes
BIN1, PSEN1, PICALM, and UNC5C [27–30]. We next

built co-expression networks from a large-scale proteo-
mics data set, identifying a strong loss of coordination
among proteins in the most OL-enriched network, an
interaction of this dysregulation and dementia status, as
well as a down-regulation of key OL network genes, in-
cluding BIN1. We then used the OL modules to con-
struct regulatory networks and found that the
topological structures of our OL-enriched networks were
validated through in vitro and in vivo perturbations of
the predicted key regulatory genes in the networks. Fur-
ther, transcriptomic analysis of brain tissue isolated from
mice with a genetic ablation of three top key driver
genes (Ugt8, Cnp, and Plp1) recapitulated key aspects of
the dysregulation in gene pathways related to myelin-
ation that are seen in human AD brains. We chose to
profile the mice with these genetic ablations at an early
stage of development (postnatal day 20), in order to de-
tect alterations in gene pathways occurring during the
process of myelination and prior to the onset of wide-
spread axon degeneration in Cnp-KO [22] or Plp1-KO
[24] mice. This approach allowed us to define alterations
in OL gene expression occurring during the “pre-symp-
tomatic” or prodromal phase of the disease, as opposed
to reactive changes that might be consequent to axonal
degeneration. We found that differentially expressed
gene (DEG) signature in the Cnp knockout (KO) mouse
mimicked gene expression changes detected in AD
brains at the early stages of the pathology, both at the
gene pathway and individual protein level, thereby sug-
gesting that dysregulation of OLs in general and CNP in
particular may play a key role in driving AD-associated
gene expression changes.

Methods
Oligodendrocyte network construction from AD data and
key driver analysis
We re-analyzed data from the Harvard Brain Tissue Re-
source Center (HBTRC) consisting of 376 late-onset
Alzheimer’s disease brain samples as well as 173 non-
demented brain samples, harvested from the cerebellum
(CBM), dorsolateral prefrontal cortex (Brodmann area 9;
henceforth, PFC), and visual cortex (Brodmann area 7;
VC), which has been previously described [26] (GEO:
GSE44772). Based upon the HBTRC AD data, we previ-
ously built up a multi-tissue weighted gene co-
expression network using WGCNA [26, 31]. In order to
find the AD OL-specific modules, we tested the enrich-
ment of each module for the gene signatures specifically
expressed in OLs. To do this, we employed datasets on
cell enrichment and identified the genes most highly
expressed in myelinating OLs compared to the non-OL
cell types [32]. Three modules, one with probes primar-
ily derived from each of the three investigated brain re-
gions were found to be the most enriched for the OL
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gene signature. We therefore refer to these as the “re-
gion-specific oligodendrocyte co-expression network”
modules. We further inferred an interaction network for
each OL-enriched and region-specific gene module by
integrating gene expression and DNA genotypic data, as
previously described [26]. Specifically, relationships be-
tween genes in each co-expression module were inferred
based on conditional independence tests of gene expres-
sion in a Bayesian framework, and the presence of more
expression single nucleotide polymorphisms (eSNPs) as-
sociated with a gene were used as priors to break Mar-
kov equivalence [33]. We refer to each of these networks
as the “region-specific OL-enriched Bayesian interaction
networks”. For robustness, we combined the genes in
the three region-specific co-expression networks into a
core OL gene set (COLGS), merged the three brain
region-specific Bayesian interaction networks by a set
union of directed links into a core OL-enriched Bayesian
interaction network (COLBN). The gene symbols from
this previous study were updated to current Hugo Gene
Nomenclature Committee (HGNC) standards using the
R package HGCNhelper (v. 0.3.1), and the two gene
symbols in the OL-enriched networks that were still
mapped to multiple symbols were mapped to the more
common symbol (MARCH1 and LPAR1) for legibility. In
order to identify key regulatory genes in this interaction
network, we then performed key driver analysis on
COLBN [34, 35], which uses network connectivity to
infer regulatory importance scores for genes.

Enrichment of brain co-expression modules in AD GWAS
risk factor genes
In order to find the enrichment of COLGS and other
co-expression modules in Alzheimer’s risk factor genes,
we converted the International Genomics of Alzheimer’s
Project (IGAP) GWAS SNP-level data set [28] to gene-
level p-value calls using VEGAS2 [36], and used the
genes with significant association at a nominal p < 0.05
for further analysis. We then measured the enrichment
of this 543 AD GWAS risk factor gene set in the 62
overall qualifying multiscale AD modules with at least
50 genes using Fisher’s Exact Test (FET).

Proteomics data analysis from PFC human postmortem
brain samples
Grey matter brain samples in 50 mg aliquots were har-
vested from the prefrontal cortex (PFC; Brodmann Area
10) from the autopsied brains of persons with a wide
range of cognitive status at the time of death, ranging
from no cognitive impairment to dementia, as well as a
wide range of Braak scores, from 0 to 6. Liquid
chromatography-tandem mass spectrometry (LC-MS/
MS) was used to measure the abundance of peptides in
each brain sample, from which a protein-level

quantitation was estimated using MaxQuant (v1.5.3.30).
We used WGCNA to define modules of proteins in the
proteomics data, with a soft-thresholding power coeffi-
cient of 3. We next annotated these modules based on
their relative FET enrichment in the human homologues
of genes specifically expressed in each of the five major
mouse brain cell types (see “Estimating brain cell type
enrichment”).
Within this OL-enriched module, we performed

modular differential connectivity analysis in order to as-
sess the overall difference in between samples classified
as non-AD (Braak 0–2) and AD (Braak 5–6), calculated
using the mean difference in z-scores option in DGCA
[37] (v. 1.0.1), with 10,000 permutation samples to assess
significance. We used a Student’s t-test to measure dif-
ferences in average expression between conditions, using
the q value R package [38] to estimate false discovery
rates in the context of the multiple hypothesis tests.

Generating in vivo mouse genetic perturbation signatures
Animals
Use of animals in this research was strictly compliant
with the guidelines set forth by the US Public Health
Service in their policy on Humane Care and Use of La-
boratory Animals, and in the Guide for the Care and
Use of Laboratory Animals. All animal procedures re-
ceived prior approval from the Institutional Animal Care
and Use Committee at Icahn School of Medicine at
Mount Sinai.

Tissue collection
For each of the control and knockout model mice of the
three key drivers (Cnp, Ugt8, and Plp1), mice of either
sex were sacrificed at postnatal day 20 and tissue was
flash-frozen in liquid nitrogen vapors. The frontal cortex
and cerebellum were dissected on ice and immediately
processed for RNA isolation. Integrity of the RNA was
confirmed by measuring RNA Integrity Number (RIN)
and only samples with RIN > 8.5 were used for RNA
sequencing.

RNA isolation and reverse transcription
RNA was isolated using Trizol reagent (Invitrogen, CA)
and cleaned using RNeasy Mini kit (Qiagen, CA). Ribo-
somal RNA was removed from the samples using Ribo-
Zero rRNA Removal Kit (Illumina, CA). Approximately
500 nanograms of total RNA was used in cDNA library
construction with the TruSeq RNA Sample Prep Kit
(Illumina, CA), followed by RNA sequencing using an
Illumina HiSeq2000.

Read mapping and quantification of RNAseq data
RNA-sequencing reads were mapped to the mouse gen-
ome (mm10, UCSC assembly) using Bowtie (version
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2.2.3.0), TopHat (version 2.0.11), and SamTools (version
0.1.19.0) using a read length of 100. For RNAseq knock-
out experiments, reads were converted to counts at the
gene level using HTSeq [39] on the BAM files from
TopHat2 using the UCSC known genes data set. For
each key driver knockout and brain region, genes that
mapped less than 100 counts in 80% or more of the
samples were filtered out from downstream analysis, be-
cause these genes are likely to have especially high vari-
ance in expression calls.

Compartmental approach to compare of mouse key
driver perturbation signatures with human postmortem
AD gene expression signatures
We found the enrichment of both mouse key driver
knockout DEG signatures, aggregated across significant
DEGs (p < 0.05, FDR < 0.3) from both the frontal cortex
and cerebellum, as well as two human AD gene expression
signatures in the gene ontology pathways. The prefrontal
cortex (PFC) human AD DEG signature was estimated
from the HBTRC cohort. We used the list of genes identi-
fied as previously identified as having significantly differ-
ent RNA levels in brain samples from persons with high
levels of Alzheimer’s neuropathology (Braak = 5–6) com-
pared brain samples from persons with low levels of Alz-
heimer’s neuropathology (Braak = 0–2) via a Student’s t-
test [26]. The second human AD DEG signature is from a
previous study that identified genes with a significant
trend in RNA expression changes across the severity
spectrum of AD (control, incipient, moderate, and severe)
in the hippocampus (HIPP) [40]. In this data set, we se-
lected the genes as having an increasing or decreasing
trend in expression across AD severity stages and an
ANOVA p-value <0.05 as the HIPP AD DEG signature.
We used the moduleGO function in DGCA [37] (version
1.0.1) to perform gene ontology (GO) enrichment analysis
on these DEG sets, which leverages the GOstats (version
2.34) [41] and org.Hs.eg.db GO annotation (version 3.1.2)
R packages. We filtered for those GO terms with less than
800 and greater than 100 gene symbols. We adjusted the
enrichment p-values for all GO terms in each DEG set
using the Benjamani-Hochberg method. In order to deter-
mine whether there was a similar pattern of dysregulation
in the mouse key driver knockout models as in human
AD, we next found the degree to which the compartment
overlaps intersected, using the R package SuperExactTest
(version 0.99.2) [42].

In vivo validation of gene expression
Animals
The Cnp-cre knock-in mouse line has been described
previously [23]. For the sake of clarity, in this manu-
script, Cnp+/+ mice are called Cnp-WT and Cnpcre/cre

mice are called Cnp-KO.

Western blot
Mice of either sex were sacrificed at postnatal day 60
and brains were cut into 1 mm coronal sections using a
refrigerated brain matrix. Corpus callosum (CC) was dis-
sected from coronal sections on ice using a light micro-
scope. The tissue was then immediately processed for
protein extraction. Protein lysates (50 μg) were separated
by sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS–PAGE) and transferred onto a PolyVinyli-
dene DiFluoride (PVDF) (Millipore, Billerica, MA, USA)
membrane using a buffer containing 25 mM Tris base,
pH 8.3, 192 mM glycine, 20% (vol/vol) methanol for 1 h at
100 V at 4 °C. Membranes were blocked for 1 h in 10%
Milk/0.1% Tween/TBS, then incubated overnight at 4 °C
with the primary antibody diluted 1:1000 in 5% BSA/
0.02% sodium azide/0.1% Tween/TBS. Antibodies used
are: mouse anti-CNPase (Sternberger Inc., SMI-91,
1:5,00), mouse anti-alpha-TUBULIN (Calbiochem, CP06,
1:5000), rabbit anti-BIN1 (Abcam, ab185950, 1:2500),
rabbit anti-GOT2 (Abcam, ab171739, 1:2500). After rins-
ing with 0.1% Tween/TBS, membranes were incubated
2 h at room temperature with the secondary light-chain
specific antibody (Jackson Immunoresearch, 1:10,000) in
10% Milk/0.1% Tween/TBS. After rinsing, membranes
were incubated with ECL (Amersham) for 3 min and then
revealed. Quantification was carried out on three bio-
logical and technical replicates per genotype, using ImageJ.
Protein expressions were normalized to alpha-TUBULIN
expression, then compared to their respective expression
levels in Cnp-WT samples.

Immunohistochemistry
Mice were perfused with 4% paraformaldehyde and
post-fixed overnight in the same solution at 4 °C. Tissue
samples were then transferred to 70% ethanol, sequen-
tially dehydrated and embedded in paraffin. Four-
micrometer sections were cut, deparaffinized and rehy-
drated. Antigen retrieval was performed by incubating
slides in sub-boiling (94 °C) citrate buffer (pH 6.0) for
15 min. Slides were incubated in blocking buffer (20%
Normal Goat Serum / 1% BSA / PBS 1X) for 1 h at
room temperature and then incubated overnight at 4 °C
with the primary antibodies in 1% BSA / PBS 1X. Anti-
bodies used are: mouse anti-OLIG2 (Millipore,
MABN50, 1:200), mouse anti-NeuN (Millipore,
MAB377, 1:200), mouse anti-GFAP (Sternberger Inc.,
SMI-22, 1:200), rabbit anti-BIN1 (Abcam, ab185950,
1:200), rabbit anti-GOT2 (Abcam, ab171739, 1:200).
After rinsing with Tris-buffer / 2% milk, sections were
processed with he appropriate Alexa Fluor conjugated
secondary antibodies (1:1000 in 1% BSA / PBS 1X, Invi-
trogen), washed with Tris-buffer, and mounted using
Fluoromount-G with DAPI. All images were acquired
using a Zeiss Observer A1 fluorescent microscope or
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Zeiss LSM780 upright Confocal. Quantification was car-
ried out on two-three sections per mouse and three-four
mice for each genotype evaluated using ImageJ.

Results
A robust myelination- and oligodendrocyte-enriched gene
module is strongly associated with genetic data in late-
onset AD
The primary goal of this study was to interrogate OL-
enriched multiscale gene networks constructed from hu-
man AD postmortem brain samples (Fig. 1). We first iden-
tified co-expressed human gene modules, that were built
from data obtained from three regions [e.g. prefrontal cor-
tex (PFC), visual cortex (VC), and cerebellum (CBM)]
from postmortem late-onset AD human brains samples
from a large cohort of patients [26]. We further annotated

these gene modules with additional gene sets to investi-
gate their associations with OLs and AD. We then con-
structed Bayesian gene regulatory networks for the OL-
enriched co-expression modules, identified key regulatory
genes in the regulatory networks, and systematically vali-
dated the topological structures of the regulatory networks
based on a series of gene perturbation experiments in
vitro and in vivo. Specifically, in order to identify OL co-
expression networks in AD, we tested each of the 62 co-
expression modules with at least 50 genes for the enrich-
ment of genes expressed specifically in each of five major
brain cell types, i.e., astrocytes, endothelial cells, microglia,
neurons, and myelinating OLs [32] (Fig. 2). We identified
three co-expression modules with the strongest enrich-
ment of OL genes (Fig. 2), which we subsequently com-
bined, leading to a set of 1631 unique gene symbols,

a b

c d

e f

Fig. 1 Workflow of the analyses performed in this study. Human postmortem AD brain tissue samples from multiple brain regions were used to
construct coexpression networks (a) using Weighted Gene Coexpression Network Analysis (WGCNA). The oligodendrocyte/myelination enriched
coexpressed gene modules from WGCNA were annotated by a variety of external data sets including DNA, RNA, proteomic, cell type, and
proteome compartment data (b). Next, Bayesian gene regulatory networks were constructed based on the DNA and RNA postmortem human
AD data (c). The Bayesian networks were used to identify key driver genes and several key drivers were perturbed in mouse models to identify
their downstream targets (d). The gene signatures in response to the perturbations of the key driver genes were used to validate the network
structure (e) and to compare with the differential expression patterns in human AD postmortem brains (f)
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which we henceforth refer to as the core oligodendrocyte
gene set (COLGS). Notably, because the three OL-
enriched co-expression modules were each primarily iden-
tified in one of the three brain regions from the multi-
tissue experiment, by combining them we sought to ob-
tain a more sensitive measure of genes whose expression
is associated with OLs in the context of AD across brain
regions. COLGS is highly enriched for genes encoding
proteins identified in the myelin proteome [43] (Fold En-
richment (FE) = 1.92, Fisher’s Exact Test (FET) p = 2.4e-
15), and is also enriched for genes specifically expressed in

each of oligodendrocyte precursor cells (FE = 2.8,
p = 4.2e-17), newly formed oligodendrocytes (FE = 6.2,
p = 1.0e-84), and myelinating oligodendrocytes [32]
(FE = 7.4, p = 2.5e-87), indicating that genes in COLGS
capture a wide spectrum of OL functions.
To systematically evaluate the AD genetics of COLGS,

we identified 543 genes with nominally significant
(p < 0.05) gene-level associations with AD based on a
meta-analysis of AD genome-wide association study
(GWAS) data by the International Genomics of Alzheimer’s
Project (IGAP) [28]. We identified a significant enrichment

Fig. 2 A myelination/oligodendrocyte enriched module in the multi-tissue AD coexpression network is enriched for AD GWAS genes. The left
panel shows a heatmap of the enrichments (BH-adjusted -log10 p-values) of multiscale modules with at least 50 members in marker genes from
each of the five major brain cell types, i.e. astrocytes, endothelial cells, microglia, neurons, and myelinating oligodendrocytes, derived from a previ-
ous study in mice [32]. The bottom panel shows the enrichment (BH-adjusted -log10 p-values) of each corresponding module in the 543 AD risk
genes derived from the IGAP AD GWAS study
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of the AD risk genes in COLGS (FE = 1.71, p-
value = 0.0004), due to the presence of BIN1, PICALM,
NME8, SNX1, and other genes. Of all the individual co-
expression modules, one OL-enriched module had the sec-
ond strongest enrichment for AD GWAS risk genes, sec-
ond only to an immune- and microglia-enriched module
(Fig. 2, Table 1). We further highlighted the specific genes
in COLGS that were also identified as AD risk genes (Fig. 3,
Table 2). These results suggest that the COLGS contains a
relatively large proportion of AD risk genes.
Next, we sought to examine the robustness of

COLGS to a variety of sources of variance. We first
used data from an independent study that also identi-
fied coexpression modules in human AD postmortem
brain RNA expression samples [44]. Despite originat-
ing from a different brain region (the hippocampus),
we found that 83% of the genes in the module with
the strongest OL-enrichment in this data set over-
lapped with the members of COLGS (FE = 18.3,
p = 9.1e-79). In order to measure the robustness of
the co-expression network with respect to an alterna-
tive gene expression modality, we utilized a large AD
proteomic data set from the prefrontal cortex (PFC;

Brodmann area 10), which we corrected for batch,
age of death, and sex. We used WGCNA [31] to
identify gene modules in this proteomic data set, and
found that the module with the strongest OL-
enrichment (FE = 1.7, p = 0.0053), has 50% overlap
with COLGS (FE = 10.7, p = 6.6e-58), including the
AD risk factor BIN1 (Additional file 1: Figure S1,
Additional file 2). These results suggest a robust co-
regulation of the COLGS genes at both the transcript
and protein levels in AD.

Dysregulation of an oligodendrocyte-associated module
in AD at the protein level
Our previous analysis showed that the three OL-enriched
modules were each among the modules with the strongest
loss of connectivity in AD samples on the RNA expression
level [26]. We sought to extend these results by interrogat-
ing gene expression dysregulation in the OL-enriched pro-
teomics module, which includes 150 proteins and is the
most OL-enriched module. We found that this module
has a significant decrease in correlation in AD samples
(mean difference in z-transformed correlation = −0.466,
empirical p-value = 0.0489; Fig. 4a), thus validating the

Table 1 The region-specific oligodendrocyte-enriched gene networks are among the top associated functional coexpression mod-
ules with the 543 significant Alzheimer’s disease GWAS hits

Module Name Enriched Cell Type Enriched GO Term Size Shared P-Value Adjusted
P-Value

Light cyan Microglia Immune functions 559 23 1.91e-05 0.00118

Green Oligodendrocyte Nerve ensheathment 1098 32 0.000389 0.0121

Purple Neuron Synaptic transmission 847 26 0.000636 0.0131

Gold Microglia Immune functions 400 14 0.00352 0.0546

Salmon Neuron Synaptic transmission 750 21 0.00582 0.0722

Burlywood Ependymal Cell Dynein complex 114 6 0.008 0.0806

Magenta Astrocyte Cell adhesion 841 22 0.0103 0.0806

Gray 1 None Cell junction 56 4 0.0104 0.0806

Light green Oligodendrocyte Nerve ensheathment 474 14 0.0145 0.0998

Seashell None Coated vesicle 313 10 0.0222 0.127

Black None Neuropeptide hormone 1067 25 0.0226 0.127

Tan Mural Cell Extracellular matrix 734 18 0.033 0.171

Blue Astrocyte Cadherin 1508 31 0.0557 0.247

Yellow Microglia Immune functions 1174 25 0.058 0.247

Honey dew Astrocyte Muscle contraction 139 5 0.0613 0.247

Medium blue None NAD(P) homeostasis 233 7 0.066 0.247

Red 4 Ependymal Cell Transport 62 3 0.0682 0.247

Red Oligodendrocyte Nerve ensheathment 1089 23 0.0717 0.247

Gold 3 Ependymal Cell Dynein complex 71 3 0.0936 0.294

Peru Neuron Synaptic transmission 408 10 0.095 0.294

The 20 modules with the strongest Fisher’s Exact Test enrichment in AD GWAS genes from the IGAP data set of the 62 multiscale coexpression modules with at
least 50 members were considered. P-values were adjusted via the Benjamini-Hochberg method. Size = the number of genes in the module, Shared = the number
of overlaps between the IGAP AD GWAS genes and the coexpression modules, GO = Gene Ontology
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loss of coordination among OL network genes in AD at
the protein level. To further explore gene expression
changes in this module in AD, we measured differences in
protein expression of the module members, identifying 17
proteins up-regulated in AD and 7 proteins down-
regulated in AD at FDR < 0.3 and p-value <0.05 (Add-
itional file 3). Notably, we found that a BIN1 protein iso-
form was down-regulated in AD (t = −2.4, p = 0.019,
FDR = 0.19), as well as an MBP protein isoform (t = −2.3,
p = 0.023, FDR = 0.19). Therefore, we found that there are
both variable changes in expression levels for individual
proteins as well as a loss of overall coordination of OL
network protein expression in AD.

Construction and validation of an oligodendrocyte gene
regulatory network in AD
We next sought to predict the gene-gene regulatory rela-
tionships among the COLGS genes in the RNA

expression data, which profiles a wider set of genes than
the proteomics data. Specifically, we constructed a
Bayesian gene regulatory network for each of the three
OL-enriched co-expression modules we identified by in-
tegrating RNA expression and genotype data from aut-
opsied brain samples of persons with AD. As detailed in
our previous studies [33, 34], Bayesian networks are a
type of probabilistic causal network, providing a natural
framework for integrating highly dissimilar genetic and
gene expression data to predict regulatory relationships.
We then combined the three OL Bayesian networks by a
set union of directed links, leading to a more robust core
oligodendrocyte-enriched Bayesian network (COLBN),
and performed key driver analysis on COLBN to identify
master regulatory OL genes in the context of AD
(Fig. 1b; Table 3).
To interrogate the topology of the COLBN as well as

how the dysregulation of COLBN key drivers could
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Fig. 3 Key drivers and AD GWAS risk genes in the AD oligodendrocyte regulatory network. Visualization of the core oligodendrocyte Bayesian
regulatory network (COLBN), where arrows refer to the predicted direction of interaction in the AD sample-derived network. Nodes corresponding
to genes that are called as one of the top 40 key drivers in the network are larger sized, while nodes corresponding to genes that are one of the
AD GWAS risk factors are colored pink
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relate to AD, we identified an in vitro experiment that
perturbed a key driver gene in the COLBN, MYRF, and
examined how the predicted network structures corres-
pond to its identified experimental targets. Specifically,
we used data from a previous study that performed tran-
scriptional profiling of cultured mouse OLs with a dele-
tion of the myelination transcription factor Myrf (also
known as C11orf9) [45]. The set of genes differentially
expressed in the cells with a Myrf deletion compared
with the control was significantly enriched in the 5-layer
downstream neighborhood of MYRF in the COLBN
(FE = 2.5, p = 7.5e-33; Fig. 5a, Fig. 6a-b), thus validating
the topology of the subnetwork regulated by MYRF. The
validated downstream targets of MYRF include PLD1,
which encodes a protein that regulates the shuttling of
APP and is associated with APP in AD brains [46, 47], as
well as APLP1, which encodes a protein that has been
shown to accumulate within neuritic plaques [48].
Next, we validated the network structure of COLBN

in vivo using knockout mouse models of three of the top
40 key drivers in COLBN, Ugt8, Cnp, and Plp1, each of
which have been found to cause axon pathology without
substantial myelin structural alterations [21, 23, 49]. We
performed RNAseq (GEO: GSE80437) on tissue samples
of postnatal day 20 mice from the frontal cortex (FC)
and cerebellum (CBM) in these three mouse models to
determine their KO DEG gene signatures at FDR < 0.3
(Additional files 4 and 5, Additional file 1: Figure S2).
We profiled RNA from the FC and CBM because these
two regions were also profiled in the human AD post-
mortem brain tissue study, from which the COLBN was
generated. We selected this time point because we
wanted to focus on gene changes that occurred prior to
the development of axonal pathology and therefore more
directly would allow us to determine gene changes char-
acteristic of the prodromic stage of the disease.We iden-
tified no DEGs for ΔCnp in the CBM and ΔPlp1 in the
FC, while we found that all of the other DEG signatures
were significantly enriched in the downstream neighbor-
hoods of their corresponding driver genes (Fig. 6c-d).
UGT8 encodes an enzyme that transfers galactose to cer-
amide to generate galactosylceramide, which makes up
approximately one-fourth of myelin lipid dry mass [50].
UGT8’s 5-layer neighborhood is most enriched for the
Ugt8 KO signature in the CBM (FE = 2.1, p = 2.4e-9).
One validated downstream target of UGT8 is LIPA,
which encodes a lysosomal cholesterol-metabolizing en-
zyme associated with genetic polymorphisms that affect
plasma 24S–hydroxycholesterol/cholesterol levels in AD
patients [51] (Fig. 5d). The key driver CNP encodes a
protein that plays a role in OL process outgrowth and
promoting axon survival [23, 52]. CNP’s 5-layer neigh-
borhood is significantly enriched for the Cnp KO signa-
ture in the FC (FE = 1.7, p = 6.4e-6). One of the

Table 2 The members of the core oligodendrocyte gene set
(COLGS) that are identified as significant (p < 0.05) AD GWAS
hits in the IGAP data set
Gene Chromosome Top SNP Top SNP P-value

BIN1 2 rs35114168 1.05e-25

PICALM 11 rs639012 4.87e-19

NME8 7 rs2060712 6.30e-07

SNX1 15 rs138194169 2.72e-06

CPM 12 rs10878881 1.48e-05

DLG2 11 rs422267 2.09e-05

RASGRP3 2 rs10200743 2.76e-05

GALNT18 11 rs11021857 4.511e-05

DNAH17 17 rs117779187 7.04e-05

LIPC 15 rs17269397 8.32e-05

ZNF652 17 rs12948660 0.000119

MVB12B 9 rs887656 0.000145

CAV2 7 rs75396674 0.000157

CREB5 7 rs42711 0.000158

NFE2L3 7 rs73281529 0.000224

CDR2L 17 rs117639581 0.000299

PIP4K2A 10 rs11013051 0.000390

TLL2 10 rs11594430 0.000542

RRBP1 20 rs6080757 0.000873

KANK4 1 rs114648128 0.00118

SLC9A9 3 rs10804689 0.00141

HIP1 7 rs10259351 0.00165

CKAP2 13 rs58655347 0.00168

TLE4 9 rs62569297 0.00172

NECAB1 8 rs7003020 0.00194

TBC1D2 9 rs73488713 0.00222

LGR5 12 rs75928881 0.00278

PDE4B 1 rs12138629 0.00374

PDE11A 2 rs4893975 0.00380

PAPSS1 4 rs62313402 0.00387

DFNB31 9 rs10817615 0.00450

MBP 18 rs8095585 0.00484

LACTB2 8 rs10097463 0.00545

ALCAM 3 rs114219776 0.00628

TMED7 5 rs10069695 0.00691

CAT 11 rs494024 0.00849

MSI2 17 rs12450585 0.00849

MME 3 rs61758192 0.00885

POC1B 12 rs770369 0.0117

PCDHA1 5 rs2879086 0.0151

ANK3 10 rs117641222 0.0185

FAM214A 15 rs8030871 0.0241

ELMO1 7 rs1420423 0.0333

The p-value column shows the smallest p-value of any associated SNP for
each gene
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validated downstream targets of CNP is SEC14L5, which
has been previously found to be down-regulated in CA1
in AD [53] (Fig. 5c). Finally, the key driver PLP1 encodes
a protein that is the most abundant protein in CNS mye-
lin sheaths [54], regulates OPC process outgrowth [55],
and promotes axonal integrity [56]. PLP1’s 5-layer neigh-
borhood is significantly enriched for the Plp1 KO signa-
ture in the CBM (FE = 2.0, p = 1.2e-4). A validated
downstream target of Plp1 is Fgf1 (Fig. 5b), which en-
codes a protein that has been found to stimulate neur-
onal growth and promote remyelination [57] and has
been found to have increased levels in the CSF in AD
[58].
Overall, as with the in vitro perturbation data, the in

vivo perturbation experiments strongly support the net-
work structure of COLBN and pinpoint specific down-
stream targets to explain how dysregulation of the key
drivers may help mediate AD pathology.

Perturbations of key OL network drivers in mice mimic
aspects of dysregulation in human AD brain samples
Since the key drivers of COLBN are predicted to orches-
trate the expression of a network with a strong genetic
association with AD, we hypothesized that the KO signa-
tures of COLBN key drivers in vivo would mimic their
gene expression dysregulation in human AD brains. In
order to test this hypothesis, we performed gene ontol-
ogy analysis on DEG signatures from postmortem brain
tissue from both key driver KO mice and patients with
AD. The DEG signatures in AD were derived based on

samples from the PFC in the Harvard Brain Tissue Re-
source Center cohort [26] and samples from the hippo-
campus (HIPP) in the University of Kentucky Brain
Bank cohort [40], because these regions are among those
with the strongest AD pathology. Overall, the enrich-
ment of DEGs from the human AD cases in these gene
compartments show several similar dysregulation pat-
terns as that seen in the key driver knockouts (Fig. 7a).
For example, we identified a strong enrichment for
genes in the gene ontology (GO) category “mitochon-
drial protein complex” in the down-regulated ΔCnp sig-
nature (FE = 10.6, p = 8.2e-22) and the down-regulated
AD HIPP signature (FE = 6.7, p = 7.5e-11). We next
found that the down-regulated ΔCnp and AD HIPP sig-
natures intersected along with the mitochondrial gene
set substantially more than expected due to chance
(FE = 34, p = 2.1e-9; Fig. 7b), suggesting that the actual
genes dysregulated in the mitochondria are similar be-
tween Cnp-KO mice and in the hippocampus of AD pa-
tients. For example, COX6A1, a mitochondrial-
associated gene in which mutations are causative of per-
ipheral neuropathy [59], was found to be down-
regulated in both Cnp-KO mice and in the hippocampus
of AD patients. We also identified a strong enrichment
for genes in the GO category “ribosome” in the down-
regulated ΔCnp signature (FE = 4.8, p = 3e-11), the
down-regulated ΔPlp1 signature (FE = 8.1, p = 4e-18),
and the down-regulated AD PFC signature (FE = 3.0,
p = 0.002). We identified a significant overlap of all three
of these down-regulated signatures and the ribosomal

a b

c

Fig. 4 An oligodendrocyte-enriched protein coexpression module is dysregulated in AD. a Heatmap of transformed correlations in non-AD samples (Braak
<= 2; lower left) and AD samples (Braak > = 5; upper right) in the OL-enriched module consisting of 150 proteins. The transformation consists of taking
the absolute value of Pearson correlation coefficients raised to the power of β, i.e., the soft-thresholding power coefficient of 3 used in coexpression
network construction. b, c Expression levels for MBP (b) and BIN1 (c) in samples classified as non-AD (Braak <= 2), mild AD (Braak 3–4), and AD samples
(Braak > = 5). Significance assessed using Student’s t-tests (* = p-value <0.05)
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Table 3 Of the 40 top-ranked key drivers from the core oligodendrocyte-enriched Bayesian network (COLBN), 4 have a type of per-
turbation signature that we used to validate the network, either in vitro or in vivo
Gene Symbol Major Annotated Roles of Gene Product Myelin OL Exosome Lipid-Binding AD Risk Perturbation

ERMN Myelination Yes

UGT8 Galactocerebroside production Yes In vivo; this study

CNP Myelination; Axon interaction Yes Yes In vivo; this study

ENPP2 LPA production

FRMD4B ?

PLEKHH1 ?

SLC44A1 Choline transporter Yes

TRIM59 ?

PLLP Myelination Yes Yes

PRRG1 ?

SOX2-OT lncRNA

CONTIG36931_RC ?

CLDND1 ?

ANLN Actin cytoskeleton Yes

TTYH2 Chloride channel

MYRF OL differentiation In vitro; [49]

FA2H Ceramide hydroxylation Yes

CARNS1 Carnosine production

RNLS Alpha-NAD(P)H oxidase

RASSF2 Apoptosis

PRR18 ?

RTKN Rho pathway

DOCK10 Rho pathway

LPAR1 LPA receptor Yes Yes

MAG Myelination Yes

TF Iron transport

TMEM125 ?

PLP1 Myelination; Axon interaction Yes Yes Yes In vivo; this study

RHBDL2 Protease activity

NKX6–2 OL differentiation

FOLH1 Folate hydrolase Yes

PSEN1 Protease activity Yes

MAN2A1 Glycosylation

PLA2G16 Phospholipase Yes

CONTIG56276_RC ?

ABCA2 Sterol transport Yes

CREB5 ? Yes

GPR62 ?

SLC31A2 Copper transport

LAMP2 Glycosylation

The Major Annotated Roles of Gene Product column is based on a literature review for the major known role(s) of that gene’s product in oligodendrocytes, for
which a question mark indicates that no major role is known, to the best of our knowledge. The Myelin column indicates whether or not that gene encodes a
protein found in in the myelin proteome [43], the OL Exosome column indicates whether or not that gene encodes a protein found in the OL exosome proteome
[97], and the lipid-binding column indicates whether or not that gene encodes a protein found in the set of lipid-binding proteins [98]. The AD risk indicates
whether a variant associated with the gene has been previously associated with AD risk, and the Perturbation column indicates whether there is a perturbation
signature that we used to corroborate the downstream neighborhood topology for that key driver
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gene set (FE = 76, p = 0.013; Fig. 7c), which has limited
power due to the small size of the overall ribosomal gene
set. Since the Cnp and Plp1 knockout RNAseq profiling
occurred prior to the typical age of onset of axon degen-
eration in these mice, the mitochondrial and ribosomal
gene set dysregulation seen is suggestive of “presymp-
tomatic” pathways that precede subsequent axonal and
neuronal degeneration.
Finally, we also detected that there was a significant

enrichment for genes in myelin sheath GO category in
the up-regulated ΔPlp1 signature (FE = 4.3, p = 3e-8),
the down-regulated ΔCnp signature (FE = 2.5,
p = 0.002), and the down-regulated AD HIPP signature
(FE = 5.2, p = 2e-9). However, the myelin sheath GO

signature only contains 161 genes, which makes overlap
analysis difficult. In order to use a more well-powered
gene set, we utilized a larger set of 1778 genes that have
been previously reported to be present in the myelin
proteome [43]. In this gene set, we found a strong en-
richment for the intersection of genes in the myelin
proteome with down-regulated genes in Cnp-KO mice
and human AD hippocampus (FE = 6.0, p = 2.1e-8;
Fig. 7d). This shared set of down-regulated myelin genes
includes CDK5, which encodes an enzyme whose activity
is associated with tau pathology [60] and is essential for
myelination [61]. Both Cnp-KO mice and patients with
AD undergo axon damage in the absence dramatic ultra-
structural changes in myelin structure [62], and our data

c

a

d

b

Fig. 5 In vitro and in vivo perturbations of key driver genes in the AD myelin/oligodendrocyte networks validated a number of predicted downstream
targets. In these network plots, arrows refer to the predicted direction of interaction in the AD sample-derived core oligodendrocyte Bayesian regulatory
network (COLBN). The presence of multiple arrows between two genes is because COLBN was constructed by a union of directed links of three networks
from three brain regions. In each plot, the perturbed (i.e., knocked-down or knocked-out) gene is colored yellow, the genes significantly down-regulated in
the samples with the driver perturbed are colored green, the genes up-regulated are colored red, and the genes with inconsistent expression changes (i.e.,
multiple probes corresponding to the same gene show opposite directions of changes in expression) are colored blue. The size of the node is proportional
to the number of downstream nodes in the subnetwork. a Validation of the two-layer subnetwork regulated by MYRF using the differentially expressed
genes (FDR < 0.3, p < 0.05) derived from a Myrf knockout experiment in cultured mouse oligodendrocytes. b, c, d Validation of the two-layer subnetworks
regulated by PLP1, CNP, and UGT8 using the differentially expressed gene signatures (FDR < 0.3, p < 0.05) from the RNAseq data derived from our knockout
experiments in mice
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shows that both conditions share a down-regulation of
myelin-associated genes that may be associated with dys-
myelination [22] and subsequent axon damage.
In order to validate the decreased expression of key

myelin and mitochondrial genes in Cnp-KO mice, we
measured the protein expression of BIN1 and GOT2 in
Cnp-KO mice compared to WT mice. BIN1 is primarily
expressed in mature OLs and white matter in AD pa-
tients [63]. Interestingly, the longer, central nervous sys-
tem (CNS)-specific isoform of Bin1 has decreased
expression levels in AD, although overall Bin1 transcript
levels show increased expression [64]. This may reflect a
proliferation of monocyte lineage cells in AD and a con-
comitant decrease in expression of Bin1 in other cell
types, including OLs. BIN1 protein expression has been
found to decrease in the myelin proteome of Cnp-KO
mice compared to WT mice, but not in Plp-KO, Mag-
KO, or Sept8-KO mice [65]. Consistent with this previ-
ous data, we found a significant down-regulation of
BIN1 expression in the corpus callosum in Cnp-KO
mice compared to WT mice (p = 0.0041 and p = 0.0007,
Fig. 8a-b). We selected to profile the corpus callosum
because it is an OL- and myelin-rich tissue, and there-
fore we reasoned that protein expression in this region
more accurately would reflect the effect of Cnp-KO on
OLs protein expression. No changes in the subcellular
distribution of BIN1 were detected in Cnp-KO mice,

which was primarily expressed in the cytoplasm of cells
that were also stained by antibodies specific for the nu-
clear pan-OL lineage marker OLIG2 (Fig. 8c-e). Next,
we measured the protein expression of GOT2, which is
a mitochondrial protein that has been shown to be
down-regulated in many AD gene expression studies
[66], and has down-regulated transcript levels in Cnp-
KO mice in our RNAseq expression profiles. Consistent
with this data, we found a down-regulation of GOT2
protein levels in Cnp-KO mice (p = 0.0332; Fig. 8a-b).
Although GOT2 has been identified in the myelin prote-
ome, we found that it was primarily co-expressed with
neurons (Fig. 8f–h), suggesting that the loss of Cnp ex-
pression may also affect mitochondrial gene expression
within neurons. Taken together, these results validate
that Cnp-KO mice have gene dysregulation in key mye-
lin and mitochondrial proteins that is similar to that
seen in AD brain samples.

Discussion
In this study, we employed an unbiased systems biology
approach to characterize OL-enriched and AD-
associated co-expression and regulatory molecular net-
works. We derived a core OL-enriched gene set
(COLGS) that was highly enriched in AD GWAS genes.
We found that this set of genes strongly overlapped with
the corresponding genes from a protein co-expression

a b

c d

Fig. 6 Gene signatures from in vitro and in vivo perturbations of key driver genes in the AD myelin/oligodendrocyte network are significantly enriched in
the predicted subnetworks regulated by the driver genes. a, b Fold-enrichment (a) and BH-adjusted -log10 enrichment p-values (b) for the overlap between
the Myrf in vitro perturbation signature and each n-layer network neighborhood regulated by MYRF in the core oligodendrocyte Bayesian regulatory network
(COLBN). c, d Fold-enrichment (c) and -log10 enrichment p-values (d) for the overlap between each in vivo perturbation signature and each n-layer network
neighborhood regulated by the corresponding driver gene. The result was based on the in vivo knockout differentially expressed gene signatures
experiments for Cnp, Plp1, and Ugt8 from the cerebellum (CBM) and/or the frontal cortex (FC)
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module, which we found to be highly dysregulated in
AD. We next constructed a core OL Bayesian regulatory
network (COLBN) to dissect the causal relationships
among the genes in COLGS. By employing a series of in
vitro and in vivo perturbations of key driver genes in
COLBN, we validated the predicted network structures
in COLBN. We further showed that the knockouts of
key drivers of COLBN in mice mimic the dysregulation
of OL-associated compartments of genes in human post-
mortem AD brains. In particular, our data revealed a
surprisingly strong, convergent gene expression effect of
the knockouts Cnp and Plp1 on organelle-associated
gene expression pathways, specifically in genes anno-
tated for mitochondrial and ribosome functions. These
organelles have also been reported to be dysregulated in
axons in AD brains [17, 67–69], suggesting that altered

OL-axon communication may lead to dysregulated ex-
pression of ribosomal and mitochondrial genes and pos-
sibly play a role in contributing to AD axonal pathology.
It is difficult to study prodromal changes in late-onset
AD brains, because we are not able to determine a priori
the individuals who would progress to AD. However, in
mice with well-defined ablation of myelin genes also de-
tected as key drivers of human gene network in AD, it is
possible to define alterations that occur in OL and that
precede frank neurodegeneration. For this reason the de-
tection of similar gene changes in brain tissue samples
of Cnp-KO and Plp1-KO mice prior to the development
of any axonal pathology [22, 24], allowed us to infer that
the dysregulated expression of similar genes in murine
samples and in human AD brains is suggestive of similar
events occurring during the early part of the

b

a

c d

Fig. 7 Perturbation of oligodendrocyte network key drivers in mice recapitulates key gene expression changes in human AD brain samples. a A heatmap
of the -log10 gene ontology (GO) enrichment p-values of core oligodendrocyte Bayesian regulatory network key driver knockout differentially expressed
gene (DEG) signatures (left panel) and AD DEG signatures from the hippocampus and prefrontal cortex (right panel). The top 3 GO terms with between
100 and 800 gene symbols most enriched in each of the DEG signatures are shown. The p-values for each tested signature were adjusted using the
Benjamini-Hochberg method. b, c, d Venn diagrams showing the intersections of genes encoding proteins associated with the GO terms “mitochondrial
protein complex” (b), “ribosome” (c), and genes in the myelin proteome (d) with genes downregulated in various DEG signatures are shown
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Fig. 8 (See legend on next page.)
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pathological cascade. Overall, this study improves our
understanding of the molecular underpinnings of mye-
lination and OLs in AD by identifying biologically rele-
vant pathways, dissecting the causal relationships among
the OL- and myelin-related genes, and implicating key
driver genes in AD pathogenesis.
At the individual gene level, many of the genes in

COLGS have been described as genetic risk factors associ-
ated with late-onset AD, including BIN1 [28], PICALM
[28], NME8 [28], UNC5C [30], and PSEN [27]. Notably,
BIN1 is the nearest protein-coding gene to the SNP with
the second-strongest GWAS signal for AD, following
APOE [28]. Histologically, BIN1 is primarily found in the
brain at the nodes of Ranvier, consistent with its high
RNA expression in OLs and its presence in the myelin
proteome [43, 70, 71]. In COLBN, BIN1 is downstream of
ABCA2, a cholesterol transporter that has been associated
with the risk of AD in many study populations [28, 72–
75]. Much of the literature about the role of BIN1 in AD
has focused on its roles in neurons and microglia [76], but
our data, in addition to another recent study [63], suggest
that its role in OLs should be explored further. In addition
to genetic risk factors, our AD OL network also contains
many genes encoding proteins that have been associated
with AD pathophysiology (e.g., via Aβ production) includ-
ing PSEN1 [77], BACE1 [77], PLD1 [46, 78], and APLP1
[79]. Consistent with the important role of BACE1 in OLs
suggested by our network, BACE1 has been shown to play
a key role in myelination [80, 81]. The role of BACE1 in
OLs is of high relevance to AD, as mutations in the
BACE1-cleaving region of APP have been associated with
a decreased risk of AD [82], and β-secretase inhibitors
intended to treat AD may have side-effects of myelin de-
fects [83]. A focus on the interaction targets of both
PSEN1 and BACE1 within OLs using regulatory networks
may be a fruitful avenue to identify treatment modalities
that decrease deleterious Aβ production without causing
off-target effects.
At the gene set level, our enrichment analysis of the AD

co-expression modules shows that the three modules

significantly enriched for AD risk genes are associated with
three different cell types, i.e., microglia, OLs, and neurons
(Table 1). Note that gene modules were identified based on
the correlation between gene expression profiles in postmor-
tem human AD brains, and they don’t necessarily corres-
pond to any particular known cell types or biological
processes due to interactions among cell types and biological
processes. Therefore, we denote the co-expression modules
by randomly selected color names in addition to their most
enriched gene ontology term, to emphasize their multifa-
ceted and highly context-dependent functions. The top
ranked module was enriched for immune (microglia/macro-
phage) genes, consistent with recent reports that immune
cells and in particular innate immunity plays a critical role
in promoting AD [76, 84–86]. However, it is imprudent to
focus on a single cell type and ignore the interactions with
other cells. For example,TREM2, an established AD risk fac-
tor that is primarily expressed in immune cells [87, 88], is
also the causative gene of Nasu-Hakola disease, an early-
onset subcortical dementia that presents with white matter
demyelination [89]. Mice lacking Trem2 have been shown
to have delayed myelin debris clearance, which may lead to
increased microglia activation and thus demyelination and
neuronal death [90]. The dysregulation of myelin proteome
genes that we observed in AD may contribute to pathologic
inflammation, by increasing the available lipid pool for scav-
enging by microglia, which can activate microglia into a
pro-inflammatory state [91, 92]. Further investigation of cell
type interactions in AD via network biology is a promising
approach in addressing the underlying causes of AD.
Existing mouse models of AD tend to focus on Aβ

and/or neuronal deficits in AD. For example, several
mouse models of AD express genes with familial AD-
causative mutations under the Thy1 promoter [93–95],
which is a neuronal marker and will serve to restrict the
pathologic changes to neurons. However, the data pre-
sented in this study and others suggest that the dysregu-
lation of other cell types, including OLs, may play a role
in AD. This opens up a need for mouse models of AD
that can recapitulate the OL- and myelin-associated

(See figure on previous page.)
Fig. 8 Downregulation of AD-associated proteins in mice lacking the oligodendrocyte network key driver Cnp. a Representative western blots of BIN1,
GOT2, CNP and alpha-TUBULIN stainings on Cnp-WT and Cnp-KO corpus callosum (CC) tissues (n = 3). b Quantification of BIN1 and GOT2 protein
expression in Cnp-KO corpus callosum compared to Cnp-WT corpus callosum (protein expression normalized to alpha-TUBULIN expression for each sample,
n = 3 per condition; p = 0.0041, p = 0.0007, p = 0.032). c Representative confocal image of post-natal day 60 sections of Cnp-WT and Cnp-KO corpus
callosum, stained for OLIG2 (red), BIN1 (green) and DAPI (blue), scale bar = 300 μm. The bottom panel shows higher magnification of the double stainings
(white arrowheads indicate double positive for BIN1 and OLIG2), scale bar = 50 μm. d Quantification of the proportion of each cell types expressing BIN1
in Cnp-WT and Cnp-KO corpus callosum (oligodendrocytes – OLIG2+ in gray, neurons – NeuN+ in white, astrocytes – GFAP+ in black; n = 3–4). e
Quantification of the percentage of OLIG2+ cells expressing BIN1 in Cnp-WT and Cnp-KO corpus callosum (n = 3–4). f Representative confocal image of
post-natal day 60 sections of Cnp-WT and Cnp-KO cortex, stained for OLIG2 or NeuN (red), GOT2 (green) and DAPI (blue), scale bar = 300 μm. The bottom
panel shows magnification of the double stainings (white arrowheads indicate double positive for GOT2 and OLIG2 or NeuN, respectively), scale bar = 50 μm.
g Quantification of the proportion of each cell types expressing GOT2 in Cnp-WT and Cnp-KO cortex (oligodendrocytes – OLIG2+ in gray, neurons – NeuN
+ in white, astrocytes – GFAP+ in black; n = 3–4). h Quantification of the percentage of OLIG2+ cells and of NeuN+ cells expressing GOT2 in Cnp-WT and
Cnp-KO corpus callosum (n = 3–4). * p < 0.05, ** p < 0.01, *** p < 0.001
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dysregulation in AD. In this study, we found that a mouse
knockout model of one of the key drivers in the OL net-
work, Cnp, demonstrates a strikingly similar myelin and
mitochondrial dysregulation pattern as is seen in brain sam-
ples of patients with AD. Notably, we did expression profil-
ing prior to the onset of axon degeneration in Cnp-KO mice
[22], to minimize the possibility that the myelin gene expres-
sion changes observed would be reactive to as opposed to
premonitory for axon damage. Taken together, our data sug-
gest that the Cnp-KO mice may be a good model of the OL
network gene dysregulation and dysmyelination that occurs
in the brains of patients with AD. Therefore, therapeutic
agents that are able to mitigate and/or prevent the dysmyeli-
nation and axon degeneration seen in Cnp-KO mice are
worthwhile of investigation as potential therapeutic agents
for ameliorating cognitive deficits in patients with AD.
In this study, we focused on the molecular networks in

AD in a brain cell type, OLs, which have not been widely
studied in AD. Our network modeling approach uncovered
a network of OL-associated genes that is enriched for AD
GWAS genes, pathways through which dysregulation of
this OL network may promote AD pathology, and key
driver genes that orchestrate these pathways. Further work
on our model for the role of OLs in AD may help to ad-
dress why aging is the major risk factor for AD, since mye-
lin maintenance and plasticity are known to become
progressively less robust in normal aging [62, 96]. In par-
ticular, preventing or reversing the dysregulation of key OL
driver genes such as CNP and downstream targets such as
BIN1 deserve further research as interventions to help to
alleviate the progression of cognitive deficits in AD.

Conclusions
This study systematically identifies and validates a compre-
hensive molecular blueprint of OLs in the context of AD.
Our gene network analysis of large-scale genetic and gen-
omic data from AD brains reveals that OL/myelin-enriched
subnetworks in multiple brain regions are strongly associ-
ated with clinical and neuropathologic traits in AD. These
OL/myelin-enriched subnetworks harbor not only Aβ
production-related genes, but also several genes involved in
myelin biology. Our network analysis further identifies key
causal regulators of the OL/myelin-enriched networks, in-
cluding UGT8, CNP, MYRF, and PLP1. These predicted net-
work structures can be validated by gene perturbation
signatures of these drivers. Mice with genetic ablations of
Cnp mimicked components of organelle and myelin sheath
gene expression dysregulation seen in brain samples from
patients with AD, including decreased protein expres-
sion of BIN1 and GOT2. Overall, our network models
of OLs in AD and the comprehensive validation ex-
periments reveal details of the molecular mechanisms
of OL dysregulation in AD and thus pave a way for
the development of novel AD therapies.

Additional files

Additional file 1: Supplementary Experimental Procedures. Figure S1.
The topological overlap matrix plot of the protein co-expression network
constructed from the proteomics data from the autopsied brains in the
MSBB cohort, along with the dendrogram showing the tree cutting
process used to define modules (above). Figure S2. Confirmation that
the key driver knockouts abrogate gene expression of the key driver in
the RNA-seq experiments. For each of the key driver knockouts whose
genome-wide gene expression was profiled in this study using RNA-seq,
we plotted the log10 counts overlapping that gene in both the wildtype
(WT) and knockout (KO) samples. Notably, one of the matched samples
from Cnp was detected as an outlier in both the CBM and FC brain re-
gions (red), due to suspected mislabeling. These samples were removed
prior to downstream differential expression analysis. (DOCX 161 kb)

Additional file 2: Module membership file for the Mount Sinai Brain
Bank (MSBB) proteomic coexpression network. The module label, a
randomly chosen color name, is in the 1st column, while the protein
name is in the 2nd column. (TSV 34 kb)

Additional file 3: Differentially expressed proteins in the MSBB
proteomics data set between AD cases and controls in the OL-enriched
module (which has been randomly assigned the color name “Yellow”).
(TSV 9 kb)

Additional file 4: Summary of read mapping from the three knockout
mouse RNAseq experiments generated by TopHat. (XLSX 52 kb)

Additional files 5: Differentially expressed genes found the mouse
knockout RNAseq analyses of Ugt8 in the CBM (Data 1) and FC (Data 2),
Cnp in the FC (Data 3), and Plp1 in the CBM (Data 4). For these
differential expression analyses, we mapped RNAseq reads using TopHat,
converted to count space using HTSeq, used voom to transform the read
space data to log2 counts per million, and used limma for differential
expression analysis. We also used the Ensembl database to identify the
human gene with the highest homology percentage based on protein
coding region DNA divergence, and report this homology percentage for
each gene. Note that the differential expression signatures of Cnp in the
CBM and Plp1 in the FC were not found not have any differentially
expressed genes at FDR < 0.3, so they are not included here. (ZIP 358 kb)
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